1,850 research outputs found

    Stochastic Properties of Static Friction

    Get PDF
    The onset of frictional motion is mediated by rupture-like slip fronts, which nucleate locally and propagate eventually along the entire interface causing global sliding. The static friction coefficient is a macroscopic measure of the applied force at this particular instant when the frictional interface loses stability. However, experimental studies are known to present important scatter in the measurement of static friction; the origin of which remains unexplained. Here, we study the nucleation of local slip at interfaces with slip-weakening friction of random strength and analyze the resulting variability in the measured global strength. Using numerical simulations that solve the elastodynamic equations, we observe that multiple slip patches nucleate simultaneously, many of which are stable and grow only slowly, but one reaches a critical length and starts propagating dynamically. We show that a theoretical criterion based on a static equilibrium solution predicts quantitatively well the onset of frictional sliding. We develop a Monte-Carlo model by adapting the theoretical criterion and pre-computing modal convolution terms, which enables us to run efficiently a large number of samples and to study variability in global strength distribution caused by the stochastic properties of local frictional strength. The results demonstrate that an increasing spatial correlation length on the interface, representing geometric imperfections and roughness, causes lower global static friction. Conversely, smaller correlation length increases the macroscopic strength while its variability decreases. We further show that randomness in local friction properties is insufficient for the existence of systematic precursory slip events. Random or systematic non-uniformity in the driving force, such as potential energy or stress drop, is required for arrested slip fronts. Our model and observations..

    On simulation of rough Volterra stochastic volatility models

    Full text link
    Rough Volterra volatility models are a progressive and promising field of research in derivative pricing. Although rough fractional stochastic volatility models already proved to be superior in real market data fitting, techniques used in simulation of these models are still inefficient in terms of speed and accuracy. This paper aims to present accurate and efficient tools and techniques for Monte-Carlo simulations for a wide range of rough volatility models. In particular, we compare three commonly used simulation methods: the Cholesky method, the Hybrid scheme, and the rDonsker scheme. We also comment on the implementation of variance reduction techniques. In particular, we show the obstacles of the so-called turbocharging technique whose performance is sometimes counter-productive. To overcome these obstacles, we suggest several modifications

    Parallel software tool for decomposing and meshing of 3d structures

    Get PDF
    An algorithm for automatic parallel generation of three-dimensional unstructured computational meshes based on geometrical domain decomposition is proposed in this paper. Software package build upon proposed algorithm is described. Several practical examples of mesh generation on multiprocessor computational systems are given. It is shown that developed parallel algorithm enables us to reduce mesh generation time significantly (dozens of times). Moreover, it easily produces meshes with number of elements of order 5 · 107, construction of those on a single CPU is problematic. Questions of time consumption, efficiency of computations and quality of generated meshes are also considered

    Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields

    Get PDF
    The aim of this paper is to provide a general procedure to extract the constitutive parameters of a plasticity model starting from displacement measurements and using the Virtual Fields Method. This is a classical inverse problem which has been already investigated in the literature, however several new features are developed here. First of all the procedure applies to a general three-dimensional displacement field which leads to large plastic deformations, no assumptions are made such as plane stress or plane strain although only pressure-independent plasticity is considered. Moreover the equilibrium equation is written in terms of the deviatoric stress tensor that can be directly computed from the strain field without iterations. Thanks to this, the identification routine is much faster compared to other inverse methods such as finite element updating. The proposed method can be a valid tool to study complex phenomena which involve severe plastic deformation and where the state of stress is completely triaxial, e.g. strain localization or necking occurrence. The procedure has been validated using a three dimensional displacement field obtained from a simulated experiment. The main potentialities as well as a first sensitivity study on the influence of measurement errors are illustrated

    a feasibility study for the spatial reconstruction of conductivity distributions by means of sensitivities

    Get PDF
    To enhance interpretation capabilities of transient electromagnetic (TEM) methods, a multidimensional inverse solution is introduced, which allows for a explicit sensitivity calculation with reduced computational effort. The main conservation of computational load is obtained by solving Maxwell's equations directly in time domain. This is achieved by means of a high efficient Krylov-subspace technique that is particularly developed for the fast computation of EM fields in the diffusive regime. Traditional modeling procedures for Maxwell's equations yields solutions independently for every frequency or, in the time domain, at a given time through explicit time stepping. Because of this, frequency domain methods are rendered extremely time consuming for multi-frequency simulations. Likewise the stability conditions required by explicit time stepping techniques often result in highly inefficient calculations for large diffusion times and conductivity contrasts. The computation of sensitivities is carried out using the adjoint Green functions approach. For time domain applications, it is realized by convolution of the background electrical field information, originating from the primary signal, with the impulse response of the receiver acting as secondary source. In principle, the adjoint formulation may be extended allowing for a fast gradient calculation without calculating and storing the whole sensitivity matrix but just the gradient of the data residual. This technique, which is also known as migration, is widely used for seismic and, to some extend, for EM methods as well. However, the sensitivity matrix, which is not easily given by migration techniques, plays a central role in resolution analysis and would therefore be discarded ...thesi

    Development and application of 2D and 3D transient electromagnetic inverse solutions based on adjoint Green functions: A feasibility study for the spatial reconstruction of conductivity distributions by means of sensitivities

    Get PDF
    To enhance interpretation capabilities of transient electromagnetic (TEM) methods, a multidimensional inverse solution is introduced, which allows for a explicit sensitivity calculation with reduced computational effort. The main conservation of computational load is obtained by solving Maxwell's equations directly in time domain. This is achieved by means of a high efficient Krylov-subspace technique that is particularly developed for the fast computation of EM fields in the diffusive regime. Traditional modeling procedures for Maxwell's equations yields solutions independently for every frequency or, in the time domain, at a given time through explicit time stepping. Because of this, frequency domain methods are rendered extremely time consuming for multi-frequency simulations. Likewise the stability conditions required by explicit time stepping techniques often result in highly inefficient calculations for large diffusion times and conductivity contrasts. The computation of sensitivities is carried out using the adjoint Green functions approach. For time domain applications, it is realized by convolution of the background electrical field information, originating from the primary signal, with the impulse response of the receiver acting as secondary source. In principle, the adjoint formulation may be extended allowing for a fast gradient calculation without calculating and storing the whole sensitivity matrix but just the gradient of the data residual. This technique, which is also known as migration, is widely used for seismic and, to some extend, for EM methods as well. However, the sensitivity matrix, which is not easily given by migration techniques, plays a central role in resolution analysis and would therefore be discarded. But, since it allows one to discriminate features in the a posteriori model which are data or regularization driven, it would therefore be very likely additional information to have. The additional cost of its storage and explicit computation is comparable low disbursement to the gain of a posteriori model resolution analysis. Inversion of TEM data arising from various types of sources is approached by two different methods. Both methods reconstruct the subsurface electrical conductivity properties directly in the time domain. A principal difference is given by the space dimensions of the inversion problems to be solved and the type of the optimization procedure. For two-dimensional (2D) models, the ill-posed and non-linear inverse problem is solved by means of a regularized Gauss-Newton type of optimization. For three-dimensional (3D) problems, due to the increase of complexity, a simpler, gradient based minimization scheme is presented. The 2D inversion is successfully applied to a long offset (LO)TEM survey conducted in the Arava basin (Jordan), where the joint interpretation of 168 transient soundings support the same subsurface conductivity structure as the one derived by inversion of a Magnetotelluric (MT) experiment. The 3D application to synthetic data demonstrates, that the spatial conductivity distribution can be reconstructed either by deep or shallow TEM sounding methods
    corecore