138 research outputs found

    Neurosurgical Ultrasound Pose Estimation Using Image-Based Registration and Sensor Fusion - A Feasibility Study

    Get PDF
    Modern neurosurgical procedures often rely on computer-assisted real-time guidance using multiple medical imaging modalities. State-of-the-art commercial products enable the fusion of pre-operative with intra-operative images (e.g., magnetic resonance [MR] with ultrasound [US] images), as well as the on-screen visualization of procedures in progress. In so doing, US images can be employed as a template to which pre-operative images can be registered, to correct for anatomical changes, to provide live-image feedback, and consequently to improve confidence when making resection margin decisions near eloquent regions during tumour surgery. In spite of the potential for tracked ultrasound to improve many neurosurgical procedures, it is not widely used. State-of-the-art systems are handicapped by optical tracking’s need for consistent line-of-sight, keeping tracked rigid bodies clean and rigidly fixed, and requiring a calibration workflow. The goal of this work is to improve the value offered by co-registered ultrasound images without the workflow drawbacks of conventional systems. The novel work in this thesis includes: the exploration and development of a GPU-enabled 2D-3D multi-modal registration algorithm based on the existing LC2 metric; and the use of this registration algorithm in the context of a sensor and image-fusion algorithm. The work presented here is a motivating step in a vision towards a heterogeneous tracking framework for image-guided interventions where the knowledge from intraoperative imaging, pre-operative imaging, and (potentially disjoint) wireless sensors in the surgical field are seamlessly integrated for the benefit of the surgeon. The technology described in this thesis, inspired by advances in robot localization demonstrate how inaccurate pose data from disjoint sources can produce a localization system greater than the sum of its parts

    Development of registration methods for cardiovascular anatomy and function using advanced 3T MRI, 320-slice CT and PET imaging

    Get PDF
    Different medical imaging modalities provide complementary anatomical and functional information. One increasingly important use of such information is in the clinical management of cardiovascular disease. Multi-modality data is helping improve diagnosis accuracy, and individualize treatment. The Clinical Research Imaging Centre at the University of Edinburgh, has been involved in a number of cardiovascular clinical trials using longitudinal computed tomography (CT) and multi-parametric magnetic resonance (MR) imaging. The critical image processing technique that combines the information from all these different datasets is known as image registration, which is the topic of this thesis. Image registration, especially multi-modality and multi-parametric registration, remains a challenging field in medical image analysis. The new registration methods described in this work were all developed in response to genuine challenges in on-going clinical studies. These methods have been evaluated using data from these studies. In order to gain an insight into the building blocks of image registration methods, the thesis begins with a comprehensive literature review of state-of-the-art algorithms. This is followed by a description of the first registration method I developed to help track inflammation in aortic abdominal aneurysms. It registers multi-modality and multi-parametric images, with new contrast agents. The registration framework uses a semi-automatically generated region of interest around the aorta. The aorta is aligned based on a combination of the centres of the regions of interest and intensity matching. The method achieved sub-voxel accuracy. The second clinical study involved cardiac data. The first framework failed to register many of these datasets, because the cardiac data suffers from a common artefact of magnetic resonance images, namely intensity inhomogeneity. Thus I developed a new preprocessing technique that is able to correct the artefacts in the functional data using data from the anatomical scans. The registration framework, with this preprocessing step and new particle swarm optimizer, achieved significantly improved registration results on the cardiac data, and was validated quantitatively using neuro images from a clinical study of neonates. Although on average the new framework achieved accurate results, when processing data corrupted by severe artefacts and noise, premature convergence of the optimizer is still a common problem. To overcome this, I invented a new optimization method, that achieves more robust convergence by encoding prior knowledge of registration. The registration results from this new registration-oriented optimizer are more accurate than other general-purpose particle swarm optimization methods commonly applied to registration problems. In summary, this thesis describes a series of novel developments to an image registration framework, aimed to improve accuracy, robustness and speed. The resulting registration framework was applied to, and validated by, different types of images taken from several ongoing clinical trials. In the future, this framework could be extended to include more diverse transformation models, aided by new machine learning techniques. It may also be applied to the registration of other types and modalities of imaging data

    Towards a robust slam framework for resilient AUV navigation

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are playing an increasing part in modern navies, to the point that the control of oceans will soon be decided by their strategic use. In face of more complex missions occurring in potentially hostile environments, the resilience of such systems becomes critical. In this study, we investigate the following scenario: how does a lone AUV could recover from a temporary breakdown that has created a gap in its measurements, while remaining beneath the surface to avoid detection? It is assumed that the AUV is equipped with an active sonar and is operating in an uncharted area. The vehicle has to rely on itself by recovering its location using a Simultaneous Localization and Mapping (SLAM) algorithm. While SLAM is widely investigated and developed in the case of aerial and terrestrial robotics, the nature of the poorly structured underwater environment dramatically challenges its effectiveness. To address such a complex problem, the usual side scan sonar data association techniques are investigated under a global registration problem while applying robust graph SLAM modelling. In particular, ways to improve the global detection of features from sonar mosaic region patches that react well to the MICR similarity measure are discussed. The main contribution of this study is centered on a novel data processing framework that is able to generate different graph topologies using robust SLAM techniques. One of its advantages is to facilitate the testing of different modelling hypotheses to tackle the data gap following the temporary breakdown and make the most of the limited available information. Several research perspectives related to this framework are discussed. Notably, the possibility to further extend the proposed framework to heterogeneous datasets and the opportunity to accelerate the recovery process by inferring information about the breakdown using machine learning.PH

    Long-term localization of unmanned aerial vehicles based on 3D environment perception

    Get PDF
    Los vehículos aéreos no tripulados (UAVs por sus siglas en inglés, Unmanned Aerial Vehicles) se utilizan actualmente en innumerables aplicaciones civiles y comerciales, y la tendencia va en aumento. Su operación en espacios exteriores libres de obstáculos basada en GPS (del inglés Global Positioning System) puede ser considerada resuelta debido a la disponibilidad de productos comerciales con cierto grado de madurez. Sin embargo, algunas aplicaciones requieren su uso en espacios confinados o en interiores, donde las señales del GPS no están disponibles. Para permitir la introducción de robots aéreos de manera segura en zonas sin cobertura GPS, es necesario mejorar la fiabilidad en determinadas tecnologías clave para conseguir una operación robusta del sistema, tales como la localización, la evitación de obstáculos y la planificación de trayectorias. Actualmente, las técnicas existentes para la navegación autónoma de robots móviles en zonas sin GPS no son suficientemente fiables cuando se trata de robots aéreos, o no son robustas en el largo plazo. Esta tesis aborda el problema de la localización, proponiendo una metodología adecuada para robots aéreos que se mueven en un entorno tridimensional, utilizando para ello una combinación de medidas obtenidas a partir de varios sensores a bordo. Nos hemos centrado en la fusión de datos procedentes de tres tipos de sensores: imágenes y nubes de puntos adquiridas a partir de cámaras estéreo o de luz estructurada (RGB-D), medidas inerciales de una IMU (del inglés Inertial Measurement Unit) y distancias entre radiobalizas de tecnología UWB (del inglés Ultra Wide-Band) instaladas en el entorno y en la propia aeronave. La localización utiliza un mapa 3D del entorno, para el cual se presenta también un algoritmo de mapeado que explora las sinergias entre nubes de puntos y radiobalizas, con el fin de poder utilizar la metodología al completo en cualquier escenario dado. Las principales contribuciones de esta tesis doctoral se centran en una cuidadosa combinación de tecnologías para lograr una localización de UAVs en interiores válida para operaciones a largo plazo, de manera que sea robusta, fiable y eficiente computacionalmente. Este trabajo ha sido validado y demostrado durante los últimos cuatro años en el contexto de diferentes proyectos de investigación relacionados con la localización y estimación del estado de robots aéreos en zonas sin cobertura GPS. En particular en el proyecto European Robotics Challenges (EuRoC), en el que el autor participa en la competición entre las principales instituciones de investigación de Europa. Los resultados experimentales demuestran la viabilidad de la metodología completa, tanto en términos de precisión como en eficiencia computacional, probados a través de vuelos reales en interiores y siendo éstos validados con datos de un sistema de captura de movimiento.Unmanned Aerial Vehicles (UAVs) are currently used in countless civil and commercial applications, and the trend is rising. Outdoor obstacle-free operation based on Global Positioning System (GPS) can be generally assumed thanks to the availability of mature commercial products. However, some applications require their use in confined spaces or indoors, where GPS signals are not available. In order to allow for the safe introduction of autonomous aerial robots in GPS-denied areas, there is still a need for reliability in several key technologies to procure a robust operation, such as localization, obstacle avoidance and planning. Existing approaches for autonomous navigation in GPS-denied areas are not robust enough when it comes to aerial robots, or fail in long-term operation. This dissertation handles the localization problem, proposing a methodology suitable for aerial robots moving in a Three Dimensional (3D) environment using a combination of measurements from a variety of on-board sensors. We have focused on fusing three types of sensor data: images and 3D point clouds acquired from stereo or structured light cameras, inertial information from an on-board Inertial Measurement Unit (IMU), and distance measurements to several Ultra Wide-Band (UWB) radio beacons installed in the environment. The overall approach makes use of a 3D map of the environment, for which a mapping method that exploits the synergies between point clouds and radio-based sensing is also presented, in order to be able to use the whole methodology in any given scenario. The main contributions of this dissertation focus on a thoughtful combination of technologies in order to achieve robust, reliable and computationally efficient long-term localization of UAVs in indoor environments. This work has been validated and demonstrated for the past four years in the context of different research projects related to the localization and state estimation of aerial robots in GPS-denied areas. In particular the European Robotics Challenges (EuRoC) project, in which the author is participating in the competition among top research institutions in Europe. Experimental results demonstrate the feasibility of our full approach, both in accuracy and computational efficiency, which is tested through real indoor flights and validated with data from a motion capture system

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    Intelligent Sensors for Human Motion Analysis

    Get PDF
    The book, "Intelligent Sensors for Human Motion Analysis," contains 17 articles published in the Special Issue of the Sensors journal. These articles deal with many aspects related to the analysis of human movement. New techniques and methods for pose estimation, gait recognition, and fall detection have been proposed and verified. Some of them will trigger further research, and some may become the backbone of commercial systems

    Toward Global Localization of Unmanned Aircraft Systems using Overhead Image Registration with Deep Learning Convolutional Neural Networks

    Get PDF
    Global localization, in which an unmanned aircraft system (UAS) estimates its unknown current location without access to its take-off location or other locational data from its flight path, is a challenging problem. This research brings together aspects from the remote sensing, geoinformatics, and machine learning disciplines by framing the global localization problem as a geospatial image registration problem in which overhead aerial and satellite imagery serve as a proxy for UAS imagery. A literature review is conducted covering the use of deep learning convolutional neural networks (DLCNN) with global localization and other related geospatial imagery applications. Differences between geospatial imagery taken from the overhead perspective and terrestrial imagery are discussed, as well as difficulties in using geospatial overhead imagery for image registration due to a lack of suitable machine learning datasets. Geospatial analysis is conducted to identify suitable areas for future UAS imagery collection. One of these areas, Jerusalem northeast (JNE) is selected as the area of interest (AOI) for this research. Multi-modal, multi-temporal, and multi-resolution geospatial overhead imagery is aggregated from a variety of publicly available sources and processed to create a controlled image dataset called Jerusalem northeast rural controlled imagery (JNE RCI). JNE RCI is tested with handcrafted feature-based methods SURF and SIFT and a non-handcrafted feature-based pre-trained fine-tuned VGG-16 DLCNN on coarse-grained image registration. Both handcrafted and non-handcrafted feature based methods had difficulty with the coarse-grained registration process. The format of JNE RCI is determined to be unsuitable for the coarse-grained registration process with DLCNNs and the process to create a new supervised machine learning dataset, Jerusalem northeast machine learning (JNE ML) is covered in detail. A multi-resolution grid based approach is used, where each grid cell ID is treated as the supervised training label for that respective resolution. Pre-trained fine-tuned VGG-16 DLCNNs, two custom architecture two-channel DLCNNs, and a custom chain DLCNN are trained on JNE ML for each spatial resolution of subimages in the dataset. All DLCNNs used could more accurately coarsely register the JNE ML subimages compared to the pre-trained fine-tuned VGG-16 DLCNN on JNE RCI. This shows the process for creating JNE ML is valid and is suitable for using machine learning with the coarse-grained registration problem. All custom architecture two-channel DLCNNs and the custom chain DLCNN were able to more accurately coarsely register the JNE ML subimages compared to the fine-tuned pre-trained VGG-16 approach. Both the two-channel custom DLCNNs and the chain DLCNN were able to generalize well to new imagery that these networks had not previously trained on. Through the contributions of this research, a foundation is laid for future work to be conducted on the UAS global localization problem within the rural forested JNE AOI

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic
    corecore