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Ingeniero de Telecomunicación

PROPUESTA DE TESIS DOCTORAL

PARA LA OBTENCIÓN DEL TÍTULO DE
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Abstract

Unmanned Aerial Vehicles (UAVs) are currently used in countless civil and commercial

applications, and the trend is rising. Outdoor obstacle-free operation based on Global

Positioning System (GPS) can be generally assumed thanks to the availability of

mature commercial products. However, some applications require their use in confined

spaces or indoors, where GPS signals are not available. In order to allow for the

safe introduction of autonomous aerial robots in GPS-denied areas, there is still a

need for reliability in several key technologies to procure a robust operation, such as

localization, obstacle avoidance and planning.

Existing approaches for autonomous navigation in GPS-denied areas are not robust

enough when it comes to aerial robots, or fail in long-term operation. This dissertation

handles the localization problem, proposing a methodology suitable for aerial robots

moving in a Three Dimensional (3D) environment using a combination of measurements

from a variety of on-board sensors. We have focused on fusing three types of sensor

data: images and 3D point clouds acquired from stereo or structured light cameras,

inertial information from an on-board Inertial Measurement Unit (IMU), and distance

measurements to several Ultra Wide-Band (UWB) radio beacons installed in the

environment. The overall approach makes use of a 3D map of the environment,

for which a mapping method that exploits the synergies between point clouds and

radio-based sensing is also presented, in order to be able to use the whole methodology

in any given scenario.

The main contributions of this dissertation focus on a thoughtful combination of

technologies in order to achieve robust, reliable and computationally efficient long-

term localization of UAVs in indoor environments. This work has been validated

ix



and demonstrated for the past four years in the context of different research projects

related to the localization and state estimation of aerial robots in GPS-denied areas.

In particular the European Robotics Challenges (EuRoC) project, in which the author

is participating in the competition among top research institutions in Europe.

Experimental results demonstrate the feasibility of our full approach, both in

accuracy and computational efficiency, which is tested through real indoor flights and

validated with data from a motion capture system.

Keywords: Aerial Robots, Field Robotics, Visual-Inertial Localization, Multi-

Sensor Fusion.
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ETH Eidgenössische Technische Hochschule

EU European Union

EuRoC European Robotics Challenges

FAST Features from the Accelerated Segment Test

xi



FCC Federal Communication Commission

FKIE Fraunhofer-Institut für Kommunikation, Informationsverarbeitung

und Ergonomie

FP7 Seventh Framework Program

FREAK Fast Retina Keypoint

GPS Global Positioning System

HMI Human Machine Interface

ICAO International Civil Aviation Authority

ICP Iterative Closest Point

IMU Inertial Measurement Unit

IR Infrared

KF Kalman Filter

LED Light-Emitting Diode

LIDAR LIght Detection And Ranging

LM Levenberg–Marquardt

MAMMOTH Mars Analog Multi-Mode Traverse Hybrid

Mbps Megabits per second

MCL Monte Carlo Localization

NASA National Aeronautics and Space Administration

NUC Next Unit of Computing

ORB Oriented FAST and Rotated BRIEF

P3P Perspective-Three-Point

PCL Point Cloud Library

PMD Photon Mixing Device

PnP Perspective-n-Point

RF Radio Frequency

RGB-D Red,Green,Blue-Depth

RMS Root-Mean-Square

RO-SLAM Range-Only Simultaneous Localization And Mapping

ROS Robot Operating System

RPA Remotely Piloted Aircraft

xii



RPAS Remotely Piloted Aircraft System

RSS Received Signal Strength

RTAB-Map Real-Time Appearance-Based Mapping

S-PTAM Stereo Parallel Tracking and Mapping

SBA Sparse Bundle Adjustment

SLAM Simultaneous Localization And Mapping

STAIR STanford Artificial Intelligence Robot

SVD Singular Value Decomposition

TOA Time Of Arrival

ToF Time of Flight

UAS Unmanned Aircraft System

UAV Unmanned Aerial Vehicle

UKF Unscented Kalman Filter

UWB Ultra Wide-Band

VI Visual-Inertial

WLAN Wireless Local Area Network

xiii



xiv



Contents

Acknowledgements vii

Abstract ix

Acronyms xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Localization Problem . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Aerial Robots: Definitions and Categories . . . . . . . . . . . 2

1.1.3 Localization of UAS . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Localization of UAS in GPS-denied Areas . . . . . . . . . . . . . . . 5

1.2.1 Landmark-based approaches . . . . . . . . . . . . . . . . . . . 7

1.2.2 Map-based approaches . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Thesis Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 3D Perception for Localization 21

2.1 Optical Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Passive Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Active Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Non-optical Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xv



xvi Contents

3 Robust Visual Odometry for UAVs 35

3.1 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Depth-only Registration . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 Color-depth Registration . . . . . . . . . . . . . . . . . . . . . 45

3.2 Visual-Inertial Odometry . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Feature Detection . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Feature Description . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.3 Frame Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.4 Attitude Correction . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.5 Key-Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.6 Sparse Bundle Adjustment . . . . . . . . . . . . . . . . . . . . 62

3.2.7 Ground Plane Estimation . . . . . . . . . . . . . . . . . . . . 64

3.2.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Multi-Modal Sensor Fusion for Long-Term Localization 73

4.1 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Gaussian Filters for State Estimation . . . . . . . . . . . . . . . . . . 76

4.2.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.3 Outlier Rejection . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Particle Filters for State Estimation . . . . . . . . . . . . . . . . . . . 85

4.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.3 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.4 Re-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.5 Pose Computation . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Contents xvii

5 Multi-Modal Mapping 107

5.1 Range-only localization and mapping (step 1) . . . . . . . . . . . . . 108

5.1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1.4 Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 3D Mapping and Pose Refinement (step 2) . . . . . . . . . . . . . . . 114

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Mapping Experiment . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.2 Localization Experiment . . . . . . . . . . . . . . . . . . . . . 119

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 System Architecture and Framework 123

6.1 UAV Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Controlled tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 EuRoC Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 EuRoC Free-Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 EuRoC Showcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5.1 Autonomous Delivery System . . . . . . . . . . . . . . . . . . 140

6.5.2 Missing Item Detection . . . . . . . . . . . . . . . . . . . . . . 141

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Discussion and Conclusions 145

7.1 Conclusions of this Dissertation . . . . . . . . . . . . . . . . . . . . . 145

7.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

References 149



xviii Contents



List of Figures

1.1 GPS-based aerial survey in a refinery. . . . . . . . . . . . . . . . . . . 4

1.2 Vicon-based indoor testbed at CATEC. . . . . . . . . . . . . . . . . . 7

1.3 3D localization and mapping using a hand-held RGB-D camera and

RTAB-Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 6D localization for humanoid robots based on AMCL. . . . . . . . . . 14

1.5 Thesis outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Sample color image (left) and its associated depth image (right). . . . 23

2.2 Stereo vision principle. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Skybotix’s VI-Sensor Schneith (2014). . . . . . . . . . . . . . . . . . . 26

2.4 RGB-D camera (ASUS’s Xtion PRO LIVE) Asus (2017). . . . . . . . 29

2.5 Orbbec’s Astra Orbbec (2017). . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Nanotron’s swarm ER Nanotron (2017). . . . . . . . . . . . . . . . . 33

3.1 Scaled scenario of a landing site for testing depth-only registration. . 40

3.2 UAV used for testing depth-only registration. . . . . . . . . . . . . . 41

3.3 UAV flying over the asteroid scaled model and sample 3D data. . . . 41

3.4 Pose estimation for the descent trajectory compared to ground-truth

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Pose estimation for the hovering trajectory compared to ground-truth

data. (Left) Position plots. (Right) Orientation plots. . . . . . . . . . 44

3.6 Schematic overview of the RGB-D registration pipeline. . . . . . . . . 47

3.7 Pixel comparisons to determine the existence of a FAST key-point. . 48

xix



xx List of Figures

3.8 MAMMOTH rover with an RGB-D sensor on top. . . . . . . . . . . . 50

3.9 Map generated after driving the MAMMOTH rover over a section of

the Mars Yard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Sequence of images from the trial. . . . . . . . . . . . . . . . . . . . . 51

3.11 Position and orientation plots of the MAMMOTH rover from the trial. 52

3.12 Schematic overview of our visual-inertial odometry pipeline. . . . . . 54

3.13 Features detected from the original image (top) on a sample image

before (bottom left) and after (bottom right) applying the bucketing

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.14 Feature matching between left and right images from the stereo pair. 57

3.15 Bundle adjustment projection example. . . . . . . . . . . . . . . . . . 62

3.16 CATEC testbed with a mockup scenario. . . . . . . . . . . . . . . . . 65

3.17 The UAV with the RGB-D sensor at the front. . . . . . . . . . . . . . 66

3.18 Ground-truth UAV trajectory in XY during the experiment. . . . . . 66

3.19 Estimated UAV position and orientation. . . . . . . . . . . . . . . . . 67

3.20 Localization errors in UAV estimation. . . . . . . . . . . . . . . . . . 69

3.21 Estimated UAV position and orientation using other approaches. . . . 70

4.1 Schematic overview of the EKF approach. . . . . . . . . . . . . . . . 79

4.2 UAV with the VI-sensor at the front (left) and ground-truth trajectory

in the XY plane (right). . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Estimated UAV localization (ground-truth in red, visual odometry in

green, proposed approach in blue). . . . . . . . . . . . . . . . . . . . 83

4.4 Localization errors in position and associated RMS error. . . . . . . . 84

4.5 Automatic initialization of particles. From left to right and top to

bottom, time evolution of particles after automatic initialization. Black

arrows represent the particles. . . . . . . . . . . . . . . . . . . . . . . 88

4.6 CATEC indoor testbed (top) and 3D map with approximate radio

beacons locations(bottom) used for field experiments. . . . . . . . . . 95

4.7 UAV with an RGB-D sensor at the front. . . . . . . . . . . . . . . . . 96

4.8 Another RGB-D sensor with passive markers for precise 3D map building. 96



List of Figures xxi

4.9 Ground-truth trajectory followed by the aerial robot during the experi-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.10 Localization results (position and yaw) showing the ground-truth, visual

odometry and the proposed approach. . . . . . . . . . . . . . . . . . . 98

4.11 Position and orientation errors with respect to ground-truth through

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.12 Estimated UAV position and orientation using other approaches based

on RGB-D sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.13 Localization errors for different values of α. . . . . . . . . . . . . . . . 102

4.14 Localization errors for different number of particles used. . . . . . . . 103

4.15 3D map of the area with different resolutions: 0.2m (left) and 0.4m

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.16 Localization errors for different OcTree resolutions of the 3D map. . . 105

5.1 Multiple hypotheses for the localization of three UWB beacons. . . . 112

5.2 The UAV with RGB-D sensors at the front (left) and the rear (right)

side, and a UWB sensor on top. . . . . . . . . . . . . . . . . . . . . . 116

5.3 The indoor testbed at CATEC with a mock-up scenario for 3D map

building. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Results of the first step: Range-only localization and mapping. . . . . 117

5.5 Results of the second step: 3D Mapping and Pose Refinement. . . . . 118

5.6 Top view of the ground-truth map (left) and reconstructed map (right). 119

5.7 Estimated UAV position and yaw angle for the long-term flight. . . . 120

5.8 3D visualization of sensor data, along with the particles (red cloud). . 121

5.9 Errors in the estimated UAV position and yaw angle using the ground-

truth map and the reconstructed map. . . . . . . . . . . . . . . . . . 122

6.1 Schematic overview of the proposed architecture. . . . . . . . . . . . 124

6.2 The two main sensors tested on-board the UAV: VI-Sensor (left) and

Astra (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 A sample of 3D printed mount for the main vision-based sensor on-board

the UAV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



xxii List of Figures

6.4 One of the testing scenarios in CATEC’s indoor testbed. . . . . . . . 130

6.5 ETH’s flying arena used in the Benchmarking and Free-Style rounds. 131

6.6 The UAV performing obstacle detection and avoidance of a human

worker (left) and another smaller UAV (right). . . . . . . . . . . . . . 134

6.7 Obstacle detection and trajectory replanning results in the mannequin

(top) and multi-UAV (bottom) experiments. . . . . . . . . . . . . . . 134

6.8 Estimated UAV position and orientation in the mannequin (top) and

multi-UAV (bottom) experiments. . . . . . . . . . . . . . . . . . . . . 136

6.9 Airbus D&S manufacturing plant (top) and replicated environment at

CATEC (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.10 RGB-D sensors on-board the UAV and signaling lights. . . . . . . . . 138

6.11 UWB beacons installed in the indoor testbed. . . . . . . . . . . . . . 139

6.12 Small cargo bay on the UAV (left) and hopper for autonomous delivery

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.13 Estimated UAV position and orientation in the autonomous delivery

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.14 Estimated UAV position and orientation in the missing item detection

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



Chapter 1

Introduction

1.1 Motivation

1.1.1 The Localization Problem

Imagine you are at home pleasantly watching a movie on a Saturday night, and

suddenly the power goes out. Your cell phone is not at hand so you need to go check

your fuses in complete darkness. Even though you know exactly how to reach that

place in your house, and you think that the steps you make are taking you there

properly, you will more likely bump into nearby obstacles such as tables or doors.

Most of us rely on our eyes to help us find our way. By using the information from

our eyes and other senses, we get an idea of where we are in the world, and thus can

correct the inherent imperfections of our movements. Mobile robots suffer from the

same issues when traversing the world. If they only move around without looking at

where their movements are taking them, imperfections in their moving mechanisms

will get them lost. Just like humans, sensing the environment can help them detect

these imperfections and get a better idea of where they are.

Besides mobility, autonomy is another key feature that enables robots to operate

effectively in complex environments and perform tasks without explicit human inter-

vention. Sensing the environment allows an autonomous robot to decide the execution

of specific actions according to the data that is being gathered. But before doing

1



2 Introduction

so, the robot needs to be capable of self-localizing in its environment. Localization

is one of the basic pillars of autonomous mobile robotics. The localization problem

is essential for building a mobile robotic system, since accurate pose estimation is

required for even the most basic tasks, even holding the position. It is commonly

referred to as “the most fundamental problem to providing a mobile robot with

autonomous capabilities” Cox (1991). Once this is achieved, the rest of technologies

such as navigation and guidance can be implemented in order to determine where the

goals are and how to reach them.

1.1.2 Aerial Robots: Definitions and Categories

Nowadays, the aerial vehicles popularly known as “drones” are not unfamiliar to any

of us. Though often associated with military activity, there is also keen interest in

many civilian applications. Apparently, this is the last example of military technology

transferred and made available for civilian use, such as the Internet or Global Posi-

tioning System (GPS). These platforms have brought a revolution in almost every

field, largely due to the decreasing cost of technology and the fact that they have

distinct functional advantages with respect to manned aviation. Industry experts

indicate that this technology has been the most dynamic growth sector of the aerospace

industry in the past decade Cavoukian (2012). They are often present in the news on

television, newspapers, radio or social networks, used by domestic law enforcement,

the private sector or amateur enthusiasts. Factors like the ability of rapidly exploring

large and/or inaccessible areas, the reduction of material costs as well as personnel

costs, the process automation and the reduction of working times make them suitable

for many uses in industrial, governmental and academic fields. They are already

being used in a variety of applications, and many more areas will benefit by their

use Jenkins and Vasigh (2013). Among these areas, we can find wildfire mapping

Merino et al. (2012), agricultural monitoring Saari et al. (2011), disaster management

Maza et al. (2011), power line surveys Wang et al. (2010), law enforcement Puri

(2005), telecommunication Zhan et al. (2011), weather monitoring Revercomb et al.

(1996), aerial imaging/mapping Nex and Remondino (2014), television news coverage
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CNN (2016), sporting events Pedersen and Cooke (2006), movie-making Lin and

Yang (2014), environmental monitoring Acevedo et al. (2013), oil and gas exploration

Hausamann et al. (2005), etc.

Common acronyms often used are UAV, UAS, RPA or RPAS; however, they do not

mean the same. “Drone” is the popular denomination in the media, and started out

as a military term; nevertheless, it is not commonly applied by specialized personnel

in research activities. For ease of clarity, we will briefly discuss the meanings of the

main acronyms in order to properly introduce the specific category used throughout

this thesis. According to the International Civil Aviation Authority (ICAO) Cary

(2011), the main terminology is explained as follows:

• UAV (Unmanned Aerial Vehicle): an aircraft which is intended to operate with

no pilot on board.

• UAS (Unmanned Aircraft System): it is the UAV and its associated elements

which are operated with no pilot on board, i.e. communication link, ground

control station, etc.

• RPA (Remotely Piloted Aircraft): an aircraft where the flying pilot is not on

board (it is a subcategory of UAV).

• RPAS (Remotely Piloted Aircraft System): it is the RPA and its associated

remote pilot station, the required command and control links and any other

system elements as may be required, at any point during flight operation.

To summarize, the UAV (or UAS) is any aircraft (or system) in which the pilot is

not physically on board the platform. In the case of RPA (or RPAS), express reference

is made to the existence of a pilot who remotely operates the aircraft; whereas the

definition of UAV (or UAS) leaves the option of carrying out the flight, or parts of it,

as a fully autonomous operation. Hence all RPAS are UAS, but not all UAS are RPAS.

That said, since this work focuses on the autonomous operation of aerial vehicles, we

will refer to them as UAV or UAS, depending on the reference to the aerial platform

or the complete system. In the scope of this dissertation, we will also refer to UAVs

as aerial robots.
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1.1.3 Localization of UAS

Although UASs seem to be in vogue today, they have been the target for extensive

research activities for the past decades Howard and Kaminer (1995). Outdoor local-

ization has greatly benefited from the use of GPS coupled with inertial measurements

George and Sukkarieh (2005). Hence, obstacle-free outdoor operation can be generally

assumed for UAS, due on the existence of several mass-produced models from different

vendors, especially those from Dà-Jiāng Innovations Science and Technology Co.,

Ltd (DJI). These platforms are capable of offering mature performances in terms

of autonomous waypoint navigation in a wide variety of scenarios, such as aerial

surveys Siebert and Teizer (2014), cultural heritage Bolognesi et al. (2015) or precision

agriculture Mesas-Carrascosa et al. (2014) among others. Figure 1.1 shows an example

of outdoor inspection in an open area based on a DJI platform carried out in a refinery.

Figure 1.1: GPS-based aerial survey in a refinery.

Despite this, UASs are starting to play a major role in applications such as inspec-

tion Raja and Pang (2016), search and rescue Cui et al. (2016) or security surveillance

Lee et al. (2015), which usually require the UAV to fly in dense environments, at low

altitudes or indoors. In such cases, GPS signals are often shadowed or not available.

This results in the unavailability of reliable position estimations. Relying exclusively

on GPS for positioning might also pose safety issues in terms of signal jamming or
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platform hijacking, resulting in a potentially vulnerable system Shepard et al. (2012).

The introduction of aerial robots collaborating with humans in different applications is

also a strong motivation for procuring reliable autonomous systems that can operate

safely in their functioning in any situation.

Autonomous operation of UAS in GPS-denied areas has recently been tackled

by platform vendors such as the aforementioned DJI with their commercial product

Guidance DJI (2016), or Intel Intel (2015) with their live demonstrations at the

Consumer Electronic Show (CES). They both show primary positioning abilities

and/or collision avoidance capabilities, but these are not mature enough to be safely

introduced in real and highly dynamic scenarios, and work reliably during long periods

of time. For example, the safety guidelines from DJI’s Guidance include a number of

usage notices that restrict its operation depending on lighting conditions, the aspect

of surrounding surfaces or the presence of moving objects. Hence, there is still a

need for reliability in several key enabling technologies to achieve a safe and robust

autonomous aerial robotic system.

In order to compensate the aforementioned issues involving GPS-based localization,

or lack of robustness in the currently available solutions for GPS-denied scenarios, other

methods must be used. This has been an active research topic for the past decades.

Ground robots moving in Two Dimensional (2D) environments have demonstrated

good performances in terms of localization either indoor Marder-Eppstein et al. (2010)

or on streets and highways Montemerlo et al. (2008); Thrun (2011). However, aerial

robots move and operate in Three Dimensional (3D) environments, which implies

a higher computational complexity. Apart from the space dimensionality, UAS are

exposed to additional challenges since the on-board capabilities are limited in terms

of payload or computational resources. Besides, most aerial robots cannot assume the

existence of reliable localization systems as it is usually assumed in ground robots.

1.2 Localization of UAS in GPS-denied Areas

As previously stated, GPS-based localization is impractical in indoor environments

due to the high attenuation of satellite signals. Therefore, alternative technologies
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have been proposed and developed in the past years in order to achieve robust indoor

localization for UAS applications Liu et al. (2007); Mautz and Tilch (2011).

Motion capture systems are one of the most common forms of performance capture,

and are also widely applied to precise indoor localization. These systems are based on

a network of cameras strategically positioned in order to have overlapping fields of view

to enclose the operating area. There are different types of motion capture depending

on the type of camera and the need of specific markers to be captured. Passive optical

motion capture uses retro-reflective markers that are tracked by infrared (IR) cameras.

These markers need to be rigidly attached to the UAV so the cameras can detect

them. The system requires a calibration procedure before it can be used. This is the

most common method used in the industry, providing fast (over 100Hz) and accurate

(sub-millimeter precision) data and being able to monitor large volumes. However,

the hardware is usually expensive since high-frame rate cameras are usually required.

Another important drawback is that direct line of sight between the cameras and

the UAV is essential; if the markers are blocked by another object, tracking will be

affected. The most well-known systems for aerial robotics research are developed by

Vicon Cory and Tedrake (2008); Michael et al. (2010); Ruiz et al. (2013); Lupashin

et al. (2014), like the one shown in Figure 1.2 which is located at the Center for

Advanced Aerospace Technologies (CATEC). There are relatively more affordable

systems such as those developed by OptiTrack Marconi et al. (2012); Orsag et al.

(2013). Nevertheless, this type of localization solution is not cost-effective for scaling

to larger or other indoor scenarios, and the line of sight requirement could be difficult

to meet in cluttered environments.

In order to achieve a robust and scalable UAV localization solution, and to operate

truly autonomously, it seems reasonable to compute the pose estimations on-board

the aerial robot, unlike the aforementioned off-board motion capture systems. The use

of different sensors on-board the UAV can be applied to accomplish fully autonomous

operations in indoor environments. These localization methods can generally be

subdivided into two categories: landmark-based or map-based methods.



1.2 Localization of UAS in GPS-denied Areas 7

Figure 1.2: Vicon-based indoor testbed at CATEC.

1.2.1 Landmark-based approaches

Landmarks are features in the environment that an on-board sensor can detect. Sensor

readings are analyzed for the existence of landmarks, and if detected, they are matched

with a priori known information of the environment to determine the location of the

UAV. Landmarks can be classified into active or passive landmarks.

Active landmarks, also called beacons, are landmarks that actively send location

information. In the same way as GPS satellites work, radio transmitting devices can

be used while another on-board device receives the signals sent by the beacons in

order to determine its position. Due to the availability of low-energy sensors and

radio frequency circuitry, there is a research trend on radio-based localization systems

Gu et al. (2009). This technology relies on measuring the characteristics of received

radio waves at the receiver end. The Received Signal Strength (RSS) or the Time Of

Arrival (TOA) are often used in order to estimate the distance between two devices,

since both are correlated with such distance. The use of Wireless Local Area Network

(WLAN) access points effectively exploits the infrastructure in place, making it an

easier solution to adopt. However, it does not provide enough accuracy to achieve safe

autonomous operation of UAVs Khalajmehrabadi et al. (2017).
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Ultra-Wide-Band (UWB) is a wireless communication technology which has at-

tracted interest from the research community as a promising solution for precise target

localization and tracking González et al. (2009); Tiemann et al. (2015); Guo et al.

(2016). It is particularly well suited for short-distance indoor applications, using

several fixed sensors placed at known positions in the environment, and a mobile

sensor on-board the UAV. Hence, the position estimation of the on-board device can

be obtained by trilateration with an accuracy of the order of that from the devices

(generally a few centimeters). At the same time, this setup offers a relatively low-cost

solution that can be implemented in almost any scenario, with the advantage of not

requiring a direct line of sight between each pair of sensors. Besides, the data associ-

ation problem is trivially solved by attaching the sensor identification to the range

measurement information. However, the distance estimations suffer from attenuation

across materials and multi-path propagation. Moreover, these sensors are poorly

suited to constitute a full localization system, since the data provided is a simple

measurement of the distance between two of them. This makes their integration in

localization and/or mapping applications especially difficult due to the lack of bearing

information, thus leading to multiple location hypotheses.

On the other hand, landmarks are passive if they do not actively transmit signals.

Then, the robot needs to actively look for them in order to acquire position measure-

ments. Techniques using passive landmarks rely on the successful detection of those

landmarks from sensor readings, which obviously depends on the sensor type. Among

the wide variety of sensing options available, probably the most extended approaches

in the aerial robotics literature are based on cameras, due to the amount of informa-

tion provided versus their low weight and cost. When three or more landmarks are

detected by the camera, different techniques can be used to compute its location, such

as triangulation, trilateration or multilateration, depending on the type of landmark

and sensor readings.

Passive landmarks can be either artificial or natural. Artificial landmarks are

particularly designed to be recognized by robots, and placed at specific locations in the

environment which are known in advance. Several vision-based localization methods

based on artificial landmarks have been proposed in the literature, using simple planar
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markers Fiala (2004); Rekleitis et al. (2006). While these approaches significantly

reduce the setup cost and difficulty of the localization system compared to motion

capture systems, specific issues related to single camera-based approaches arise, such

as limitations in terms of camera image quality or lighting.

As motion capture systems, solutions based on both active and passive landmarks

usually require an associated infrastructure to be installed in the environment and

properly calibrated. Other landmark-based approaches do not rely on existing infras-

tructure, but on the successful detection of features in the environment by on-board

sensors. These landmarks are commonly referred to as natural landmarks, and are not

specifically engineered to be used as localization means for robots Cesetti et al. (2010).

They are already part of the environment, such as doors or windows in the case of

indoor scenarios. Again, probably the most extended approaches for UAVs are based

on cameras, due to the amount of information provided, their affordability, availability

and low weight. Vision-based approaches for robot localization are very popular, even

though they entail an important associated processing complexity Gupte et al. (2012).

In this sense, it is very common to find approaches that make use of monocular

vision, sometimes fused with inertial sensors and altitude sensors (like barometers,

ultrasonic sensors or lasers), in order to estimate the aerial robot localization based

on Simultaneous Localization And Mapping (SLAM) Davison et al. (2007); Pinies

et al. (2007); Weiss et al. (2011); Achtelik et al. (2012); Mur-Artal et al. (2015). These

approaches work very well when we repeatedly visit the same area, but usually fail at

high-speed aircraft motions in unknown scenarios. Optical flow approaches Honegger

et al. (2013); Mebarki et al. (2016) make use of the same sensors but aim to estimate

only linear velocities. These approaches have demonstrated to work very well; however,

velocity integration for localization (odometry) quickly diverges, making these methods

unusable for long-term localization.

At the cost of higher computational requirements, stereo-vision systems provide

direct depth measurements in a general 3D environment for a given camera baseline

Kitt et al. (2010); Geiger et al. (2011); Schmid et al. (2013). Both SLAM and pure

odometry approaches demonstrate good results at short-term localization and in long

trajectories Paz et al. (2008) even without loop closing Oleynikova et al. (2015).
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Many of the algorithms developed for stereo-vision odometry and SLAM can

be applied to 3D cameras based on pattern projection, i.e. Red,Green,Blue-Depth

(RGB-D) cameras Endres et al. (2012); Kerl et al. (2013). These sensors have recently

become a very popular option due to their low weight, low cost and the amount of

information provided; apart from RGB images they directly provide depth images of

the scene in front of the sensor, saving the burden of 3D reconstruction computation

(as in stereo-vision systems). Besides, they exhibit another important advantage with

respect to classic stereo-based approaches: depth estimation does not depend on the

presence of distinct visual features in the scene in order to estimate the depth.

The availability of RGB-D cameras has made dense 3D point clouds available,

which were previously only accessible using much more expensive sensors like Time of

Flight cameras or scanning 3D laser rangefinders. There are several state-of-the-art

open-source algorithms that provide localization estimations based on RGB-D cameras,

such as RGBD-SLAM Endres et al. (2012), City College of New York (CCNY) RGB-D

Dryanovski et al. (2013) or Real-Time Appearance-Based Mapping (RTAB-Map)

Labbe and Michaud (2014) (see Figure 1.3). Nevertheless, they are rarely employed

for on-line computation during the UAV flight, since these sensors typically generate

voluminous data that typically cannot be processed in its entirety in real time (e.g.

the Microsoft Kinect sensor produces over 9 million 3D points per second). The fact

that the cited SLAM algorithms are continuously building their maps on-line greatly

increases their computational requirements, which limit their usability and robustness

given the usual on-board restrictions in terms of payload capacity and computational

resources when working with UAVs.

Point cloud based odometry and localization is another significant research area.

Although computationally expensive, recent advances in kd-trees Nuchter et al. (2007)

and Approximate Nearest Neighbours (ANN) Marden and Guivant (2012) enable

faster computation times in the presence of medium and dense point clouds. The

problem of aligning a pair of point clouds is commonly known as registration. Its

output is usually a transformation matrix representing the rotation and translation

that would have to be applied on one of the clouds in order to be perfectly aligned

with the other. In order to do this, several techniques use a landmark-based approach,
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Figure 1.3: 3D localization and mapping using a hand-held RGB-D camera and
RTAB-Map.

geometrically computing an estimate of the transformation based on the recognition

of distinct features in the environment, occurring naturally or artificially placed Rusu

et al. (2009). The factors contributing to the successful performance and integrity

of these methods is the reliable acquisition and extraction of features from sensor

data, and the ability to efficiently recognize and associate such features. This can be

challenging depending on the spatial resolution and noise present in the depth sensor

measurement, apart from the computational cost of analyzing dense 3D data. Another

family of approaches is based on data correlation, attempting to utilize whatever

sensor data are available to compute the transformation. This eliminates the need

to decide what constitutes a feature, and uses a maximum likelihood alignment to

find the best fit between two sets of data points. Iterative Closest Point (ICP) is a

method capable of providing a computationally efficient pose estimations in complex,

unstructured environments. ICP has the advantages of locally solving the problem of

matching and localization, being generic and potentially used for real-time applications

Pomerleau et al. (2013).



12 Introduction

In general, vision-based odometry and localization systems for aerial robots are not

reliable enough in the long term due not only to cumulative drift, but also external

factors such as poor illumination, lack of texture, occlusions or moving objects. All

these have a significant impact on the robustness and reliability of most state-of-

the-art algorithms. In any case, the aforementioned approaches demonstrate fairly

good results in the short term; however, they could quickly diverge depending on the

environment.

Autonomous systems intended to operate over long periods of time usually perform

some sort of loop closing in order to recognize revisited places. This allows reducing the

localization uncertainty at the cost of adding computational complexity Sünderhauf

and Protzel (2011); Lowry et al. (2016). However, the problem of loop closing in

order to distinguish revisited places is usually framed as a classification task, rather

than a robot localization task Angeli et al. (2008). Reliable place recognition can be

challenging in large-scale environments or sites with repetitive structures that might

exhibit similar scenes in different areas. This is a very delicate issue since a single

wrong loop closure can result in a devastating failure of the localization system, which

could lead to an undesired flight termination.

1.2.2 Map-based approaches

The other large family of localization techniques relies on previously built maps of the

environment. Some UAS applications are usually carried out in known environments,

e.g. logistic services or post-disaster assessments Ezequiel et al. (2014). In these cases,

the aerial robot is required to carry out specific trajectories or reach certain places.

This could be also a requirement for path planning in order to specify goals in a

predefined coordinate system.

These approaches use features such as the lines or planes that describe walls in

hallways or offices to build a map of the environment. Sensor data can be matched

with such features in order to determine the UAV location. Probably the most common

map representations are occupancy grids, which were first introduced several decades

ago Moravec and Elfes (1985). These grids are a probabilistic approach to represent
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the environment in discrete cells that indicate their probability of being occupied

by an obstacle. A great advantage is that they do not rely on specific predefined

features, and are able to represent unknown areas. However, an important drawback

of this approach is its large memory requirement, but recent developments such as

OctoMap Hornung et al. (2013) provide efficient data structures particularly suited

for robotics applications in the constrained equipment usually found on-board UAVs

Nieuwenhuisen et al. (2014); Droeschel et al. (2016).

One of the approaches based on a predefined model of the environment is commonly

known as teach-replay Chen and Birchfield (2006); Royer et al. (2007), which is

accomplished in two stages: first the robot is manually piloted along the desired

path as in a teaching phase, and an accurate 3D map of the environment is built,

along with the robot motion from this learning path; afterwards, this map is used to

locate the robot when it repeatedly visits the same path. However, this approach is

somewhat simplistic and limited, since it only enables a robot to follow a predetermined

trajectory.

Monte Carlo Localization (MCL) is another approach that makes use of a known

map of the environment, and is one of the most popular algorithms used for robot

navigation in indoor environments Thrun et al. (2001). It is a probabilistic localization

algorithm that makes use of a particle filter to estimate the pose of the robot within

the map, based on sensor measurements. Important benefits include the possibility of

accommodating arbitrary sensor characteristics, motion dynamics and noise distribu-

tions. In order to obtain a reliable localization result, a certain number of particles

will be needed. The larger the environment is, the more particles are needed. Actually,

each particle can be seen as a pseudo-robot, which perceives the environment using a

probabilistic measurement model. At each iteration, the virtual measurement takes

large computational costs if there are hundreds of particles. For that reason, there is

a variant of MCL called Adaptive MCL (AMCL) Fox (2001). The term “adaptive”

comes from the fact that the number of particles is adjusted dynamically: if there is

high uncertainty about the robot pose, the number of particles increases; if the pose is

well known, such number decreases. Experimental approaches of either MCL or AMCL

exhibit some limitations when it comes to aerial robots. Due to the aforementioned
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Figure 1.4: 6D localization for humanoid robots based on AMCL.

computational requirements, most of the existing approaches are meant for wheeled

robots moving in a 2D environment, requiring a 2D laser scanner for map building and

localization. Other authors presented an extension of this approach for 6D localization

based on 2D laser scanner Hornung et al. (2010), but it is meant for 2D motion of

humanoid robots in a 3D environment (see Figure 1.4), which makes it not suitable

for UAVs.

1.3 Contributions

The aforementioned approaches are promising in that they can all provide solutions to

the localization problem, but important drawbacks are present using each approach

alone. Infrastructure-based positioning systems achieve reliable performances, but

they can be expensive and might require laborious setup and calibration processes.

Vision-based approaches based on natural landmarks demonstrate good results relying

only on on-board equipment, but are not robust enough when applied to UAVs and

especially for long-term operation (i.e. long flight time). Map-based methods are

robust solutions for long-term localization, but often demand a high computational

cost and they need to previously build an accurate representation of the environment.
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The main contribution of this work focuses on the combination of technologies in

order to achieve long-term autonomous operation of UAVs in indoor environments,

taking advantage of their respective benefits to overcome their main limitations. This is

accomplished by fusing data from different sensors in order to improve the performance

of the overall system. In particular, a visual odometry algorithm based on stereo or

RGB-D cameras and a localization algorithm based on UWB sensor beacons have

been merged into an enhanced MCL algorithm which relies on a previously built

multi-modal map that includes 3D occupancy data and the location of the UWB

beacons. Specific contributions in each field are listed below, along with relevant

related publications.

• Research and development of a robust visual odometry approach suitable for 3D

sensors, which provides a reliable short-term pose estimation. Validation of the

approaches using both aerial and ground robots.

– F.J. Perez, J. Gil, G. Binet and A. Viguria, “Validation of 3D Environment

Perception for Landing on Small Bodies using UAV Platforms”, 13th

Symposium on Advanced Space Technologies in Robotics and Automation

(ASTRA 2015), ESA/ESTEC, Noordwijk, The Netherlands, 2015. Link.

– W. Reid, F. J. Perez-Grau, A. H. Göktoǧan and S. Sukkarieh, “Actively

articulated suspension for a wheel-on-leg rover operating on a Martian

analog surface”, 2016 IEEE International Conference on Robotics and

Automation (ICRA), Stockholm, Sweden, 2016, pp. 5596-5602. doi: 10.1109

/ ICRA.2016.7487777

– F. J. Perez-Grau, R. Ragel, F. Caballero, A. Viguria and A. Ollero, “Semi-

Autonomous Teleoperation of UAVs in Search and Rescue Scenarios”, 2017

International Conference on Unmanned Aircraft Systems (ICUAS), Miami,

FL, USA, 2017. Accepted for publication.

• Research and development of multi-modal sensor fusion methods that combine

the aforementioned visual odometry with other sources of 3D measurements,

namely radio-range sensing and point clouds, for long-term localization. The

http://robotics.estec.esa.int/ASTRA/Astra2015/Papers/Session%206B/95919_Perez%20Grau.pdf
http://ieeexplore.ieee.org/document/7487777/
http://ieeexplore.ieee.org/document/7487777/
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noise and outliers from radio measurements are filtered thanks to the odom-

etry estimations, while the odometry drift is bounded thanks to radio-based

measurements and point cloud matching.

– F. J. Perez-Grau, F. R. Fabresse, F. Caballero, A. Viguria and A. Ollero,

“Long-term aerial robot localization based on visual odometry and radio-

based ranging”, 2016 International Conference on Unmanned Aircraft

Systems (ICUAS), Arlington, VA, USA, 2016, pp. 608-614. doi: 10.1109 /

ICUAS.2016.7502653

– F. J. Perez-Grau, F. Caballero, A. Viguria and A. Ollero, “Multi-Sensor 3D

Monte Carlo Localization (MCL) for Long-Term Aerial Robot Navigation”,

International Journal of Advanced Robotics Systems (IJARS). Accepted

for publication.

• Research and development of a multi-modal map building algorithm that exploits

the synergies between radio-based distance estimations and point clouds from

3D imaging sensors, which requires a minimum setup.

– F. J. Perez-Grau, F. Caballero, L. Merino and A. Viguria, “Multi-Modal

Mapping and Localization of Unmanned Aerial Robots based on Ultra-

Wideband and RGB-D sensing”, 2017 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). Under review.

• Development of a modular and extensible software architecture for safe and

reliable autonomous navigation of aerial robots in GPS-denied environments,

validated during extensive field testing throughout different experiment cam-

paigns and demonstrations in the context of national and European Union (EU)

funded research projects.

– F. J. Perez-Grau, R. Ragel, F. Caballero, A. Viguria and A. Ollero, “An

Architecture for Robust UAV Navigation in GPS-denied Areas”, Jour-

nal of Field Robotics (JFR), Special Issue on High Speed Vision-Based

Autonomous UAVs. Accepted for publication.

http://ieeexplore.ieee.org/document/7502653/
http://ieeexplore.ieee.org/document/7502653/
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• Highly efficient implementation of all the algorithms in order to make them

suitable for real-time on-line localization in the usually constrained equipment

that can be mounted on-board a UAV.

– Video showing on-line localization for the autonomous operation of a UAV

using the proposed architecture and algorithms. EuRoC Challenge 3 –

Team GRVC-CATEC – Stage IIb (Showcase).

It is important to point out the strong experimental focus of this dissertation,

whose main contributions have been focused not only on advancing in the state-of-

the-art, but also on implementing and validating different approaches in real-world

setups. Proof of the potential impact of this work regarding its current technology

development and future transfer to the industry is its recent recognition within the

1st EU Drone Awards, organized by the European Young Innovators Forum at the

European Parliament in January 2017. A special innovative prize in the category

“Best Drone-based Solution” was awarded to the application of indoor localization of

UAVs to logistic operations in aircraft manufacturing plants EYIF (2017), where the

system developed within this dissertation is used.

1.4 Thesis Framework

The research leading to these results has received support from the Spanish Centro

para el Desarrollo Tecnológico Industrial (CDTI) INNPRONTA 2011-2014 program

within Perigeo project, and the European Community’s Seventh Framework Program

(FP7) project EuRoC (FP7-ICT-608849) in the period 2014-2017.

This dissertation has been extensively validated within the context of the European

Robotics Challenges (EuRoC)1, an EU FP7 project whose main motivation is to bring

innovative technologies from research labs to industrial end-users. In order to do

that, a series of challenges in a public competition format were presented, and one of

them (Challenge 3 ) is related to the demonstration of high-level semi-autonomous

operation of a UAV for an inspection task. The goal is to enable unskilled workers

1http://www.euroc-project.eu

https://youtu.be/O9pD1dPnTn8
https://youtu.be/O9pD1dPnTn8
http://www.euroc-project.eu
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to perform complex inspection missions with the aid of UAVs. This is difficult to

achieve as the complexity of UAVs requires expert piloting skills. In this context, a

framework has been developed in order to perform localization and state estimation

of the UAV without external positioning systems such as GPS or motion capturing

systems, as well as autonomous local obstacle avoidance, local path planning, following

of structures or homing of the aerial robot.

The author is part of the challenger team GRVC-CATEC, which is currently com-

peting among top European research institutions, and has successfully demonstrated

accurate localization of the UAV platform within the project.

1.5 Thesis Outline

The different chapters of this document describe the evolution of the developed system

along the years of work towards this dissertation. There was an incremental strategy

based on the accomplishment of intermediate development objectives, all of them

aiming at the overall goal of achieving long-term localization of UAVs in GPS-denied

areas, keeping in mind safety and robustness as flagship features for the successful

widespread use of autonomous aerial robots. Following this incremental approach, the

chapters are structured as follows:

• Chapter 2 discusses several sensing modalities that can be used throughout the

different developments.

• Chapter 3 details the incremental works towards a vision-based odometry algo-

rithm using images, 3D point clouds and inertial measurements.

• Chapter 4 presents the evolution of our approach to combine visual odometry

with radio-based measurements from UWB beacons and a 3D map of the

environment.

• Chapter 5 describes a 3D map building method in order to be able to use the

previously described localization system in any environment.
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• Chapter 6 introduces an overview of the whole framework in which this work

has been tested and validated for autonomous navigation of UAVs in EuRoC

project.

• Chapter 7 includes conclusions, lessons learned and future lines of work.

Figure 1.5 shows a pictorial representation of the thesis outline, presenting how

chapters are related with each other.

Chapter 1
Introduction

Chapter 2
3D Perception
for Localization

Chapter 3
Robust Visual Odometry

for UAVs

Chapter 4
Multi-Modal Sensor 

Fusion for Long-Term
Localization

Chapter 5
Multi-Modal Mapping

Chapter 6
System Architecture

and Framework

Chapter 7
Discussion and 

Conclusions

Experimental Results

6DoF Pose

3D MapOdometry

Sensors

On-line 
localization

Figure 1.5: Thesis outline.
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Chapter 2

3D Perception for Localization

The world around a UAV is 3D; yet traditional approaches for UAV localization and

navigation are based on cameras, which are able to acquire only two-dimensional

images that lack depth information. This limitation greatly reduces their ability to

perceive and understand the complexity of their environment. Depth information is of

great value in the analysis of scenes with 3D objects.

Over the past few decades, a significant evolution has taken place with regards

to the sensing approaches that have been employed to gather 3D data, from simple

ultrasonic range sensors that provide a few bytes of information about its environment,

to spinning laser scanners that generate high-quality 3D representations of the world.

Unfortunately, the latter sensors are very expensive and out of reach for many robotics

projects, and their weight also limits their integration in small platforms. With the

advent of new, low-cost 3D sensing hardware, and continued efforts in advanced data

processing, 3D perception has gained a lot of importance in robotics, as well as other

fields.

Generally speaking, 3D measurement sensors make use of electromagnetic energy

in order to derive depth information of an object. Depending on the technology used

to extract this information, several methods can be observed. For the purpose of

this dissertation, technologies are subdivided into optical and non-optical sensing,

depending on the nature of the waves on which the depth measurement relies:

21
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• Optical sensing refers to extracting depth information from light pulses or

waves. There is a wide variety of 3D optical techniques, and their classification

is not unique. Some examples are stereo vision, laser time of flight or laser

triangulation.

• Non-optical sensing includes other frequencies in the electromagnetic spectrum,

such as radio- and micro-waves. These 3D sensing techniques typically determine

distances to objects by measuring the time required for a pulse or wave energy

to bounce back from the objects. Examples are acoustic sensors (e.g. ultrasonic)

or radar.

This chapter focuses on the sensing modalities that are relevant in the context of

this dissertation belonging to each of these two categories, discussing their appropriate

use on-board aerial robots for accurate localization.

2.1 Optical Sensing

A thorough review of optical methods and sensors for 3D measurements is presented in

Sansoni et al. (2009). In particular, this section focuses on 3D imaging sensors able to

produce depth images, one of the simplest and most convenient ways of representing

and storing depth measurements. In a depth image, each pixel value represents the

distance to an object, with respect to a common reference frame, as depicted in

Figure 2.1. Such representations are similar to gray-scale images, except the distance

information replaces the intensity values.

Optical methods for generating depth images are generally classified in two cate-

gories:

• Passive methods: the reflectance of the objects and the illumination of the scene

are used to derive shape information. These methods only require ambient

lighting, but the less well-defined features an object may have, the less accurate

the depth estimation will be. Examples of passive optical techniques are stereo

vision, photogrammetry or shape from focus.
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Figure 2.1: Sample color image (left) and its associated depth image (right).

• Active methods: suitable external lighting sources are used to illuminate the

objects in the scene, and then determine their relative distances from the sensor.

Generally, a known projected light pattern is used to illuminate the scene.

However, if the objects exhibit varying surfaces, or the edges of objects need to

be imaged, active lighting can produce measurement inaccuracies. Examples

of active optical techniques are laser triangulators, structured light or time of

flight.

2.1.1 Passive Imaging

As discussed in Section 1, cameras are probably the most popular sensing option

for environment perception on-board UAVs. Low weight and cost are the two main

properties that facilitate their integration and widespread use. However, obtaining

3D information directly from monocular sensing setups usually demands a high

computational cost. Techniques such as shape from focus Nayar and Nakagawa (1994)

or texture gradients Bajcsy and Lieberman (1976) are able to estimate depth but

are not suited for real-time on-line operation. Other techniques such as shape from

shading Horn and Brooks (1989) need external light sources and thus involve a setup

that cannot be longer considered a “passive” system.
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When considering high-speed depth computation, one of the most extended passive

3D systems is stereo imaging, which makes use of (at least) two cameras to capture

two separate images of a scene from two different viewpoints.

A setup of two cameras mounted at a fixed distance is needed, so the cameras

concurrently capture the same scene. Depth information can be obtained by examining

the relative positions of objects in the two perspectives. Objects which are closer

to the cameras will have a greater difference in apparent position between the two

perspectives. Relative depth of points in the scene can then be computed since the

depth of each point is inversely proportional to the difference in the distance of the

corresponding points and their camera centers. This can be then used to generate a

disparity map that visually provides 3D information. Disparity refers to the difference

in image location of an object present on the two cameras. By triangulation, this

disparity yields the object’s depth. Each separate camera must be calibrated, and

their relative location must be known so that triangulation methods can be used.

Since the positional and optical parameters of the two cameras must be accurately

calibrated, many products use dual setups that are pre-calibrated, relieving the system

developer of such tasks.

As Figure 2.2 shows, a physical point P is taken up in the scene observed by two

perspective cameras, namely a left (C l) and a right (Cr) camera. If the corresponding

pixel of this point is found in both images, its 3D position can be computed with the

help of the triangulation principle. The cameras have focal length f and are located

at a fixed distance B (baseline). If a matching pair of the point P is found in both

images, shown as xl and xr, then it is possible to derive the depth Z by applying the

principle of similar triangles:

Z

B
=

Z − f
B − (xl − xr)

⇒ Z =
f ·B
xl − xr

(2.1)

where xl − xr is the disparity value for point P . This equation also assumes that both

cameras are correctly calibrated in order to remove any distortion in the images.

The main advantage of stereo-vision with respect to other range measuring devices

is that it achieves high resolution and simultaneous acquisition of the entire depth
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Figure 2.2: Stereo vision principle.

image without energy emission or moving parts. Since it is a passive method, no

further equipment (e.g. specific light sources) and no special projections are required.

Besides, cameras are a popular choice because they are small, lightweight and relatively

cheap. Cameras are able to capture complete images in microseconds, hence they can

be used as mobile sensors or operate in highly dynamic environments.

Nevertheless, stereo-vision systems present important issues of consideration. The

major problem is the identification of common points within the image pairs, i.e. the

solution of the well-known correspondence problem Scharstein et al. (2001). Depending

on the strategy used to perform the matching, this computation might be costly.

Moreover, if the scene is poor in texture and contrast information (due to homogeneous

regions or poor illumination), stereo-based systems rapidly drop their performance,

because the pixel values have little variation and the algorithm is not able to distinguish

and match common points. Besides, depth data could be noisy, as it relies on

the natural texture on the observed surfaces, and ambient lighting. Sensitivity to

illumination and low accuracy on distant objects also limit the usability of these

systems, since longer distances would require larger baseline (the distance between
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Figure 2.3: Skybotix’s VI-Sensor Schneith (2014).

the cameras). Given the restrictions in camera sizes that can be mounted on-board a

small UAV, applicable baselines can handle a relatively limited depth range.

The stereo-vision sensor used in some stages of this work is the Visual-Inertial

(VI-) Sensor, shown in Figure 2.3, which provides fully time-synchronized and factory

calibrated IMU- and stereo-camera data streams. In particular, stereo-vision has been

used as the main odometry source in some of the experiments included in Chapters 3

and 6.

2.1.2 Active Imaging

LIDAR

Probably the most common sensors based on active optical methods for obtaining

depth information are LIght Detection And Ranging (LIDAR) instruments. They

are based on the well-known time of flight principle, i.e. the distance to an object

is measured from the time it takes a light pulse to travel from the emitter until it

returns reflected from the object. Hence an active light source is required, often in the

IR frequency range. Since all electromagnetic energy travels at the speed of light c, in

free space, the relationship between the distance Z and the round-trip travel time t is

given by

Z =
c · t
2

(2.2)

LIDAR systems provide high precision measurements at high data rates; however,

their high cost and relatively high weight, or the non-simultaneous points acquisition
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(points are grabbed one after another, not simultaneously), limit their widespread use

in some applications involving UAV platforms. For these reasons, this dissertation

has not focused on this type of active imaging technique.

ToF cameras

Light pulses are not the only method to measure time of flight. By using a modulated

signal, distances can be calculated by estimating the phase difference between the

emitted and the reflected signal. The distance Z is then obtained as follows:

Z =
c

2 · fm
· φ

2π
(2.3)

where c is again the speed of light, fm is the modulation frequency of the emitted

signal and φ is the estimated phase shift between the emitted and received signal.

Due to the periodicity of the modulation signal, Equation 2.3 is only valid for

distances smaller than c
2·fm . The modulation frequency fm of the emitted signal

determines the “ambiguity-free” distance range of the sensor.

The last decade has seen an increasing trend in the development of 3D cameras.

Time of Flight (ToF) cameras are a relatively new type of sensor that delivers 3D

imaging at a high frame rate, simultaneously providing intensity data and range

information for every pixel. Near-IR modulated light waves are emitted by several

Light-Emitting Diodes (LEDs) and reflected by the objects on the scene back to the

imager. Conventional imaging sensors consist of multiple photo-diodes arranged in

a matrix. Normally, these diodes provide a gray-scale or color image of the scene.

In contrast to normal cameras, a Photon Mixing Device (PMD) sensor additionally

acquires a distance value for each pixel simultaneously to the intensity (gray) value.

Despite this remarkable progress, it is still made with standard Complementary Metal-

Oxide-Semiconductor (CMOS) technology. Therefore, the pixels in these cameras are

often called “smart pixels” Xu et al. (1998).

Compared to other technologies that obtain 3D information, ToF cameras allow

the acquisition of depth images without any scanning mechanism and from just one

point of view. They register dense depth along with intensity images at a high frame
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rate. They are small, low-weight and compact, since no mobile parts are needed. They

have low costs compared to LIDAR systems, and a lower power consumption with

respect to classical laser scanners. Another important characteristic of these devices

is their ability to operate in environments where other systems would be unable to do

so. For example in untextured scenarios, where the operation of stereo-vision systems

would be very difficult due to the lack of representative features on the images to solve

the corresponding problem.

Important disadvantages of these systems are their high sensitivity to noise, espe-

cially in outdoor scenarios due to interference with direct sunlight, and their low-depth

measurement accuracy. This is due mainly to the way in which ToF cameras grab

data, which consists in the scene being bombarded with near-IR light, capturing a

whole surface included into the emitted light cone in one single shot. This differs from

laser rangefinders, which acquire points sequentially with very high accuracy. These

devices also provide very low resolution (no more than a few thousands of tens of

pixels) compared to current standard cameras.

Nevertheless, when it comes to mounting a sensor on-board a UAV platform,

additional considerations and requirements must be taken into account. Especially

important are the weight, size and power consumption of the sensor, since the payload

capacity of small UAVs is very limited. Due to these reasons, the preferred sensing

modality for obtaining dense 3D depth images is based on another type of active

imaging technique known as structured light.

Structured light

Sensors based on structured light simplify the solution of the correspondence problem

introduced in stereo-vision techniques. They replace the second camera in the stereo

setup by a light source which projects a known pattern of light on the scene. If the

scene is simply a planar surface, the pattern acquired by the first camera will be

similar to the projected pattern. When the surface is non-planar, the geometric shape

of the surface distorts the projected pattern. The shape of this surface can then be

obtained based on the information from the distortion of the projected pattern. Still,

some correspondences between both patterns must be solved. Different projection
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Figure 2.4: RGB-D camera (ASUS’s Xtion PRO LIVE) Asus (2017).

patterns have been proposed such as binary codes or color-coded stripes Geng (2011).

The most usual pattern is the projection of a grid, in which an easier correspondence

problem has to be solved. In this case, we only need to identify, for each point of the

captured pattern, the corresponding point of the projected pattern.

Apart from ToF cameras, a new type of sensors commonly referred to as RGB-D

cameras can provide both visual texture information and per-pixel depth information

simultaneously. They have two cameras: the first is usually a conventional webcam

that records color video, and the second is an IR camera that records a non-visible

structured light pattern generated by the IR projector (see Figure 2.4).

Microsoft’s Kinect was probably the first affordable RGB-D camera widely used in

robotics research Boudjit et al. (2008). The per-pixel depth-sensing technology that is

used in consumer RGB-D cameras was developed and patented by PrimeSense Garcia

and Zalevsky (2008). The depth acquisition technology is named Light Coding ; it has

an IR light source to project a complex pattern of dots into the scene. This pattern is

perceived by an IR camera and the distance to each dot is computed by triangulation

to build a 3D model of the scene. The color information of this model is gathered by

an RGB camera.

Regardless of texture and illumination condition, an RGB-D camera can directly

obtain 3D information, unlike stereo-vision due to the lack of representative features

in the images. Above all, they are small, low-weight and compact, since no mobile
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Figure 2.5: Orbbec’s Astra Orbbec (2017).

parts are involved. Besides, they have much lower cost and lower power consumption

when compared to LIDAR systems and ToF cameras.

One important limitation of RGB-D cameras is that they can only operate reliably

indoors, since the projected pattern is overwhelmed by exterior lighting conditions.

Another drawback is the measurement noise when compared to LIDAR sensors, and

their limited working range (up to 10m). Nevertheless, RGB-D sensors have seen

widespread adoption in robotics research due to their ability to generate reliable 3D

data at a fast frame rate at low cost Han et al. (2013).

Regarding on-board requirements for the UAV platform, subsequent models of

RGB-D cameras from other vendors exhibit great advantages with respect to Microsoft

Kinect: they are significantly smaller, easier to integrate and do not require an external

power supply. These aspects make it much more portable and suitable for small aerial

vehicles. Examples of these other cameras are ASUS’s Xtion PRO LIVE (shown in

Figure 2.4), and more recently Orbbec’s Astra (see Figure 2.5) which exhibits a longer

depth range (up to 10m instead of 4m). These two cameras have been used in the

experiments of this dissertation, the Xtion PRO LIVE in Chapter 3 and the Astra in

Chapters 4, 5 and 6.

Table 2.1 summarizes the main specifications of the previously discussed RGB-D

cameras.
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Table 2.1: RGB-D cameras comparison

Specifications Kinect Xtion PRO LIVE Astra

Size (mm) 305 x 63 x 76 180 x 35 x 50 165 x 30 x 40
Weight (g) 1320 540 300
Range (m) 0.8 - 4 0.8 - 3.5 0.6 - 8

Depth Image Size 640 x 480 640 x 480 640 x 480
RGB Image Size 640 x 480 640 x 480 640 x 480

Frames per second 30 30 30
Field of View (◦) 57 x 43 58 x 45 60 x 49.5

Power External USB USB

2.2 Non-optical Sensing

As stated earlier in this chapter, non-optical sensing refers to the use of pulses or

waves not included in the visible or the IR spectrum for obtaining 3D measurements.

This section focuses on microwaves, in particular on UWB, which is the technology

that has been used in this work.

UWB is a high data rate, low power short-range wireless technology that is

generating a lot of interest in the research community and the industry, as a high-

speed alternative to existing wireless technologies such as IEEE 802.11 WLAN, Home

Radio Frequency (RF) and HiperLANs Lad (2004). Even though UWB has been

around for more than 40 years, a substantial change occurred in 2002, when the

Federal Communication Commission (FCC) issued a report allowing the commercial

and unlicensed deployment of UWB with a given spectral mask for both indoor and

outdoor applications in United States. This wide frequency allocation initiated a lot

of research activities from both industry and academia, focusing in recent years on

consumer electronics and wireless communications.

UWB transmits binary data, using low energy and extremely short duration

impulses or bursts (in the order of picoseconds) over a wide spectrum of frequencies. It

delivers data over 15 to 100 meters and does not require a dedicated radio frequency,



32 3D Perception for Localization

so is also known as carrier-free, impulse or base-band radio. UWB systems use carrier-

free, meaning that data is not modulated on a continuous waveform with a specific

carrier frequency, as in narrowband and wideband technologies.

UWB technology has the following significant characteristics Lad (2004):

• High data rate: it can handle more bandwidth-intensive applications like

streaming video, than either 802.11 or Bluetooth, reaching data rates of roughly

100 Megabits per second (Mbps), with speeds up to 500 Mbps. The maximum

speed for 802.11a is 54 Mbps, while for Bluetooth it is about 1 Mbps.

• Low power consumption: it constantly transmits short impulses, instead of

transmitting modulated waves like most narrowband systems do, and hence does

not need conversion between frequencies, local oscillators, mixers, and other

filters.

• Interference immunity: due to low power and high frequency transmission,

UWB’s aggregate interference is vaguely detected by narrowband receivers. This

makes it suitable for coexistence with narrowband radio systems operating in

the same spectrum without causing undue interference.

• High security: since UWB systems’ noise is very low, they are inherently

covert and extremely difficult for unintended users to detect.

• Low complexity, low cost: the most attractive of UWB’s advantages are its

low system complexity and cost. Traditional carrier based technologies modulate

and demodulate complex analog carrier waveforms. Due to the absence of carrier

in UWB, the transceiver structure can be very simple. Besides, recent advances

in silicon process and switching speeds make UWB systems also low-cost.

• Resistance to jamming: UWB spectrum covers a huge range of frequencies.

That is why its signals are relatively resistant to jamming, because it is very dif-

ficult to jam every frequency in the UWB spectrum at the same time. Therefore,

there is a wide frequency range available even in the case that some frequencies

are jammed.
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Figure 2.6: Nanotron’s swarm ER Nanotron (2017).

• Scalability: UWB systems are very flexible because their common architecture

is software re-definable, so that it can dynamically trade-off high-data throughput

for range Chong et al. (2006).

UWB signaling is especially suitable for position and ranging applications due to its

low energy, high bandwidth and fine temporal resolution properties. It allows accuracies

of a few centimeters in ranging, as well as low-power and low-cost implementation of

communication systems Gezici et al. (2005). The process involves exchange of signals

between nodes, and measurement of parameters to estimate distances.

Distance measurements between two radio-based sensors are usually based on

the energy (signal strength) or travel times (time of arrival) of signals between the

devices. To determine the distance from energy measurements, the characteristics of

the channel must be known; therefore this technique is very sensitive to the estimation

of those parameters. In that sense, the measurements of travel times is preferred. If

the two sensors have a common clock, the sensor receiving the signal can determine the

time of arrival of the incoming signal that is time-stamped by the emitter sensor. In

the absence of a common clock between the sensors, round-trip times can be measured

in one of the sensors to estimate the distance between the two.

The UWB sensors used in this work are manufactured by Nanotron Technologies

within their swarm product family, which provide accurate and relatively low-cost

location capabilities. These UWB sensors provide distance measurements with an

accuracy of 10 cm. A sample board is shown in Figure 2.6.
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2.3 Conclusions

This chapter summarizes different 3D sensing modalities that are considered relevant

for the purpose of localization of aerial robots in GPS-denied areas. They have

been classified according to how they obtain depth information, whether it is a

simple point-to-point distance estimation or a full depth image. Different sensors

have been discussed, highlighting their main advantages and limitations regarding

their applicability to small UAVs. Taking into account these factors and on-board

requirements, the most interesting selected devices to be tested are stereo cameras,

RGB-D cameras and UWB sensors.



Chapter 3

Robust Visual Odometry for UAVs

The first step of the work carried out towards this dissertation was obtaining localization

estimations through the analysis of data provided by a 3D imaging sensor. During the

past decades, different techniques have been proposed in order to tackle this estimation

problem, generally by processing sensor data acquired at subsequent time instants.

Vision-based odometry addresses the problem of estimating the motion of a robot by

only using information from vision sensors Scaramuzza and Fraundorfer (2011).

One of the most popular techniques is known as registration, which is the process

by which two data sets are brought into alignment. In particular, when dealing with

3D imaging sensors, it involves aligning 3D point clouds. Both passive and active

optical sensors, such as stereo cameras or RGB-D cameras, can provide dense 3D point

clouds at a high frequency. Then, subsequent point clouds can be matched in order to

deduce the transformation between them and, consequently, the 6 Degrees-of-Freedom

(DoF) motion of the sensor.

Apart from that, many state-of-the-art approaches are based on extracting interest

points from RGB images, and matching them with those extracted in previous

frames. By using the 3D information associated with such points, the transformation

between frames can be estimated, and hence the motion of the robot Fraundorfer and

Scaramuzza (2012).

In the presented approach, registration was first implemented, using only 3D point

clouds to estimate the robot localization. Then, this processing pipeline was optimized

35
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by adding information from the acquired RGB images. Afterwards, the matching was

improved and also combined with information from inertial sensors. The following

sections explain in detail the different approaches developed towards this dissertation,

providing experimental results to validate them and discuss their applicability.

3.1 Registration

3.1.1 Depth-only Registration

Registration of 3D point clouds tries to find the rigid transformation that aligns them,

so that they can be placed in a common coordinate system. Its output is usually a

transformation matrix representing the rotation and translation that would have to

be applied on one of the clouds in order to be perfectly aligned with the other.

Since no assumptions can be made about the shape of the objects in the scene,

the chosen algorithm must be able to handle free-form surfaces. Automatic regis-

tration of free-form surfaces is usually performed using the Iterative Closest Point

(ICP) algorithm Besl and McKay (1992). ICP is a method capable of providing a

computationally efficient pose estimate in complex, unstructured environments. It

has the advantages of locally solving the problem of matching and localization, being

generic and potentially used for real-time applications Pomerleau et al. (2013).

The ICP algorithm takes as input two point clouds, the current reading and the

reference, and tries to align them by iteratively computing the transformation between

them. To be more accurate, the algorithm performs an iterative descent procedure

which seeks to find a rigid geometric transformation that can be applied to the reading

cloud such that it is most closely aligned with the reference cloud. Each point in

the reading cloud can then be associated with its closest point in the reference cloud.

The closeness of the alignment is most often based on a cost function such as the

sum of mean square distances between point associations. At each iteration, the

algorithm computes correspondences by finding closest points, and then minimizes

the mean square error in position between the correspondences. The goal is obviously

to optimize the alignment and therefore find a rigid transformation which minimizes
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the cost function. Such transformation is a good estimate of the pose change between

the acquisition times of the two clouds.

One major drawback of all ICP variants is that a good initial estimate of the

transformation is required. Since it involves an iterative descent algorithm, an initial

estimate is needed in order to converge to the global minimum; otherwise, ICP might

get stuck in a local minimum. This is why, in general, ICP is only suitable if the

distance between the point clouds is already small enough at the beginning. This

insufficiency is often handled by estimating an initial transformation with methods or

algorithms that converge to the global minimum but with lower precision. Following

this procedure, ICP is then used to improve the result by performing a fine registration

Salvi et al. (2007). In other scenarios, no guess of the initial transformation is needed

because the difference between the measurements is sufficiently small, since the point

clouds are generated at such a high rate (up to 30 Hz) that this precondition is met.

The simplest concept based on Besl and McKay (1992) is illustrated in Algorithm

1, which is often referred to as Standard ICP. The algorithm requires the reading point

cloud A and the reference point cloud B in order to estimate the transformation T

between them. Additionally, a rough estimate of the initial transformation T0 can be

considered. If this is not provided, and the true transformation between the point

clouds is small enough, the initial transformation can be set to the identity matrix.

In every iteration, each of the N points of the reference point cloud B is transformed

with the current transformation estimation T , and matched with its corresponding

point from the reading point cloud A. Matches are rejected if the Euclidean distance

between the pairs exceeds dmax, since points that are matched with a closer distance

are less likely to be outliers. A weight value wi is used to perform this rejection,

setting its value to 0 or 1 accordingly. After solving the optimization problem and

obtaining a new transformation T , the next iteration starts. The algorithm usually

converges if the difference between the estimated transformation of two subsequent

iterations becomes small enough, or if a predefined number of iterations is reached.

The Standard ICP algorithm is a point-to-point approach, which means that it

tries to align all matched points exactly by minimizing their Euclidean distance. This

does not take into account that an exact matching is usually not feasible, because
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Input : Point clouds: A = a1, ..., aM and B = b1, ..., bN and Initial
Transformation T0

Output : Transformation T which aligns A and B
while not converged do

for each point ai in cloud A do
mi = FindClosestPointInA(T · bi)
if ‖mi − T · bi‖2 ≤ dmax then

wi = 1
else

wi = 0
end

end
T = argminT

∑
iwi · ‖mi − T · bi‖22

end
Algorithm 1: Standard ICP

noise and/or different sampling in the two point clouds lead to pairs without perfect

equivalence. To overcome this issue, some variants of ICP take advantage of surface

normal information Chen and Medioni (1992) using a point-to-plane metric, which

minimizes the sum of the squared distance between a point and the tangent plane at

its corresponding point. Unlike the point-to-point metric, which has a closed-form

solution, the point-to-plane metric is usually solved using standard non-linear least-

squares methods. Although each iteration of the point-to-plane ICP algorithm is

generally slower than the point-to-point version, better convergence rates have been

found using the former. Moreover, when the relative rotation between the two input

clouds is small, the non-linear least-squares optimization problem can be approximated

with a linear one, thus computation times are lower Low (2004).

Yet another variant uses the normals from both the reading and the reference

point clouds; this is usually known as plane-to-plane metric. In Segal et al. (2009),

the authors propose a generalization of the ICP algorithm which takes into account

the locally planar structure of both datasets, obtaining better and more robust results

than using the aforementioned metrics.

Available implementations of ICP variants are included in the Point Cloud Library

(PCL) Rusu and Cousins (2011), an open-source development library which contains

state-of-the-art algorithms for filtering, feature estimation, surface reconstruction,
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registration, model fitting or segmentation. Our first steps in this context have made

use of such implementations, developing and testing the rest of steps described in this

section.

Another issue that is worthy of consideration is that, in general, by continuously

aligning consecutive 3D point clouds from the on-board sensor, the localization

estimation is prone to error accumulation over time. In order to overcome this

limitation, our approach considers building continuously an overall map as the point

clouds are being registered. Then, subsequent point clouds are compared back to

this map, instead of using the immediately previous point cloud. Thus, the relative

pose is referred to the overall map that is being built, assuming that the initial pose

of the robot is known. This persistent comparison back to the same map prevents

the growth of errors in the pose estimation, as it usually happens in dead-reckoning

approaches. However, memory usage increases as the map grows. In order to prevent

this, downsampling configurations for this map have been developed consequently.

The developed processing pipeline includes several mechanisms to optimize the

efficiency of the algorithm. First, the input point clouds are filtered in order to reduce

the number of points, and hence decrease the computation time of each iteration. In

particular, a voxel grid filter is employed, which downsamples the data by taking a

spatial average of the points in the cloud. It divides the 3D space into voxels, or tiny

boxes, of a specific configurable size. Then, in each voxel, all the points present are

approximated with their centroid. This approach is a bit slower than approximating

them by the center of the voxel, though it represents the underlying surface more

accurately.

Another implementation involving efficiency in the processing pipeline is related to

the matching step that takes place at each iteration of the algorithm. This matching

between the filtered clouds using the current transformation parameters is based on a

kd-tree, which produces an optimal search at a lower computation complexity.

Experimental Results

Depth-only registration results were obtained in the context of the project Perigeo,

whose main goal was to investigate a wide range of space technologies using UAVs.



40 Robust Visual Odometry for UAVs

Figure 3.1: Scaled scenario of a landing site for testing depth-only registration.

One of these technologies was autonomous navigation for missions involving entry,

descent and landing on asteroids using optical sensors; in particular, a Flash LIDAR

prototype that is able to provide depth maps at video rate. To reproduce such mission,

a scaled scenario was designed in order to recreate a descent trajectory through the

use of a UAV.

The approach was to produce a section of an asteroid, representing the landing site

and surroundings of asteroid Itokawa JAXA (2017), as it can be seen in Figure 3.1.

The model had actual dimensions of 1.775m x 1.775m, thus achieving a scale factor

of 1:45 with respect to the original asteroid section (80m x 80m). The Flash LIDAR

sensor was emulated by an on-board RGB-D camera facing down, which provided the

3D point clouds used as data source for depth-only registration, as shown in Figures

3.2 and 3.3.

The experiments have been performed at the indoor testbed of the Center for

Advanced Aerospace Technologies (CATEC). This facility is used to develop and

test a wide range of technologies related to autonomous systems. The useful volume

where tests can be conducted is a cube of 15x15x5 meters. The testbed houses an

indoor localization system based on 20 Vicon cameras. It only needs the installation of

passive markers on the objects to locate and/or track. This system is able to provide

the position and attitude of each object in real-time with millimetric precision, and

with very low latency in communications.
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Figure 3.2: UAV used for testing depth-only registration.

Figure 3.3: UAV flying over the asteroid scaled model and sample 3D data.

The UAV conducted two different trajectories representing two separate experi-

ments:

• Descent trajectory: the UAV followed a downscaled (1:45) version of the nominal

entry, descent and landing trajectory towards the actual landing site of a previous

mission on the asteroid.

• Hovering trajectory: a different approach for validating space navigation algo-

rithms is to explore an area of interest at a constant height. This trajectory can

be seen as a hovering scenario for a lander and has the advantage of being easily

implemented on a small multi-rotor UAV.
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Ground-truth localization data for comparison were acquired by the motion capture

system of CATEC’s indoor testbed. In both experiments, the UAV automatically

followed a predefined list of waypoints using the motion capture system to close the

control loop, and then the point clouds were processed off-line in order to obtain the

localization estimations shown in the figures. Only the initial ground-truth pose of

the UAV was used in order to properly initialize the registration algorithm.

Figure 3.4 shows the results of the descent trajectory in position (x, y, z) and

orientation (roll, pitch, yaw), including both the ground truth values (gtX, gtY, gtZ,

gtROLL, gtPITCH and gtYAW) and the registration algorithm outputs (estX, estY,

estZ, estROLL, estPITCH and estYAW). Errors in position are relatively small

(<10cm), as well as in orientation (<0.2◦) during the whole trajectory. In the case of

descent trajectories, initial errors in the point cloud matching process tend to converge.

The overall map that the algorithm is continuously building usually represents the

same surface of the small body. As the UAV gets closer to the asteroid model, the

point clouds describe this surface with more detail, leading to better results in the

matching process.

Even though the results are already promising, there is still significant room for

improvement. The overall map that the algorithm continuously builds is initialized at

the beginning of the trajectory, when the aerial robot is at the furthest distance from

the scaled asteroid surface. At such distance (around 3m), possible UAV vibrations

and 3D sensor noise greatly affect the initial point cloud comparisons, thus making

the matching process much more challenging than when the UAV is closer to objects

in general.

Figure 3.5 shows the results of the hovering trajectory also in position and orienta-

tion. Errors in position are similar than those in the case of the descent trajectory.

In this case, the UAV flight height was approximately 1m above the scaled asteroid,

which allowed the 3D sensor to provide depth measurements without much noise.

However, at certain moments, the surface region acquired by the sensor appears mainly

flat; hence the point cloud matching can be ambiguous since there are not enough

depth details that could help the matching process.
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Figure 3.4: Pose estimation for the descent trajectory compared to ground-truth data.

Table 3.1 summarizes the root-mean-square (RMS) errors of pose estimations for

both trajectories, in position and orientation.
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Figure 3.5: Pose estimation for the hovering trajectory compared to ground-truth
data. (Left) Position plots. (Right) Orientation plots.

The results show the good performance of the proposed algorithm, but a number

of shortcomings prevent this setup from constituting a generic solution for long-term

UAV localization:
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Table 3.1: RMS localization errors

x (m) y (m) z (m) roll (◦) pitch (◦) yaw (◦)

Descent trajectory 0.024 0.042 0.063 0.007 0.002 0.111
Hovering trajectory 0.027 0.023 0.009 0.004 0.02 0.003

• The distance that the UAV traveled in the experiments was relatively short

(<5m).

• The velocity at which the UAV performed the experiments was low (0.05m/s)

in order to recreate scaled-down space exploration trajectories.

• Sensor data was underused. Apart from 3D point clouds, the RGB-D sensor

provided color images that were not used in order to faithfully emulate the Flash

LIDAR sensor under test. Besides, orientation data from the on-board IMU

were not used either.

Nevertheless, these experiments helped to start the development of the software

framework for the rest of technologies towards this dissertation, as well as gaining

field experience in the setup of indoor flight testing.

3.1.2 Color-depth Registration

3D imaging sensors usually provide not only a point cloud of the scene, but also their

associated color images. It seems reasonable to make use of such images, since adding

RGB information to the software processing pipeline can improve the reliability of the

registration process. In this way, we can take full advantage of all the information that

the sensor provides (either a stereo or RGB-D camera), both visual and depth data.

Over the last decades, different ICP variants have been introduced Rusinkiewicz

and Levoy (2001) proposing improvements in any or more of the stages of the algorithm,

namely:

• Selecting some set of points in one or both point clouds.
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• Matching the points from one cloud to samples in the other point clouds.

• Weighing the corresponding pairs appropriately.

• Rejecting certain pairs based on looking at each pair individually or considering

the entire set of pairs.

• Assigning an error metric based on the point pairs.

• Solving the optimization problem.

In order to reduce the computational cost of our processing pipeline, we have

focused on optimizing the first stage of the ICP algorithm, i.e. selecting interest points

on both the reading and the reference point clouds. At each frame, a set of visual

features is extracted from the color image and mapped to their 3D locations using

the associated point cloud. The set of 3D points is then matched across consecutive

frames to estimate sensor pose increments since the last processed frame. Figure 3.6

shows an overview of the method.

The interest points are extracted using the Features from the Accelerated Segment

Test (FAST) algorithm Rosten and Drummond (2006), which is a computationally

efficient method for corner detection. According to this algorithm, a pixel is defined

as a key-point if in a circle surrounding the pixel, N or more contiguous pixels are all

significantly brighter than, or all significantly darker than the center pixel, as depicted

in Figure 3.7. The extracted key-points are pixels which contain local information

that ideally makes them repeatable across consecutive frames.

Depending on the environment, the scene in front of the sensor could be feature-less,

or there might be strong-detailed regions where all the key-points are detected. Both

cases pose problems in the subsequent stages of the registration method and may lead

to poor transformation estimations. In order to overcome such issues, a bucketing

technique has been adopted. The image is divided into several regions, and a fixed

number of key-points is required to be extracted from each one. Our approach is

based on subdividing the image into six buckets (two columns and three rows), hence

providing a relatively homogeneous distribution of key-points in the image.
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Figure 3.6: Schematic overview of the RGB-D registration pipeline.

The proposed approach is not purely based on visual feature matching though, in

the sense that it does not try to find the same key-points across consecutive RGB

images. Instead, the set of 2D key-points based on FAST features is enhanced with

depth information to turn it into a set of 3D key-points. This is performed by directly

using their corresponding depth values from the associated point cloud (in the case

of stereo cameras, from the disparity map computed from the pair of images). Then,

the strategy is to align consecutive sets of 3D key-points, assuming that the selected

FAST features are repetitive enough to be found in consecutive frames.

3D imaging sensors provide depth information for most of the image pixels, but

not all of them. This is a common situation in both stereo and RGB-D cameras.
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Figure 3.7: Pixel comparisons to determine the existence of a FAST key-point.

Depending on the scene and the physical properties of the materials in the environment,

a 2D key-point might not have a corresponding depth value. Moreover, a 2D key-point

might correspond to a very far location, thus the noise of the depth measurement

can be significant. In these cases, our approach rejects the 2D key-points from the

feature set. The fact that we might be throwing away possibly “good” key-points

does not significantly impact on the performance of the algorithm, since the size of

the key-points sets is relatively large (several hundreds of points).

Subsequent frames are analyzed in order to obtain sets of 3D key-points. Once a

set of 3D key-points has been filtered, an alignment process is carried out to find the

best fit between two sets. As in depth-only registration, the compared sets do not

correspond with consecutive frames in order to mitigate the drift effect commonly

present in odometry approaches. The sets to align are the current frame and the

overall map that is continuously being built using the aligned 3D points. The overall

goal is still to apply a transformation to one set to bring it as close as possible to the

other, and ICP is used again to find such transformation. In this case, due to the

sparse distribution of the 3D key-points, the point-to-point error metric is used in the

iterative process:

E(T ) =
N∑
i=1

‖Tui − zi‖ (3.1)
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where N is the size of the current set of 3D key-points ui, zi is the corresponding point

in the map point cloud, and T is the transformation matrix composed of a rotation

and translation.

ICP’s computational load is greatly decreased with respect to our previous approach

by reducing the size of the point clouds when only using the 3D key-points from both

data sets. Other main drawbacks of ICP include its inability to deal with noise and

outliers in the point clouds, or the absence of enough overlap between the clouds. Both

cases are covered in the proposed approach, since the 3D key-point extraction process

focuses on removing noise from distant points and possible outliers. Additionally, the

high frame rate of 3D imaging sensors facilitates high overlap between the current

point cloud and the overall map that is being built.

The sensor pose update is finally transformed to the robot body frame in order to

obtain a localization pose update.

Experimental Results

Color-depth registration results were obtained in the context of a research stay

performed at the Australian Centre for Field Robotics (ACFR) at the University of

Sydney. RGB images and 3D point clouds are acquired from an RGB-D sensor facing

slightly down on-board the Mars Analog Multi-Mode Traverse Hybrid (MAMMOTH)

rover Reid et al. (2014), shown in Figure 3.8. Even though the robotic platform is not

a UAV, the accuracy of the localization algorithm was successfully validated through

an active articulation strategy for the rover, which relied on the correct on-board

on-line robot localization and a sparse map building in order to estimate each wheel

contact point in the terrain. The rover can then articulate its limb joints in order to

actively conform to the terrain while traversing rough areas.

Ground-truth localization data for direct comparison were available only for

orientation thanks to an on-board IMU; nevertheless, the following results describe the

successful overall performance of the approach in both position and orientation. An

example terrain point cloud generated from consecutive frames is shown in Figure 3.9,

for which accurate localization is first needed in order to perform proper registration

of the 3D point clouds.
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Figure 3.8: MAMMOTH rover with an RGB-D sensor on top.

Figure 3.9: Map generated after driving the MAMMOTH rover over a section of the
Mars Yard.

To validate the actively articulated suspension technique based on the RGB-D

sensor based localization described before, the MAMMOTH rover is driven across a

step obstacle and instructed to maintain a constant orientation and linear velocity

while driving forward (along the x-axis relative to the world frame). The terrain that

the MAMMOTH rover traverses is at the Sydney Powerhouse Museum’s Mars Yard,
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Figure 3.10: Sequence of images from the trial.

a 7x17 m space designed to resemble a section of the Columbia Hills region visited

by the “Spirit” Mars Exploration Rover from the National Aeronautics and Space

Administration (NASA).

The MAMMOTH rover moves over a bed of rocks that surrounds a 0.15m tall

cinder block, shown in Figure 3.10. In all trials, the rover initially drives over a 4m

section of relatively flat terrain so as to allow each of its wheels to be within the

mapped terrain region. Once all wheels are within this region, the active articulation

controller is activated by an operator. The desired rates to be kept for each trial are

zero translational velocity along the y and z axes, and zero rotational velocity for

roll, pitch and yaw angles. In the trial shown in the plots, the commanded speed of

the rover is vx = 0.05m/s. The world frame is defined at the base of the rover at

the beginning of its traverse. Initially, the x and y positions of the world frame are

coincident with body frame’s x and y positions. The z position of the world frame is

at the average initial height of each of the wheel contact frames relative to the body

frame.
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Figure 3.11: Position and orientation plots of the MAMMOTH rover from the trial.

During the trial, the rover traverses the block obstacle and articulates legs 1 and 2

as the left side of the rover passes over the obstacle. Figure 3.11 shows the RGB-D

based position and orientation of the vehicle and the estimated contact points during

the traverse. Additionally, orientation data from an on-board IMU is provided. An

initial deviation in roll (φ) and yaw (ψ) is observed. Assuming the IMU orientation

data to be a ground-truth, discrepancies in the estimated orientation are apparent.

For the majority of the traverse, pitch (θ) data from the two localization systems are

similar and indicate that there was a deviation no greater than 7◦ over the entire

traverse. During the initial approach to the obstacle between 0 s and 50 s, it is



3.2 Visual-Inertial Odometry 53

observed that the yaw deviates by 2.5◦ due to operator defined yaw re-alignment

maneuvers. This yaw is approximately four times larger by 50 s according to the

RGB-D sensor localization data, and may be caused by drift in the solution. A similar

drift is seen along the roll axis between 10 and 70 s.

Experimental results demonstrate active terrain adaptation with the MAMMOTH

rover. This method does not rely on any assumption about the kinematics of the

movement, however it benefits from the fact that the rover motion is slow (on the order

of centimeters per second). The basic functionality of this system is demonstrated,

however improvements to the localization solution are still required, including the

fusion of RGB-D sensor based estimations with IMU data in order to obtain more

robust orientation estimations.

Nevertheless, these experiments contributed to the improvement of the processing

pipeline and involved great and complex integration efforts in order to successfully

run the algorithms in a different platform. Besides, the on-line control of the rover

articulations entirely relied on the visual-based estimations that our approach was

delivering, increasing the complexity of the experiments.

3.2 Visual-Inertial Odometry

Despite its popular use and recent developments regarding increased efficiency in

3D data processing, registration algorithms such as ICP are still computationally

expensive, and highly sensitive to significant differences in the clouds to register, as

the correct points correspondence is more difficult to find.

Using image features or key-points as the basic source of information can alleviate

the computational load of the algorithm, but additional improvements are needed

in order to achieve reliable localization. Fusing pose estimations with information

provided by inertial sensors such as gyroscopes and accelerometers (through an on-

board IMU) helps reducing uncertainties in the robot localization when fast motions

are present, as it is usually the case when working with UAVs. Inertial sensors are

prone to substantial drift in position estimates when compared with purely vision
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Figure 3.12: Schematic overview of our visual-inertial odometry pipeline.

approaches, but our approach only takes limited information from such sensors in

order to obtain robust estimations.

This section focuses on the visual-inertial motion estimation algorithm presented

in Figure 3.12. The proposed odometry system combines images, 3D point clouds,

inertial sensors, pose estimation, key-framing and sparse bundle adjustment in a

loose-coupling filter in order to estimate a reliable and accurate localization at short

term. The algorithm is publicly available1.

The approach is able to work using either a stereo camera or an RGB-D sensor.

If a stereo camera is used, disparity images would need to be generated first using

common approaches such as Semi-Global Matching Hirschmuller (2005). RGB-D

cameras directly provide depth images.

1http://wiki.ros.org/viodom

http://wiki.ros.org/viodom
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3.2.1 Feature Detection

In the case of stereo cameras, at each frame, after removing the image distortion from

the stereo pair, a set of key-points is first selected from both the left and right images.

These interest points are visual features extracted using the FAST algorithm as in

the previously explained approach. When working with RGB-D cameras, instead of

focusing on left and right images, the algorithm input is directly the color image. The

FAST algorithm is also used in this case for finding the key-points set.

In both sensing approaches, sometimes the scene is very homogeneous, or there

are many features grouped in a specific region in the image, and this could later

lead to inaccurate transformation estimations. In order to overcome such situations,

a bucketing technique similar to the previous approach has been adopted. On one

hand, a minimum number of key-points is required to be extracted from equally

divided regions of the images, i.e. buckets. On the other hand, a maximum number of

key-points is defined in order to select only the most powerful ones from each bucket,

according to the FAST detector definition. The combination of both parameters

allows a homogeneous distribution of the strongest N key-points in the images. Our

approach is based on subdividing the image into six buckets (two columns and three

rows). The difference between the originally detected features and the ones detected

using the bucketing technique can be seen in Figure 3.13.

3.2.2 Feature Description

In the processing pipeline, the next step involves finding correspondences between

the sets of features from different images. To achieve this, some kind of feature point

description is needed in order to compare and find similarities between the feature sets,

and for that, the general purpose Binary Robust Independent Elementary Features

(BRIEF) descriptor Calonder et al. (2012) is used. This descriptor is very efficient

since it is based on simple intensity difference tests, and the similarity evaluation

is done using the Hamming distance. Together with the computational efficiency,

BRIEF descriptors are especially interesting for feature tracking under small visual

perturbations, a very usual situation in visual odometry. Other descriptors that
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Figure 3.13: Features detected from the original image (top) on a sample image before
(bottom left) and after (bottom right) applying the bucketing technique.

include rotation into their formulation have been tested, such as the Oriented FAST

and Rotated BRIEF (ORB) Rublee et al. (2011), the Binary Robust Invariant Scalable

Keypoints (BRISK) Leutenegger et al. (2011) or the Fast Retina Keypoint (FREAK)

Alahi et al. (2012), but no significant improvements have been detected for local

matching, hence the one with the smallest computational impact (BRIEF) is finally

used in this approach.

3.2.3 Frame Matching

In the case of using stereo cameras, correspondences between the sets of feature

descriptors from the left and the right images have to be found. In order to do that, a

robust matcher has been implemented. This matcher rejects correspondences that are

not symmetrical (i.e. are not found from the left to the right image and vice-versa), and

also makes use of epipolar geometry to significantly reduce the matching candidates,

speeding up the process. An example of stereo matching is shown in Figure 3.14.
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Figure 3.14: Feature matching between left and right images from the stereo pair.

The depth associated with each matched key-point is stored to enhance the set of 2D

key-points for subsequent processing stages.

In the case of RGB-D cameras, the set of key-points obtained in the previous

sub-section is directly enhanced with their associated depth information. As in the

previous section, if the depth value is not available or is too far from the camera, the

key-point is rejected.

Once a set of robust key-points enhanced with depth information has been found

from either the stereo pair of images or the RGB-D frame, the next step of the

algorithm focuses on finding correspondences between the sets of key-points from

consecutive frames. In the case of stereo, only left images are used hereafter. This

allows to find a subset of even more robust key-points which survive across frames.

The same matcher used for finding correspondences between the stereo pair images is

also used between consecutive frames.

If enough matches are found between the key-points from the previous and the

current frames, this set of matches is used to solve a Perspective-n-Point problem

(PnP). This consists in the pose estimation from n 3D-to-2D point correspondences,
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i.e. the estimation of a camera pose (6 DoF: rotation and translation) with respect to

a coordinate frame in which 3D points and their 2D projections in the camera are

provided, given the camera calibration parameters. The 3D points are the coordinates

of the key-points from the previous frame, while the 2D projections are their matched

correspondences in the current frame. Hence the resulting pose provides an estimation

of the camera motion between both frames.

Given a set of n 3D points in a world reference frame and their corresponding 2D

image projections, as well as the calibrated intrinsic camera parameters, the pose of

the camera with respect to the world frame is calculated as follows. The perspective

model for the camera is:

s pc = K [R|t] pw (3.2)

where pw = [x y z 1]T is the homogeneous world point, pc = [u v 1]T is the corresponding

homogeneous image point, K is the matrix of intrinsic camera parameters (which

are fx and fy for the scaled focal lengths, γ for the skew and (u0, v0) is the principal

point), s is a scale factor for the image point, and R and t are the desired 3D rotation

and 3D translation of the camera (extrinsic parameters) that are to be estimated.

This leads to the following equation for the model:

s
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The assumption made in most solutions is that the camera is already calibrated.

For each solution to PnP, the chosen point correspondences cannot be coplanar.

In addition, PnP can have multiple solutions, and choosing a particular solution

would require post-processing of the solution set. Furthermore, using more point

correspondences can reduce the impact of noisy data when solving the problem.

A commonly used solution to the PnP problem exists for n = 3, which is called

Perspective-Three-Point (P3P) Gao et al. (2003). However, with only 3 correspon-

dences, P3P yields many solutions, so a fourth correspondence is used in practice
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to remove ambiguity. Let P be the center of projection for the camera, A, B and

C the 3D world points with corresponding image points u, v and w. Let X = |PA|,
Y = |PB|, Z = |PC|, α = ∠BPC, β = ∠APC, γ = ∠APB, p = 2cosα, q = 2cosβ,

r = 2cosγ, a′ = |AB|, b′ = |BC| and c′ = |AC|. This forms triangles PBC, PAC and

PAB from which we obtain the equation system for P3P:

Y 2 + Z2 − Y Zp− b′2 = 0 (3.4)

Z2 +X2 −XZq − c′2 = 0 (3.5)

X2 + Y 2 −XY p− a′2 = 0 (3.6)

It is common to normalize the image points before solving P3P. Solving the P3P

system results in four possible solutions for R and T . The aforementioned fourth

world point D and its corresponding image point z are then used to find the best

solution among the four.

As previously mentioned, using more point correspondences helps to reduce the

impact of noisy data, which will generally be our case when using 3D imaging sensors

on-board UAVs. In particular, the Efficient PnP (EPnP) algorithm Lepetit et al.

(2008) has been used in our approach, which provides an efficient implementation for

solving the PnP problem for n ≥ 3. This method is based on the notion that each of

the n points (which are called reference points) can be expressed as a weighted sum of

four virtual control points. Thus, the coordinates of these control points become the

unknowns of the problem. It is from these control points that the final pose of the

camera is solved.

As an overview of the process, first note that each of the n reference points in the

world frame, pwi , and their corresponding image points, pci , are weighted sums of the

four controls points, cwj and ccj (j = 1...4) respectively, and the weights are normalized
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per reference point as shown below. All points are expressed in homogeneous form.

pwi =
4∑
j=1

αijc
w
j (3.7)

pci =
4∑
j=1

αijc
c
j (3.8)

4∑
j=1

αij = 1 (3.9)

From this, the derivation of the image reference points becomes

si p
c
i = K

4∑
j=1

αijc
c
i (3.10)

The homogeneous image control point has the form ccj =
[
xcj ycj zcj

]T
. Re-

arranging the image reference point equation yields the following two linear equations

for each reference point:

4∑
j=1

αijfxx
c
j + αij(u0 − ui)zcj = 0 (3.11)

4∑
j=1

αijfyy
c
j + αij(v0 − vi)zcj = 0 (3.12)

Using these two equations for each of the n reference points, the system Mx = 0

can be formed where x =
[
cc

T

1 cc
T

2 cc
T

3 cc
T

4

]T
. The solution for the control points

exists in the null space of M and is expressed as

x =
N∑
i=1

βivi (3.13)

where N is the number of null singular values in M and each vi is the corresponding

right singular vector of M . N can range from 1 to 4. After calculating the initial
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coefficients βi, the Gauss-Newton algorithm is used to refine them. The R and T

matrices that minimize the reprojection error of the world reference points, pwi , and

their corresponding actual image points pci , are then calculated.

This solution has O(n) complexity and works in the general case of PnP for both

planar and non-planar control points.

3.2.4 Attitude Correction

The PnP problem estimates a 6 DoF motion between frames, including translation

and rotation. Since the UAV counts with an on-board IMU, our odometry system is

able to read its data and integrate the roll and pitch angles with the purely visual

estimation before and after the PnP algorithm. They are first introduced in the

algorithm to provide an initial estimation for the rotation that took place between

the frames under comparison. Afterwards, they are used again to compensate for the

final angles that the algorithm outputs.

3.2.5 Key-Framing

In order to partially mitigate the effect of cumulative errors usually found in odometry

approaches, a key-framing approach has been adopted. Thus, new key-frames are

produced when the feature tracking flow exceeds a given threshold. This is a measure

of how much the image shifted since the last creation of a key-frame, by comparing

the pixel positions of the key-points.

At that moment, the current image key-points descriptors, their 3D estimated

position and the robot position/orientation are stored. Subsequent frames will compute

the transformation with respect to the last key-frame (and its pose) instead of the

immediately preceding image, so that errors are only accumulated with the introduction

of new key-frames, instead of with each frame.
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Figure 3.15: Bundle adjustment projection example.

3.2.6 Sparse Bundle Adjustment

In general, Bundle Adjustment (BA) is the problem of refining a visual reconstruction,

and is almost invariably used as the last step of every feature-based multiple-view

reconstruction vision algorithm to obtain jointly optimal 3D structure and viewing

parameter (camera pose and/or calibration) estimates. It is optimal because the

parameter estimates are found by minimizing a cost function that quantifies the model

fitting error, and it is jointly optimal because the solution is simultaneously optimal

with respect to both structure and camera variations Triggs et al. (1999). Its name

refers to the bundles of light rays originating from each 3D feature and converging on

each camera’s optical center, which are adjusted optimally with respect to both the

structure and viewing parameters. Figure 3.15 shows an example using three views.

BA boils down to minimizing the reprojection error between the image locations

of observed and predicted image points, which is expressed as the sum of squares of a

large number of nonlinear, real-valued functions. Thus, the minimization is achieved

using nonlinear least-squares algorithms. Of these, Levenberg–Marquardt (LM) has

proven to be one of the most successful due to its ease of implementation and its use
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of an effective damping strategy that lends it the ability to converge quickly from a

wide range of initial guesses.

BA amounts to jointly refining a set of initial camera and structure parameter

estimates for finding the set of parameters that most accurately predict the locations

of the observed points in the set of available images. More formally, assume that N

3D points Xi are seen in M views Pj , and let xij be the projection of the i-th point on

image j. Let vij denote the binary variables that equal 1 if point i is visible in image

j, and 0 otherwise. Assume also that each camera Pj is parameterized by a vector

aj, and each 3D point Xi by a vector bi. Bundle adjustment minimizes the total

reprojection error with respect to all 3D point and camera parameters, specifically

min
aj ,bi

N∑
i=1

M∑
j=1

vij d(Q(aj, bi), xij)
2 (3.14)

where Q(aj, bi) is the predicted projection of point i on image j, and d(x, y) denotes

the Euclidean distance between the image points represented by vectors x and y.

Clearly, BA is by definition tolerant to missing image projections and minimizes a

physically meaningful criterion.

However, due to the large number of unknowns contributing to the minimized

reprojection error, a general purpose implementation of the LM algorithm (such as

MINPACK’s lmder Moré et al. (1980)) incurs high computational costs when applied

to the minimization problem defined in the context of BA.

Fortunately, the lack of interaction among parameters for different 3D points and

cameras results in the underlying normal equations exhibiting a sparse block structure.

Our approach makes use of an efficient solution called Sparse Bundle Adjustment

(SBA) Lourakis and Argyros (2009), which exploits this sparseness by employing a

tailored sparse variant of the LM algorithm that leads to considerable computational

gains. SBA is generic in the sense that it grants the user full control over the definition

of the parameters describing cameras and 3D structure. Therefore, it can support

virtually any manifestation or parameterization of the multiple view reconstruction

problem, such as arbitrary projective cameras, partially or fully intrinsically calibrated
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cameras, exterior orientation (i.e. pose) estimation from fixed 3D points, refinement

of intrinsic parameters, etc.

In our case, let us consider a series of key-frames, each of them with their associated

camera poses and key-points with 3D coordinates and 2D image projections. The idea is

to improve the computation of the camera motion between key-frames according to the

sets of observations. SBA is able to optimize not only the motion estimations, but also

reduce the errors that were introduced into the 3D coordinates of the key-points. Our

approach only considers the last K produced key-frames (K=10 in the experiments),

and applies two subsequent methods in order to allow on-line computation of the pose

refinement:

• It only considers the key-points that are seen and matched across at least K/2

consecutive key-frames.

• It applies a bucketing technique to the surviving key-points, keeping the best 3

key-points from 28 image buckets (four rows and seven columns).

3.2.7 Ground Plane Estimation

Another feature that was considered in this work is the estimation of the ground plane,

given the particularities of the sensor arrangement and the testing environment. The

3D imaging sensor is mounted slightly pointing downwards, hence the point cloud can

easily be used to estimate the flight height of the UAV, as an altimeter does, assuming

that enough ground scene is within the field of view of the camera. The point cloud is

first downsampled in order to keep the computational efficiency of the whole pipeline.

A simple plane segmentation has been performed, i.e. find all the points within the

point cloud that support a plane model. The detected planes are filtered by their

normal vector, since we are looking for horizontal planes up to a maximum normal

angle (10◦ in our approach). The estimated height of the UAV is an input to the

pose correction regarding Z, which is averaged with the purely visual height using a

configurable weight factor (0.5 in our experiments).
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Figure 3.16: CATEC testbed with a mockup scenario.

The final camera pose estimation is transformed from the sensor frame to the aerial

robot body frame, and used to calculate the new relative position and orientation

estimations with respect to the initial pose.

3.2.8 Experimental Results

In order to validate our approach using the odometry approach described in this

section, a UAV has performed a flight in CATEC’s indoor testbed within a scenario

recreating an industrial facility, as shown in Figure 3.16. The visual odometry has

been used as the localization estimation input in order to close the control loop, and

the UAV was teleoperated through a joystick to command small increments in position

(x, y or z) and orientation (only yaw). The main objective of the experiment was to

demonstrate the suitability and accuracy of the approach in real-time.

This section provides experimental results from the estimated localization compared

with ground-truth data obtained from the testbed tracking system. The UAV used to

demonstrate our approach is shown in Figure 3.17. The main sensor on-board the

platform is the RGB-D camera Orbbec Astra, which is facing forward and slightly

tilted down (25◦). The trajectory followed by the UAV according to ground-truth

data is shown in Figure 3.18.
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Figure 3.17: The UAV with the RGB-D sensor at the front.
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Figure 3.18: Ground-truth UAV trajectory in XY during the experiment.

The estimated UAV localization provided by the visual odometry algorithm during

the experiment can be seen in Figure 3.19. The estimated position and yaw angle
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Figure 3.19: Estimated UAV position and orientation.

during the experiment are shown: the red dashed line corresponds to the UAV ground-

truth captured by the motion capture system, while the green dotted line is the

estimated UAV position and orientation using the proposed visual odometry. Roll

and pitch angles were acquired directly from the on-board IMU and hence are not

shown in the plots, since they are directly integrated into the algorithm.

As expected, the odometry exhibits some drift, though it provides a smooth esti-

mation which tremendously helps the control algorithms achieve a stable performance.

Figure 3.19 also shows how the odometry is consistent throughout the whole flight

trajectory, taking into account the relatively adverse conditions of the flight within

the indoor testbed for the algorithm, since there are almost no visual features in the

floor or the mockup scenario, and sometimes the nearest objects are more than five
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meters far ahead. The absolute values of the errors in the estimations are shown in

Figure 3.20, along with the computed RMS errors for each axis, which are also shown

in Table 3.2.

Errors in x are significantly higher than those in y, probably due to the fact that

the commanded trajectory towards the mockup scenario consisted of displacements in

the x axis. A reactive local planner was also running during the experiment, which

prevented the UAV from colliding with nearby obstacles. This local planner trims the

trajectory, but closing the control loop using the proposed visual odometry caused

small perturbations that led to small incremental errors. Estimations in x recovered

around the middle of the trajectory, but then experienced a similar behavior due to a

new collision situation, and then could not recover until the end of the experiment.

Estimations in y, however, exhibit a robust and stable performance. Note how RMS

error in z is very small (less than 10cm) thanks to the ground plane estimation based

on the point clouds, used as an altimeter input.

In order to quantitatively assess the performance of the odometry algorithm, we

have tested the data from the experiment against three popular approaches that were

cited in Section 1, which also make use of RGB-D data: CCNY-RGBD2 Dryanovski

et al. (2013), RTAB-Map3 Labbe and Michaud (2014) and RGBD-SLAM4 Endres

et al. (2012). Even though our approach does not constitute a SLAM solution, we

chose to compare our localization estimations with these approaches because it can be

considered that some “mapping” is performed given how we integrate key-frames and

the SBA, which takes into account the 3D points and their projections from the past

several key-frames.

The plots in Figure 3.21 show the performance of the same flight data processed

off-line using the three tested approaches, and Table 3.2 includes general RMS errors

compared to those from our approach. Notice that we did not fine tune the parameters

of the algorithms, so a better accuracy could be achieved. Besides, these approaches

do not make use of any additional estimation for localization as we do with Z using

the ground plane estimation.

2http://wiki.ros.org/ccny rgbd
3http://wiki.ros.org/rtabmap
4http://wiki.ros.org/rgbdslam

http://wiki.ros.org/ccny_rgbd
http://wiki.ros.org/rtabmap
http://wiki.ros.org/rgbdslam
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Figure 3.20: Localization errors in UAV estimation.

Table 3.2: RMS localization errors

x (m) y (m) z (m) yaw (rad)

CCNY-RGBD 0.19 0.34 0.43 0.04
RTAB-Map 0.45 0.29 0.22 0.09

RGBD-SLAM 1.19 2.75 1.85 0.85
Our approach 0.44 0.24 0.08 0.03

The plots show overall good performances of CCNY-RGBD and RTAB-Map.

Particularly critical are the moments in which the UAV is resting on the ground,

since the RGB-D camera is pointing slightly down and hence there is little sensor

information, and such information is usually at the top of the image and at a far
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Figure 3.21: Estimated UAV position and orientation using other approaches.

distance. This often results in wrong pose estimations that could lead to unexpected

behaviors. CCNY-RGBD experiences this issue at the very end of the experiment,

when the UAV landed and the estimation suddenly jumps. RTAB-Map seems to

be the most robust in this aspect; however we had to manually reset its odometry

estimation as soon as the UAV took off, otherwise no estimation at all would have

been published since it could not find a connection between consecutive frames while

the UAV was still on the ground during the off-line test. RGBD-SLAM heavily suffers

from this situation, as it accumulates error at the beginning (especially in z) and was

not able to recover during the rest of the flight. Our approach is able to successfully

cope with this situation thanks to the configuration of a minimum number of matches

between the current frame and the last key-frame, and a maximum distance at which
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depth information can be considered valid in the algorithm. Apart from that, Fig. 3.21

reveals sudden pose estimation changes in RGBD-SLAM due to wrong loop closures

within the map. Those abrupt changes would surely represent a problem in the control

loop, most likely resulting in an undesired flight termination. Our algorithm provides

a smooth estimation over the whole duration of the experiment.

Table 3.2 shows how most of the RMS errors in x, y, z and yaw of the compared

algorithms are similar to those of the proposed odometry approach (the smallest values

are in bold). Hence our odometry is able to provide an accuracy at the level of the

state of the art, while keeping robustness and computational efficiency as key features.

Table 3.3 includes values for the mean frequency and corresponding mean processing

times at which new pose estimations are published, using the UAV on-board i7 Linux

computer. Our approach is able to deliver pose estimations approximately every

60ms, which makes our approach suitable for working at around half the frame rate of

the RGB-D sensor. The other approaches may publish pose estimations to the ROS

ecosystem at a higher rate than the one shown in the table, but internally they just

copy the same values to the output message until a new estimation is computed.

Table 3.3: Pose estimation speed

Average Frame processing
Freq (Hz) time (ms)

CCNY-RGBD 8.1 124
RTAB-Map 6.2 161

RGBD-SLAM 5.8 173
Our approach 15.8 63

3.3 Conclusions

This chapter focuses on the evolution of approaches that have been developed, imple-

mented and validated regarding vision sensors in order to obtain reliable UAV pose
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estimations at short term. In particular, stereo or RGB-D cameras have been used as

the main sensor of the vision-based system.

Registration was first tested, using only 3D point clouds and later adding infor-

mation from the RGB images. Experience gained through these initial approaches

led towards a more optimized approach that combines images, point clouds, inertial

measurements from the on-board IMU, pose estimation algorithms, key-framing and

sparse bundle adjustment in a loose-coupling filter. This allows to obtain a localiza-

tion accuracy at the level of the state of the art, while providing much more robust

estimations and using less computational resources from the on-board processor.

In general, experimental results show the efficiency and reliability of the proposed

odometry algorithm, through its on-line use to localize an aerial robot during a real

flight. However, the proposed approach accumulates drift over time and this can make

the system unreliable for autonomous long-term operation. Additional improvements

are still needed in order to achieve safe and robust autonomous operations using aerial

robots.

Motion estimation algorithms based on matching visual features do not usually

perform as well in regions with few visual features. In large open areas, the visible

structure is often far beyond the reliable range of the 3D sensor, and as a result, the

system actually performs better in cluttered environments. Handling these challenges

will likely require the integration of other sensors in order to complement each other’s

capabilities. Additional sensing modalities can reduce, but not eliminate, state

estimation failures.



Chapter 4

Multi-Modal Sensor Fusion for

Long-Term Localization

Different sensors on a robotic system can provide different information about its

environment. Then, the information that an aerial robot obtains using its sensors

needs to be combined in order to determine where it is. Sensor fusion can be thought

as the problem of combining data from different sensors into one unified view of the

environment. However, sensors are noisy, and there are usually many things that

cannot be sensed directly.

As stated in Section 1, visual odometry systems are able to provide reliable and

accurate localization estimations at short term. However, odometry will eventually

diverge after a period of time. Instead of using a loop closing approach, the fusion

of visual information with other types of 3D data acquired from the aerial robot

environment is proposed.

UWB-based sensing provides distances to fixed locations that can be used to

absolutely localize the aerial robot, in a similar fashion as GPS works. Several

UWB beacons can be installed in the scenario and another UWB sensor on-board

the UAV to gather distance measurements between the different beacons. However,

the measurement noise typically present in radio-based distance computation and,

mostly, the outliers produced by radio multi-path effect normally prevent its use as a

stand-alone localization system when high accuracy is required. Moreover, this system

73
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does not provide enough information to constitute a full localization system, since the

data provided does not include bearing information.

By fusing both sensing modalities, the reliable short-term position estimation

based on odometry is combined with distances to fixed UWB sensors to correct its

cumulative drift. Both benefit from each other when integrated in order to obtain fast

and error-bounded localization estimations. Furthermore, the high efficiency of the

implemented algorithms makes them suitable for real-time localization in the usually

constrained equipment that can be mounted on-board an aerial vehicle. This particular

combination is the main strength of the approach, in which two different sensor fusion

strategies have been developed and tested using UAVs; they are explained in detail

later in this chapter. First, an overview of how the aerial robot state estimation is

handled from a probabilistic point of view is presented.

4.1 State Estimation

Generally speaking, the interaction of a robot and its environment can be modeled as

a dynamic system, in which the robot can manipulate its environment by choosing

controls, and in which it can perceive its environment through sensor measurements. In

probabilistic robotics, the dynamics of the robot and its environment are characterized

in the form of two probabilistic laws:

• the state transition distribution, which characterizes how state changes over

time, normally as the effect of a robot control (e.g. a movement), and

• the measurement distribution, which characterizes how measurements are gov-

erned by states.

Both laws are probabilistic, accounting for the inherent uncertainty in state evolution

and sensing.

The estimation of the state of a mobile robot is usually achieved by the Bayes

filter Thrun et al. (2005). The localization problem consists in finding the robot state

at time t, xt, given the last measurement zt and a prior state xt−1. The Markov
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assumption holds, i.e. a state is a complete summary of the past. Hence the Bayes

filter is recursive, since xt is calculated from xt−1.

The Bayes filter algorithm possesses two essential steps. It first calculates a belief

over the state xt based on the prior belief over state xt−1 and a control input ut. This

is usually called the prediction step. The second step is called the update, in which

the algorithm multiplies the belief xt by the probability that the measurement zt may

have been observed. The result is normalized since the resulting product is generally

not a probability.

In order to compute xt recursively, the algorithm requires an initial belief at time

t = 0. If one knows the value of x0 with certainty, it should be initialized with a point

mass distribution that centers all probability mass on the correct value, assigning zero

probability anywhere else. If one is entirely ignorant about the initial value x0, it may

be initialized using a uniform distribution over the domain of x0.

Bayesian filters are implemented in several different ways. Each of them relies on

different assumptions regarding the state transition, measurement probabilities and

the initial belief. In general, exact techniques for state calculation are not available

and hence the state has to be approximated. Finding a suitable approximation is

usually a challenging problem. When choosing an implementation, several properties

have to be considered.

• Computational efficiency: some approximations allow computing state beliefs in

time polynomial in the dimension of the state space, for example linear Gaussian

approximations. Particle-based techniques have an any-time characteristic,

enabling them to trade-off accuracy with computational efficiency.

• Accuracy of the approximation: some techniques can approximate a wider

range of distributions more tightly than others. For example, linear Gaussian

approximations are limited to unimodal distributions. Particle representations

can approximate a wider range of distributions, but the number of particles

needed to attain the desired accuracy can be large.

• Ease of implementation: it depends on a variety of factors, such as the form

of the measurement probability and the state transition probability. Particle
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representations often yield surprisingly simple implementations for complex

non-linear systems, which is one of the reasons for their recent popularity.

The next two sections describe the two techniques that have been used in the

context of this dissertation, which represent examples of probably the two most popular

families of recursive state estimation techniques, both derived from the Bayes filter:

Gaussian filters and particle filters.

4.2 Gaussian Filters for State Estimation

Gaussian techniques share the basic idea that beliefs of the robot state are represented

by multi-variate normal distributions. The density over the variable x is characterized

by two sets of parameters:

• The mean µ, which is a vector that possesses the same dimensionality as the

state x.

• The covariance Σ, which is a quadratic matrix that is symmetric and positive-

semidefinite. Its dimension is the dimensionality of the state x squared (i.e. the

number of elements depends quadratically on the number of elements in the

state vector).

Representing the belief by a Gaussian distribution has important implications.

Most importantly, Gaussians are unimodal, that is, they possess a single maximum.

This is characteristic of many tracking problems in robotics, in which the belief of the

state is focused around the true state with a small margin of uncertainty. However,

they are a poor match for many global estimation problems in which many distinct

hypotheses exist.

Probably the best studied Gaussian technique for implementing Bayes filters is the

Kalman filter (KF) Kalman et al. (1960), which has been widely used for filtering and

prediction in linear systems. At time t, the belief is represented by the mean µt and

the covariance Σt. Apart from the Markov assumption, the following three properties

must hold:
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• The state transition probability p(xt|ut,xt−1) must be a linear function in its

arguments with added Gaussian noise:

xt = Atxt−1 +Btut + εt (4.1)

• The measurement probability p(zt|xt) must also be linear in its arguments with

added Gaussian noise:

zt = Ctxt + δt (4.2)

• The initial belief in t = 0 must be normal distributed.

The assumptions of linear state transitions and linear measurements with added

Gaussian noise are rarely fulfilled in practice. For example, a robot that moves with

constant translational and rotational velocity typically moves on a circular trajectory,

which cannot be described by linear state transitions. This observation, along with

the assumption of unimodal beliefs, renders plain Kalman filters inapplicable to all

but the most trivial robotic problems.

The extended Kalman filter (EKF) overcomes one of these assumptions: linearity.

Here the assumption is that the state transition and the measurement probabilities

are governed by non-linear functions:

xt = g (xt−1, ut) + εt (4.3)

zt = h (xt) + δt (4.4)

A Gaussian projected through the non-linear state transition function g is typically

non-Gaussian. Linearization approximates g by a linear function that is tangent

to g at the mean of the Gaussian. By projecting the Gaussian through this linear

approximation, the result is also a Gaussian. The same applies to the multiplication of

Gaussians when the measurement function h is involved. Tangents are linear, making

the filter applicable. There exist many techniques for linearizing non-linear functions.

EKFs utilize Taylor expansion, which involves calculating the first derivative of the



78 Multi-Modal Sensor Fusion for Long-Term Localization

target function, and evaluating it at a specific point. The result of this operation is a

matrix known as the Jacobian.

The EKF is one of the most popular tools for state estimation in robotics Mao et al.

(2007); Purvis et al. (2008); Rullan-Lara et al. (2011). Its strength lies in its simplicity

and computational efficiency. The EKF owes its computational efficiency to the fact

that it represents the belief by a multi-variate Gaussian distribution. A Gaussian is a

unimodal distribution, which can be thought of as a single guess, annotated with an

uncertainty ellipse. In many practical problems, Gaussians are robust estimators.

An important limitation of the EKF arises from the fact that it approximates

the state transition and measurement functions using linear Taylor expansions. In

virtually all robotic problems, these functions are non-linear. The accuracy of this

approximation depends on two main factors: the degree of non-linearity of the functions

that are being approximated, and the degree of uncertainty which is directly related

to the width of the probability distribution (the larger the uncertainty, the higher the

error introduced by the linearization).

In our incremental approach for achieving robust long-term localization of UAVs,

an EKF has been first used to fuse the information provided by the visual odometry

algorithm and UWB-based distance measurements. Although localization based on

visual odometry will eventually diverge due to cumulative errors, it can be used as

a short-time predictor of the UAV motion (prediction). The UWB sensor readings

can then constrain the odometry drift (update). Thus, using the odometry as motion

prior helps filtering UWB noise and detecting/removing measurement outliers. At

the same time, the UWB-based update helps to remove the cumulative errors in the

odometry, building an accurate and stable localization system both together. Figure

4.1 shows an overview of the method.

The UWB sensor on-board the UAV computes the distance to all the sensors at a

lower operating frequency than that of the visual odometry system, and integrates

the information into an EKF described below. As the robot moves, the UWB sensor

periodically sends out a query, and any other sensor within range responds by sending

a reply. Since each sensor transmits a unique ID number, distance readings are

automatically associated with the appropriate tags, so the data association problem is
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Figure 4.1: Schematic overview of the EKF approach.

trivially solved. Another key advantage is that the robot can estimate the distance

to each responding sensor even when they are not within line of sight. This is very

useful in situations where visual-based methods usually fail, such as poorly illuminated

scenes or highly dynamic environments.

The range measurements and odometry priors are all integrated into a simple EKF

that allows estimating the robot’s position and velocity with the following state vector:

x =

[
p

v

]
=



x

y

z

vx

vy

vz


(4.5)

where p and v refer to the robot position and velocity respectively. Orientation data

is not considered in the EKF since, as stated before, the UWB-based measurements

used in the update step do not provide bearing information. Hence, visual odometry

is the only source of information for estimating the aerial robot orientation. As a

reminder, roll and pitch angles are integrated directly from the on-board IMU, while

yaw is estimated purely from visual information.
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4.2.1 Prediction

The visual odometry system provides the estimated velocity of the robot periodically,

vo = [vox, voy, voz]
t. This information is used in the prediction stage of the EKF to

constrain the robot localization according to the following expression:

pt = pt−1 + ∆t · vt−1 (4.6)

vt = vo (4.7)

Eventually, the odometry system might not be able to provide an estimation, for

instance, due to the lack of texture in the scene. In such a case, the state is predicted

based on random walk.

4.2.2 Update

Given the distance di measured from the robot to a beacon with known position bi,

the following constraint can be applied to the robot position:

di = ||pt − bi|| (4.8)

This constraint can be easily integrated into the update stage of the EKF, following

the equation:

zt = h(x(t)) (4.9)

where zt = di and h(x(t)) = ||pt − bi||.

This filter update is applied to all the UWB measurements received within the last

period of time according to the filter operating frequency (50ms in our experiments). If

more than one measurement to a specific beacon are available, the distance is averaged.

Note that the filter does not need distances to several beacons in order to perform

a filter update; the distance to a single sensor is enough. This is possible thanks to

the state prior provided by the prediction stage, which is expected to be accurate

and stable at short-term. This is a great advantage with respect to state-of-the-art
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UWB-based localization systems, which usually wait until the distances to three or

more sensors are measured.

4.2.3 Outlier Rejection

Distance measurements based on radio sensors are subject to frequent outliers when

performed indoors. These outliers are caused by multi-path and signal reflection in

walls and structures, and introduce significant errors in the localization.

The odometry prior (EKF prediction) provides a short-term accurate and reliable

estimation of the robot’s position, so the EKF measurement residual yt = zt − h(xt)

can be used to decide whether a range measurement is an outlier or not. Thus, if

the residual of a range measurement is above a threshold rth, the measurement is

determined as an outlier with high probability and the filter will reject the data. This

threshold has been set to rth = 2m in our experiments.

4.2.4 Experimental Results

In order to validate the aforementioned approach, which makes use of visual odometry

and UWB-based measurements, an aerial robot has performed a relatively long flight

(around 7 minutes). The flight has taken place in an indoor controlled scenario where

several UWB devices (six sensors) have been installed. The main objective of the

experiment is to demonstrate the suitability of the approach during regular operations.

The experiments took place at the indoor testbed of CATEC, whose motion capture

system provided ground-truth localization data.

Prior to the discussion of the experimental results, the setup describing all the

elements involved in the experiment is presented:

• Six UWB sensors used as beacons, installed across the indoor testbed at different

locations, homogeneously distributed also at different heights. These locations

are previously known by the system.
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Figure 4.2: UAV with the VI-sensor at the front (left) and ground-truth trajectory in
the XY plane (right).

• An aerial robot with the following on-board sensors: a VI-sensor (stereo camera),

an IMU and a UWB sensor in order to compute point-to-point distances (see

Figure 4.2).

The aerial robot was manually piloted through the testbed area at different heights.

The ground-truth trajectory followed by the vehicle is also presented in Figure 4.2.

This is a 75 meters long trajectory in which the robot was piloted within the indoor

testbed, flying at different altitudes.

The estimated UAV position during the experiment can be seen in Figure 4.3, which

includes the estimated fused localization (blue solid line) together with the raw visual

odometry output (green dotted line), both compared to the ground-truth position (red

dashed line). As expected, the odometry system slowly diverges through time, while

the proposed method integrating radio-based measurements follows the ground-truth

with small deviations. Only position results are analyzed since radio-based sensing

does not provide orientation measurements.

It can be also seen in Figure 4.3 how the odometry is consistent most of the time,

taking into account the relatively adverse conditions of the flight within the indoor

testbed: low texture (there are almost no visual features in the floor) and high distance

to 3D scenes (sometimes up to ten meters far ahead).
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Figure 4.3: Estimated UAV localization (ground-truth in red, visual odometry in
green, proposed approach in blue).

Figure 4.4 shows the estimation error of the proposed approach in X, Y and Z

separately. The RMS error for each localization component is also presented. It can

be seen how the RMS error is around 0.25m in Y and Z, and 0.4m for X.

As it was previously observed, the flight conditions are far from ideal regarding the

visual odometry approach. The scenario floor exhibits a very homogeneous scene, and

the introduced objects to recreate a 3D environment are sometimes very far from the

aerial vehicle (up to ten meters). Hence, disparity computation results in higher errors

that lead to possible wrong matches across frames. Nevertheless, the results presented

in this section show that these issues, when combined with radio-based measurements,

can be overcome resulting in a more robust solution, suitable for long-term operation

of autonomous vehicles.
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Figure 4.4: Localization errors in position and associated RMS error.

In general, experimental results show how the introduction of low-cost UWB

sensing into the environment allows resetting odometry errors, hence estimating a

reliable localization. Having UWB sensors in the environment guarantees a localization

error in the order of the sensing deviation, while at the same time visual odometry

allows properly filtering UWB noise and outliers.

Nevertheless, total position errors of around 0.5m may not constitute an appropriate

solution for closing the control loop using such localization estimations. Besides, this

approach is not valid for robust long-term full 6 DoF localization, since the yaw

angle estimation only relies on the visual odometry algorithm; hence it will drift

with time and eventually get the UAV lost by mixing yaw errors with position errors.

Moreover, sensor fusion based on EKF is confined to cases where the Gaussian linear

assumption is a suitable approximation. The following section focuses on a different

method to address the more general case of unconstrained probability distributions,

and constitutes a full solution for robust long-term 6 DoF state estimation.
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4.3 Particle Filters for State Estimation

Instead of representing the distribution by a parametric form (the exponential function

that defines the density of a normal distribution), particle filters represent a distribution

by a set of samples that are randomly drawn. Such a representation is approximate, but

is non-parametric, and therefore can represent a much broader space of distributions

than, for example, Gaussians. The quality of this approximation depends on the

number of particles used. Particle filter is also known as Monte Carlo Localization

(MCL) estimation.

Particle filters do not make strong parametric assumptions on the probability

density. In particular, they are well-suited to represent complex multi-modal beliefs.

For this reason, they are often the method of choice when a robot has to cope with

phases of global uncertainty, and when it faces hard data association problems that

yield separate, distinct hypotheses. However, the representational power of these

techniques comes at the price of added computational complexity. Fortunately, it

is possible to adapt the number of particles to the (suspected) complexity of the

distribution. When it is of low complexity (e.g. focused on a single state with a

small margin of uncertainty), a small number of particles can be used; for complex

distributions (e.g. with many modes scattered across the state space), the number of

particles could grow large.

The particles are denoted as follows:

Xt = x
[1]
t ,x

[2]
t , ...,x

[N ]
t (4.10)

Each particle x
[i]
t , with 1 ≤ i ≤ N , is a specific instantiation of the state at time t, that

is, a hypothesis as to what the true state may be at time t. N denotes the number of

particles in the particle set Xt, which is usually a large number that may or may not

be modified in order to adapt the complexity of the problem to the computational

load, as explained before.

Since the set of particles approximates the belief over the current state of the

robot, the denser a sub-region of the state space is populated by samples, the more

likely it is that the true state falls into this region.
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Just like other Bayes filter algorithms, the particle filter algorithm constructs the

particle set Xt recursively from the set Xt−1 using the most recent control ut and the

most recent measurement zt (Markov assumption). Three basic steps are carried out

in each iteration of the algorithm:

• A new hypothetical state x
[i]
t is generated based on the particle x

[i]
t−1 and the

control ut.

• For each particle x
[i]
t , an importance factor w

[i]
t is calculated as the probability

of the measurement zt under the particle x
[i]
t . If we interpret w

[i]
t as the weight

of the i-th particle, the set of weighted particles represents (in approximation)

the robot state.

• Finally, a re-sampling stage takes place: the algorithm draws with replacement

N particles. The probability of drawing each particle is given by its importance

weight. Re-sampling transforms a particle set into another particle set of the

same size, but with different distribution of particles, refocusing the particle set

to regions in state space with high probability of being the true state.

Our work extends the particle filter proposed in Hornung et al. (2010). Unlike

the previously introduced EKF which only takes as measurements the UWB-based

distances, our approach also uses a 3D map of the environment in order to estimate

how well the point cloud generated by the on-board 3D imaging sensor fits the current

robot pose. Hence, this approach accounts for yaw estimation through map matching.

How to build such map is explained in Chapter 5.

The motion model for the prediction step used in this work is based on a fast and

reliable visual odometry. The odometry estimation is applied to the particle set as

an estimation of the a priori distribution of the state belief. Then the measurements

are integrated: point clouds provided by the 3D imaging sensor and distances to

several UWB beacons installed in the environment. The weight of each particle is

then calculated according to the two types of sensor readings. The point clouds are

transformed to each particle’s pose in order to find correspondences between the cloud

and what the map should look like from such particle’s pose. The UWB distance
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measurements are used to check how well each particle position matches such distances.

In order to fuse both types of sensor readings, each particle has a weight for each type

of sensor, and they are later fused into a single weight.

The particle filter consists of N particles, each of them with the following state

vector:

x[i] =


x

y

z

ψ

 (4.11)

where ψ refers to the yaw angle of the aerial robot. Even though a 4D state vector is

used, we are able to provide 6D localization estimations since roll and pitch angles are

observable through the UAV on-board IMU. This greatly reduces the computational

complexity of the algorithm, allowing for real-time computation. The weights w[i]

associated to the particle set satisfy:

N∑
i=1

w[i] = 1 (4.12)

4.3.1 Initialization

Particles can be initialized automatically or manually by setting the initial position

together with a covariance matrix to distribute the particles in the space.

An example of automatic initialization is shown in Figure 4.5. Particles are drawn

uniformly over the 4D state (x, y, z and ψ) into the whole map. As soon as the

UAV starts moving, the filter updates and good hypotheses start gaining weight while

low-weight particles are shifted towards more interesting areas in the re-sampling

stage. The figure also reveals how the robot does not need to move much to converge

to a solution. This mainly occurs because the radio ranging measurements quickly

induce the right location. However, some of these particles do not represent the correct

yaw angle. As soon as the UAV starts moving in the horizontal plane towards some

obstacles, the point cloud matching with the map refines the position and properly

approximates the yaw angle.
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Figure 4.5: Automatic initialization of particles. From left to right and top to bottom,
time evolution of particles after automatic initialization. Black arrows represent the
particles.

Even though particle filters are able to deal with the “kidnapped robot” problem,

we assume that the initial state of the robot is known and thus make use of manual

initialization. This is usually the case of indoor UAV applications, since the aerial

robots often take off from a designated location. Moreover, the robot navigation

requires a smooth and stable motion estimation in order to perform a safe flight, which

would not be the case if we start from an unknown position and let the filter converge

around the true pose of the robot, most likely producing sudden and relatively high

changes in the robot current state. The starting point of the method is an initial

belief of the pose probability distribution, which determines the distribution of the

particles around such initial state. In the case of manual initialization, a 4D normal
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distribution is sampled using the provided initial position and its covariance matrix.

The associated weights wi are initialized to 1/N , uniformly, being N the number of

particles used.

4.3.2 Prediction

The state transition model is used to propagate the current state of all the particles,

according to the visual odometry estimation computed. The prediction step involves

applying a motion model to the current localization estimate represented by the

current value of particles.

∆x =


∆x

∆y

∆z

∆ψ

 (4.13)

This information is used to compute the a priori distribution of the particles.

Thus, the state of the particles will evolve according to the following expressions:

x
[i]
t = x

[i]
t−1 + ∆x ∗ cos(ψ[i]

t−1)−∆y ∗ sin(ψ
[i]
t−1) (4.14)

y
[i]
t = y

[i]
t−1 + ∆x ∗ sin(ψ

[i]
t−1) + ∆y ∗ cos(ψ[i]

t−1) (4.15)

z
[i]
t = z

[i]
t−1 + ∆z (4.16)

ψ
[i]
t = ψ

[i]
t−1 + ∆ψ (4.17)

The values of ∆x, ∆y, ∆z and ∆ψ are drawn randomly following a normal distribution

centered on the values provided by the visual odometry, and with standard deviations

proportional to each increment itself, e.g. σx = kx ∗∆x with kx > 0. The value of kx

is always positive greater than zero and it is a design parameter that depends on the

accuracy of the odometry system. This noise term is necessary to avoid premature

convergence and to maintain the diversity of localization hypotheses. Besides, this

term can also account for the imprecision of the motion model.



90 Multi-Modal Sensor Fusion for Long-Term Localization

4.3.3 Update

In this phase, we use a measurement model to incorporate information from the

sensors. We have defined thresholds in position and orientation such that if the visual

odometry estimation exceeds any of those, a filter update is performed using the

last 3D point cloud received from the stereo/RGB-D camera, and all the distance

measurements to the UWB beacons received since the last filter update. Then, each

particle x
[i]
t evaluates its relative importance by checking how likely it would receive

such sensor readings at its current pose, hence computing a new weight value w
[i]
t .

Then, particles can later be re-sampled considering these weights, thus obtaining a

new estimate of the current state given the last measurement zt.

In this work, zt corresponds to the point clouds from the 3D imaging sensor and

the distance measurements to the UWB sensors. The update is performed through

the use of a 3D map of the environment in the form of an OctoMap Hornung et al.

(2013), augmented with the position of the fixed locations of UWB beacons. Given

the distinct nature of the two technologies involved, we calculate separate weights

for each sensing modality, i.e. w
[i],map
t and w

[i],uwb
t . A simple weighted average is later

used to obtain the final weight of each particle:

w
[i]
t = α ∗ w[i],map

t + (1− α) ∗ w[i],uwb
t (4.18)

where α is chosen depending on the particularities of the indoor environment where

the UAV is going to operate. If the map used in the filter does not contain the full

environment, or its accuracy is not enough to trust the map matching, α should be

lower than 0.5. Whereas if there are few UWB sensors deployed in the scenario, or

their location is not accurate, α should be higher.

Computation of w
[i],map
t

The acquired 3D point cloud is transformed to each particle’s pose in order to find

correspondences between such cloud and what the map should look like from that

particle’s pose. Since this is very expensive computationally, we first compute a 3D

probability grid as in Hornung et al. (2010), in which each position stores a value of
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how likely it is that such position falls within an occupied point of the map, instead

of storing binary information about occupancy as in the provided map. Each 3D

position pi of the grid is then filled with probability values according to a specific

Gaussian distribution centered in the closest occupied point in the map from pi, mapi,

and whose variance σ2 depends on the sensor noise used in the approach.

grid(pi) =
1√

2πσ2
e−||pi−mapi||

2/2σ2

(4.19)

Such probability grid only needs to be computed once, is not required to be

updated for a given environment, and relieves from performing numerous distance

computations between each cloud point for each particle and its closest occupied point

in the map. Besides, each point cloud is first transformed according to the current

roll and pitch provided by the on-board IMU. This transformation is done just once

per update, reducing the computational requirements as well.

Then, for every point of the transformed cloud, we access its corresponding value

in the 3D probability grid. Such value would be an indicator of how likely is that

point to be part of the map. By doing this with every point of the cloud and adding

all the probability values, we obtain a figure of how well that particle fits the true

location of the aerial robot according to the map.

Finally, the weight wi of each particle pi is computed. Assuming that the point

cloud is composed by M 3D points cj, the weight is computed by adding all the

associated probability grid values as follows:

wmapi =
1

M

M∑
j=1

grid(pi(cj)) (4.20)

where pi(cj) stands for the transformation of the point to the particle’s state, and

grid(pi(cj)) is the evaluation of the probability grid in such transformed position.

Computation of w
[i],uwb
t

On the other hand, distance measurements between UWB sensors are used to compute

another weight value for each particle according to how well their state fits to the
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distribution of fixed radio beacons. Since the radio beacons do not provide bearing

information, we first define new states without ψ (yaw angle), i.e. x′
[i]
t = [x, y, z]T ,

and UWB beacon states using their estimated positions, bj = [xj, yj, zj]
T . Given a

measured distance dj from the UWB sensor on-board the UAV to the j-th beacon,

the following constraint can be applied to each particle state:

dj = ||x′[i]t − bj|| (4.21)

This can be easily applied to the particle weight calculation according to the actual

Euclidean distance rij between the state x′
[i]
t of the i-th particle and bj , and how close

this is to dj. The product is used to aggregate the values from the measurements of

different beacons, since they are independent probabilistic processes. The weight of

the i-th particle associated to UWB sensing is calculated as follows:

w
[i],uwb
t =

B∏
j=1

1

σ
√

2π
e−(dj−rij)

2/2σ2

(4.22)

where B is the number of beacons in the scenario. The distance measurements of

the sensors used in our approach have a standard deviation σ of roughly 0.1m, after

filtering potential outliers.

A great advantage of this approach is that the distance to a single sensor is enough

to update the weights of the particles, it does not need to wait until distances to three

or more sensors are obtained by the on-board radio-tag, which usually happens in

other state-of-the-art range-based localization systems.

Weight combination

Before combining the weights of both sensing approaches, all the weights must first be

normalized within their categories in order to verify Equation 4.12, hence representing

a valid probability distribution. This also prevents combining weights of distinct

nature which usually are in different orders of magnitude. Equation 4.18 is used to

obtain the final weight of each particle, and the new weights are normalized again in

order to represent a valid probability distribution.
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We have also evaluated the option of drawing new particles into the filter with each

new radio-based measurement, taking into account the lack of bearing information.

Thus, with each distance measurement, a set of particles would be drawn in a sphere

surrounding the on-board sensor position into the map. Most of these particles will

be later on destroyed in the next re-sampling after update thanks to the weight

contribution of the point cloud matching with the 3D map. However, this approach

was discarded because it requires a large number of particles for a proper representation

of the range hypotheses, which hinders the computational efficiency.

4.3.4 Re-sampling

The next step of the method in order to complete one iteration of the algorithm

involves the generation of a new set of particles from the current one, by choosing

each particle x
[i]
t according to its weight w

[i]
t . Hence, the new poses of the particles

will be more likely to be accurate. The algorithm employed for re-sampling is the low

variance sampler Thrun et al. (2005). In this case, a single random number is used as

a starting point to obtain N particles according to their relative weights.

4.3.5 Pose Computation

The particle filter method is an iterative process that involves moving, sensing and

re-sampling multiple localization hypotheses. While the filter produces a set of

localization hypotheses, the navigation needs to decide which hypothesis is the correct

one. The updated state vector for the aerial robot is then calculated as the weighted

sum of all the particles, since when the filter converges to a single hypothesis, that

is a good estimation of the true position of the robot. In this case, all particles are

found to be clustered around a specific region.

Due to the mixed sensing approach, the outliers commonly present in indoor

UWB measurements are rejected thanks to the particle weighting. If an outlier in the

distance measurement from a radio-based sensor is received, following Equation 4.22,

this would result in very low values for w
[i],uwb
t ; in this case the re-sampling would

only depend on the associated weights calculated from the point cloud matching, and
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the relative scoring among the set of particles would remain unaffected. On the other

hand, if the map matching between using the 3D point clouds is not accurate, its

associated weight would not influence the overall particle’s weight, which will only

depend on the contribution from the UWB side.

4.3.6 Experimental Results

An experimental setup has been conceived to validate the presented approach. The

field test took place at an indoor testbed of CATEC; part of it can be seen in Figure

4.6.

The aerial robot in Figure 4.7 performed a flight based on the testbed’s motion

capture system for localization, and navigated using joystick commands that sent

nearby position and orientation waypoints in the robot coordinate frame. The results

presented in this section were obtained off-line. In order to validate the long-term

character of our approach, the flight took roughly 9 minutes so the visual odometry

could drift enough to verify that the two sensing measurements used in the particle

filter help preventing localization error growth.

The complete experimental setup is composed of the following elements:

• An aerial robot with the following on-board sensors: an RGB-D sensor (Orbbec’s

Astra), an IMU and a UWB sensor (see Figure 4.7).

• A 3D map of the working area (see Figure 4.6) obtained using an RGB-D sensor

(ASUS’s Xtion PRO LIVE) and motion capture data.

• Three UWB beacons installed across the indoor testbed at known positions.

The 3D map of the area was acquired using a different RGB-D sensor from the

one on-board the UAV, whose housing was augmented with several passive markers

(see Figure 4.8) in order to get its pose with high accuracy from the testbed’s motion

capture system. Such sensor was manually carried around the testbed while connected

to a laptop, and the acquired point clouds were projected using the corresponding

sensor pose and merged into an accurate OcTree. This map can be seen in Figure 4.6.



4.3 Particle Filters for State Estimation 95

Figure 4.6: CATEC indoor testbed (top) and 3D map with approximate radio beacons
locations(bottom) used for field experiments.

A small infrastructure of UWB beacons (three sensors) has been installed in the

indoor scenario where the flight has taken place. The radio-based sensors have been

installed at three different locations homogeneously distributed within the indoor

testbed. Their true locations were acquired using the motion capture system and
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Figure 4.7: UAV with an RGB-D sensor at the front.

Figure 4.8: Another RGB-D sensor with passive markers for precise 3D map building.

provided to our filter. There is an additional UWB sensor installed on the aerial robot

in order to compute point-to-point distances.

The ground-truth trajectory followed by the vehicle is presented in Figure 4.9.

This is a roughly 200 meters long trajectory in which the robot performed a trajectory

for a whole battery duration.

The main objective of the experiment is to demonstrate the suitability of the

approach in real-time during regular operations. The estimated UAV position and yaw

during the experiment can be seen in Figure 4.10, both from the raw visual odometry

and the particle filter. Roll and pitch angles are not included in the plots because,

as previously stated, they are observable from the on-board IMU and are directly
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Figure 4.9: Ground-truth trajectory followed by the aerial robot during the experiment.

integrated into our localization approach. The IMU used in our approach provides

accurate and filtered estimations of such angles.

These results (Figures 4.10 and 4.11) were obtained after configuring the particle

filter with the parameters shown in Table 4.1.

Table 4.1: MCL parameters
Parameter Value

Number of particles 500
α (Eq. 4.18) 0.5

OcTree resolution 0.1m
RGB-D sensor σ 0.05m
UWB sensor σ 0.1m

Update threshold (pos) 0.1m
Update threshold (rot) 0.1rad

The plot also shows the ground-truth data provided by the testbed’s motion capture

system. It can be seen how the visual odometry slowly accumulates errors over time,

while the estimations from our complete approach closely follow the ground-truth

during all the experiment. It is also worth to mention that this estimation does not

drift with time and the errors are approximately bounded.
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Figure 4.10: Localization results (position and yaw) showing the ground-truth, visual
odometry and the proposed approach.

Figure 4.11 shows the error of the estimation during the trajectory execution. The

error is computed as the Euclidean distance between the estimation and the ground-

truth at every time step. In the figure, left plots correspond to the odometry approach,

while right plots show results from the complete proposed approach including the

filter. Besides, the plot depicts the computed RMS errors for each axis, which are also

shown in Table 4.2.

It can be seen how the RMS errors are approximately 0.4m in x and y, while in z

is less than 0.2m thanks to the ground estimation module. RMS error in yaw angle is

around 10 degrees. Errors in x and y are higher due to the larger distance traveled
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Figure 4.11: Position and orientation errors with respect to ground-truth through
time.

through these axes. Nevertheless, the global RMS error in position is 0.32m which

can be considered acceptable for robot navigation.

Table 4.2: RMS localization errors
x (m) y (m) z (m) yaw (rad)

Odometry 2.47 2.53 0.19 0.88
MCL 0.36 0.39 0.17 0.18

In order to quantitatively assess the performance of our localization approach, we

have tested the data from the validation experiment against other popular approaches
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Figure 4.12: Estimated UAV position and orientation using other approaches based
on RGB-D sensors.

that make use of RGB-D data for robot localization, either visual odometry and

mapping such as CCNY RGBD1, or full SLAM approaches such as RTAB-Map2 or

RGBD-SLAM3. The plots in Figure 4.12 show the performance of the same flight data

processed off-line using these approaches, and Table 4.3 summarizes general RMS

errors compared to those from our approach.

The RMS errors in x, y and z from the compared approaches are slightly higher.

Omitting z values, which could be observable through the use of an altimeter, only

RGBD-SLAM seems to be a viable alternative to the proposed approach. We are able

1http://wiki.ros.org/ccny rgbd
2http://wiki.ros.org/rtabmap
3http://wiki.ros.org/rgbdslam

http://wiki.ros.org/ccny_rgbd
http://wiki.ros.org/rtabmap
http://wiki.ros.org/rgbdslam
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Table 4.3: RMS error comparison
x (m) y (m) z (m) yaw (rad)

CCNY RGBD 5.07 1.94 5.55 2.24
RTAB-Map 3.68 6.59 6.09 2.06

RGBD-SLAM 2.46 0.79 3.63 0.71
Our approach 0.36 0.39 0.17 0.18

to provide a better accuracy while keeping robustness and computational efficiency as

key features. Notice that we did not fine tune the parameters of the algorithms, so a

better accuracy could be achieved.

Table 4.4 includes values for the mean frequency and corresponding mean processing

times at which new pose estimations are published, using an i7 Linux laptop with 2

Cores (the UAV on-board processor is also an i7 Linux computer). Our approach,

including the visual odometry, is able to deliver pose estimations approximately every

60ms when using 500 particles, which makes it suitable for working at around half the

frame rate of the RGB-D sensor. The other approaches may publish pose estimations

to the ROS ecosystem at a higher rate than that of the Table, but internally they just

copy the same values to the output message until a new estimation is computed.

The visual odometer took an average 90% of a single thread and the proposed

particle filter algorithm the 55% of a single thread. This configuration leaves plenty of

computation for robot planning and navigation.

Table 4.4: Pose estimation speed
Average Frame processing

Freq (Hz) time (ms)

CCNY-RGBD 8.1 124
RTAB-Map 6.2 161

RGBD-SLAM 5.8 173
Our approach 15.8 63

It can be seen how the localization accuracy can be improved in long-term operation

by using both RGB-D and radio-range sensing. In order to evaluate how each sensing
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Figure 4.13: Localization errors for different values of α.

modality contributes to such improvement, the parameter α from Equation 4.18 is

modified in order to assess localization errors. The rest of parameters from Table 4.1

remained the same for this experiment. Figure 4.13 shows errors in x, y, z and yaw for

different values of α, from α = 0 (we only rely on radio-based sensing) to α = 1 (we

only use map matching). While, in general, RMS errors are low, best performances

in terms of overall stability and particle cloud convergence were achieved between

α = 0.5 and α = 0.7. As expected, yaw error increases when the contribution from

map matching decreases (lower α), since radio sensing does not provide such angle

and the approach relies on the odometry integration. Errors in z are also expected to

be higher when α is closer to 0, since the spatial distribution of the installed radio

beacons in height was limited, leading to poor estimations in the UAV altitude when

not using the point cloud matching with the 3D map. On the other hand, when α is

close to 1, point cloud matching leads to smoother estimations, but sometimes is not

enough to correct odometry drift, leading to higher errors in x and y.
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Figure 4.14: Localization errors for different number of particles used.

Figure 4.14 presents the estimation accuracy by using different numbers of parti-

cles, along with the required computational times included in Table 4.5 in order to

demonstrate the capabilities of our approach. The rest of parameters are still the

default ones, as shown in Table 4.1. It can be seen how the impact of the number

of particles on RMS errors is fairly minor, while computation times are drastically

reduced.

Table 4.5: Computation times for one iteration when modifying the number of particles
Number of particles Avg. processing time (ms)

100 26
200 42
300 50
400 58
500 65
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Figure 4.15: 3D map of the area with different resolutions: 0.2m (left) and 0.4m
(right).

The spatial occupancy of the working area is approximated by an OcTree, as

shown in Figure 4.6. Another set of experiments have been performed by modifying

the spatial resolution of such map from our default value (0.1m) to the following two

depths of the tree, which correspond to leaf sizes of 0.2m and 0.4m. Figure 4.15 shows

these maps. Running the experiment with higher sizes was discarded because the

map is no longer representative enough for map matching. The number of particles

was 500, and α = 0.5. Figure 4.16 shows the localization RMS errors using different

map resolutions. It can be noted how when using a map resolution of 0.2m, and

downsampling the sensor point clouds accordingly, it is possible to achieve similar

localization errors while decreasing the computational complexity of the approach, as

shown in Table 4.6.

Table 4.6: Computation times for one iteration when modifying the 3D map resolution
Map resolution (m) Avg. processing time (ms)

0.1 65
0.2 52
0.4 28
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Figure 4.16: Localization errors for different OcTree resolutions of the 3D map.

4.4 Conclusions

This chapter focuses on the fusion of measurements from different sensors in order to

improve our localization solution. The main contribution of the proposed approach is

how the localization accuracy can be improved in long-term operation by using both

visual-inertial and radio-range sensing.

First, an EKF-based strategy was adopted to combine the visual-inertial odometry

from Chapter 3 with UWB-based distance measurements to fixed radio beacons.

However, this solution lacked observability of the yaw angle for long-term operation,

and a novel approach was proposed based on a particle filter using a 3D map of

the environment. The level of accuracy of our solution improved the performance of

available SLAM-based approaches, while exhibiting greater robustness under flight

motions and larger computational efficiency when compared to such methods.

Experimental results demonstrate the feasibility of the approach, both in accuracy

and computational efficiency, using an aerial robot during a long flight. The estimations
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from our complete approach closely follow the ground-truth during all the experiment.

It is also worth to mention that this estimation does not drift with time and the errors

are approximately bounded.

Even though good accuracy through the whole flight duration were achieved, the

localization approach relied on a 3D map that was built using a motion capture

system. In order to be able to extend the proposed system to a custom indoor

scenario for autonomous UAV operation, we must complement this methodology with

mapping capabilities relying also only on 3D imaging sensors and UWB sensing. This

is explained in detail in Chapter 5.



Chapter 5

Multi-Modal Mapping

Prior to robot localization, a 3D map of the environment needs to be built in order

to make use of the particle filter proposed in Chapter 4. Available sensor data to

achieve this are the 3D point clouds from stereo or RGB-D cameras and the distance

measurements between UWB sensors (one of them is on-board the UAV and the rest

are fixed in the environment). Neither the UAV trajectory nor the position of the

UWB sensors in the environment are known a priori.

The objectives of this approach are to map the environment based on the 3D

point clouds and to accurately localize the set of fixed UWB sensors, or beacons.

Approaching these two tasks separately may seem logical. Firstly, the scene could

be mapped based exclusively on the point clouds while at the same time the aerial

robot trajectory is calculated. This is usually performed through the use of a SLAM

approach based on 3D point clouds such as Endres et al. (2012); Labbe and Michaud

(2014). Later, the trajectory information could be used to accurately locate the UWB

beacons into the map, according to the corresponding distance measurements from

each UAV pose to each beacon. However, this method does not take advantage of

UWB sensing for mapping, neither localization.

The method proposed in this chapter follows an integrated approach in which we

take advantage of both sensing modalities. The position of the UWB beacons are

firstly approximated, and later on refined together with the 3D map of the environment.

There are two main steps in our approach. The first step considers data from the

107
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UWB sensors to compute a globally consistent 3D trajectory of the UAV, and then

to automatically perform loop closing, which is the detection of a previously visited

location by some means. Both the initially computed trajectory and the loop closures

will be used in a second step to optimize the 3D position of the UAV, and also

the positions of the UWB beacons. With this information, a 3D map can be built

according to the estimated UAV trajectory and projecting the 3D point cloud at each

location. Further details about the implementation of both steps are explained in the

following sections.

5.1 Range-only localization and mapping (step 1)

The objective of the first step of the algorithm is to compute an initial guess of the

positions of the UWB beacons based on the measured distances to the sensor on-board

the UAV. Then we can use this information to obtain a globally consistent trajectory

of the aerial robot. This is generally referred to as a Range-Only Simultaneous

Localization and Mapping (RO-SLAM) Kantor and Singh (2002); Newman and

Leonard (2003). In general, RO-SLAM aims to localize a mobile system and at the

same time map the position of a set of range sensors. In contrast with other SLAM

approaches based on cameras or LIDAR, RO-SLAM has the advantage of not requiring

direct line of sight between each pair of sensors when radio-based range sensing is used.

Besides, the problem of data association is trivially solved; this could pose a significant

obstacle for the algorithm, since range sensors typically provide distance measurements

to some object without identifying such object. In the case of radio-based sensors,

they usually transmit their unique ID along with the range information, as it is the

case of the UWB sensors used in the proposed approach.

Most of the approaches for RO-SLAM in the literature are based on time filtering

and probabilistic frameworks such as EKF-SLAM, Unscented Kalman Filter (UKF)-

SLAM, FastSLAM, and others. Comparisons of these frameworks can be found in

Kurt-Yavuz and Yavuz (2012) and Li et al. (2012). Kurt-Yavuz and Yavuz (2012)

present how the unscented FastSLAM exhibits better performance over other classical

methods based on EKF or UKF. However, FastSLAM solutions do not preserve the
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correlation between different beacons of the map in those applications in which it

might exist. Thus, for example, in Blanco et al. (2008); Wang et al. (2009); Yang

(2012), a FastSLAM solution is proposed using a particle filter for robot localization

and another one for each beacon (i.e. for each radio emitter). In Yang (2012), an

optimization on the beacons’ particle filter is proposed by reducing the number of

particles, hence decreasing the computational burden of the filter. On the other hand,

Wang et al. (2009) optimize the problem using an adaptive re-sampling method which

dynamically reduces the number of particles required for each beacon. A different

beacon-based SLAM algorithm is considered in Hai et al. (2010), where the authors

use a particle filter to initialize the EKF filter for each new beacon of the FastSLAM.

The main drawback of the previous approaches lies in the delayed initialization of

the beacons into the filters, which significantly reduces the optimization of the robot

localization until the position solution of the range sensors has converged.

This problem is solved in Boots and Gordon (2013), where a batch solution is

proposed to estimate the position of the mobile robot and the beacons by using a

singular value decomposition (SVD) of the observation matrix. A batch processing

solution is also presented in Kehagias et al. (2006) based on optimization. However,

these methods assume measurements from all the radio beacons at every robot position;

otherwise, the measurement must be interpolated. This is a hard constraint in realistic

implementations where the visibility of all the range sensors cannot be guaranteed at

all times.

This section proposes a new optimization approach for the RO-SLAM problem that

follows the batch processing ideas but generalizes to a more common situation in which

the range measurements from the range sensors might arrive at the robot independently,

or even a specific robot pose does not have associated range measurements.

5.1.1 Problem Definition

The UAV trajectory is represented as a series of N robot poses X = {x1,x2, ...,xN},
where each pose is defined as xi = [xi, yi, zi, ψi]

T , being ψ the yaw angle of the aerial

robot. There is also a set of M UWB beacons B = {b1,b2, ...,bM}, each one located at
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a position defined by bj = [xbj , ybj , zbj ]
T . The objective of the RO-SLAM optimization

problem is to compute the best UAV trajectory X and locations of UWB beacons B

that minimizes the errors with respect to the observations of the UWB measurements

from each UAV pose.

Note how the robot roll and pitch angles are not included into the robot pose

definition. We assume these angles are available and accurate enough in an UAV

through the use of its on-board IMU. They are fully observable and their values are

usually accurate in aerial robots because they are the most basic control variables

(together with the rotation rates) for the system stability. While it is true that roll and

pitch estimation based on accelerometer and gyroscope integrations might be biased

under constant accelerations (e.g. loitering in fixed-wing UAVs), these scenarios are

very difficult to achieve indoors and hence are not considered in this approach.

The UWB-based range observations are the distances between the UAV position

and each beacon position. Thus, the observations at pose xi are modeled as the set of

measurements Di = {di1, di2, ..., diM} with arbitrary length from 0 (no measurements)

to M (measurements to all UWB sensors), where dij is the Euclidean distance between

pose xi and beacon position bj:

dij =
√

(xi − xbj)2 + (yi − ybj)2 + (zi − zbj)2 (5.1)

Thus, the resulting aerial robot trajectory and UWB beacon positions will be that

which minimizes the following expression:

arg min
{X,B}

[
N∑
i=1

M∑
j=1

cij (‖xi − bj‖ − dij)

]
(5.2)

where cij is a variable that takes value 1 if there is a measurement from pose xi to

UWB beacon bj, and 0 otherwise.

However, due to the nature of the problem addressed, there exists the possibility

that a number of poses do not have associated measurements (the UAV is out of range

of all UWB beacons) and, more frequently, that the number of range measurements

in a pose is below four (minimum number to compute the robot position in 3D).
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These limitations are overcome by including odometric constraints into Equation 5.2,

obtaining the final expression to minimize:

arg min
{X,B}

[
N∑
i=1

(
Ei +

M∑
j=1

cij(‖xi − bj‖ − dij)

)]
(5.3)

where Ei stands for the error between pose xi and xi−1 according to odometry

information. This function transforms the pose xi−1 according to the estimated robot

odometry and computes the error with respect to xi in each pose dimension. We make

use of the visual-inertial odometry algorithm presented in Chapter 3.

5.1.2 Optimization

Solving Equation 5.3 is straight-forward if good guesses about the aerial robot poses

and the positions of UWB beacons are available. However, RO-SLAM does not

necessarily have prior information about the position of the beacons. An option would

be to initialize B to random positions and let the optimization process estimate them,

but the algorithm will most likely get stuck in a local minimum.

In order to overcome this problem, this approach proposes two actions. First, the

zb parameter of every UWB beacon in B could be estimated by just measuring their

distances to the floor. This is an easy process that can be implemented accurately.

This assumption allows reducing the number of unknown parameters of each UWB

sensor position to two (xb and yb), but still, more information is needed in order to

initialize each UWB beacon position for the optimization method.

The second action consists in re-parameterizing the beacon position so that we can

feed several estimation hypotheses into the optimizer, as proposed in Fabresse et al.

(2013). Thus, when the robot is at pose xi and receives the first range measurement

dij to sensor j, the beacon bj would be in a circumference around the current robot

pose and at altitude zbj . The proposed approach samples this circumference with

multiple position hypotheses at different angles, allowing the optimizer to choose the

best one. Figure 5.1 shows an example including a UAV 3D trajectory seen from an

orthogonal view for easy visualization (triangles are robot poses and circles are UWB



112 Multi-Modal Mapping

Figure 5.1: Multiple hypotheses for the localization of three UWB beacons.

beacon position hypotheses). Thus, assuming H different position hypotheses along

the circumference, the UWB beacon position will be parameterized as follows:

bj = [bj1,bj2, ...,bjHj
] (5.4)

where each position hypothesis is represented as bjk = [xbjk , ybjk , zbj ]
T . Note how zbj

is the same for all hypotheses because it is already known.

With this parameterization in mind, Equation 5.3 can be reformulated as follows:

arg min
{X,B}

 N∑
i=1

Ei +
M∑
j=1

1

Hj

Hj∑
k=1

cij (‖xi − bjk‖ − dij)

 (5.5)

Note how the contribution of a single UWB sensor j is scaled by 1/Hj for every

pose xi, so that we do not double-count the information provided by a single range

measurement.
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5.1.3 Initialization

In summary, the parameters of the optimization process are the position of the robot

in each pose xi, which is initialized according to the odometry values, and the different

position hypotheses for every UWB beacon.

When a range measurement dij is received from the j-th beacon for the first time,

the current robot position estimation xi is used to initialize the Hj position hypotheses

according to the following equations:

xbjk = xi + dij · cos(2π(k − 1)/Hj) (5.6)

ybjk = yi + dij · sin(2π(k − 1)/Hj) (5.7)

zbjk = bzj (5.8)

The value of Hj is initialized to Hj = 10 · dij , so that the number of hypotheses adapts

to the sensor distance.

Thus, the outcome of this first step is a globally consistent trajectory and an initial

position estimation for the UWB beacons. If the robot motion was enough to let the

optimizer disambiguate the horizontal flip ambiguity Fabresse et al. (2016), then the

algorithm converges to a single solution and all the hypotheses will be localized in a

specific position.

5.1.4 Weighting

It is important to take into account that the different sources of information in

Equation 5.5 have different levels of accuracy. It is very usual to make use of the

constraint’s associated information matrix to fine tune the minimization process. In

this way, very different sources of information such as visual odometry and UWB

sensors can be easily considered.

However, practical experience shows that the UWB measurements tend to incor-

porate outliers frequently due to multi-path effects or signal attenuation. This is the

reason behind weighting the different components into Equation 5.5 differently. We

establish a weighting factor assuming that the odometry is reliable in the short term,
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while UWB might provide outliers depending on the environment and no matter the

time. Thus, in the proposed implementation, UWB constraints are multiplied by a

factor ranging from 0.5 to 0.1 depending on the quality of the information, while

odometry will be always weighted by a factor of 1.0. That is, we trust odometry

constraints more than UWB at short-term.

5.2 3D Mapping and Pose Refinement (step 2)

The results of the first step are a coherent UAV trajectory and initial position

estimations of the UWB beacons. The second step in our methodology involves the

automatic detection of loop closures, which is usually based on different approaches

such as visual place recognition or scan matching. In this case, a massive scan matching

process is carried out among all the poses that fall within a given search radius, based

on the 3D point clouds acquired by the on-board 3D imaging sensor (a stereo or

RGB-D camera).

This loop-closure detection will add new constraints to the robot poses Grisetti

et al. (2010). However, this approach goes one step forward and takes into account a

new type of constraint apart from the usual transform between poses, so that we can

also optimize the alignment between the 3D point clouds directly into the optimizer.

Given the sensor point cloud pci at pose xi, and the point cloud pcj at pose xj, the

scan matching process establishes the transform that best aligns both point clouds

(using ICP as in Chapter 3). In the literature, this transform is commonly used as a

constraint between both poses, and its associated information matrix allows tuning

the importance of such constraint into the non-linear optimization process. Instead,

we propose to include the alignment error into the optimization process.

To this end, each point cloud is transformed to the global reference frame according

to its associated pose (pcgi ) and then the alignment error between point clouds is

computed as the averaged Euclidean distance between their individual 3D points.

Equation 5.3 is used instead of Equation 5.5, since now a single hypotheses is available

for each UWB position. This equation can be enlarged with this new constraint as



5.3 Experimental Results 115

follows:

arg min
{X,B}

[
N∑
i=1

(
Ei +

M∑
j=1

cij(‖xi − bj‖ − dij) +

Pi∑
l=1

D(pcgi ,pcgl )

)]
(5.9)

where Pi is the number of loop closures in which pose i is involved, and the function

D(pcgi ,pcgl ) computes the average Euclidean distance between the given point clouds

in the global frame.

Obtaining D(pcgi ,pcgl ) could have a significant computational cost if the point

clouds are large, because we need to calculate the closest 3D point of each cloud into

the other, hence slowing down the optimization process. However, assuming that the

poses to be optimized are not far from the final estimates thanks to the RO-SLAM

step, these associations between the point clouds can be pre-computed. In this way,

the function D(pcgi ,pcgl ) only needs to compute the average distance between 3D

points because the associations are already known.

5.3 Experimental Results

An experimental setup has been conceived in order to test the proposed approach. A

UAV has been equipped with two RGB-D sensors (Orbbec’s Astra), one in the front

and another one in the rear side of the robot. Both are tilted down slightly (25◦). A

UWB sensor has been also installed on top of the aerial robot, and a set of three UWB

beacons have been placed in the scenario. The UWB distance measurements have a

standard deviation of approximately 20cm, but they are subject to further distortions

due to reflexions or sigma attenuation. The UAV used for testing is depicted in Figure

5.2.

The experiments have been carried out once again at CATEC’s indoor testbed,

in which a scenario recreating an aircraft manufacturing plant has been installed as

shown in Figure 5.3. As in previous experiments, accurate ground-truth localization

data for the UAV were acquired, as well as the positions of the three UWB beacons

installed in the environment, using the testbed’s motion capture system.
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Figure 5.2: The UAV with RGB-D sensors at the front (left) and the rear (right) side,
and a UWB sensor on top.

Figure 5.3: The indoor testbed at CATEC with a mock-up scenario for 3D map
building.

Two different flights were recorded. The UAV first performed a short flight in

the area in order to acquire sensor data with the purpose of building a 3D map of

the environment following the approach described in this chapter. Later on, a much

longer flight was carried out in order to gather ground-truth localization data and

sensor data so that we could compare the motion capture localization with the output
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Figure 5.4: Results of the first step: Range-only localization and mapping.

of our particle filter approach described in Chapter 4 using the previously computed

map. The following subsections detail the results obtained in each experiment.

5.3.1 Mapping Experiment

The 3D point clouds and UWB-based distance measurements gathered during the

“mapping” flight were used to build a pose graph and the multiple hypotheses for the

unknown positions of the three UWB beacons. As previously introduced, we measured

the z coordinates of the UWB beacons (height with respect the ground), so that only

the x and y coordinates of the sensors need to be estimated.

The solution of the first step of the optimization process is shown in Figure 5.4,

where the estimation for each of the robot poses is shown together with the associated

errors with respect to the ground-truth localization data. Left plots show both the

ground-truth (red) and the estimated localization (green), while right plots present

the errors per axis (red) and their corresponding RMS errors (blue). We can see how

the error in the UAV trajectory is less than 0.29 m in position, and 0.13 rad in yaw

angle. The positions of the three UWB beacons converged to a single solution with an

RMS error in xy of 0.46m. Although this is a significant error, it helped the optimizer

to compute a globally consistent UAV trajectory, hence improving the loop-closure

detection for the second step of the optimization.
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Figure 5.5: Results of the second step: 3D Mapping and Pose Refinement.

Finally, Figure 5.5 shows the results after the second step of the optimization.

Again, left plots show the estimated position and yaw of the aerial robot, both the

ground-truth (red) and the estimated values (green); right plots present the errors

per axis (red) and their corresponding RMS errors (blue). After performing scan

matching in the detected loop-closures, we are able to reduce the localization error

down to 0.17m RMS in total, while yaw error is reduced to 0.06rad. In addition, the

localization error in the position of the UWB beacons is decreased to 0.15m RMS. We

can see a comparative analysis of the evolution in the localization estimations of the

three UWB beacons along the different optimization steps in Table 5.1.

Table 5.1: UWB Localization Estimations and Errors in XY

x1 (m) y1 (m) x2 (m) y2 (m) x3 (m) y3 (m) err. (m)

First step 1.87 -6.38 -0.38 6.25 5.41 -1.36 0.46
Second step 1.44 -6.85 -0.01 5.94 5.12 -2.10 0.15

True position 1.20 -6.60 0.02 5.92 5.03 -1.99 -

Once the full UAV trajectory was optimized, the 3D point clouds associated to each

pose can then be projected into a single map to reconstruct the robot environment.

Figure 5.6 shows the map computed using the ground-truth poses from the motion

capture system and the map obtained using the proposed optimization approach. It
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Figure 5.6: Top view of the ground-truth map (left) and reconstructed map (right).

can be observed how there are some errors due to inaccuracies in the trajectory, but

the general structure and details are faithfully captured in the reconstruction.

5.3.2 Localization Experiment

The second experiment took place in the same environment in order to use the

previously built map for localization. However, the flight time was longer (around

7 minutes) in order to test the long-term capabilities of the proposed localization

approach. Figure 5.7 shows the estimated position and yaw angle provided by the

particle filter during this flight (green), along with the ground-truth values provided

by the motion capture system (red). Roll and pitch angles were acquired directly

from the on-board IMU and hence are not shown in the plots, since they are directly

integrated into the algorithm.

As it can be seen, the estimations closely follow the ground-truth during all the

experiment and do not exhibit drift with time. Except for one of the turns at 360

seconds, where the estimation in X moved away for a moment, being later recovered,

the errors were kept approximately bounded. RMS errors of less than 0.3m were
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Figure 5.7: Estimated UAV position and yaw angle for the long-term flight.

obtained for x and y, whereas in z we reached 0.14m, largely thanks to the ground

estimation performed within the visual odometry algorithm. Y aw RMS error of 0.12

rad (around 7◦) is considered acceptable. It is also worth to mention that the UAV

traversed areas that were not traversed during the previous “mapping” flight, hence

are not included in the map that was used for localization. Figure 5.8 shows a moment

of the flight in which the RGB-D point cloud barely matched the existing 3D locations

of the map in which the MCL relies on localization estimations. The use of UWB

beacons greatly helped when the UAV visited previously unexplored regions, or with

different yaw angles that led to unknown viewpoints. In contrast, the map matching

allowed a better estimation in z since the position of the UWB beacons did not exhibit
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Figure 5.8: 3D visualization of sensor data, along with the particles (red cloud).

much difference in height (due to practical reasons in their installation), and especially

in yaw since this angle cannot be estimated from UWB sensing.

In order to quantify the contribution of our mapping approach, we have analyzed

the same flight data comparing the UAV localization results using the ground-truth

map generated with the motion capture UAV localization shown in Figure 5.6. Figure

5.9 presents the errors (red) and their RMS values (blue) during the whole trajectory

when using the ground-truth map and when using the proposed approach. Table 5.2

summarizes the RMS errors in position and yaw angle for both runs. As expected,

errors are slightly lower when using the ground-truth map. Nevertheless, our results

do not show great discrepancies.

Table 5.2: RMS localization errors using different maps

x (m) y (m) z (m) yaw (rad)

Ground-truth map 0.25 0.25 0.06 0.13
Our map 0.27 0.21 0.14 0.12
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Figure 5.9: Errors in the estimated UAV position and yaw angle using the ground-truth
map and the reconstructed map.

5.4 Conclusions

The experimental results show how a multi-sensor suite can be used to perform 3D

mapping and long-term localization, integrating sensor readings from UWB beacons

and RGB-D cameras to build a robust approach. The mapping algorithm exploits the

synergies between UWB and RGB-D to build an accurate 3D map of the environment

and to localize the UWB sensors into such map. The localization approach successfully

integrates both sensor types to overcome the limitations of each sensor modality by

its own.

This mapping approach is oriented to be used with the particle filter presented

in Chapter 4, hence providing a full methodology for applying this safe, robust and

long-term localization approach to any custom scenario in which small UAVs need to

be deployed.



Chapter 6

System Architecture and

Framework

In order to simplify the accomplishment of all the tasks related to the autonomous

navigation of UAVs, a framework for combining and executing heterogeneous software

modules has been developed. There are several open-source projects that target com-

plete software architectures Lim et al. (2012), such as ArduPilot1 or PX42. However,

these approaches usually lack flexibility to perform and support high-level functionali-

ties, which are often demanded by users that wish to develop innovative approaches

towards UAV autonomy.

In recent years, several initiatives have arisen from some research groups. The

Autonomous Systems Lab from Eidgenössische Technische Hochschule (ETH) Zurich

developed asctec mav framework 3, however it is dependent on the UAV manufacturer.

The Paparazzi project4 from École Nationale de l’Aviation Civile (ENAC) is a complete

solution that also includes specific hardware, the Paparazzi autopilot. Another example

is hector quadrotor 5 from Technische Universität Darmstadt, which is heavily focused

on simulation environments and has limited applicability in real systems performing

1http://ardupilot.org
2http://px4.io
3http://wiki.ros.org/asctec mav framework
4http://wiki.paparazziuav.org/wiki/Main Page
5http://wiki.ros.org/hector quadrotor
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http://ardupilot.org
http://px4.io
http://wiki.ros.org/asctec_mav_framework
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http://wiki.ros.org/hector_quadrotor
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Figure 6.1: Schematic overview of the proposed architecture.

experimental flights. Even though these approaches have produced major advances in

this line of research, there are still important challenges related to the achieved level

of autonomy and flexibility of the system to be able to adapt it for different aerial

robots or applications.

Figure 6.1 shows the software architecture that has been built and refined through-

out the different works towards this dissertation. The system is decomposed into

several modules which are in charge of different tasks. One of the first things to con-

sider for an autonomous robot is the estimation of the current state of the platform in

a specific coordinate system. For this, sensor data is first processed and used to obtain

a localization estimation with respect to its environment. This is commonly carried out

by an odometry calculation in Sensor-based Odometry and a localization estimation

in Robot Localization to produce a reliable 6 DoF pose (position and orientation).

Sensor data is commonly used in both modules in order to reduce uncertainties and

improve the robustness of the estimations, especially for long-term operation of the
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aerial robot. These two modules have been the specific target of the work described

in this dissertation.

Once reliable robot localization is available, subsequent modules can consider

tackling more complex tasks, such as where to go or how to reach a specific location.

The generation of safe trajectories is another essential capability for autonomous

navigation, especially in cluttered areas where several obstacles or even other robots

can be found. Realistic operating environments for aerial robots may exhibit fixed

or mobile elements and simple or complex obstacles, all of them sharing the same

area. Therefore, the aerial robot must continuously conduct a local recalculation of

the trajectory in real-time in order to avoid collisions with different types of elements

as the on-board sensors gain information about its surroundings. Additionally, the

UAV might also need to adopt different collision avoidance strategies depending on

the nature of the obstacles; the robot should avoid persons differently than static

objects for instance. Sensor data is also acquired by the Trajectory Planner for

reactive collision avoidance, along with the localization output in order to compute

safe trajectories in the aerial robot environment. The Trajectory Tracker ensures the

UAV reaches the desired waypoints at the correct times, and thus sends the Controller

the references that it needs in order to calculate the necessary actions for the UAV.

Special focus has been given to safety in the operation of the aerial robot, hence

the key components in our approach are the perception of the environment for both

localization and motion planning. This will allow the UAV to select an appropriate

behavior according to the awareness of the current situation.

The core idea behind the architecture is the combination of simple concepts and

components to build a reliable system. Each module runs as an independent process

on-board the UAV. The different modules can implement a wide variety of algorithms

and techniques for performing their task, according to the equipment of the aerial

robot. It is important to point out that working with UAVs involves additional

constraints in terms of computation and payload capacity which must be taken into

account for the development of applicable systems. That said, the different algorithms

can be developed independently and switch or replace them within any of the modules

to solve the task that is intended to perform. This does not affect the rest of the
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architecture provided that the new algorithm complies with the applicable input and

output interfaces of the specific module.

Besides, the architecture is focused on the software components, remaining inde-

pendent from the hardware used underneath. The core algorithms of the system do

not depend on the specific manufacturer of the UAV platform or the specific sensors

that are used, and hence it is possible to replace them with a different model or even

with an upgraded version of the device, implying only minor changes to the system.

Apart from that, it is possible to complement the system with additional sensors or

enhanced processing capabilities without altering the overall scheme. Moreover, this

architecture is able to accommodate applications involving a single or multiple UAVs,

as well as highly autonomous operations or teleoperated missions.

Our approach uses as middleware the Robot Operating System (ROS) Quigley

et al. (2009), which was developed by Willow Garage and Stanford University as

part of the STanford Artificial Intelligence Robot (STAIR) project as a free and

open-source robotic middleware for the large-scale development of complex robotic

systems. ROS acts as a meta-operating system for robots as it provides hardware

abstraction, low-level device control, inter-processes message-passing and package

management. It also provides tools and libraries for obtaining, building, writing, and

running code across multiple computers.

Currently, ROS is widely used in research activities and is becoming a de facto

standard for robotic applications. One of the main advantages of ROS is that it allows

manipulating sensor data as a labeled abstract data stream, called topic, without

having to deal with hardware drivers. The interfaces between our modules are based

on standard ROS data types for transformations, pose estimations or trajectory

commands. This greatly improves the flexibility of the architecture to allow testing

custom high-level algorithms for autonomous operation, while at the same time

enables the use of UAVs from different vendors and a wide variety of sensors for which

supported drivers are already available. We have made extensive use of the tools

available in ROS to help to debug and detect issues in both hardware and software.

This includes simulations run in Gazebo, logging and playing back data from different

experiments or visualization and inspection tools. This is especially useful when an
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innovative approach or algorithm is under development, and there is a potential risk

of crashing the platform. Thanks to the use of these tools, it is possible to test the

algorithms and modules off-line using real flight data and debug internal states of the

UAV or present relevant data in a graphical interface.

As stated in Chapter 1, the main context in which the proposed architecture has

been developed and tested is EuRoC, in which high-level semi-autonomous operation

of a UAV for inspection tasks has been demonstrated. The aforementioned framework

has been designed and implemented in order to perform UAV localization without

external positioning systems, among other tasks. Our team GRVC-CATEC successfully

completed Stage I of the project (Qualifying Simulation Contest), being among the top

15 challenger teams. In order to gain access to Stage II of EuRoC project, an end-user

had to be selected in order to actually demonstrate the system capabilities, and in

our case, the end-user is Airbus Defence&Space (D&S), a world leader in aircraft

manufacturing, interested in the automation of logistic processes in their manufacturing

plants. The evaluation of the proposals was carried out by the Challenge Advisory

Board (ETH Zurich among other institutions) with the help of external reviewers and

renowned independent experts, and it was based on novelty of the application, level

of difficulty of the use case, potential market for it, strength of the team, further to

the rank in the simulation contest. Our team was granted access to Stage II with

the second highest score, and we are currently competing with other four European

challenger teams to gain access to the final Stage III. The proposed architecture has

been developed in the context of this project, and the UAV has been extensively tested

in order to succeed in the different rounds of experiments.

6.1 UAV Platform

The UAV used in EuRoC’s Stage II is a research prototype from Ascending Technologies

called AscTec Neo.It is a hexacopter with 9” propellers which can lift up to 2Kg, but

the maximum nominal flight time of 20 minutes (without payload) will be reduced

accordingly. This is a platform developed and optimized within the framework of

different European research projects.
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Figure 6.2: The two main sensors tested on-board the UAV: VI-Sensor (left) and
Astra (right).

The default main sensor on-board the platform is Skybotix’s VI-Sensor, a stereo

camera with a calibrated and synchronized IMU. Nevertheless, the original mount

has been modified in order to accommodate different sensors. Our architecture has

been validated not only with the VI-Sensor, but also using an RGB-D camera as

the main sensor, in particular Orbbec’s Astra, as it can be seen in Figure 6.2. The

sensor is mounted facing forward in the direction of the flight in order to maximize

the information gathered regarding possible nearby obstacles. The orientation of the

sensor is customizable as we have manufactured different mounts using a 3D printer.

Figure 6.3 shows one of the tested mounts. The selected mount will depend on the

experiments scenario, the flight height or the type of obstacles that the UAV might

encounter in its environment. Depending on the main visual sensor mounted on-board

the UAV, the software modules involved with sensor data were adapted accordingly in

order to work with the type of data that each sensor delivers.

The on-board embedded computer (Intel Next Unit of Computing (NUC) with

Core i7) is in charge of acquiring sensor data, estimating the aerial robot current

state, generating the appropriate trajectories according to a given navigation goal and

running the autopilot for controlling the UAV. Given all these requirements, special

care has been put over all the running modules in order to cut down the computational

needs when possible.
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Figure 6.3: A sample of 3D printed mount for the main vision-based sensor on-board
the UAV.

It is important to point out that all the results shown in this chapter correspond

to different flights in which the control loop is closed using the localization estimations

based on on-board sensors, which are computed on-line, unlike previous chapters

where data were processed off-line.

6.2 Controlled tests

To succeed in achieving robust autonomous navigation, the aerial robot must demon-

strate both reliability and good performance. Extensive field testing has taken place

at the indoor testbed of CATEC, shown in Figure 6.4, whose motion capture system

tremendously helped us to benchmark the developed algorithms against a very precise

ground-truth for robot localization, motion planning or obstacle avoidance with safety

distance assurance.

The goal of the controlled tests performed at this indoor testbed was to monitor

our development progress and measure flying skills of the aerial robot. We also used

the tests to evaluate the effects of changes in hardware and software on the UAV.

The flying skills which we have systematically tested to assess our progress were the

following:

• Ability of the UAV to autonomously take-off and perform stable hovering.

• Ability of the UAV to accurately follow a pre-planned obstacle-free trajectory.
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Figure 6.4: One of the testing scenarios in CATEC’s indoor testbed.

• Ability of the UAV to generate an obstacle-free trajectory in order to safely

reach a specific waypoint.

• Ability of the UAV to dynamically modify a generated trajectory towards a

waypoint to avoid perceived obstacles along the way.

As it is apparent in Figure 6.4, the testbed structure allowed us to secure the

UAV from the top via a safety rope to prevent an undesired flight termination. This

has been very useful during the development process, as testing new features in the

algorithms may sometimes result in unexpected behaviors.

6.3 EuRoC Benchmarking

The first part of Stage II consisted of performing a series of tasks defined by the

Challenge Host (ETH Zurich), which were the same for all the teams in the same

flying arena with the same UAV platform. This section briefly describes our experience
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Figure 6.5: ETH’s flying arena used in the Benchmarking and Free-Style rounds.

and results obtained from the experiments carried out during the summer of 2016

regarding the Benchmarking round, that took place in ETH Zurich (see Figure 6.5).

The UAV running the proposed architecture has been extensively tested in order

to fulfill the proposed tasks, which were meant to guide our development towards

high-level autonomous tasks. Our system relied on a Sensor-based Odometry based on

the visual-inertial odometry algorithm described in Chapter 3, gathering sensor data

from the on-board VI-Sensor stereo camera. The Robot Localization module used in

this experiment round was based on Stereo Parallel Tracking and Mapping (S-PTAM)

Pire et al. (2015), a stereo SLAM system which we adapted in order to make it work

within our architecture and using our odometry estimations along with the acquired

stereo images.

A series of Benchmarking experiments were proposed, which consisted of several

tasks that the aerial robot should perform, and metrics to evaluate them.

• Task 1 - System Setup: this task simply benchmarks the time that teams

need to set up the platform out of the transportation box until stable hovering

at 1 meter of altitude above the take-off location.

• Task 2 - State Estimation: the purpose of this task is to assess the drift

of the visual localization system and state estimator. Collision-free random
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trajectories are sent to the UAV and have to be followed as accurately as possible.

Besides, disturbances and turbulences from wind may be added in the scenario.

• Task 3 - Waypoint Navigation: this task benchmarks local map creation

as well as planning. First, the arena is explored by following a collision-free

trajectory (as in Task 2) that covers the arena quite well, but may leave some

unknown spots. After this trajectory is finished, collision-free paths have to

be planned to several waypoints with increasing difficulty, and followed by the

UAV.

• Task 4 - Reactive Obstacle Avoidance: this task benchmarks reactive

collision avoidance. Velocity commands are sent to the aerial robot, steering

it towards multiple obstacles of increasing difficulty, e.g. walls, small sticking

objects or hanging cables. The task is evaluated according to the minimum

distance between the UAV and the obstacles during the task execution.

• Task 5 - Structure Following: the goal of this task is to cover a specified

area at a fixed distance in minimal time. The area can be bent or non-vertical,

and the metric is a combination of the error maintaining the desired distance,

the accumulated inspected area and the time needed for covering it.

Overall our team performed well in the experiments, according to the report

prepared by the Challenge Host showing the results from each task. Their comments

are shown in brackets in the following paragraphs.

The setup and stable hovering for Task 1 were achieved in a fast and smooth

manner (No issues and reasonably fast.). Our state estimation system only drifted

0.2m after the UAV followed a trajectory of approximately 100m in Task 2 (The

odometry system generally worked well, though not quite as accurately as some other

systems in the challenge. Winds impact on the system was fairly minor.). The collision

detection in Task 4 was successful for all the types of obstacles, including the hardest

one which consisted in a hanging cable with a diameter of 2cm (It generally worked

well.). Task 5 was achieved by using joystick commands and covering around 80%
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of an inclined plane in less than 2 minutes while maintaining the specified distance

parallel to the plane with an error of 0.2m (A serviceable if slightly slow solution.).

By far the most interesting task was Task 3, since it involved the interaction

of all the key modules from our architecture: visual odometry, robot localization,

trajectory planner and trajectory tracker. According to the Challenge Host, the system

appeared the most robust at getting to waypoints, though moved slower than some other

solutions. Our core idea is aimed at achieving a robust system in order to enable the

safe integration of UAVs in scenarios where they are currently not able to operate. For

this reason, since the only source of information for obstacle avoidance was the frontal

vision-based sensor, the concept of blindly flying in any direction was discarded from

the beginning. Our system would always turn its front sensor towards the direction

of the flight in order to ensure a safe trajectory and avoid any obstacle that it may

encounter. That is the reason behind the slowness of our system, which in contrast

turned out to be the most robust and the only one which aimed at reaching all the

waypoints in Task 3. In fact, our team obtained the second highest score among the

five challenger teams in the Benchmarking round of experiments.

6.4 EuRoC Free-Style

Apart from the Benchmarking experiments, another set of flight tests was performed

in the Challenge Host testbed within the context of the Free-Style experiments. These

tests were chosen by our team in order to validate specific functionalities according

to our project use case, which is the safe introduction of aerial robots in aircraft

manufacturing plants. These tests included tasks related to the interaction of the

aerial robot with other agents in its environment, such as human workers or other

aerial robots. Hence, obstacle detection and avoidance were basic tasks that our

system needed to tackle. Figure 6.6 shows two of the experiments we carried out. In

these experiments, the VI-Sensor was again the main visual sensor on-board the UAV

for Sensor-based Odometry, and S-PTAM was also used for Robot Localization.

The first experiment aimed at performing autonomous robot navigation while

keeping a safety distance from a human worker in the factory, emulated by a mannequin.
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Figure 6.6: The UAV performing obstacle detection and avoidance of a human worker
(left) and another smaller UAV (right).

Figure 6.7: Obstacle detection and trajectory replanning results in the mannequin
(top) and multi-UAV (bottom) experiments.

A waypoint was provided to the trajectory planner in order to send the UAV 5m

forward, enforcing a collision situation where the worker was an obstacle in the original
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trajectory commanded to the UAV. Whenever the system detected the worker, the

reactive planner automatically recalculated the trajectory in order to always ensure

a safety distance from the mannequin, and also change the yaw angle so it always

remained at sight while it was being avoided, until the UAV returned to the originally

generated trajectory. The top part of Figure 6.7 shows the human worker detection

and the replanned trajectory around the inflated occupancy matrix centered on the

estimated obstacle position. Our target safety distance to maintain from the human

worker was set to 1.25m. During the experiment, we achieved an average separation

distance from the UAV to the mannequin of 1.35m. Figure 6.8 shows the UAV pose

estimation results from the Robot Localization module. Left plots show the comparison

between the UAV ground-truth captured by the motion capture system (red) and our

estimated localization (green). Right plots show the computed error associated with

each axis (red) and the RMS error along the trajectory (blue). Changes in yaw slightly

affected the localization, especially in y axis, but errors, in general, are acceptable, as

Table 6.1 shows.

The second experiment involved autonomous conflict avoidance between aerial

robots sharing the same space in large factories. A second smaller UAV (AscTec

Hummingbird) was used and commanded to perform an off-line pre-planned trajectory,

navigating using the motion capture system of the indoor testbed. Again, the trajectory

planner was sent a waypoint so that the UAV needed to move 5m forward, and hence

the generated trajectory implied a conflict with the one commanded to the smaller

UAV, which was sent a perpendicular trajectory. The system detected the obstacle

thanks to the visual sensor and then the local planner automatically resolved the

conflict by increasing the flight height as it is shown in the bottom part of Figure 6.7.

The safety distance to the obstacle was again 1.25m, but the replanning strategy was

different due to the height change. During the experiment we achieved an average

separation distance (on the xz plane) of 1.32m (with a maximum peak of 1.54m and a

minimum peak of 1.14m), very close to the target safe distance. Figure 6.8 shows the

UAV pose estimation results, and as it can be observed also in Table 6.1, errors are

much lower in this case, especially because the trajectory did not involve considerable

changes in yaw angle.
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Figure 6.8: Estimated UAV position and orientation in the mannequin (top) and
multi-UAV (bottom) experiments.

Our team obtained the highest score among the five challenger teams in the Free-

Style round, being the only ones to have performed an experiment involving more

than one UAV and demonstrating on-line sense and avoid capabilities.
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Table 6.1: RMS localization errors in Free-Style experiments

x (m) y (m) z (m) yaw (◦)

Mannequin experiment 0.117 0.302 0.209 1.226
Multi-UAV experiment 0.042 0.024 0.059 3.776

6.5 EuRoC Showcase

The main goal of the Showcase round is to demonstrate the use cases chosen by our

end-user Airbus D&S. The Benchmarking and Free-Style rounds acted as phases to

develop and adapt basic technologies so that in this round the safe introduction of

aerial robots in aircraft manufacturing plants can be illustrated. This Showcase round

has been validated in a controlled environment emulating the scenario of an aircraft

manufacturing plant or aircraft assembly line. This scenario was replicated in the

indoor testbed of CATEC’s facilities, where industrial scenarios have been already

replicated in other projects. Figure 6.9 shows both the actual and the replicated

environments.

Airbus D&S identified two potential activities where aerial robots could improve

productivity by reducing operation times and manufacturing costs: logistic process of

light goods, and localization and identification of missing or forgotten tools that could

cause damage to structures. The provided UAV for EuRoC’s Stage II was modified

for the Showcase round. The VI-Sensor that was the main source of information

for vision-based navigation was replaced by an RGB-D camera. Using this sensor

allowed us to obtain further and more reliable depth estimations while working indoors,

which is the case in our application. Moreover, a second RGB-D camera was also

installed facing backward in order to improve the UAV situational awareness for

obstacle detection and avoidance. Both cameras are shown in Figure 6.10. Thanks to

this sensor configuration, the on-board trajectory planner was able to compute safe

trajectories both in forward and backward directions, depending on where the desired

target location is with respect to the UAV current state.
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Figure 6.9: Airbus D&S manufacturing plant (top) and replicated environment at
CATEC (bottom).

Figure 6.10: RGB-D sensors on-board the UAV and signaling lights.
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Figure 6.11: UWB beacons installed in the indoor testbed.

In order to increase the awareness of the workers in the aircraft manufacturing

plant regarding the operation of a UAV, a series of LED lights were also installed on

the aerial platform. Blinking red lights have been placed on top (see Figure 6.10),

while fixed red lights are below each of the two front arms.

Another modification in the general navigation system was the integration of range

measurements in order to increase the robustness of the UAV localization estimation

for long-term operation. Three UWB sensors have been installed in the indoor testbed

(see Figure 6.11) in order to provide low-frequency distance measurements with respect

to another UWB sensor that was mounted on-board the UAV. Such measurements

help to reduce the uncertainty regarding the current UAV pose. In this round of

experiments, the Sensor-based Odometry was the one introduced in Chapter 3 using an

RGB-D camera, and the Robot Localization was the particle filter using both RGB-D

and UWB sensing as explained in Chapter 4.

Two of the proposed objectives for the Showcase round required accurate and

long-term localization capabilities, and are the ones explained in detail in this section.
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Figure 6.12: Small cargo bay on the UAV (left) and hopper for autonomous delivery
(right).

6.5.1 Autonomous Delivery System

This objective deals with the logistic process of light goods in the manufacturing plant.

In order to do that, a pick-up and delivery system has been designed and installed on

both the UAV and the scenario. A small cargo bay has been designed and 3D printed

in order to accommodate small goods for aerial transportation. Besides, a hopper has

been placed in the realistic scenario in order to represent one of the delivery points to

be installed in the aircraft manufacturing plant, as depicted in Figure 6.12.

A worker that is performing some technical work requests a specific component

through the use of a Human Machine Interface (HMI). The logistic operator receives

the warning and places the requested component in the UAV’s cargo bay. The UAV

performs a flight taking-off and landing in a pre-defined location in the scenario,

successfully delivering the requested component in the hopper. Different waypoints

were commanded to the UAV in order to autonomously take-off, reach the hopper

and go back to the take-off location. Both the approach to the hopper and the return

to the take-off location involved obstacle detection and local re-planning in order to

avoid the blue column that is closer to the take-off location. The UAV successfully

delivered the requested component while safely navigating to and from the hopper.

One of the biggest challenges involved in this objective is achieving precise point-

to-point autonomous navigation, relying only on data acquired on-board the UAV.

The top opening of the hopper is a square of 1x1m, which enforces a UAV localization

error of less than 0.5m in the horizontal plane. Regarding height, it is required to
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Figure 6.13: Estimated UAV position and orientation in the autonomous delivery
experiment.

reach an altitude of at least 3m over the ground, which can be also challenging in a

large scenario where obstacles and visual features of reference may be far away from

the aerial robot.

Figure 6.13 shows the localization results of this flight, compared with ground-

truth data from CATEC’s testbed. Left plots show the ground truth (red) and our

localization estimations (green), while right plots show errors per axis (red) and RMS

errors (blue). It can be seen how x and y errors are below 0.5m for almost the whole

trajectory, and especially when the UAV was above the hopper approximately during

the middle of the flight (at second 70) at more than 3m of height. RMS errors for

each axis are provided in Table 6.2. Errors in z are lower thanks to the use of the

ground plane estimator.

6.5.2 Missing Item Detection

This objective involves the end-user use case related to parts monitoring that can be

forgotten inside aeronautic components and could cause serious safety issues. The

UAV needed to perform a long flight around the whole scenario representing other

logistic operations, and at the same time it was able to detect and identify a missing
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Figure 6.14: Estimated UAV position and orientation in the missing item detection
experiment.

object that could be anywhere in the manufacturing plant, based on measurements

between additional radio-tags both on the UAV and the missing tool. This radio-based

detection algorithm was out of the scope for this dissertation, but precise point-to-point

autonomous navigation was again an important pre-requisite for the success of this

objective, and hence accurate UAV localization was essential for the task, not only

for waypoint navigation, but also for accurate determination of the position of the

missing radio-tag.

Figure 6.14 shows the localization results of this flight compared with ground-truth

data from CATEC’s testbed. Again, left plots show the ground truth (red) and our

localization estimations (green), while right plots show errors per axis (red) and RMS

errors (blue). It can be seen how the position estimations closely follow the ground

truth during the whole flight, which roughly took 5 minutes. RMS errors in x and

y are below 0.3m, while z errors are again much lower due to the fact that we are

exploiting the sensor point clouds to estimate the ground plane. Table 6.2 shows

these results. It can be noted how errors are slightly higher than those shown in the

autonomous delivery experiment, since the flight duration of this experiment was also

considerably longer. Nevertheless, the UAV is able to successfully reach the specified
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waypoints in a robust manner and safely navigate detecting and avoiding possible

obstacles on its way.

Table 6.2: RMS localization errors in Showcase experiments

x (m) y (m) z (m) yaw (rad)

Autonomous delivery 0.27 0.14 0.12 0.19
Missing item detection 0.27 0.21 0.08 0.22

6.6 Conclusions

This section describes the framework in which we have tested the performance of the

localization approach developed in the context of this dissertation. State estimation of

the UAV is the first step of a data processing pipeline that also integrates trajectory

planning, obstacle detection and avoidance and automatic control of the aerial vehicle.

Performing all these processing steps on-line and on-board the UAV is a very difficult

challenge that we have successfully accomplished, thanks to different optimizations

in terms of computational efficiency of the algorithms described throughout this

document.

The EuRoC project provides a very convenient context in which we have demon-

strated accurate, robust and safe autonomous navigation of a small UAV in GPS-denied

areas. Moreover, the competitive nature of the project has allowed us to compare

our progress and performance with that from other research teams all over Europe,

outperforming most of them during the competition.
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Chapter 7

Discussion and Conclusions

7.1 Conclusions of this Dissertation

In this dissertation, the problem of robot localization has been thoroughly discussed,

with a particular focus on aerial robots. Several techniques have been researched,

developed and applied to solve the problem of state estimation of noisy dynamic

systems, primarily based on 3D measurements of the robot environment using a variety

of on-board sensors. Different sensing approaches and data processing techniques have

been also discussed and explained, along with comprehensive experimental results in

order to demonstrate their effectiveness and shortcomings. In this way, subsequent

modifications and improvements in the on-board system and the data processing

approaches have been built on the experience gained after extensive field testing along

the past years, as detailed in Chapters 3 and 4.

The final system configuration is an implementation of a particle filter suitable

for safe, reliable, computationally efficient and long-term operation of aerial robots in

3D environments. The proposed methodology makes use of a multi-sensor suite that

integrates a visual odometry algorithm and point clouds obtained from a 3D imaging

sensor (a stereo or RGB-D camera) and distance measurements from radio-based

sensors (UWB beacons) to overcome the limitations of each sensing modality by its

own in order to build a robust approach.

145



146 Discussion and Conclusions

Moreover, a mapping algorithm is proposed in order to be able to deploy the

proposed localization approach in any custom environment, as described in Chapter

5. The novel mapping method exploits the synergies between radio-based and 3D

imaging sensing to build an accurate 3D map of the environment and to localize the

radio sensors into such map.

The developments included in this dissertation have been extensively tested using a

UAV platform to perform autonomous navigation in GPS-denied areas. Experimental

results show a strong overall system performance as well as the feasibility of the

approach, both in accuracy and computational efficiency. The robustness of the

approach has been demonstrated in different campaigns during controlled tests at

CATEC’s indoor testbed, and especially in the context of the EuRoC project through

the demonstration of multiple experiments performing on-line localization estimation,

as explained in Chapter 6. The validation of the approach has been presented using

a motion capture system as a source of ground-truth data for UAV position and

orientation.

7.2 Lessons Learned

Field testing is one of the most expensive tasks when it comes to developing an

autonomous system because the aerial platform must be fully operational before

carrying out flight experiments, a space for testing must be accessible, and specific

qualified staff must be available (including a safety pilot). Besides, if testing outdoors,

the weather must behave and, depending on national regulations, a valid license for the

UAV pilot might be required. Fortunately, the latter requirement did not play a major

role in this dissertation, since all the experiments took place in indoor environments.

An important factor to take into consideration when testing aerial robots is their

flight autonomy. Degradation of batteries is a significant issue that we have encountered

during extensive test campaigns, leaving us with limited flight times. Moreover, the

uniqueness of the aerial platform under test (a research prototype from Ascending

Technologies) made us depend heavily on the UAV manufacturer, whose late response

forced us to manage custom battery replacements.
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Simulation environments such as Gazebo1 have been very useful for testing the

behavior and integration of different modules, especially those related to motion

planning. However, simulations are still limited in order to provide accurate information

regarding real world scenarios or behaviors of actual systems.

A very convenient tool that has been extensively used during almost all the

testing experiments was the node manager developed by Fraunhofer-Institut für

Kommunikation, Informationsverarbeitung und Ergonomie (FKIE)2. It is a graphical

interface to manage nodes, topics, services, parameters and launch files in a ROS

network. It seamlessly handles the discovery of running ROS masters in the local

network and the synchronization of the local ROS master to the discovered remote

masters. This is very useful because all the algorithms are running in the on-board

computer, and at the same time, the ground computer can run visualization and

debugging tools in order to watch live sensor data, or check the expected behavior of

specific algorithms that are under test.

The ability to evaluate the performance of the aerial robot in an experiment is a

key factor in field testing. Sometimes a tight time schedule has forced us to carry out

extensive test campaigns, during which it was not unusual to adjust several parameters

on the fly. This leaves room for subjectivity, since human errors can easily arise. It

should be a good idea to develop automated methods to quantitatively assess recorded

data in order to evaluate the aerial robot performance.

7.3 Future Work

While the system performs well, there is still room for improvement in its performance

and the development process.

The proposed localization approach provides a reliable and accurate 4D (x, y, z

and ψ) estimation during several minutes of flight. In view of these results, we think

this algorithm could be used for longer periods of time, but this should be evaluated

in the future with longer experiments.

1http://gazebosim.org
2http://wiki.ros.org/node manager fkie

http://gazebosim.org
http://wiki.ros.org/node_manager_fkie
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Future work will also consider performing visual odometry using the current UAV

platform setup, which counts with two RGB-D cameras, since it is currently based

only on the front facing camera. Currently, the rear-facing camera is only used for

obstacle detection, but it could incorporate valuable information in order to improve

the robustness of the odometry algorithm, especially when the scene in front of the

UAV does not show enough texture or the objects may be at higher distances.

Our state estimation algorithms assume that the vehicle moves relatively slowly

(around 30 cm/s). As the vehicle flies faster, the algorithms will likely need to handle

larger amounts of motion blur. This would imply changes in the processing pipeline,

especially in the visual odometry approach, in order to reduce uncertainties when

frame matching is not enough to estimate a valid pose change. Nevertheless, the

particle filter has been designed to handle this situation due to the reliability of the

radio-based measurements, but this needs to be tested during high-speed motions of

the UAV platform.

Although the presented approach is able to estimate the robot localization with

small errors, it could be improved with other localization inputs such as visual place

recognition, in order to reduce uncertainties when revisiting a location. This could be

useful in the visual odometry pipeline and also in the mapping approach.

Moreover, the integration of a low-weight altimeter can reduce the computational

load of the processing pipeline regarding height estimation, since this is currently

performed from 3D point cloud processing. The inclusion of distances measurements

from the UAV to the ground can be easily implemented in the particle filter.

Developing this system for an autonomous robot has allowed us to test a platform

that is intended to operate in real situations. Future work will also focus on taking

into account that such systems would perform autonomous navigation in any scenario,

not only the ones that have been considered so far, and which in some cases might

represent simplified versions of real world environments.

These proposed improvements should not be taken lightly in order to consider

requirements with respect to the smoothness of the localization estimation, the

computational efficiency of the whole processing pipeline and the UAV payload

requirements.
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