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ABSTRACT In this paper we describe improvements to the particle swarm optimizer (PSO) made by 

inclusion of an unscented Kalman filter to guide particle motion. We show how this increases the speed of 

convergence, and reduces the likelihood of premature convergence, increasing overall accuracy. We 

demonstrate the effectiveness of the unscented Kalman filter PSO by comparing it with the original PSO 

algorithm and its variants designed to improve performance. The PSOs were tested firstly on a number of 

common synthetic benchmarking functions, and secondly applied to a practical three-dimensional image 

registration problem. The proposed methods displayed better performances for 4 out of 8 benchmark 

functions and reduced the target registration errors by at least 2mm when registering down-sampled 

benchmark brain images. They also demonstrated an ability to align images featuring motion related artefacts 

which all other methods failed to register. These new PSO methods provide a novel, efficient mechanism to 

integrate prior knowledge into each iteration of the optimization process, which can enhance the accuracy 

and speed of convergence in the application of medical image registration. 

INDEX TERMS global optimization, particle swarm, unscented Kalman filter, image registration 

I. INTRODUCTION 

Optimization is a key component in many practical scientific 

computing problems. It is used to search for the optimum 

value of a pre-defined fitness function of a measure within a 

problem space [1]. As a typical global optimization method, 

particle swarm optimization (PSO) has been paid significant 

attention during the last few decades, as it is less prone to 

becoming trapped in local optima. Various improvements 

have been suggested to the original PSO algorithm to improve 

convergence and computation speed.  
    However, neither the original PSO method nor its general-

purpose modifications derived any advantage from available 

prior knowledge about the problem space which may act as a 

critical role in specific applications. The goal of many 

optimization problems is not just searching for an optimal 

value of the fitness function. One typical example of this issue 

is presented by a problem associated with image registration, 

for which the distance to the real global optima, rather than the 

value of the measurement function, is more important. This is 

because small differences of the fitness function values can 

actually represent large differences between image 

transformation parameters, which may in turn falsely indicate 

alignment between images. If prior knowledge about the 

content of the image is ignored in favour of the result of the 

value-oriented PSO, the optimization process may tend to 

converge to local optima that exhibit “better” measurement 

values.  These local optima may be at a significant distance 

from the global optimum, thereby causing the image 

registration to “fail”.  To deal with this specific application, in 

this paper, we introduce a novel distance-oriented PSO, 

guided by an unscented Kalman filter (UKF) [1]. This method 

can encode prior knowledge about the distribution of a fitness 

function within the problem space and stretch the optimizer to 

converge at a point near the true global optimum. 

    Image registration algorithms are often based on the 

premise that the magnitude of the chosen similarity metric is 

related to the magnitude of the error between the current 
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spatial transform between the images and the optimal spatial 

transform between the images [1][2]. Assuming the 

distribution of the similarity metric function is approximately 

unimodal, we propose a customized UKF-PSO framework 

derived from the Bayesian perspective of the PSO [3]. The 

UKF-PSO algorithm iteratively estimates global optima with 

accumulated information about probability distributions of the 

similarity measurements. This leads to faster convergence, 

with improved robustness to local optima over a large search 

space. Another advantage of this approach is the ease with 

which multiple similarity metrics can be combined, by 

extension to a nested UKF-PSO (N-UKF-PSO) that removes 

the need to apply fixed weights to the different similarity 

metrics by adaptively adjusting the weighting during the 

convergence process of the Kalman filter. The proposed 

methods are compared to several presently popular PSO 

methods using some popular benchmark functions, as well as 

a publicly available medical image registration dataset. Both 

the UKF-PSO and N-UKF-PSO display better robustness to 

local optima and better accuracies in the image registration 

experiments. 

    In this paper, important previous work that attempts to solve 

similar image registration problems using the original or 

modified versions of PSO are briefly reviewed in section II. 

The theory of our UKF-PSO and N-UKF-PSO methods are 

introduced in section III. Sections IV and V describe the 

details of UKF-PSO and N-UKF-PSO. Experiments 

performed on both benchmark functions and a publicly 

available image registration dataset are shown in sections VI 

and VII, and discussed in section VIII 

 
II. RELATED WORKS 

Both local and global optimization methods have been applied 

to solve image registration problems. Local optimization 

suffers from becoming trapped in local optima. The use of 

multi-resolution image pyramids can partially mitigate this, 

however, the global optimum may not be represented in the 

down-sampled problem spaces, in which case the optimizer 

will still converge to a local optima [4]. Among the global 

optimization methods, evolutionary computation plays an 

important role. For example, inspired by social and 

cooperative behavior, Kennedy and Eberhart [5] proposed the 

first PSO algorithm in the mid-1990s [6]. Since then a number 

of modified versions of PSO have been developed and applied 

to different image registration applications [4, 7]. Research 

efforts have concentrated on improving the convergence speed 

and robustness of the PSO when the problem spaces are very 

large and exhibit multiple local optima. These extensions of 

PSO methods use either alternative neighbourhood structures 

[8] or novel particle evolution strategies [6, 7, 9]. A widely 

used PSO using alternative particle evolution formulae is 

quantum behaved PSO (QPSO) [9]. The formulae were further 

redesigned in the revised QPSO (RQPSO), the diversity 

controlled RQPSO (DRQPSO) [10] and the chaotic search 

QPSO [11]. Another popular approach is to hybridize PSO 

with other optimization methods, for example Genetic 

algorithm [12] or Simplex [13]. Comparisons and reviews of 

the major PSO variants can be found in [3].  

 

 

 

FIGURE 1.  Fitting a Gaussian function to the distribution of mutual 
information within three different searching ranges. The fitted Gaussian 
function tends to give a more accurate estimation of the distribution 
within a smaller searching range. 

 

 

FIGURE 2.  Information available at the t-th iteration of PSO: the hidden 
state 𝜽 represents an optimal estimation 𝒙𝒈∗ of the true global optimum; 
the observed state 𝝃 is defined as the average position of all particles �̂�𝒈 

weighted by the measured fitness function �̂� of each particle. An 

estimation of the hidden state 𝒙𝒈 is produced by fitting �̂� to a Gaussian 
function in each iteration of the optimization process. For the t-th 
iteration, 𝒙𝒈(𝒕) can be obtained by combining 𝒙𝒈(𝒕 − 𝟏) and �̂�𝒈(𝒕). When 

solving the optimization problem using a linear Kalman filter, 𝒙𝒈(𝒕 − 𝟏) 

is treated as the output of 𝒕𝒊𝒎𝒆 − 𝒖𝒑𝒅𝒂𝒕𝒆 stage, �̂�-, and 𝒙𝒈(𝒕) is the 

output of the 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕 − 𝒖𝒑𝒅𝒂𝒕𝒆 stage, �̂�.  

 

FIGURE 3.  Hidden Markov model: 𝜽 and 𝝃 are the hidden and observed 
states.  
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    Wachowiak’s method provides a registration-specific prior 

knowledge approach [4] but requires precise initialization. 

Other methods that exploit prior knowledge include the Bare 

Bones PSO [14], Kalman Filter PSO [15], and Andras' 

Gaussian PSO, based on a Bayesian interpretation [3]. These 

methods either provide a probabilistic perspective of the 

particle status, or an adaptive mechanism to integrate prior 

knowledge. 

III. THEORY DERIVATION 

For a fitness function 𝑓(𝒙), an optimization process search 

in a problem space Ω for 𝒙 gives an optimal value of 𝑓(𝒙). 
For the problem targeted by this paper, image registration, 

𝑓(𝒙) is a predefined similarity measure between images, and 

Ω is all the possible image transformations limited by 

degrees of freedom. The purpose of optimization is then 

formulated by: 
 

 𝒙𝒐 = 𝑎𝑟𝑔max
𝒙𝜖Ω

𝑓(𝒙),  (1) 

 

where 𝒙𝒐 is the optimal solution of 𝒙, and the purpose of 

registration is to find 𝒙𝒐 which gives the optimal image 

transformation parameters or leads to the highest similarity 

of the images. However, due to the presence of local optima, 

𝒙𝒐 is often difficult to find. In this case, the returned 𝒙 should 

be as close as possible to 𝒙𝒐. 

The PSO simulates the social and cooperative behavior of 

a “swarm” of potential solutions, called particles [6]. Each 

potential solution corresponds to one position in problem 

space. Each particle explores the problem space at an 

individual random speed that is partially affected by 

combined knowledge about the up-to-date global and local 

optima. Searching for global optima in a D-dimension 

problem space with K particles at the 𝑡th iteration of PSO, a 

solution represented by the position of the 𝑖th particle is a D-

element vector, 𝐱𝑖(𝑡) = {𝑥𝑖1(𝑡), x𝑖2(𝑡),⋯ , x𝑖𝐷(𝑡)}, 𝑖 ∈
{1, 2,⋯ , 𝐾}. In the original PSO method, a widely used 

formula for updating the speeds of the particles, 𝒗𝑖(𝑡 + 1), 
is given by [3, 5, 6]: 

 

𝒗𝑖(𝑡 + 1) = 𝜔𝒗𝑖(𝑡) + 𝑐𝑝𝑟𝑝  (𝒙𝑖
𝑝
− 𝒙𝑖(𝑡))

+ 𝑐𝑔𝑟𝑔(𝒙
𝑔 − 𝒙𝑖(𝑡)) 

(2) 

 

where 𝜔 is the inertia weight, 𝒙𝑖
𝑝
 is the local best solution 

found by the ith particle, and 𝒙𝑔 is the best up-to-date global 

optimum. 𝑐𝑝 and 𝑐𝑔 are acceleration constants that weight the 

attraction of local and global optima to each particle, and 𝑟𝑝 

and 𝑟𝑔 are random generated numbers drawn from the 

uniform distribution over the range of (0,1) [6]. The updated 

particle positions are then given by [3, 8, 9]: 

 

 𝒙𝑖(𝑡 + 1) = 𝒙𝑖(𝑡) + 𝒗𝑖(𝑡 + 1). (3) 
 

Equation (2) consists of three components: the previous 

velocity 𝒗𝑖(𝑡), the cognition component 𝑐𝑝𝑟𝑝 (𝒙𝑖
𝑝
− 𝒙𝑖(𝑡)), 

and the social component 𝑐𝑔𝑟𝑔(𝒙
𝑔 − 𝒙𝑖(𝑡)). The 

combination of these components is a compound velocity 

that moves the particles towards the local and global optima, 

while preventing any significant deviations from the 

particles' previous directions. This mechanism makes a 

stepwise improvement in the algorithm convergence until all 

of the particles have moved into a small constrained area, or 

the global best position remains unchanged for a certain 

number of iterations. Other than the coefficients which 

appear in the PSO formula, the most common modifiable 

parameters are the swarm size (i.e. the number of particles), 

the searching range, and the maximum number of iterations. 

If 𝑓(𝒙) is complicated and presents multiple local optima 

which is common for image registration applications, PSO 

still suffers from premature convergence. Integration of prior 

knowledge of the problem space into the particle evolution 

formulae can improve the robustness of PSO. To encode 

prior knowledge into the particle evolution process, Andras 

[3] proposed a Gaussian PSO model based on a Bayesian 

interpretation. In this model, the evaluated fitness value, 

𝑓(𝒙) [3] is given by: 
 

 𝑓(𝒙) = 𝑓(𝒙) + 𝜖, (4) 

 

where 𝜖 is a noise distribution (typically zero-mean 

Gaussian) added to the noise-free fitness value [3]. 

Following Bayesian theory, likelihood is given in the form 

of a probability density function (PDF), 𝒫(𝒙), defined over 

the search range. Given all 𝑓(𝒙𝑖(0)), the PDF may be 

calculated using: 
 

 

where 𝒫(𝒙|𝑓(𝒙𝑖(0))) calculated in an iteration is used as 

the new 𝒫(𝒙) in the following iteration. The evolution of the 

particles can then be formulated by [3]: 
 

 𝒙𝑖(𝑡 + 1) = 𝒙𝑖(𝑡) + 𝛾 ∙
𝜕

𝜕𝑥
ln𝒫𝑡+1(𝒙)|

𝒙=𝒙𝑖(𝑡)
, (6) 

 

where 𝒫𝑡(𝒙) is the 𝒫(𝒙) calculated in the t-th iteration. The 

calculation of 𝒫𝑡(𝒙) can be performed based on the 

assumption that the evaluated fitness values of the particles 

are either co-dependent or independent, leading to two 

implementations of this Bayesian Gaussian PSO. The fitness 

function is assumed to be proportional to the probability of a 

point in the search range being the optimal solution.  Thus in 

a registration problem, the similarity measure can be 

𝒫(𝒙|𝑓(𝒙𝑖(0))) =
𝒫(𝑓(𝒙𝑖(0))|𝒙) ∙ 𝒫(𝒙)

𝒫 (𝑓(𝒙𝑖(0)))
    , 𝑖 = 1,⋯ , 𝐾 (5) 

 

FIGURE 4.  The non-linear state transition model 𝓕 used to evolve the 
optimal estimation 𝒙𝒈∗ of the true global optimum. 
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considered as a non-normalized probability, or factor. The 

probability distribution over the whole search range is 

interpolated using multiple Gaussian bases for the Bayesian 

Gaussian PSO.  

This work provides a framework to integrate prior 

knowledge into image registration in the form of 𝒫(𝒙) [3]. 

In this paper, we use a simplified definition of 𝒫(𝒙), based 

on prior knowledge specific to image registration. As a 

result, there is no need to calculate the probability 

distribution under different assumptions of dependences 

between particles, as 𝒫(𝒙) can be directly fitted using the 

evaluation values of all particles. 

Target registration error (TRE) is often the ground truth 

metric of image registration problems. The TRE is zero for 

two perfectly aligned images. We generalize this, such that 

𝒙𝑜 is the optimal transformation represented as a point in the 

problem search space, that results in a TRE closest to zero. 

Over the whole search range, the similarity measure 𝑓(𝒙𝑖) of 

a transformation represented by any particle is the distance 

measure ‖𝒙𝑖 − 𝒙
𝑜‖. Any other similarity measure can be 

considered as a monotonic mapping of this distance, 

𝑲(‖𝒙𝑖 − 𝒙
𝑜‖). We simply assume a form of Gaussian 

function for 𝐊, 

 

 𝑓(𝒙𝑖) = 𝑒𝑥𝑝 (−
𝛽

2
‖𝒙𝑖 − 𝒙

𝑜‖2). (7) 

 

This assumption of prior knowledge indicates that 𝒫(𝒙) 
follows a Gaussian-like distribution with unknown 

expectation, 𝒙𝑜. The advantage of using this Gaussian form 

is that 𝒙𝑜 is the expectation, ∫𝒙𝒫(𝒙) 𝑑𝒙 over the whole 

problem space. In each iteration of the PSO, 𝒙𝑜 is estimated 

by the optimum value within the area searched by particles, 

𝒙𝑔. Here, rather than directly selecting the optimum value 

from among all particles, the estimated global optimum 

𝒙𝑔(𝑡) is calculated by the average of all 𝒙𝑖(𝑡) weighted by 

the normalized 𝑓(𝒙𝑖(𝑡)) defined in equation (4).  

According to (4), and the theory of the Bayesian 

interpretation of the PSO [3], 𝒫(𝒙) is thus modeled as: 

 

 𝒫(𝒙𝑖) = 𝜎 ∙ (𝑒𝑥𝑝 (−
𝛽

2
‖𝒙𝑖 − 𝒙

𝑔‖2) + 𝜖), (8) 

 

where 𝜎 is a normalization constant and 𝜖 is a zero-mean 

Gaussian noise with unknown standard deviation.  Ignoring 

the noise 𝜖, a reasonable estimation of 𝒫(𝒙) is:  
 

 �̂�𝑡(𝒙𝑖) = 𝜎 ∙ (𝑒𝑥𝑝 (−
‖𝒙𝑖 − 𝒙

𝑔(𝑡)‖2

2�̂�2
⁄ )), (9) 

where the �̂�𝑡(𝒙𝑖) is the estimation of 𝒫(𝒙) at 𝒙𝑖 in the t-th 

iteration. �̂�𝑡(𝒙) can be obtained by fitting a Gaussian 

function using all 𝑓(𝒙𝑖(𝑡)). �̂�
2 is the variance of this 

Gaussian function. The global optimum can be estimated by 

solving,  

 

 
𝜕

𝜕𝒙
�̂�𝑡(𝒙) = 0. (10) 

 

Although the assumed Gaussian form of 𝑓(𝒙) and �̂�(𝒙𝑖) 
cannot accurately capture the shape of the similarity measure 

for a large search range, it gives a reasonable estimation of 

the global optima, and will improve as the search range 

contracts, as shown in Fig. 1. If the searching algorithm 

converges ideally, the Gaussian function becomes a Dirac 

delta function. 

Equation (10) can be solved by fitting the shape of 

ln �̂�𝑡(𝒙) using a quadratic least squares method, though this 

will introduce much greater computational complexity [31]. 

The purpose of fitting the Gaussian function is to obtain an 

estimated global optimum 𝒙𝑔(𝑡),  and �̂�2 is not used in 

further optimization processes. We use the weighted mean of 

all particles obtained in each iteration to estimate the initial 

global optimum, i.e. 
 

 

𝒙𝑔(𝑡) = (∑𝒙𝒊(𝑡)𝑓(𝒙𝒊(𝑡))

𝐾

𝑖=1

) (∑𝑓(𝒙𝒊(𝑡))

𝐾

𝑖=1

)⁄ ,  

𝑖 ∈ [0, 𝑁𝑚𝑎𝑥] 

(11) 

 

   

where 𝑁𝑚𝑎𝑥  is the maximum number of iterations. The 

estimation of the global optimum should move towards the 

true global optimum of the similarity measure as the search 

range contracts during the optimization process. One 

important assumption of (10) is that 𝑓(𝒙) ≥ 0, which is easy 

 

FIGURE 5.  Brief workflow of the unscented Kalman filter particle swarm optimizer (UKFPSO). 
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to achieve by normalization. Specific to image registration 

problems, if the images are aligned by minimizing a 

difference measure, denoted as 𝑓𝑑(𝒙), we can convert it to a 

similarity measure by, 

 

 𝑓(𝒙) = 𝑒𝑥𝑝 (−휀 (𝑓𝑑(𝒙))) (12) 

 

where 휀(∙) is a function of 𝑓𝑑(𝒙) in the searching range. 

In summary, during each iteration of the PSO, a noisy 

estimation of the global optimum 𝒙𝑔(𝑡) can be obtained 

using (11).  𝒙𝑔(𝑡) can then be improved during the 

evolutionary process of the PSO by combining information 

from all the particles and the previous iterations. 

IV. THE LDS-KFPSO METHOD 

𝒙𝑔 calculated using (11) can replace 𝒙𝑔 in the PSO formulae 

as it moves closer to the optimum of 𝑓(𝒙). However, with 

integrated prior knowledge, the estimation of the PDF of 𝒙𝑜 

in the search range can be improved by accumulating the 

information obtained in previous iterations. This can be 

achieved through the dynamic Bayesian network (DBN) 

presented in Monson and Seppi's Kalman filter PSO [15], 

which is used to characterize the time-sensitive relationship 

between observable and hidden states. For image registration 

problems using swarm optimization, the global and local 

optima obtained in each iteration can be encoded as the 

observed state 𝜉. Based on the theory in [30], the hidden 

state, 𝜃, represents the ideal location and speed of a particle 

that leads to a better fitness of 𝒙𝑔∗. With the prior knowledge 

discussed above we can define 𝒙𝑔∗ as the average of 𝒙𝑖, 
weighted by the noise-free fitness function, 𝑓(𝒙𝒊), or more 

directly define it as 𝒙𝑔∗ = 𝒙𝑜. An estimation �̂� of the hidden 

state is given for each iteration.  

However, because the prior knowledge of registration 

problems is integrated and �̂�
𝑔
 is calculated using equation 

(11), a much simpler DBN can be adopted here, using the 

raw information demonstrated in Fig. 2. After 𝑡 − 1 

iterations, the hidden state is the ideal position 𝒙𝑔∗(𝑡) that is 

closer to 𝒙𝑜, or equals 𝒙𝑜. The observation 𝜉 can be directly 

defined as �̂�
𝑔(𝑡). Each iteration has a current estimation of 

the hidden state 𝒙𝑔∗(𝑡) based on this observation. To obtain 

this estimation, the relationship between 𝜃 and 𝜉 is depicted 

as an instance of the hidden Markov model (HMM), as 

shown in Fig. 3 [15]. The hidden state 𝜃 evolves over time, 

based on a state transition model ℱ, and influences the 

observable state through a known observation model ℋ. The 

transition model, ℱ, reflects how an estimated global 

optimum moves closer to locations of better fitness, and the 

observation model can then be described as a model of the 

influence of 𝒙𝑔∗(𝑡) upon �̂�
𝑔(𝑡). When defining 𝒙𝑔∗ as the 

average of 𝒙𝑖 weighted by 𝑓(𝒙𝑖), as shown in Fig. 4, ℱ can 

be specified such that the evolution of 𝒙𝑔∗ depends on the 

movements of every particle. This assumes either a highly 

non-linear state transition process, or we may use 𝒙𝑜 as the 

hidden state that assumes an identical state transition. In both 

cases, the observation model is an identical mapping. 

This influence of 𝒙𝑔∗ on 𝒙𝑔 is inherently noisy, and the 

noise is used as a subjective uncertainty model of the 

accuracy of an observation [15]. Based on the prior 

knowledge being integrated, the current state is modeled by 

a Gaussian distribution with mean 𝒙𝑔 and a variance that 

models how strong the likelihood is that 𝒙𝑔 reflects 𝒙𝑔∗. The 

goal of the registration process is then to reduce the 

uncertainty of this likelihood over 𝒙𝑔 to its lowest level, and 

thus give the most accurate prediction. Since this prediction 

is produced by combining the information from all particles 

and all previous iterations, it is applicable to different PSO 

methods with different velocity and position updating 

mechanisms. 

 
FIGURE 7.  Workflow of the unscented Kalman filter particle swarm optimizer with “shift particles observation” (SPO-UKFPSO). 

 

 

FIGURE 6.  Estimations of global optimum when placing the searching 
range to different positions of the problem space. 
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For the HMM described above, the Kalman filter [16] and 

its extensions [15] can be regarded as solutions. When ℱ and 

ℋ are linear, and the HMM is therefore known as a linear 

dynamic system (LDS), the Kalman filter provides an 

efficient way to recursively estimate the state of this process 

while minimizing the mean square error [18]. The Kalman 

filter models the HMM as a predictor-corrector circle, where 

both the state-transition and observation are noisy processes 

with additive Gaussian noise. In our registration problem 

assuming a LDS in the prediction or time-update stage, a 

prediction of 𝒙𝑔∗(𝑡) is given by, 

 
 

�̂�−(𝑡) = 𝐅�̂�(𝑡 − 1), 
(13) 

 

 

𝚺−(𝑡) = 𝐅𝚺(𝑡 − 1)𝐅𝑇 + 𝚺𝜃 , 
 

(14) 

where ℱ is the matrix representation of the state transition 

function, 𝜃−(𝑡) and 𝚺−(𝑡) are the mean and variance of 

predicted 𝒙𝑔(𝑡) respectively, and 𝚺𝜃 is the covariance of the 

state-transition noise. Assuming 𝜃(𝑡) = 𝒙𝑔∗(𝑡) = 𝒙𝑜, 𝐅 is 

an identity matrix. Then in the correction, or measurement-

update stage, the estimation of state is refined using the 

observation, 
 

 𝐊(𝑡) =
(𝐅𝚺(𝑡 − 1)𝐅𝑇 + 𝚺𝜃)𝐇

𝑇

𝐇(𝐅𝚺(𝑡 − 1)𝐅𝑇 + 𝚺𝜃)𝐇
𝑇 + 𝚺𝜉

, (15) 

 

 �̂� = �̂�−(𝑡) + 𝐊(𝑡) (𝜉(𝑡) − 𝐇�̂�−(𝑡)), (16) 

 𝚺(𝑡) = (𝐈 − 𝐊(𝑡)𝐇)𝚺−(𝑡), (17) 
 

where the 𝐊(𝑡) is the Kalman gain in the t-th iteration that is 

used to balance the influence of prediction and observation, 

𝐇 is the observation matrix, which is identity, and �̂�(𝑡) and 

𝚺(𝑡) are the mean and variance of the estimation 

respectively. The estimate of global optimum is based on the 

following probability distribution [18], 
 

 𝒫(𝜃(𝑡)|𝜉(𝑡))~𝑁 (�̂�(𝑡), 𝚺(𝑡)). (18) 

 

This PSO model guided by Kalman filter (KF) under LDS 

assumption is named as LDS-KFPSO. 

V. THE SPO-UKFPSO METHOD 

When using the non-linear state transition model shown in 

Fig. 4, the HMM is not a LDS. In this case the non-linear 

extensions of the Kalman filter should be applied to deal with 

the non-linear state transition process 𝒙𝑔∗ = ℱ(𝒙𝑔∗(𝑡 − 1)). 

The extended Kalman filter (EKF) is the standard method for 

dealing with non-linear processes. However, it requires the 

calculation of a Jacobian matrix for ℱ(𝒙) [2], which is 

difficult for this complicated state transition function. Hence 

we propose the novel use of an unscented Kalman filter 

(UKF) [2]. Rather than estimate an arbitrary transition 

function as the EKF does, the UKF approximates a Gaussian 

probability distribution using standard vector and matrix 

operations based on a set of weighted sigma points, 

𝜒(𝑡 − 1), 𝑗 = 1,⋯ , 2𝐷 + 1 [35]. For the t-th iteration in a D-

dimensional problem space, the sample mean and covariance 

of the set of sigma points are �̂�(𝑡 − 1) and 𝚺(𝑡 − 1) [19]. 

Specifically, the sigma points and their associated weights 

are selected by, 
 

 𝜒𝑗(𝑡 − 1) =

{
 
 

 
 

�̂�(𝑡 − 1), 𝑗 = 0;

�̂�(𝑡 − 1) + √(𝐷 + 𝜅)𝚺(𝑡 − 1),

𝑗 = 1,⋯ , 𝐷;

�̂�(𝑡 − 1) − √(𝐷 + 𝜅)𝚺(𝑡 − 1),

 𝑗 = 𝐷 + 1,⋯ , 2𝐷 + 1;

 (11) 

 

 𝐖𝑗 = {
𝜅 (𝐷 + 𝜅)⁄ , 𝑗 = 0,

1 (2(𝐷 + 𝜅)), 𝑗 = 1,⋯ , 2𝐷 + 1.⁄
 (12) 

 

where 𝐖𝑗 is the weight associated with the jth sigma point. 

Details of how to select the weighting parameter, 𝜅, can be 

found in [2] and [19]. In this work, we follow Uhlmann’s 

[19] recommendation that 𝜅 + 𝐷 = 3. In the Kalman update 

stage each sigma point is instantiated through the state 

transition function by [19], 
 

 𝜒𝑗(𝑡|𝑡 − 1) = ℱ (𝜒𝑗(𝑡 − 1)), (13) 

 

and then the mean of state prediction is calculated by [19]: 
 

 𝜃−(𝑡) =∑𝐖𝑗𝜒𝑗(𝑡|𝑡 − 1),

2𝐷

𝑗=0

 (14) 

 

and the variance is given by [19], 
 

 

𝚺−(𝑡) =∑𝐖𝑗 = (𝜒𝑗(𝑡|𝑡 − 1) − 𝜃
−(𝑡))

2𝐷

𝑗=0

∙ (𝜒𝑗(𝑡|𝑡 − 1) − 𝜃
−(𝑡))

𝑇

. 

(15) 

 

As the observation model is an identity function, we can still 

use the linear measurement update formulae of the original 

Kalman filter (given by equations (16-18)) in the correction 

stage to obtain 𝜃(𝑡) and 𝚺(𝑡). 
Under this non-LDS assumption, since the uncertainty 

associated with the estimated global optimum is related to 

the distribution of particles, we can simply use either a 

sample, or all of the particles together with the estimated 

global optimum as the sigma points of UKF. This allows the 

number of sigma points to be greater than 2𝐷 + 1, and makes 

integrating the UKF into the PSO more convenient. In 

addition to the traditional stopping criteria, 𝚺(𝑡) may be used 

as additional evidence of the convergence situation of the 

PSO. To sum up, the procedure of the PSO was combined 

with the predict-correct circle of the Kalman filter. For both 

LDS and non-LDS cases, our new UKF-PSO algorithm can 

be represented as shown in Fig. 5.  
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The estimated global optimum, 𝒙𝑔, will be affected by the 

relative location of the global optimum in the search range. 

Fig. 6 shows how this estimation changes when using 

different search ranges with the same size. The estimation is 

more accurate when the true global optimum is closer to the 

center of the search range. A slightly different observation 

can therefore be used to improve the estimated global 

optimum: in each iteration, after 𝒙𝑔 is calculated, all the 

particles are resampled to be 𝒙𝑖 , so that the searching range 

is centered on 𝒙𝑔. Then a new average 𝒙𝑔 can be calculated 

as the observation, weighted by the new evaluations 𝑓(𝒙𝑖). 
We name this model the “shift particles observation” 

UKFPSO (SPO-UKFPSO). In this case, the HMM will be 

different from the one used in the above UKFPSO method, 

with different definitions of 𝜃, �̂�, 𝚺, ℱ, and 𝜉. The workflow 

of the SPO-UKFPSO method is shown in Fig. 7. To apply 

the UKF guided PSO model to real image registration tasks, 

the choice of similarity measure also has a profound 

influence on the results. The chosen similarity measure has 

to follow the prior knowledge modeled by equation (10), 

which allows the problem to be solved as shown in Fig. 1. 

For example, for a multi-modality registration problem, the 

sum of squared difference (SSD) of intensity is a poor 

choice. Therefore, we opt for the widely used mutual 

information (MI) instead. To register a reference image 𝝁 

and a floating image 𝝂, MI is calculated using their joint 

entropy 𝐻(𝝁, 𝝂), and marginal entropies 𝐻(𝝁) and 𝐻(𝝂), 
 

 𝑀𝐼(𝝁, 𝝂) = 𝐻(𝝁) + 𝐻(𝝂) − 𝐻(𝝁, 𝝂), (16) 
 

where MI is the similarity measure which makes registration 

a maximization problem. 

VI. THE NESTED UKF-PSO 

Image registration can be performed using different types of 

similarity measures, as well as different features. In order to 

combine different features and measures we must assign a 

suitable weighting to each one and normalize them to 

comparable scales. A benefit of the proposed model using 

prior knowledge, is that fitness values of any similarity 

measure are automatically normalized so as to be samples of 

a probability distribution, which maps all the measures to a 

uniform scale.  

    As shown in Fig. 8, in the case where we have two 

similarity measures, 𝑓
1
(𝒙) and 𝑓

2
(𝒙), the estimation of the 

global optimum output by a UKF using one measure can be 

intuitively considered as 𝜃− of the second UKF associated 

with the other measure. The two UKFs share the same 

population of particles during the optimization process, 

which means that each particle obtains two fitness values in 

each iteration. The framework can be extended using 

multiple nested UKFs to allow any number of features or 

similarity measures to guide the optimization. 

VII. PARTICLE STATE EVOLUTION  

To sum up, the outputs of the KF or UKF in the three 

implementations of PSO above include the estimated hidden 

state �̂�, and a variance 𝚺, that reflects the estimation error. 

As discussed in sections III and IV, the accuracy of the 

estimation of the global optimum given by the weighted 

average (equation (11)) is dependent on the size of the search 

region, and the positioning of the true global optimum. 

Furthermore, the KF and its extensions generally behave like 

low-pass filters, which means high frequency information 

may be filtered out as well as the noise. In this case, a more 

reliable rapid model can be formulated by: 
 

 
𝒗𝑖(𝑡 + 1) = 𝜔𝒗𝑖(𝑡) + 𝑐𝑝𝑟𝑝 (𝒙𝑖

𝑝
− 𝒙𝑖(𝑡)) 

+ 𝒄𝑔𝒓𝑔(𝒙
𝑔 − 𝒙𝑖(𝑡)) + 𝑐𝜃𝑟𝜃 (�̂� − 𝒙𝑖(𝑡)), 

(17) 

 

where 𝑐𝜃 is the acceleration constant weighting the attraction 

of the estimated hidden state output by the KF or UKF, and 

𝑟𝜃  is a randomly generated number drawn from the uniform 

distribution over the range (0, 1). The component 𝑐𝜃𝑟𝜃(�̂� −
𝒙𝑖(𝑡)) introduced in equation (17) controls the influence of 

the estimated hidden state over the orientation of particles. 

The acceleration constants 𝑐𝑝, 𝑐𝑔 and 𝑐𝜃 need to be adjusted 

to balance the influence of the personal optima 𝒙𝑖
𝑝
, the 

measured global optimum 𝒙𝑔, and the filtered optimum �̂�. 

Many methods initialise 𝑐𝑝 and 𝑐𝑔 as 2.0. In this work, 𝑐𝑔 

and 𝑐𝜃 are initialized by letting 𝑐𝑔 = 𝑐𝜃 = 1, and during the 

particle evolution process they are adjusted by 
 

 𝑐𝑔 = 𝑚𝑖𝑛(‖𝒙𝑔(𝑡) − 𝒙𝑔(𝑡 − 1)‖, 1.2), (18) 

 
FIGURE 8.  Workflow of nested unscented Kalman filter particle swarm optimizer (nested-UKFPSO). 
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and 
 

 𝑐𝑔 = 2 − 𝑐𝜃, (19) 
 

where 𝒙𝜃(𝑡) is the measured global optimum 𝒙𝑔 obtained in 

the t-th iteration. Particle positions are then updated using 

equation (3). 

VIII. EXPERIMENTS 

The proposed PSO methods were evaluated on both general 

optimization and image registration problems. A few 

representative PSO methods previously used for registration 

are also chosen for comparison purposes. 

A. BENCHMARK FUNCTIONS 

The proposed PSO models were compared using some 

common benchmark functions widely used in the PSO 

literature [20],  shown in table I. Since the optimization 

methods proposed in this paper are customized for image 

registration applications with the assumed prior knowledge 

described in section IV, we chose different types of 

benchmark functions, both single-objective and multi-

objective, to comprehensively compare the power of the 

different PSO methods. As the nested UKFPSO method is 

specifically designed for image registration applications 

requiring multiple types of features or different types of 

similarity measures, it is not included in this benchmark 

function comparison. 

For image registration problems, it is more important to 

find a position that is closer to the real global optima in the 

search space than to search for a better value of the fitness 

function. The performances of the compared algorithms are 

therefore measured by the norm of the differences between 

their returned vectors and the ground truths of the benchmark 

functions. Since for most of the chosen benchmark functions 

the ground truth optima locate in the center of the search 

space, a weak optimization algorithm that tends to converge 

to the center of the search space may obtain better results 

than others. To deal with this bias, while keeping the ground 

truth within the search space, we generated random shifts of 

the searching bounds, limited to be within 40% of the 

TABLE I 
BENCHMARK FUNCTIONS 

Function 

Name 
Ackley Griewank Modulus Sum Rastrigin 

𝑓(𝒙) = 

−20 ∙ 𝑒𝑥𝑝

(

 −0.2 ∙ √
1

𝐷
∑𝑥𝑑

2

𝐷

𝑑=1
)

 

− 𝑒𝑥𝑝(
1

𝐷
∑cos(2𝜋𝑥𝑑)

𝐷

𝑑=1

) + 20

+ 𝑒 

1

4000
∑𝑥𝑑

2

𝐷

𝑑=1

−∏cos(
𝑥𝑑

√𝑑
)

𝐷

𝑑=1

+ 1 

60 +∑|𝑥𝑑|

𝐷

𝑑=1

 

100

+∑(𝑥𝑑
2 − 10

𝐷

𝑑=1

∙ cos(2𝜋𝑥𝑑)) 

Bounds [−30, 30]𝐷 [−600, 600]𝐷 [−5.12, 5.12]𝐷 [−5.12, 5.12]𝐷 

Ground 

Truth 
(0, 0)𝐷 (0, 0)𝐷 (0, 0)𝐷 (0, 0)𝐷 

1D-plots 

 

 
 

 

 
 

 

 

Function 

Name 
Salomon Schwefel Rosenbrock Step 

𝑓(𝒙) = 

1 − cos

(

 2𝜋√∑𝑥𝑑
2

𝐷

𝑑=1
)

 

+ 0.1√∑𝑥𝑑
2

𝐷

𝑑=1

 

5000 +∑−𝑥𝑑 sin (√|𝑥𝑑|)

𝐷

𝑑=1

 
∑((𝑥𝑑 − 1)

2

𝐷−1

𝑑=1

+ (𝑥𝑑+1 − 𝑥𝑑
2)2 ∙ 100) 

60 +∑⌊𝑥𝑑⌋

𝐷

𝑑=1

 

Bounds [−100, 100]𝐷 [−500, 500]𝐷 [−30, 30]𝐷 [−5.12, 5.12]𝐷 

Ground 

Truth 
(0, 0)𝐷 (420.968746, 420.968746)𝐷 (1, 1)𝐷 (−5.12, 5.12)𝐷 

1D-plots 

 

 
 

   

 The variable 𝒙 is a D-dimension vector with the form (𝑥1, 𝑥2,⋯ , 𝑥𝐷). 
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problem space.  

Besides the random shift of the search ranges, the 

algorithms were tested using a random problem dimension 

chosen between 2 to 30, and repeated for each algorithm 100 

times for each benchmark function. The mean and standard 

deviation (STD) of each algorithm were calculated. The stop 

condition of the algorithms was either reaching 300 

iterations or reduction of the variability of the particle 

positions around the global optima to be less than 10−6. All 

algorithms were implemented in MATLAB (Mathworks, 

USA) with vectorized simulation of particle positions. Other 

than the particle position update mechanism, and some 

method specific parameters, all implementations shared core 

code to ensure that the comparison was performed under 

similar circumstances.  

Accuracy, convergence speeds and the run times of each 

method were measured. Speeds were evaluated using the 

average number of iterations and function evaluations of 

each run, as well as the raw convergence time. For a general 

overview of the performances, the mean accuracy of each 

method over all benchmark functions was also calculated. 

B. REGISTERING BENCHMARK DATASETS 

In order to evaluate the performances of the proposed PSO 

methods in real registration applications, we conducted a 

rigid registration experiment based on data from the multi-

modality brain image datasets from the Retrospective Image 

Registration Evaluation (RIRE) Project [21]. The 

comparison includes the original PSO, the DRQPSO, the 

Bare Bones PSO, the Kalman filter PSO, LDS-KFPSO, 

SPO-UKFPSO and the nested UKFPSO methods. All 

methods use MI as the similarity measure, except for the 

nested UKFPSO, which used MI for measure 𝑓1(𝒙) and the 

gradient features proposed by Pluim et al. [38] were used as 

𝑓2(𝒙). 
We performed CT-MR_T2 and PET-MR_PD registration. 

The voxel size is 0.65 × 0.65 × 4mm3 for CT data, 

1.25 × 1.25 × 4mm3 for MR_T2 and MR_PD data, and 

2.59 × 2.59 × 8mm3 for PET data.  

As the purpose of this experiment is to compare the 

performance of different PSO methods in real image 

registration applications, rather than to obtain the absolute 

highest registration accuracy, we integrated the PSO 

methods into a very simple registration framework. For the 

sake of simplicity and efficiency, each slice of both the 

reference and floating volumes was down-sampled to 20% 

of the original in-plane resolution of the reference image 

along each dimension. The slice thickness of the floating 

volume was also interpolated to the slice thickness of the 

reference volume so that the optimization method only dealt 

with translation and rotation parameters. To allow further 

speed-up of the registration, we selected a cubic region of 

interest (ROI) in each volume by applying Otsu's histogram-

based threshold selection method [23] to the normalized 

data. The RIRE project measures the accuracy of registration 

using target registration error (TRE), calculated from 

multiple volumes of interest (VOIs). Target registration error 

(TRE) is used as the measure of registration accuracy. The 

transformation parameters calculated from the resampled 

data are rescaled for transformation of the original volume. 

For each patient, 10 attempts at registration were completed, 

and in each run all methods use the same set of initialized 

particles that were generated by a MATLAB quasi-random 

number simulator. 

C. REGISTERING NATURAL DATASETS 

To further compare the performance of our methods with the 

original PSO, we also conducted an experiment using 

neonatal data collected from a clinical trial performed at the 

Clinical Research Imaging Centre (CRIC), University of 

Edinburgh (UoE). This dataset has previously been used to 

evaluate the performance of the registration framework 

based on a rearranged histogram specification (RHS) and K-

means binning [24]. We used images acquired at 38-44 

weeks’ postmenstrual age in natural sleep using a 3T Verio 

system (Siemens Healthcare Gmbh, Erlangen, Germany). 

Because of the neonatal age of the population being imaged, 

there is likely to be significant motion between acquisitions, 

which makes this dataset a good test of registration 

algorithms. Isotropic anatomical data were acquired with a 

range of contrasts, selected to facilitate the development of 

volumetric brain segmentation algorithms for the main 

study. 

Data from 10 patients were aligned using a rigid-body 

transform, calculated within a 51 × 51 × 41mm3 user-

positioned ROI on volumes with an isotropic voxel size of 

1.56 mm. Transformation matrices were obtained from data 

down-sampled to half original resolution. Performance was 

evaluated by TREs, calculated from 1908 pairs of 

corresponding landmarks (18 on each volume), manually 

placed by a clinical expert. The accuracy of the LDS-KFPSO 

and the nested-UKFPSO are compared with the results from 

our earlier work based on the original PSO [24]. 

XI. RESULTS 

A. BENCHMARK FUNCTIONS 

Table II shows the average minimization error of the 

different algorithms for each benchmark function (the STD 

of each run is shown within parenthesis). Table III 

summarizes the overall performances of the different 

algorithms.  

As shown in table II, the original PSO gave the best result 

for the Step function. The Bare Bones PSO performed better 

for the Griewank, Modulus Sum and Salomon functions. The 

proposed LDS-KFPSO method converged to positions that 

are closer to the true global optima for the Ackley Schewefel 

and Rosenbrock functions. For the majority of the 

benchmark functions, the proposed LDS-KFPSO and SPO-

UKFPSO returned the best performances, or performances 
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comparable to Bare Bones PSO. The Step function is a 

special case among all the benchmark functions, as it is 

increases monotonically, and the global optimum is located 

around the upper bound of the search range. In registration 

applications, this may happen when the true global optimum 

is not included in the search space. As expected, in this case, 

the LDS-UKFPSO and SPO-UKFPSO methods gave worse 

results.  

Based on the results shown in table III, due to the simplicity 

of its position update model, the implementation of chaotic 

QPSO has the fastest convergence time, but worst accuracy. 

In comparison, the LDS-KFPSO and SPO-UKFPSO may 

take slightly longer to complete each iteration, but both 

required fewer iterations than the other methods. In 

particular, the LDS-KFPSO used the least number of 

function evaluations, and had the shortest run time to achieve 

the best optimization results. The SPO-UKFPSO provided 

greater accuracy compared to LDS-KFPSO and converged 

quicker than most of the other methods. 

B. RIRE DATA 

The TREs for the CT-MR_T2 and PET-MR_PD 

registrations are shown in table IV. All three proposed PSO 

methods returned better results than the other methods in 

terms of mean and median TRE. Due to the combined 

features and similarity measures it utilizes, the nested-

UKFPSO gave better results amongst the three proposed 

PSO models. For the Bare Bones PSO and Kalman filter 

PSO, since these methods feature a more deterministic 

position update mechanism, they display better convergence 

speed than the original PSO and DRQPSO. However, the 

original PSO and DRQPSO were highly sensitive to particle 

initialization and gave the greatest variability between each 

run of the experiment. 

B. NEONATAL DATA 

Fig. 9 displays the results of successfully registering the T2-

w dark fluid and T1-w MRPAGE neonatal images using the 

UKFPSO methods.  Registration of this particular dataset 

TABLE IV 

EVALUATION OF THE PSO METHODS APPLIED TO RIRE DATA 

Modality Function Original PSO DRQPSO 
Bare bones 

PSO 

Kalman filter 

PSO 

LDS-

KFPSO 

SPO-

UKFPSO 

SPO-

UKFPSO 

CT-MR_T2 

Mean 6.2158 4.5297 10.3678 5.5092 3.5898 1.7407 1.1829 

Median 6.2047 4.4752 12.0473 5.6158 3.5980 1.8617 1.1718 

STD 2.2740 0.8503 3.6121 1.0642 1.0607 0.6932 0.3326 

Run Time 112.33s 97.69s 92.40s 73.58s 83.68s 135.89s 138.67s 

PET-
MR_PD 

Mean 3.5883 3.9001 3.6822 6.2004 3.5112 3.1409 2.9810 

Median 3.1755 3.5118 3.7254 6.1185 3.1472 3.1971 3.0962 

STD 1.0313 6.2657 0.3322 1.6303 1.5786 0.8860 1.0489 

Run Time 105.94s 78,12s 106.67s 59.83s 78.03s 96.91s 108.31s 

The performances are measured with mean and standard deviation (STD) of the distances (measured in mm) between the returned function values and the 

ground truths of all benchmark functions. The mean values are shown within the parenthesis. Best results for the benchmark functions are shown in bold font. 

TABLE III 

PERFORMANCES OF THE PSO METHODS APPLIED TO THE CHOSEN BENCHMARK FUNCTIONS 

Function 
Original 

PSO 
QPSO RQPSO DRQPSO 

Chaotic 

PSO 

Bare 

bones PSO 

Kalman 

filter PSO 

LDS-

KFPSO 

SPO-

UKFPSO 

Ackley 8.891(5.4) 6.859(4.1) 7.319(5.0) 5.991(4.4) 10.23(5.8) 9.070(5.5) 6.140(3.4) 0.665(0.3) 1.431(1.0) 

Griewank 3.042(1.2) 6.635(4.3) 2.081(1.0) 1.696(0.7) 15.49(11.3) 1.496(0.9) 4.652(2.3) 1.641(0.9) 1.616(0.8) 

ModulusSum 0.013(0.03) 0.235(0.2) 0.005(0.01) 0.002(0.01) 0.786(0.6) 8e-7(1e-6) 0.062(0.1) 0.076(0.02) 0.067(0.02) 

Rastrigin 0.586(0.6) 0.614(0.5) 0.255(0.2) 0.270(0.2) 1.046(0.7) 0.334(0.3) 0.513(0.3) 0.239(0.03) 0.156(0.01) 

Salomon 0.536(0.5) 4.897(4.6) 0.620(0.8) 0.932(1.2) 15.01(11.9) 0.324(0.2) 2.160(2.6) 1.542(1.0) 1.560(0.9) 

Schwefel 331.4(218) 403.7(200) 337.0(198) 280.1(112) 244.7(174) 316.2(218) 367.3(214) 231.3(90) 233.4(90) 

Rosenbrock 0.795(0.8) 1.754(1.7) 0.804(0.4) 0.857(0.5) 5.987(2.4) 1.455(1.3) 1.190(0.4) 0.567(0.13) 0.590(0.2) 

Step 0.077(0.05) 0.079(0.05) 0.087(0.07) 0.319(0.4) 1.184(1.2) 0.078(0.05) 0.788(1.0) 2.294(1.08) 1.910(1.1) 

The performances are measured with mean and standard deviation (STD) of the distances between the returned function values and the ground truths of all 

benchmark functions. The mean values are shown within the parenthesis. Best results for the benchmark functions are shown in bold font. 

 

TABLE II 

EVALUATION OF THE PSO METHODS APPLIED TO THE CHOSEN BENCHMARK FUNCTIONS 

Function 
Original 

PSO 
QPSO RQPSO DRQPSO 

Chaotic 

PSO 

Barebones 

PSO 

Kalman 

filter PSO 

LDS-

KFPSO 

SPO-

UKFPSO 

Error Per Function 1.9917 3.0105 1.5960 1.4380 7.1051 1.8225 2.2148 1.0033 1.0466 

Overall Error STD 3.2096 3.0312 2.6198 2.0844 6.5266 3.2557 2.3081 0.8276 0.7569 

No. Iterations Per Run 148.85 88.29 65.373 138.01 46.31 144.96 93.02 39.65 39.92 

Function Evaluation Per Run 10804 6074 4478 10374 2994 10807 6575 2572 5054 

Seconds Per Run 0.6523 0.3924 0.2919 0.6813 0.1915 0.6654 0.4213 0.2905 0.3990 

   The best result in term of each statistical criterion is shown in bold font. 
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was only achieved using the UKFPSO method, previous 

methods had failed to register the shown example. The 

quantitative evaluation of these registration results are shown 

in table V. The LDS-KFPSO and nested UKFPSO therefore 

not only gave smaller TREs than the original PSO, but also 

successfully aligned one particular problematic dataset that 

our previous method failed to register [24]. 

V. CONCLUSION 

In this paper, we have described three new UKF-guided 

registration-oriented optimization implementations. The 

new PSO-based methods were evaluated using benchmark 

functions and by registering two medical image cohorts. 

Compared to the selected PSO algorithms, the UKF-guided 

PSO methods achieved more accurate registration results and 

displayed better robustness to the presence of local optima. 

The convergence speed is comparable to the QPSO when 

minimizing benchmark functions and is comparable to the 

original PSO algorithm when registering medical images. 

    This new type of UKF-based PSO algorithm provides an 

efficient mechanism to encode prior knowledge of the search 

space into the optimization process, without requiring 

manually assigned weights for each feature included in that 

prior knowledge. Unlike other PSO methods, the proposed 

methods update the probabilistic distribution of the whole 

search space, rather than storing the distribution for each 

particle. This process iteratively moves the particles close to 

the global optimum, especially in the early stage of PSO, thus 

leading to quicker convergence. Furthermore, the 

mechanism that updates the knowledge of the search space 

can also be applied to other swarm-based optimization 

methods, for example, other swarm intelligence methods. 

Thus, it has great potential for application in a variety of 

medical image registration problems. 
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FIGURE 9.  Registration results obtained using original particle swarm 
optimizer (PSO), the linear dynamic system Kalman filter PSO (LDS-
KFPSO) and the nested unscented Kalman filter PSO (UKFPSO): (a) 
before registration; (b) registered using original PSO; (c) registered using 
LDS-KFPSO; (d) registered using nested UKFPSO. The registration is 
performed to align the T2 weighted dark fluid and T1 MRPAGE images of 
the patient which failed all the registration methods tested in our 
previous work. The results are visualized in overlapped red and green 
colour channels. 
 

TABLE V 

STATISTICS OF TARGET REGISTRATION ERRORS (TRE) 

 
Original 

PSO 

LDS-

KFPSO 

nested-

UKFPSO 

Mean 3.25 2.80 2.72 

Median 1.88 1.93 1.82 

STD 3.41 1.71 1.56 

Number of Failures 1 0 0 

Average Run Time 92.5±9.2s 100.2±8.8s 144.8±12.6s 

Errors measured in millimeter (mm). Run times were obtained from code 

implemented in MATLAB 2013a on Intel Xeon CPU 
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