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Chapter 1

Introduction

Optical design is a basic problem in lighting technology. It is the process of using a lens or reflector
to transform the light from the source to a desired output pattern under certain constraints such as
minimizing the loss of light and manufacturing limitations. Optical design has long been a matter
of craftsmanship. Around 700BC ancient Egyptians and Mesopotamians started polishing crystals
(often quartz) to concentrate light [1]. Theories on light and vision were then developed by ancient
Greek philosophers. Earlier studies on optics include geometrical, physical and physiological optics.
Along with the development of wave optics and quantum optics, we entered the era of "modern
optics" [2]. The development of technique always significantly lags theory. For a long time,
design techniques were restricted to point sources and geometries with rotational and translational
symmetry. Not until 1932 did Boldyrev derive the general equation governing the reflector shape
[16]. From the 80’s up to now, more and more numerical methods regarding solving the general
equation are devised. Nowadays, with the fast development of the electronic computer, the design
process has radically changed.

Forward and inverse methods are two important techniques in optical design. In forward
methods, a trial configuration of the optical system is given, then rays are traced and photometric
variables at the target are computed. Comparing the desired target with the simulation results,
the configuration is altered in some way to optimize the performance of the system. This procedure
is repeated many times until a satisfactory result is obtained. The forward method is valuable
for many applications and is implemented in several software packages. However, the evaluation
of the target distribution is a lengthy operation, therefore forward methods are extremely time
consuming when high accuracy is required. Besides, as we will see in Chapter 5, forward method
usually have poor convergence performance in optimization processes.

Inverse methods are another useful tool for optical design. Inverse problems can be formulated
in the following framework: Given a light source and a target distribution, we aim to construct an
optical system that projects a predefined illumination pattern onto the target. The optical surfaces
are often modeled as free-form surfaces. Often a simple system consisting of one single reflector
or lens is desired. Although the inverse method can significantly improve computation speed, real
3D inverse problems lead to highly non-linear second order partial differential equation, called the
Monge-Ampère equation. A general overview of the Monge-Ampère equation can be found in [7].
Inverse optical design involves advanced computational methods and cannot be solved by heuristic
methods in its most general form, therefore we restrict ourselves to a specific simplified problem.

Throughout this thesis, we consider the following far field problem: the desired target distri-
bution is defined as intensity on angles, as opposed to the near field problem, where the target
distribution is defined as illuminance on a plane. The simplification is derived in detail in Chapter
3. As illustrated in Figure 1.1, a point source is located at the original point. The intensity of
the emitted light follows the distribution I(t). The ray with the direction t hits the reflector at
point A and is reflected with direction θ. The target distribution is defined by G(θ). The angle
t is measured counterclockwise with respect to the positive direction of the symmetry axis while
the angle θ is measured clockwise with respect to the negative direction of the symmetry axis.
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Our goal is to compute the reflector profile that produces a predefined functional dependence of
the output angle θ given the source with intensity I(t). In reality, the light source always has
a finite size. When the light source is sufficiently small relative to the dimensions of the optical
system, it can be treated as a point source. We first assume that the reflector is specular, then
the shape of the reflector surface can be determined by solving differential equations governing
specular reflection. We evaluate the performance of the optical system using Monte Carlo ray
tracing [17] with a self developed program. Analysis of the error is given as well. In order to
make the model realistic, we introduce the transmission mechanism of scattering. Scattering is
the deviation from the law of reflection due to irregularities on the reflector surface. We reconsider
the design process under the diffuse reflection assumption. For the sake of simplicity, we do not
investigate multiple reflections. Practical issues as manufacturability are not considered.

Various mathematical techniques and methods are involved in this thesis. Ordinary differential
equations and numerical integration are used in the process of generating the reflector profile. The
bisection method is employed to compute the intersection of the ray and the reflector surface.
Knowledge of probability is involved both in the error estimation and the formulation of the
scattering model. The deconvolution process requires several numerical computational techniques.

This thesis is organized as follows. In Chapter 2, we start with some necessary terminology
and theory in illumination optics. The application of these concepts runs though the thesis. In
Chapter 3, we deal with the cylindrically symmetric 3D problem with point source, which can
be treated as a 2D problem. Four examples are presented to give an intuitive impression of our
design. In Chapter 4, Monte Carlo ray tracing is introduced and we derive an estimation of the
error. Simulation results are presented to verify the calculations in Chapter 3. In Chapter 5, light
scattering is included in the model. We compare two types of methods: deconvolution method
and iterative compensation approach. Chapter 6 summarizes our work and give recommendations
for future research.

Figure 1.1: Reflector geometry with a far field target
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Chapter 2

Illumination Optics

This chapter introduces some basic variables, terminology and the theory from illumination optics.
The law of reflection is the main result that is needed in this thesis. The law of refraction is also
included for completeness.

2.1 Lighting terminology

Light is electromagnetic radiation transporting energy. The luminous flux Φv is the measure of
the perceived power of light by the human eye. The usual unit of radiant power is lumen. For a
point source, the luminous intensity(or simply intensity) is the luminous flux per unit solid angle
Ω, i.e.,

Iv =
dΦv
dΩ

. (2.1)

The unit of intensity is lm/sr. When light is incident on a surface, the power per unit area is
called illuminance:

Ev =
dΦv
dA

, (2.2)

where dA denotes the area. The unit of illuminance is lm/m2 .

2.2 Reflection, refraction and total internal reflection

Reflection is the change in direction of a wavefront at an interface between two different media so
that the wavefront returns into the medium from which it originates. As illustrated in Figure 2.1,
the incoming light ray is the incident ray which strikes the surface at the incidence point. The
light ray that leaves the surface is the reflected ray. The normal is an imaginary line perpendicular
to the surface. Let unit vectors si and sr denote directions of the incident ray and the reflected
ray, and n denotes the unit normal (point to the side of the incident ray). The law of reflection
can be expressed in vector form [6]:

sr = si − 2(si,n)n. (2.3)

The reflected ray lies in the same plane as the incident ray and the normal. Let θi and θr denote
the incident angle and reflected angle respectively(θi, θr ∈ (0, π/2)). Then

cos(θi) = −si · n, cos(θr) = sr · n. (2.4)

Combining (2.3) and (2.4), we have

sr · n = si · n− 2(si · n)(n · n) = −si · n, (2.5)
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which leads to the more well-known version "The angle of incidence equals the angle of reflec-
tion",i.e.,

θi = θr. (2.6)

incident ray

reflected ray

refracted ray

Figure 2.1: Reflection and refraction

Another important concept is refraction. Refraction is the change in direction of propagation of a
wave due to a change in its transmission medium. The refractive index n of a medium is the ratio
between the speed of light v in that medium and the speed of light c in vacuum. The refractive
index of glass is typically 1.5. Let st denote the refracted ray and ni, nt denote the refractive
indices of material 1 and material 2, then the law of refraction is [8]

ni(si × n) = nt(st × n). (2.7)

Taking the norm on both sides of (2.7) and note that sin θi = |si×n| and sin θt = |st×n|, we can
derive the well-known Snell’s law:

ni sin θi = nt sin θt. (2.8)

The incident ray, refracted ray and the normal are located in one plane. When sin θi = nt

ni
,

the refracted ray is emitted parallel to the surface. If sin θi >
nt

ni
, no refraction occurs. This

phenomenon is called total internal reflection(TIR).
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Chapter 3

The Cylindrically Symmetric Case

In this chapter, we consider the 3D far field reflector design problem with cylindrical symmetry
which allows 2D treatment: We only need to generate the reflector profile in a plane. The full
reflector surface can then be obtained by sweeping the curve around its axis of symmetry. This kind
of problem is a classical problem in early optical design, which is described in many publications
(e.g., [4]). The cylindrical coordinate system is introduced in Section 3.1 to derive a simple
representation of energy conservation. Section 3.2 gives the formula to describe the shape of the
reflector. Examples are presented in Section 3.3 to verify our calculations of the reflector profiles.

3.1 Cylindrical coordinate system and energy conservation

Figure 3.1: The cylindrically symmetric case

Figure 3.2: Cylindrical coordinate system

As illustrated in Figure 3.1, suppose we have a rectangular xyz−coordinate system in R3, with
an infinite linear source l coinciding with the z−axis that is of uniform radiation. To introduce
the optical design procedure we first establish the cylindrical coordinate system. The cylindrical
coordinate system is a generalization of the two-dimensional polar coordinate system to three
dimensions by superposing a height (z) axis. As illustrated in Figure 3.2, a reference plane is
chosen and a ray that lies in the plane is selected to be the polar axis. The cylindrical axis is the
ray intersecting the polar axis at the original point and is perpendicular to the reference plane.
Then the position of an arbitrary point (ρ, ϕ, z) is specified by the distance from the cylindrical
axis, which is called radius and denoted ρ, the angular coordinate, which is referred to as the
azimuth and denoted ϕ, and the altitude z, which is the distance from the reference plane. The
radius and the azimuth are called the polar coordinates, as they correspond to a two-dimensional
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polar coordinate system. The altitude can be positive or negative, depending on which side the
point faces the reference plane. It is usual to choose the Cartesian xy-plane and z−axis as the
reference plane and the polar axis respectively. Consequently the cylindrical axis is the Cartesian
z-axis. The Cartesian coordinates can be uniquely represented by cylindrical coordinates:{

x = ρ cosϕ,
y = ρ sinϕ,

the z-coordinate is the same in both systems. If we fix ρ = 1, then the emitted rays can be
represented by vectors

v := v(t, z) := (cos t, sin t, z) ∈ S1 × R, t ∈ [t1, t2], z ∈ R, (3.1)

where t is the angular coordinate and S1 × R denotes the surface of the open cylinder with unit
radius. The reflector surface r(t, z) is given by

r := r(t, z) = (ρ(t) cos t, ρ(t) sin t, z), (3.2)

where ρ is twice differentiable and strictly positive. The reflected rays are denoted by w, given in
cylindrical coordinates θ, z′ (an illustration of angle t and θ is given in Figure 1.1) by

w := w(θ, z′) := (− cos θ, sin θ, z′) ∈ S1 × R, θ ∈ [θ1, θ2], z′ ∈ R. (3.3)

We have a function I(t, z) and a function G(θ, z′) which describe the intensity distribution of the
infinitesimal line element dl at position (0, 0, s) for arbitrary s and the desired target, respectively.
We assume a one-to-one correspondence between incident and reflected rays. Then by energy
conservation we have

I(t, z) dS(t, z) = G(θ, z′) dS(θ, z′), (3.4)

where dS(t, z) and dS(θ, z′) can be represented in terms of the underlying cylindrical coordinates:

dS(t, z) =
∣∣∣∂v
∂t
× ∂v
∂z

∣∣∣dtdz = dtdz, (3.5)

dS(θ, z′) =
∣∣∣∂w
∂θ
× ∂w
∂z′

∣∣∣ dθ dz′ = dθ dz′. (3.6)

Therefore we have

I(t, z) dtdz = G(θ, z′) dθ dz′. (3.7)

Integrating both sides of (3.7) leads to the global energy conservation∫ t2

t1

∫ ∞
−∞
I(t, z) dz dt =

∫ θ2

θ1

∫ ∞
−∞
G(θ, z′) dz′ dθ. (3.8)

The uniformity of the source implies that I and G are independent of z and z′, respectively,
therefore (3.8) can be further simplified to∫ t2

t1

I(t) dt =

∫ θ2

θ1

G(θ) dθ. (3.9)

It is worth remarking that the form of energy conservation differs in problems with different
geometry. Now the 3D problem is reduced to a 2D problem. We can use the geometry as well as
the energy conservation to solve the problem.
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3.2 Model for the reflector shape
In this section we derive the formula governing the shape of the reflector from the 2D geometry,
which depends on the angles t and θ. In order to design the optical surface, the correspondence(or
called mapping) t → θ must be computed. This mapping can be found by energy conservation
and the law of reflection.

Figure 3.3: Geometry of the 2D problem
Figure 3.4: Infinitesimal rotation

As illustrated in Figure 3.3, the emitted ray OA hits the reflector at point A with incident angle
α and we observe that π − (t+ θ) = ∠OAM = π − 2α thus α = (t+ θ)/2. The distance between
points O and A is ρ. In Figure 3.4 we rotate OA over an infinitesimal angle dt to obtain another
emitted ray OP which intersects the reflector at P . N is the intersection of OP and the normal.
By drawing a circular arc AB with |OA| = |OB|, we obtain the difference dρ. According to the
geometry, the following relation holds in the limit dt→ 0

OA ⊥ AB and AP ⊥ n. (3.10)

Thus, we conclude that ∠PAB = π/2 − ∠NAB = α and then the segment |AB| = dρ/ tanα.
Since the arc |AB| = ρdt, the relation |AB| = |AB| leads to

1

ρ

dρ

dt
= tanα = tan

( t+ θ

2

)
. (3.11)

Since tanα has a singularity at α = π
2 , we restrict ourselves to t+ θ ≤ π. Integrating from t1 to t

on both sides of (3.11) yields

ρ(t) = ρ1 exp
{∫ t

t1

tan
(s+ θ(s)

2

)
ds
}
, (3.12)

where ρ1 = ρ(t1) is a scaling parameter which can adjust the size of the optical system. For the
point source, ρ1 has no effect on the design and we fix it at 1. But if we use finite source instead,
it will be crucial, because the scale determines how likely the finite source can be approximated
by the point source.

The t→ θ mapping that we need to know to compute ρ(t) can be derived from (3.9). Here we
only consider monotonic solutions, which can be easily computed and guarantee the smoothness
of the reflectors. First we consider the increasing solution which denoted by θ+. For an arbitrary
t ∈ [t1, t2], we have ∫ θ+(t)

θ1

G(θ′) dθ′ =

∫ t

t1

I(t′) dt′. (3.13)

For the increasing case, differentiating with respect to t on both sides of (3.13) yields

G(θ+)(θ+)′(t) = I(t) =⇒ (θ+)′(t) =
I(t)

G(θ+)
, (3.14)
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with initial condition θ+(t1) = θ1. Similarly, for the decreasing case we have

(θ−)′(t) = − I(t)

G(θ−)
, (3.15)

with initial condition θ−(t1) = θ2. For given I(t) and G(θ) the reflector profile can be computed
by solving the following initial value problems.

Increasing case

{
θ′(t) = I(t)

G(θ) θ(t1) = θ1,

ρ′(t) = ρ tan( t+θ(t)2 ) ρ(t1) = ρ1.
(3.16)

Decreasing case

{
θ′(t) = − I(t)G(θ) θ(t1) = θ2,

ρ′(t) = ρ tan( t+θ(t)2 ) ρ(t1) = ρ1.
(3.17)

However, this method requires nice analytical properties of I(t) and G(θ), which is, as we will see
in Chapter 5, not always guaranteed.

Alternatively, we can find the t → θ mapping by matching two cumulative distributions:
Compute the cumulative flux as a function of t and also a function of θ and then match the points
of these two functions. For implementation, interpolation is utilized for discrete data. The reflector
profile can be computed by numerically integrating (3.12) afterwards. For practical problems, I(t)
and G(θ) are typically given in discrete forms, thus it is more convenient to implement cumulative
distributions matching. More importantly, this method is more robust than the ODE solver: The
predefined intensity distribution that we obtained in the deconvolution or iterative compensation
process typically presents oscillation and the ODE solver often fails to find the t→ θ mapping in
that case. We will compare these two methods by examples in the next section.

3.3 Examples
We choose four relatively easy examples with analytical solutions to numerically verify our cal-
culations, see Table 3.1. These examples cover different types of target distribution: The first
one requires a uniform target and the resulting t → θ relation is linear. The t → θ relation in
the second example is polynomial, which lead to an algebraic fraction target distribution. The
target in the third example is again an algebraic fraction but with a tangent t→ θ relation. The
required target in the last example is a step function. These examples also reveal difficulties we
may encounter in the subsequent design. The linear, tangent and piecewise linear examples are
given in [4].

Table 3.1: Four examples

linear polynomial tangent piecewise linear
[t1, t2] [−π/4, π/4] [π/5, π/4] [π/4, π/2] [−π/4, π/4]
[θ1, θ2] [−π/4, π/4] [π3/125, π3/64] [−π/8, π/8] [−π/2, π/2]
I(t) 1 1 1 1
G(θ) 1 1

θ2/3
4π

π2+64θ2 GPL(θ)

θ+(t) t t3 π
8 tan(2t− 3π

4 ) θ+PL(t)

θ−(t) −t θ−poly(t) −π8 tan(2t− 3π
4 ) θ−PL(t)

θ−poly(t) =

(
9π − 20t

20

)3

.

GPL(θ) =

 6/7 for θ ∈ [−π/2,−π/4),
2/7 for θ ∈ [−π/4, π/4),
4/7 for θ ∈ [π/4, π/2].
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θ+PL(t) =

 7t/6− 5π/24 for t ∈ [−π/4,−π/28),
7t/2− π/8 for t ∈ [−π/28, 3π/28),
7t/4 + π/16 for t ∈ [3π/28, π/4].

θ−PL(t) =

 −7t/4 + π/16 for t ∈ [−π/4,−3π/28),
−7t/2− π/8 for t ∈ [−3π/28, π/28),
−7t/6− 5π/24 for t ∈ [π/28, π/4].

In order to evaluate the accuracies of these two methods, we compare the relative error, which is
defined as following

relative error =
||θnum − θexac||2
||θexac||2

, (3.18)

where θnum is the numerical results on the sample points and θexac is the correspond exact solution.
Relative errors in the four examples are shown in Table 3.2 and Table 3.3. In the first method,
we use the matlab ode45-solver to compute the solution of the ODE system. Although the error-
control parameter ’RelTol’ [24] has little impact on the final results, it is set to be 10−5 for clarity.
The matching of the cumulative distributions is a way of applying energy conservation, and hence
requires numerical integration, which is accomplished by the trapezoidal method. The number of
sample points is fixed at 1000 in both methods. Since both methods involve numerical integration,
their accuracies depend on the high-order derivatives of the target distribution G(θ). As we can
see, for the linear example with zero high-order derivative, solutions are precise (up to numerical
precision). But for nonlinear solutions in polynomial and tangent cases, the high-order derivatives
are nonzero, which yield much larger errors. In the piecewise linear case, where high order doesn’t
exist, the largest error is observed.

Table 3.2: Relative errors by solving ODE system

||θnum−θexac||2
||θexac||2 linear polynomial tangent piecewise linear

increasing 2.14× 10−16 1.18× 10−9 1.50× 10−6 5.8× 10−3

decreasing 2.14× 10−16 9.49× 10−10 9.76× 10−6 2.00× 10−3

Table 3.3: Relative errors by flux matching

||θnum−θexac||2
||θexac||2 linear polynomial tangent piecewise linear

increasing 1.16× 10−17 3.47× 10−9 1.98× 10−7 2.19× 10−4

decreasing 1.16× 10−17 3.47× 10−9 1.98× 10−7 2.19× 10−4

Figure 3.5 and Figure 3.6 show the numerical and exact solutions for all examples, both in-
creasing and decreasing cases, respectively. Corresponding reflector profiles are shown in Figure
3.7 and Figure 3.8. Note figures are plotted in different scales. Usually the reflector scales vary in
different configurations. As we will see in Chapter 4, the increasing case and decreasing case cor-
respond to diverging and converging beams, respectively. The reflector shapes in the polynomial
and tangent cases don’t have analytical expressions.

Conclusion

The 3D cylindrically symmetric reflector design problem with point source and specular reflection
assumption can be viewed as a completely solved issue: First find the t → θ relation and then
compute the reflector profile by integration. We propose two alternative methods to calculate the
t → θ relation: One is solving the ODE system and the other is comparing the cumulative flux.
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Both methods perform well. The realizations of a desired target are not unique and the solution
may be properly chosen according to some practical guidelines.
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Figure 3.5: t→ θ relations in the increasing case
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Figure 3.6: t→ θ relations in the decreasing case
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Figure 3.7: Reflector profiles in the increasing case
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Figure 3.8: Reflector profiles in the decreasing case
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Chapter 4

Ray Tracing

Every optical system needs to be verified that it fulfills the claimed specifications. This step used
to be done by prototyping and measuring. Nowadays, with the advent of computers, it is possible
to do experimental verification by simulation, which greatly saves time and money. Ray tracing
is a widely used simulation technique for optical design: A large collection of rays that originate
from the source are traced to the target through the optical system. Photometric variables at the
target are computed from these rays. Ray tracing techniques are implemented in a wide range
of free software and commercial software [22]. Out of the many methods to implement the ray
tracing process, the most widely used method is Monte Carlo ray tracing. Monte Carlo methods
rely on repeated random sampling to obtain numerical results. They are proper techniques for
the evaluation of photometric quantities, since the emission of the ray from the source and the
corresponding reflection occurring at the reflector surface can both be considered as stochastic
processes. Monte Carlo ray tracing consists of three steps:

1. Generation of a sample of rays according to the intensity distribution I(t).

2. Propagation of the rays through the optical system.

3. Collection of the rays and computation of G(θ).

Since we are interested in the far field problem, all the reflected angles are collected. In order to
estimate the target intensity distribution, the entire range of values is divided into adjacent and
disjoint small intervals, which are usually called bins, and then the number of rays that fall into
each bin is counted. Although not necessary, the bins are often of equal size such that the number
of rays in each bin is proportional to the relative intensity. In this chapter, we design a ray trace
program to evaluate the performance of the optical system. Section 4.1 elaborate the procedure of
tracing one single ray. Issues of the computation of the intersection and the calculation of reflected
angles are discussed. To measure the deviation from the desired target, we define the error and
give an estimation in Section 4.2. A comparison between the real error and the estimation is
presented at the end.

4.1 The procedure of ray tracing
First we declare the notation in this section. In the previous chapters, we used {t, θ, ρ} as the
parametrization of the optical system. In this section, we utilize τ to indicate the direction of the
emitted ray and the corresponding reflected direction is denoted by θ̃. This section involves trans-
formation between Cartesian coordinates and polar coordinates. For clearance, we add subscripts
c and p to indicate Cartesian and polar coordinates, respectively. To determine the photometric
variables we need to compute the path of a large number of rays and collect the reflected angles
in bins. This gives a ray distribution from which we can compute the intensity.

Tracing one single ray follows the following steps:
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• Randomly choose a ray with direction τ ∈ [t1, t2].

• Compute the intersection of the ray and the reflector, and compute the normal at the inter-
section.

• Calculate the reflected ray using the reflection law (2.3).

• Determine the direction θ̃.

We will elaborate this procedure. The reflector is represented by polar coordinates (t, ρ(t))p.
Usually we don’t have an explicit expression to describe the profile, instead a set of discrete
sample points {(t1, ρ1)p, (t2, ρ2)p, · · · , (tn, ρn)p} are used for the calculation.

Figure 4.1: Ray tracing geometry

We only consider the point source. As shown in Figure 4.1, the location of the source is
S = (xs, ys)c. An emitted ray either hits the reflector, like ray 1, or escapes from the system, like
ray 2. For an arbitrary point P = (t, ρ(t))p on the reflector, ∠PSA (measured counterclockwise
with respect to x-axis) can be expressed in terms of the angular coordinate t by the inner product
of
−→
SP and ex:

∠PSA(t) = sign(t) · arccos

(−→
SP · ex
|
−→
SP |

)

= sign(t) · arccos

(
ρ(t) cos t− xs√

[ρ(t) cos t− xs]2 + [ρ(t) sin t− ys]2

)
, ex = (1, 0).

Define the function f as follows

f(t) = ∠PSA− τ, τ ∈ [t1, t2], (4.1)

where τ is the direction angle of the emitted ray. f(t) is the difference between ∠PSA and τ . In
order to compute the intersection, we need to solve the equation f(t) = 0. We only consider the
simplest case that f(t) is continuous and has a unique root in [t1, t2]. We can use the bisection
method to find the root of (4.1). This procedure is summarized in Algorithm Bisection. The inputs
for the algorithm are endpoints values a, b, function f , tolerance tol and maximum iterations nmax.
As a constraint, f(a) · f(b) < 0 must hold, otherwise the root might not exist. At each step the
algorithm computes the midpoint value c = (a+ b)/2 and the corresponding function value f(c).
Unless c itself is a root, which is possible and will unluckily take more time to find the root, there
are only two possibilities: either f(a) · f(c) < 0 and [a, c] brackets the root or f(b) · f(c) < 0 and
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[c, b] brackets the root. In this way, the size of the interval that contains the root is reduced to
half at each step. The maximum number of iterations nmax is set to be dlog2

b−a
tol e, where tol is the

tolerance. If the number of iteration exceeds nmax and no root has been found, then the algorithm
returns Inf. This corresponds to the situation that the ray escapes from the system.

The next issue is to compute the slope of the tangent line to the reflector at an arbitrary point
(t, ρ(t))p. We first express the Cartesian coordinates x, y in terms of polar coordinates:

x = ρ(t) cos t, (4.2a)

y = ρ(t) sin t. (4.2b)

Differentiating both equations with respect to t yields

dx

dt
= ρ′(t) cos t− ρ(t) sin t, (4.3a)

dy

dt
= ρ′(t) sin t+ ρ(t) cos t. (4.3b)

The inward-pointing normal at point (t, ρ(t))p is given by

n = −
[
ρ′(t) sin t+ ρ(t) cos t
−ρ′(t) cos t+ ρ(t) sin t

]
. (4.4)

Using(3.11) to eliminate ρ′(t), the inward-pointing normal can be expressed in t and ρ(t), i.e.,

n =

−ρ(t) tan
(
t+θ(t)

2

)
sin t− ρ(t) cos t

ρ(t) tan
(
t+θ(t)

2

)
cos t− ρ(t) sin t

 . (4.5)

Combining (3.11), (4.4) and (4.5) yields algorithm CN. We can use spline interpolation to generate
consecutive θ, ρ from the discrete data set {(t1, θ1, ρ1), (t2, θ2, ρ2), · · · , (tn, θn, ρn)}. Let ñ denote
the normalized normal, then the reflected ray s2 can be calculated by the law of reflection

s2 = s1 − 2(s1, ñ)ñ. (4.6)

Finally, the angle θ̃ is determined by

cos θ̃ = s2 · (−ex), ex = (1, 0). (4.7)

To compute the intensity distribution, we uniformly partition the target interval in small bins with
size h = θ2−θ1

Nb
, i.e.,

[θ1, θ2] = [ξ1, ξ2) ∪ [ξ2, ξ3) ∪ · · · ∪ [ξNb−1, ξNb
) ∪ [ξNb

, ξNb+1], ξi = θ1 + (i− 1)h.

We compute the angle θ̃ of each ray and collect these in bins. The intensity at an angle η is
estimated by

Gnum(η) = Gi :=
Nri
Nr · h

, η ∈ [ξi, ξi+1], i = 1, 2, · · · , Nb, (4.8)

where Nri is the number of rays that arrive in the bin [ξi, ξi+1] and Nr is the total number
of rays. The ray tracing procedure is outlined in Algorithm RT with inputs source location S,
reflector parametrization {t, θ, ρ} and parameters Nr, Nb. Algorithm Bisection and Algorithm CN
are invoked in step 3 and step 5, respectively. By collecting the output angles in bins we can plot
bars with heights Gi to construct a histogram for estimating the target distribution produced by
the optical system. The histogram is normalized such that the total area is 1 corresponding to
the continuous case that the integration of the normalized target distribution is 1.

14



Algorithm Bisection Compute intersection
Input: a, b, f, τ, tol, nmax

Output: root
1: Define c := (a+ b)/2, n := 0
2: while |f(c)| > tol and n < nmax do
3: if f(b) · f(c) ≤ 0 then
4: a := c
5: else
6: b := c
7: end if
8: end while
9: if n < nmax then

10: root:= c
11: else
12: root:=Inf
13: end if

Algorithm CN Compute Normal
Input: t0, θ, ρ
Output: n
1: dx = ρ(t0) tan( t0+θ(t0)2 ) cos(t0)− ρ(t0) sin t0 . Use spline interpolation to generate θ,ρ
2: dy = ρ(t0) tan( t0+θ(t0)2 ) sin(t0) + ρ(t0) cos t0
3: n = (−dy,dx)

Algorithm RT Ray Tracing
Input: S, t, θ, ρ,Nr, Nb
Output: θ̃
1: for i = 1 to Nr step 1 do
2: Randomly choose a direction angle τ0
3: Compute the intersection
4: if intersection exists then
5: Compute emitted ray s1 and normal ñ
6: Compute reflected ray s2 = s1 − 2(s1, ñ)ñ
7: Compute θ̃
8: end if
9: end for
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(a) Linear (b) Polynomial

(c) Tangent (d) Piecewise linear

Figure 4.2: Ray tracing results in decreasing case

(a) Linear (b) Polynomial

(c) Tangent
(d) Piecewise linear

Figure 4.3: Ray tracing results in increasing case
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Figure 4.2 and Figure 4.3 show the reflector profiles and the traced rays in all examples in
Section 3.3. The source is indicated with a black solid circle and the reflector profile is plotted
in red. The increasing and decreasing solutions correspond to diverging and crossing ray bundles.
These two types of solutions generate reflectors of different shape and size. The crossing solutions
typically yield more compact reflectors, which is a better choice from a practical point of view. Note
Figure 4.2d presents multiple reflections and thus doesn’t fulfill the single reflection requirement.
Faceted reflectors can be utilized for optical systems allowing multiple reflections. Due to the
aforementioned reason, we will not consider this case.

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In
te

n
s
it
y

(a) Linear

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

In
te

n
s
it
y

Simulation result

Target

(b) Tangent

-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2

In
te

n
s
it
y

Simulation result

Target

(c) Polynomial

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

In
te

n
s
it
y

Simulation result

Target

(d) Piecewise linear

Figure 4.4: Histograms of intensity distributions of all examples in Section 3.1, Nb = 100, Nr = 106.

Figure 4.4 shows the simulation results of all examples. The experiments are conducted in the
increasing case. Results of the decreasing case are similar. Statistical noise can be observed because
ray tracing involves statistical processes and therefore can not precisely assess the performance of
the optical system. The accuracy of Monte Carlo simulation depends on the number of rays and
bins. As we will see in the next section, the error is inversely proportional to the square root of
the number of rays which significantly increases the computational time when higher accuracy is
required.

4.2 Error estimation
The error, or more formally called merit function in the literature (e.g., [18]) quantifies the de-
parture of the obtained distribution from the desired target distribution. It is also a key aspect
of the optimization process (e.g., the iterative compensation process in Chapter 5). Although
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the definition of error is not unique, intensity values at each sample point are usually used for
error measurement. A reasonable measure of the error is the average deviation between the real
midpoint value of G in bin i and the estimation Gi which can be determined by the derivative of
G(θ) and the standard deviation of the random variables Gi. We first derive the expression of the
standard deviation. Since G(θ) describes the energy distribution (in some sense can be represented
by the number of rays with specific direction angle), it gives information on the probability dis-
tribution of the direction angle of randomly chosen rays. Let G̃(θ) denote the normalized target
intensity distribution, given by θ̃

G̃(θ) =
G(θ)∫ θ2

θ1
G(θ) dθ

. (4.9)

For a ray with emitted direction τ , θ̃(t) falls into [ξi, ξi+1] with probability Pi =
∫ ξi+1

ξi
G̃(θ) dθ.

Since the sampling of rays is independent and the outcoming angle θ̃ follows the distribution G̃(θ̃),
the number of rays falling into [ξi, ξi+1] hence follows the binomial distribution:

P[Nri = k] =

(
Nr
k

)
P ki (1− Pi)Nr−k, (4.10)

with mean NrPi and variance NrPi(1− Pi). The mean µi and variance σ2
i of Gi = Nri

Nr·h are

µi =
Pi
h
, σ2

i =
Pi(1− Pi)
Nr · h2

. (4.11)

We give the definition of the ray tracing error as follows:

error =
1

Nb

Nb∑
i=1

∣∣∣G̃(ξi+ 1
2
)− Gi

∣∣∣, (4.12)

where ξi+ 1
2

= ξi+ξi+1

2 is the midpoint of interval [ξi, ξi+1]. We derive an estimation of the error as
follows.

error =
1

Nb

Nb∑
i=1

∣∣∣G̃(ξi+ 1
2
)− µi + µi − Gi

∣∣∣
≤ 1

Nb

Nb∑
i=1

[∣∣∣∣∣G̃(ξi+ 1
2
)− 1

h

∫ ξi+1

ξi

G̃(θ) dθ

∣∣∣∣∣+
∣∣∣µi − Gi∣∣∣]

=
1

Nb

Nb∑
i=1

[∣∣∣∣∣ 1h
∫ ξi+1

ξi

G̃(ξi+ 1
2
)− G̃(θ) dθ

∣∣∣∣∣+
∣∣∣µi − Gi∣∣∣]

=
1

Nb

Nb∑
i=1

[∣∣∣∣∣ 1h
∫ ξi+1

ξi

G̃′(ξi+ 1
2
) · (θ − ξi+ 1

2
) +
G̃′′(ξi+ 1

2
)

2
· (θ − ξi+ 1

2
)2 + o

(
(θ − ξi+ 1

2
)2
)

dθ

∣∣∣∣∣+
∣∣∣µi − Gi∣∣∣]

≤ 1

Nb

Nb∑
i=1

[∣∣∣∣∣ 1h
∫ ξi+1

ξi

G̃′(ξi+ 1
2
) · (θ − ξi+ 1

2
) dθ

∣∣∣∣∣
+

∣∣∣∣∣ 1h
∫ ξi+1

ξi

G̃′′(ξi+ 1
2
)

2
· (θ − ξi+ 1

2
)2 + o

(
(θ − ξi+ 1

2
)2
)

dθ

∣∣∣∣∣+
∣∣∣µi − Gi∣∣∣]

=
1

Nb

Nb∑
i=1

[∣∣∣∣∣ 1h
∫ ξi+1

ξi

G̃′′(ξi+ 1
2
)

2
· (θ − ξi+ 1

2
)2 + o

(
(θ − ξi+ 1

2
)2
)

dθ

∣∣∣∣∣+
∣∣∣µi − Gi∣∣∣].
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When Nr and Nb are large enough, note h = θ2−θ1
Nb

and Pi ≈ h · G̃(ξi+ 1
2
), we can estimate the

error by omitting terms of higher order and replacing |µi − Gi| with the standard deviation σi

error ≈ 1

Nb

Nb∑
i=1

[∣∣∣∣∣ 1h
∫ ξi+1

ξi

G̃′′(ξi+ 1
2
)

2
· (θ − ξi+ 1

2
)2 dθ

∣∣∣∣∣+ σi

]

≤ 1

Nb

Nb∑
i=1

[∣∣∣G̃′′(ξi+ 1
2
)
∣∣∣

24
h2 + σi

]

=

(
1

24Nb

Nb∑
i=1

∣∣∣G̃′′(ξi+ 1
2
)
∣∣∣) (θ2 − θ1)2

N2
b

+

(
1

Nb

Nb∑
i=1

√
Pi(1− Pi)

)
1

h

√
1

Nr

≈

(
1

24Nb

Nb∑
i=1

∣∣∣G̃′′(ξi+ 1
2
)
∣∣∣) (θ2 − θ1)2

N2
b

+

(
1

Nb

Nb∑
i=1

√
hG̃(ξi+ 1

2
)

)
1

h

√
1

Nr

=

(
(θ2 − θ1)2

24Nb

Nb∑
i=1

∣∣∣G̃′′(ξi+ 1
2
)
∣∣∣) 1

N2
b

+
1√

θ2 − θ1

(
1

Nb

Nb∑
i=1

√
G̃(ξi+ 1

2
)

)√
Nb
Nr

.

Let A and B denote the coefficients

A =
(θ2 − θ1)2

24Nb

Nb∑
i=1

∣∣∣G̃′′(ξi+ 1
2
)
∣∣∣, B =

1√
θ2 − θ1

(
1

Nb

Nb∑
i=1

√
G̃(ξi+ 1

2
)

)
. (4.13)

We obtain the error estimation of ray tracing

error ≈ A 1

N2
b

+B

√
Nb
Nr

. (4.14)

The last approximation holds because 1 − Pi ≈ 1 when Nb is large. To compute the estimation
we first need to calculate the second order derivative of G̃(θ). Figure 4.5 reveals that the error
decreases asymptotically to 0 as 1√

Nr
.
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Figure 4.5: Error with respect to Nr in increasing cases, Nb = 100.

The dependency of the error on Nb is more complicated. The coefficients A and B both depend
on Nb. But since they are the average value, we expect them to be constants when Nb is large. We
compute A and B with various choices of Nb and the results is shown in Figure 4.6. Despite the
change at the beginning, which corresponds to very small Nb and thus is somewhat meaningless,
both coefficients remain stable when Nb is lager than 100. Then we compare the real error with
the estimation. The results of the linear, tangent and polynomial examples are shown in Figure
4.7a-4.7c. In the linear case, due to the uniform intensity distribution (G̃′(θ) = 0), A = 0 and
we get rid of the error in the first term. Thus the estimation is proportional to

√
Nb. And it
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coincides well with the real error. In contrast, in the tangent and polynomial examples, when Nb
is relatively small, omitting higher order terms causes large difference between the estimation and
the real error. For the tangent example, as Nb increases, the estimation coincides better with the
real error. But for the polynomial example, deviation of estimation from the real error is larger.
But they present the same trend with the increase in the number of bins. Notice in both cases, as
we can see from Figure 4.6, that the coefficient B is much larger than the coefficient A, therefore
the second term dominates the error, that is, the error is proportional to the square root of Nb.
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Figure 4.7: Error with respect to Nb, Nr = 107.
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Chapter 5

Light Scattering

Light scattering is the deviation of light from the law of reflection. If a propagating light ray
is incident on a perfectly smooth surface, the direction of the reflected light is determined by
the law of reflection. In more realistic scenarios, as illustrated in Figure 5.1, the reflected light
always contains a diffused component caused by scattering. Possible reflected rays are indicated
by multiple rays in red in the figure. An idealized scatter is the perfectly diffuse reflector which
scatters light according to Lambert’s cosine law. The scattering mechanism reveals the micro-
structure and spatial configuration of the scattering medium and thus plays an important role
in many areas. Rayleigh first investigated the reflection of acoustic waves in 1896 [19]. In 1919,
Chenmoganadam derived a theory of scattered light based on the phase shift of the reflected beam
due to the rough surface [20]. A quantity called the bidirectional reflectance distribution function
(BSDF [3]) is introduced by Nicodemus in 1970 to completely describe scattering. In optical design,
the inverse scattering problem is that of determining the properties of the scattering object (in
our case it is the shape of the reflector), given the incident distribution and the scattering profile.
In practice, since BSDF varies with different optical surface materials, a common approach is to
determine the scattering mechanism from scattered light measurements. In our model, we simply
adopt scattering that follows a certain probability distribution.

This chapter is organized as follows: Section 5.1 formally formulates the problem. Section
5.2 introduces the iterative compensation approach, which is initially used for optical design with
extended source. In Section 5.3, a deconvolution algorithm is presented. We apply the iterative
method and the deconvolution method to the model problem in Section 5.4 to investigate accuracy
and efficiency. Finally these are applied to optical design problems.

Figure 5.1: Scattering on a rough surface.
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5.1 Problem formulation
To establish the model of diffuse reflection, we consider the propagation of a light ray as a stochastic
process: A ray is emitted from the source with random direction τ and corresponding specularly
reflected direction θ̃, which is deterministic. The deviation ∆θ occurs when the ray is reflected by
the reflector, which is also a random variable following a certain distribution. The real reflected
direction θ̂ consists of the specular component θ̃ and the diffused component ∆θ ∈ [−π/2− θ̃, π],
i.e.

θ̂ = θ̃ + ∆θ. (5.1)

θ̂ is the sum of two random variables and thus is a random variable as well. To mathematically
model the scattering problem, we first introduce some notations. Given a source with intensity
distribution I(t), we aim to obtain a desired target distribution Gdesired(θ). With an imaginary
specular reflector, we can obtain the output Gref(θ). Considering the scattering effect, we actually
get Gscatt(θ). Throughout this chapter, we always consider normalized intensity distributions.
Then only the relative shape of the intensity distribution matters. We can scale the intensity
distribution by adjusting the total energy of the source. In this setting, Gscatt(z) and Gref(z) are
actually the probability density functions of θ̂ and θ̃, respectively. Let k(z) denote the probability
density function of ∆θ. Suppose θ̃ and ∆θ are independent, by conditioning on the value of θ̃, we
have

Gscatt(z) = P(θ̂ = z) =

∫ π

−π
P(θ̃ = t)P(∆θ = z − t|∆θ = t) dt

=

∫ π

−π
P(θ̃ = t)P(∆θ = z − t) dt

=

∫ π

−π
Gref(t)k(z − t) dt

= (Gref ∗ k)(z).

(5.2)

The probability distribution of θ̂ is the convolution of Gref(z) and k(z). The relation (5.2) reveals
a fact that the output is "contaminated" due to diffuse reflection and thus presents a discrepancy
from the desired target. This procedure is illustrated in Figure 5.2. Of course we hope that
Gscatt(θ) is close to the desired target distribution Gdesired.

I(t) Gref(θ)

Gscatt(θ)

Specular Reflector

Convolution
Scatter

Figure 5.2: Illustration of the scattering problem.

In order to obtain the desired target distribution, modifications in the input should be con-
sidered to eliminate the effect of scattering. In other words, we should use a predefined target
distribution, instead of the desired target distribution, as input to compute the reflector profile.
This issue can be handled in two ways. The first method is natural: we compute a predefined
target distribution by solving the deconvolution problem and use it as the input to generate the
reflector profile. That is, we want to find a Gref(θ) such that

Gdesired(z) = (Gref ∗ k)(z). (5.3)

The other is an iterative method: First give an initial guess of the predefined target distribution.
In each iteration, it is updated according to the relationship between the desired target distribution
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and the obtained distribution to "compensate" for the effects of scattering. We will investigate both
methods in this chapter. The probability density function k(t) describes the scattering properties
of the reflector. As aforementioned, in practical problems, the characteristic of scattering is
determined from measurements. In this thesis, for the sake of convenience, we use diffusions
that follow specific distributions to test our algorithms. These two distributions are given below

k1(t) =

{
1
2t0

for t ∈ [−t0, t0],

0 otherwise,
k2(t) =

{
1−(2ct)2
4B(2,2) for t ∈ [− 1

2c ,
1
2c ],

0 otherwise,
(5.4)

where t0, c are constants and B(x, y) is the beta function, i.e.,

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt. (5.5)

k1(t) is the uniform distribution, which is the simplest probability density function. k2(t) is a
variant of the beta distribution probability density function. Despite the somewhat complicated
form, it is essentially a polynomial inside its compact support and has properties of symmetry and
continuity. Figure 5.3 shows probability density functions of these two types of diffusion.
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Figure 5.3: Probability density functions of diffusions.

5.2 Iterative compensation approach(ICA)
The iterative approach was first introduced by Rabl in [9], which was originally used to generalize
the optical design from point source approximation to real extended source. In 2007, Bortz and
Shatz applied an iterative approach to improve the beam-shaping performance of generalized
functional designs [10]. The iterative compensation approach works in the following way: An
initial design is computed by an available method and evaluated by ray tracing. The obtained
result is compared to the desired target. Then the design is modified according to the observed
discrepancy from the goal. This procedure is repeated many times until a satisfactory result has
been reached. In our case, we use the method developed in Chapter 3 to generate the reflector
and use the ray tracing technique developed in Chapter 4 to evaluate the performance of the
optical system. To modify our design, we can either alter the predefined target in each iteration or
modify the reflector shape. To elaborate the iterative process, we first specify some terminology.
Our goal is to obtain the desired output denoted by Gdesired(θ) on the target, which is defined
on the interval [θ1, θ2]. In every iteration, we need to predefine the target Gref(θ) to generate the
reflector profile. We evaluate the actual intensity distribution Gscatt(θ) using ray tracing. For
perfect specular reflections, when Gref(θ) = Gdesired(θ), Gscatt(θ) is necessarily equal to Gdesired(θ).
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However, for diffuse surfaces, there will always be some discrepancy between the predefined output
and the target. In order to compensate the departure from the target, we apply correction to the
predefined target, either enhance or reduce. More specifically, as illustrated in Figure 5.4, we first
give an initial input, e.g., simply use the target intensity distribution Gdesired(θ). Then generate the
reflector profile and evaluate the output distribution. If the error is sufficiently small, then we stop
and get the the reflector profile, otherwise the initial design is revised according to the difference.
Now we still need to give a definition of the error. Analogous to Chapter 4, we uniformly divide
the target interval in small bins and define the error as the average deviation between the target
midpoint values and actual midpoint values (represented by corresponding estimation):

[θ1, θ2] = [ξ1, ξ2)∪ [ξ2, ξ3)∪· · ·∪ [ξNb−1, ξNb
)∪ [ξNb

, ξNb+1], ξi = θ1 +(i−1)h, h =
θ2 − θ1
Nb

, (5.6)

error =
1

Nb

Nb∑
i=1

∣∣∣Gscatt(ξi+ 1
2
)− Gdesired(ξi+ 1

2
)
∣∣∣, (5.7)

where ξi+ 1
2

= ξi+ξi+1

2 .

Initialize
setting

Start

Use Gref(θ)
to generate
reflector

Compute
Gscatt(θ)

Compute
the error

Apply
correction

Is Gscatt(θ)
close to
Gdesired(θ)?

Stopno
yes

Figure 5.4: Flowchart of the iterative compensation algorithm

The correction of the predefined target can be defined in different ways. A simple modification
is to update Gref(θ) as follows

Gref,new(θ) =

{
αGref,old(θ)+ (1− α)Gref,old(θ) ·

(
Gdesired(θ)
Gscatt(θ)

)β
Gdesired(θ) 6= 0,

Gmax(θ) Gscatt(θ) = 0 or Gref,new(θ) > Gmax(θ),
(5.8)

where 0 ≤ α ≥ 1, β > 0 are factors used to control the strength of the compensation. Issue
arises when Gscatt(θ) = 0 that Gref,new(θ) tends to infinity. Therefore we restrict Gref,new(θ) to a
maximum Gmax(θ). For instance, we may use k · Gdesired(θ) as Gmax(θ), where k is a scale factor.
It also helps to avoid the case that the increase in Gref(θ) doesn’t rise the actual intensity and thus
in return causes instability in Gref(θ).

Alternatively we can apply correction to the reflector shape, which is achieved by altering the
predefined t → θ relation θref(t). This approach is based on cumulative flux distribution and is
proposed in [11]. We first give an initial guess of the t→ θ relation and then use it to generate the
reflector profile. Next we evaluate the actual intensity distribution and compute the cumulative
flux functions of the desired and the actual distribution, which are denoted by Fdesired(θ) and
Fscatt(θ), respectively.

Fdesired(θ) =

∫ θ

θ1

Gdesired(θ′) dθ′. (5.9)

Since we only have numerical results of Gscatt(θ), the cumulative flux of the actual distribution
Fscatt(θ) needs to be computed by numerical integration. By matching the desired cumulative
flux of θ and the cumulative flux of t we obtain the desired t→ θ relation θdesired(t). Analogously
we obtain the actual t→ θ relation θscatt(t). By comparing θdesired(t) and θscatt(t) we obtain the
following update rule:

θref,new(t) = θref,old(t) + θdesired(t)− θscatt(t). (5.10)
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The results of these two update rules are very similar, and thus we only present subsequently results
using update rule (5.8). Generally, there is no guarantee that iterative compensation approaches
will converge to a solution (in some cases solutions simply don’t exist).

5.3 Deconvolution method
Deconvolution problems arise in many different fields such as image restoration, signal processing
and nonparametric statistics, etc. It is usually ill-posed and thus is an algorithm-based process.
There are various families of deconvolution algorithms, each with their own advantages and lim-
itations. An overview of deconvolution algorithms is given in [14]. Various commercial software
packages are available for deconvolution. In this section, we consider the following issue: Given
k(z) and Gdesired(z), compute Gref(z) from (5.3) via a deconvolution technique. To solve this prob-
lem, we first discretize (5.3) to obtain the matrix-vector form of the convolution and then solve
the linear system of equations. Here we only introduce an algorithm that is relatively easy to
implement: Split Augmented Lagrangian Shrinkage Algorithm (SALSA) [5].

5.3.1 Discretization
Discretization is the first step towards numerical computation. Convolution is essentially a process
of integration and thus (5.3) can be discretized by quadrature rules. A general form of an integral
reads

I[u] =

∫ d

c

u(t) dt. (5.11)

A class of numerical methods work in the following framework. Find an approximating family
{un(t)|n ≥ 1} to replace the integrand u(t) and define the numerical integration as

In[u] =

∫ d

c

un(t) dt = I[un]. (5.12)

The error of the numerical integration is defined as

En[u] = I[u]− In[u] =

∫ d

c

[
u(t)− un(t)

]
dt. (5.13)

The approximations un(t) are required to satisfy

||u− un||∞ → 0 as n→∞, (5.14)

so that the error will converge to 0 as n→∞.

|En(u)| ≤
∫ d

c

|u(t)− un(t)|dt ≤ (d− c)||u− un||∞. (5.15)

Usually {un(t)|n ≥ 1} are chosen such that I(un) is easy to evaluate. Most numerical integration
formulas use polynomial or piecewise polynomial interpolation to define un(t). The evaluation has
the following form:

In[u] =

n+1∑
i=1

wiu(ti) n ≥ 1. (5.16)

The coefficients wi are called integration weights and ti are the integration nodes, which usually
lie in [c, d]. Standard methods have weights and nodes of simple form or they are tabulated in
manuals and therefore it is not necessary to explicitly construct function un(t). Here we introduce
the well-known trapezoidal rule. The simple trapezoidal rule approximates u(t) by the straight
line joining (c, u(c)) and (d, u(d)). By integrating this linear function we obtain the approximation

I1[u] =
d− c

2

[
u(c) + u(d)

]
. (5.17)
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Figure 5.5: Illustration of trapezoidal rule.

This is the area of the trapezoid illustrated in Figure 5.5. When d− c is large, the trapezoidal
rule (5.17) is inaccurate. Then we can break the integral into the sum of integrals over small
subintervals and apply (5.17) on each subinterval. For convenience, though not necessary, we
divide [c, d] into n−1 intervals with the same width h = d−c

n−1 . This gives the composite trapezoidal
rule

In(u) = h
(1

2
u1 + u2 + · · ·+ un−1 +

1

2
un

)
, n ≥ 1, (5.18)

where ui = u(ti), ti = c+(i−1)h. Suppose u(t) is twice continuously differentiable, then the error
of (5.18) is [25]

En(u) = −h
2(c− d)

12
u′′(η), η ∈ (c, d). (5.19)

Now we can discretize (5.3). Suppose Gdesired, k,Gref are all compactly supported. Let [a, b] and
[c, d] denote the support of Gdesired and Gref, respectively. We divide the interval [c, d] into n
subintervals with equal width and use the trapezoidal rule to approximate Gdesired(z):

Gdesired(z) ≈ h

2

n−1∑
j=1

(
Gref(tj)k(z−tj)+Gref(tj+1)k(z−tj+1)

)
, tj = c+(j−1)h, h =

d− c
n− 1

. (5.20)

By substituting m different values z1, z2, · · · , zm in Gdesired(z) and replacing Gdesired(zi), k(zi −
tj),Gref(tj) with gi,Kij ,fj , respectively, we obtain the matrix-vector form of the convolution:

g = Kf, g ∈ Rm×1≥0 ,K ∈ Rm×n≥0 , f ∈ Rn×1≥0 , (5.21)

where

g =



g1
...
gi
...
gm

 ,K =
h

2



k11 · · · 2k1j · · · k1n
...
ki1 · · · 2kij · · · kin
...

km1 · · · 2kmj · · · kmn

 , f =



f1
...
fj
...
fn

 .

Generally, the system is overdetermined, i.e., there are more equations than unknowns (m ≥ n).
Thus problem (5.21) can be regarded as a least squares problem defined by

min
f

1

2
||g−Kf||22, g ∈ Rm×1≥0 ,K ∈ Rm×n≥0 , f ∈ Rn×1≥0 . (5.22)

Now we introduce the split augmented Lagrangian shrinkage algorithm (SALSA) to solve (5.22).
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5.3.2 Split augmented Lagrangian shrinkage algorithm (SALSA)
Due to the ill-posedness of deconvolution [23], naively solving (5.22) usually doesn’t work. We
need to apply regularization to make the problem less sensitive. An alternative formulation applies
a regularizer to the objective function, leading to the form

min
f

1

2
||g−Kf||22 + τφ(f). (5.23)

φ(f) is the regularizer and τ is the regularization parameter that needs to be specified. We choose
φ(f) = ||f||1. An approach based on the principle of variable splitting([12]) is proposed in [5]. The
idea is to split the variable f into a pair of variables, say f1 and f2, each serves as the argument of
the two functions with additional constraint, i.e.

min
f,v

h1(f1) + h2(f2),

s.t. Gf1 = f2,
(5.24)

where h1(f1) = 1
2 ||g − Kf1||22, h2(f2) = τφ(f2) and G = I in this particular case. Although we

introduce more variables and an extra equality constraint, problem (5.24) can be solved by the
augmented Lagrangian method. To this purpose, we first introduce the augmented Lagrangian.
Consider the following constrained optimization problem

min
z

E(z),

s.t. Az− b = 0.
(5.25)

The so-called augmented Lagrangian function takes the equality constraint in (5.25) into account
by augmenting the objective function with a weighted sum of the constraint functions.

L(z,λ, µ) = E(z) + λT (b−Az) +
µ

2
||b−Az||22, (5.26)

We refer to λ as the vector of Lagrange multipliers. Besides the weighted sum, the objective
function also includes the penalty term ||Az−b||22 with the penalty parameter µ ≥ 0 to robustify
the algorithm [21].
L(z,λ, µ) can be minimized by so-called augmented Lagrangian method (ALM) [13] in the

following way: First fix λ and minimize L(z,λ, µ) with respect to z, then update λ. This procedure
is repeated several times until some convergence criterion is satisfied, which yields the following
algorithm

Algorithm ALM Augmented Lagrangian method
1: Choose µ, z0 and λ0, set k = 0.
2: repeat
3: zk ∈ arg minz L(z,λk, µ)
4: λk+1 = λk + µ(b−Azk+1)
5: k ← k + 1
6: until stopping criterion is satisfied.

Problem (5.24) can be transformed to problem (5.25) by using the following definitions

z =

[
f1
f2

]
, b = 0, A =

[
I −I,

]
(5.27)

and
E(z) = h1(f1) + h2(f2) =

1

2
||g−Kf1||22 + τφ(f2). (5.28)

Substituting definitions (5.27) and (5.28) into the ALM-algorithm yields the SALSA method:
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Algorithm SALSA Split augmented Lagrangian shrinkage algorithm
1: Choose µ,v0,d0, set k = 0.
2: repeat
3: f′k = vk + dk
4: fk+1 = arg minf ||K ∗ f− g||22 + µ||f− f′k||22
5: v′k = fk+1 − dk
6: vk+1 = arg minv τφ(v) + µ

2 ||v− v′k||22
7: dk+1 = dk + fk+1 − vk+1

8: k ← k + 1
9: until stopping criterion is satisfied.

A good rule of thumb that µ = 0.1τ is recommended in [5]. The initial vectors v0,d0 are simply
chosen as zero vectors if no prior information is known. The algorithm will stop if relative change
in the objective function falls below tolerance, whose default value is 10−5. The convergence of
SALSA is guaranteed by the following theorem [15]:

Theorem 1 Consider problem (5.24), where h1 and h2 are closed, proper convex functions, and
G has full column rank. Consider arbitrary µ > 0 and v0,d0. Let {ηk ≥ 0, k = 0, 1, · · · } and
{νk ≥ 0, k = 0, 1, · · · } be two sequences such that

∞∑
k=0

ηk <∞ and
∞∑
k=0

νk <∞.

Consider three sequences {fk, k = 0, 1, · · · }, {vk, k = 0, 1, · · · } and {dk, k = 0, 1, · · · } that satisfy

ηk ≥

∥∥∥∥∥fk+1 − arg min
f

(
h1(f) +

µ

2
‖Gf− vk − dk‖22

)∥∥∥∥∥,
νk ≥

∥∥∥∥∥vk+1 − arg min
v

(
h2(v) +

µ

2
‖Gfk+1 − v− dk‖22

)∥∥∥∥∥,
dk+1 = dk +Gfk+1 − vk+1.

Then, if (5.24) has a solution, the sequence {fk} converges, fk → f∗, where f∗ is a solution of
(5.24). If (5.24) does not have a solution, then at least one of the sequences vk or dk diverges.

In our case, G = I and the full rank requirement of G is satisfied. If the minimization problems
in step 4 and 6 are exactly solved (up to numerical precision), we find two sequences {ηk =
0, k = 0, 1, · · · } and {νk = 0, k = 0, 1, · · · } that satisfy the conditions of Theorem 1 and thus it
can be invoked to guarantee the convergence of SALSA. The minimization problem in step 4 is
transformed to the following linear system of equations by setting the derivative of ||K ∗ f−g||22 +
µ||f− f′k||22 to zero.

fk+1 = (KHK + µI)−1(KHg + µf′k). (5.29)

The minimization problem in step 6 is by definition the Moreau proximal mapping of φ to f′k.
When φ(v) is chosen to be ‖v‖1, the solution is

fk+1 = sign(f′k) max{|f′k| − τ/µ, 0}. (5.30)

For more details, we refer to the original paper [5].

5.4 Computed examples
In this section, we first test two algorithms with a model problem that has an analytical solution
to investigate their accuracy and efficiency. It is not easy to compare algorithms because the
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results obtained depend on multiple factors such as algorithm parameters and properties of input
functions. For instance, how we choose the regularizer φ(f) and the parameter µ may have an
impact on the performance of SALSA. But usually there is no clear clue to determine these
parameters. Speed is another important aspect. It is also difficult to compare the speed of
different algorithms, because it depends on the way the algorithms are implemented, the stopping
criterion, etc. We will therefore not detail speed here. Generally, the deconvolution method takes
less than 1 minute to compute Gref(θ) while the iterative compensation approach takes about 3
minutes to perform one iteration tracing 106 rays. Finally we apply them to several optical design
problems.

5.4.1 The model problem

First, we appropriately choose the density function of the specular component θ̃ and diffused
component ∆θ such that they are both continuous and have compact supports. In this experiment,
we predefine Gref(z), k(z) as raised cosine distributions. The range of k(z) is half of that of Gref(z).

Gref(z) =

{
2
π (1 + cos 4z) for z ∈ [−π4 ,

π
4 ],

0 otherwise, k(z) =

{
4
π (1 + cos 8z) for z ∈ [−π8 ,

π
8 ],

0 otherwise.

Then Gdesired(z) can be expressed as the convolution of Gref(z) and k(z), which is a piecewise
trigonometric function. Note the support has been extended to (−3π/8, 3π/8). Figure 5.6 shows
the images of Gref(z) and Gdesired(z).
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Figure 5.6: Gref(z) and Gdesired(z) of the model problem.

Gdesired(z) =
1

3π2
·


9π + 24z + 8 cos(4z)− sin(8z) for z ∈ [−3π/8,−π/8),
2(3π + 8 cos(4z)) for z ∈ [−π/8, π/8),
9π − 24z + 8 cos(4z) + sin(8z) for z ∈ [π/8, 3π/8),
0 otherwise.

The optical design goal is to produce the desired output intensity Gdesired(θ) utilizing the uniformly
distributed source

I(t) =
2

π
, t ∈ [−π/4, π/4].

We first test the deconvolution algorithm. To solve the least squares problem (5.22), we discretize
the convolution using scheme (5.20). K is the matrix representation of the convolution operator.
It has the sparse property. Figure 5.7 shows the sparsity pattern of K. The nonzero entries are
indicated by solid circles.
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Figure 5.8: Discretization error and condition number.

In the model problem, we know all functions Gref(z), k(z) and Gdesired(z) and thus can compute
the corresponding discrete version f,K and g. Due to the error in the numerical integration, we
always get the discretization error ||g−Kf||2, which depends on the grid spacing h. We compute
the discretization error as a function of the size m×n. Increasing n means smaller step size in the
numerical integration, which will improve the accuracy. As shown in Figure 5.8a, the discretization
error is independent of the ratio m/n and it decreases as the size increases. Nevertheless, another
problem arises: As we can see from Figure 5.8b, the condition number of K, which is an indicator
of the ill-posedness, rises at the same time. Again it is independent of the ratio m/n. The problem
with matrices of larger condition number is more sensitive to the error. Then we need a tradeoff
between the discretization error and the condition number. To compare the accuracy, we use
SALSA to solve the least squares problem (5.22) with different matrix sizes. Let fnum denote the
numerical solution. The residual is defined as

residual = ||g−Kfnum||2. (5.31)

The results are presented in Figure 5.9. In this experiment, m = 3000, n = 200 is the best choice.
But generally it varies in different settings. We will fix m and n at 3000 and 200 in the subsequent
calculations.
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Figure 5.9: Residual versus size.
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Figure 5.10: Resulting intensity distribution of deconvolution method, Nr = 107, Nb = 100.

The numerical approximation of Gref(z) is displayed in Figure 5.10a, which is used as the
predefined target to generate the reflector. Figure 5.10b shows the resulting intensity distribution.
We traced 107 rays to obtain a fairly accurate simulation result such that it is hardly distinguishable
from the desired target.

Next we examine the iterative compensation approach. We apply scheme (5.8) with parameters
α = 0.2, β = 1 to modify the predefined target distribution. The output intensity distributions
using the iterative approach method are displayed in Figure 5.11. The black curve indicates the
result obtained using the initial predefined distribution. A discrepancy can be observed at the
center and the flanks. After 6 iterations, the output is close to the desired distribution. The
convergence rate can be controlled by altering the parameters α and β, nonetheless they have
little impact on the final intensity profile.
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Figure 5.11: Resulting intensity distributions of ICA. We use the desired target distribution
Gdesired(θ) as the initial predefined target (iteration=0) and the corresponding obtained output
is plotted in black curve and labeled as "Gscatt,0". Obtained outputs after several iterations are
plotted in blue curves and labeled as "Gscatt".

Figure 5.12 shows the evolution of the error with different α values (β is fixed at 1). These
curves all present a similar trend: After a fast declining phase, the error reaches the minimum and
then fluctuates and increases again. Note that smaller α means stronger compensation strength
and the curve reaches the minimum with less iterations. The minimum error of different curves
are close. In order to compare the errors of ICA and SALSA and avoid the disturbance of the
measure error (error in Monte Carlo ray tracing), all simulations are performed with Nr = 106

and Nb = 100 in both methods. The error of SALSA is much smaller than the errors of ICA.
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Figure 5.12: Evolution of the error during the iterative process of ICA. The error of the deconvo-
lution method is plotted in dashed line for comparison. Nr = 106, Nb = 100.

In the model problem with ideal setting, SALSA works very well. There are several reasons
for the good performance of SALSA: Both Gref(z) and k(z) are smooth, which decreases the
discretization error. What’s more, we know exactly the support [c, d] of Gref(z). Usually it serves
as a input variable. Although for problems with analytical solution it might not matter much, the
solution process for a general problem could be quite sensitive to the specified support [c, d]. On
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the other hand, ICA is, to some extent, a blind method. Although it can’t guarantee monotone
decrease in the error, it achieves an overall good result.

5.4.2 Optical design problems
We will consider two optical design problems in this section: The first problem is the tangent
example in Section 3.1, whose desired target distribution has a sharp cutoff. We would also like
to investigate the effect of the diffusion extent in this problem. In the second problem, we require
a uniform central distribution with gradual decay at the edge.

the tangent example

In the first example, the required output intensity distribution is symmetrically defined over output
angles between −π/8 and π/8. We adopt diffusion k1(t) with several values parameter t0. We
first use SALSA to compute the predefined intensity distribution and then use the predefined
distribution to generate the reflector. Finally, 106 rays are traced to evaluate the output intensity
distribution. The support of Gdesired(z) in (5.3) is given while no prior information about the
support of Gref(z) is available. As a rule of thumb, it is set to be slightly larger than the support
of Gref(z). Parameters m and n are fixed at 12000 and 200 respectively.

The results we obtained using SALSA are displayed in Figure 5.13 and Table 5.1. As shown in
Figure 5.13b, the predefined intensity distribution is extended to compensate the inadequacy of
the intensity at the edges, but it also causes extra energy outside the desired range. Fluctuations
are also be observed, which cause difficulty in solving ODE system (3.16) and (3.17). Thus we
employ the flux matching method to solve the t→ θ mapping. The resulting intensity distributions
obtained are shown in Figure 5.13a. Due to the loss of energy outside the desired domain, the
resulting intensity is overall lower than the target but it preserves the shape. The diffusion extent
(i.e., the parameter t0) has significant effect on the final result. Larger extent will cause more
serious smearing at the edge. As we can see from Table 5.1, diffusion with extent π/32 and π/16
slightly extend the support of the output intensity distribution while diffusion with extent π/8
doubles the support.
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Figure 5.13: Resulting intensity distribution Gscatt(θ) and corresponding predefined distribution
Gref(θ) using SALSA, Nr = 106, Nb = 100.

Table 5.1: Obtained support of resulting intensity distributions in different cases

t0 target π/32 π/16 π/8 π/4
Support [−0.3927, 0.3927] [−0.4861, 0.4864] [−0.5831, 0.5827] [−0.7811, 0.7813] [−0.9816, 0.9746]
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Next we apply the iterative compensation approach to this problem. Again we adopt the
diffusion model k1(t) and set t0 π

16 . The desired target is used as the initial predefined distribution,
which is revised in every iteration according to (5.8) with parameters α = 0.7, β = 1. The results
are shown in Figure 5.14.

The iterative compensation approach is not feasible in this case. In the first stage, the intensity
around the peak is dramatically compensated, nevertheless, smearing of the edges of the target
distribution remains serious. And we can see from Figure 5.14d that the error decreases in this
stage. However overshoot is observed after iteration 5 and the error increases. One of the reasons
for the smearing is that the iterative compensation approach is ineffective when the desired inten-
sity is 0. This occurs when points where predefined target values are 0 yield nonzero actual values,
but we cannot "compensate" it by predefining a negative target value. The intensity can never
be reduced and according to energy conservation, there are always deficiencies at the edges. An
alternative solution is to reduce the support of the predefined target distribution, but this causes
other problems. We will not further investigate this issue in this thesis.
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Figure 5.14: Resulting intensity distribution using ICA, the output using initial predefined target
distribution is labeled as "Gscatt,0", Nb = 100, Nr = 106.
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Uniform target example

In this example, we require a uniform distribution at the center which gradually decays to 0 at
the edges. More specifically, the desired target is defined as follows

Gdesired(θ) =
4

3π
·

 0 for θ ∈ (−∞,−π/4) ∪ (π/4,+∞),
1− cos(8θ) for θ ∈ [−π/4,−π/8) ∪ (π/8, π/4),
2 for θ ∈ [−π/8, π/8].

The source is again uniform in the range of [−π/4, π/4]. The diffusion density function is k2(t)
with support [−0.25, 0.25].

A commonly observed effect of scattering is the gentle fall off and consequent deficiency in the
uniform portion. These two methods once again display different features.

We first test the deconvolution method. Similarly, we discretize (5.3) with parameters m =
8000, n = 200 and use SALSA to solve the linear squares problem (5.22). The solution is used as
the predefined target distribution to generate the reflector profile. As can be seen from Figure 5.15,
the output intensity distribution preserves the shape at the center well while producing smearing
at the edges. The distribution extent is doubled.
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Figure 5.15: Result of the deconvolution method.

ICA performs better in this case. By compensating the predefined intensity distribution ac-
cording to (5.8) with parameters α = 0.5, β = 1 during the design process, a series of reflector
profiles are obtained. The convergence history of the iterative algorithm is shown in Figure 5.16a-
5.16d, which is the comparison between original result and the result after iteration. The iterative
compensation approach remarkably reduces the discrepancy between the target and the obtained
intensity distribution: As opposed to the deconvolution method, sharper fall offs are observed
from iteration 1 to iteration 9 and the intensity is significantly compensated at the center. The
most noticeable characteristics are an increasing rise at the edges. In other words, the iterative
compensation approach creates the oscillation which is also reflected in the error plot Figure 5.16e:
The error is reduced by a factor of 1.5 from an initial value of 0.037 to a final value of 0.024 after
the eighth iteration, but slightly increases after the ninth iteration.

Conclusion

We proposed two methods to eliminate scattering effect in optical design. Generally, the deconvo-
lution and iterative compensation approach are not feasible in all cases. For problems that have
a solution, both methods perform quite well and deconvolution method is even more accurate.
When the solution is not guaranteed, it’s also worth employing these methods to enhance the
design.

The first method is that first solve the deconvolution to obtain a predefined target distribu-
tion and use this distribution to generate the profile. Deconvolution is a computational technique
belonging to the ill-posed problem category. Generally, the exact solution of the deconvolution
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problem might not exist. Thus we use SALSA to solve the corresponding least squares problem.
The accuracy of this method depends on the size of the coefficient matrix and the specified algo-
rithm parameters. We determine these variables by trial and error. The resulting output intensity
distribution usually coincides well with the desired target at the center, but it contains smearing at
the edges. It is also a relatively efficient method compared to the iterative compensation approach,
although the algorithm requires large amount of computation.

The convergence of the iterative compensation approach is not theoretically guaranteed, but
it is capable in many cases. The main advantage of this method is its flexibility. We only need to
determine a few parameters that control the strength of compensation. One disadvantage is that
ICA has no effect on the points where the target intensity is 0. Thus ICA might not be a wise
choice for targets with sharp cutoff. In general, ICA yields more oscillatory solutions, sometimes
quite large overshoots can be observed. Another obvious drawback of ICA is that it invokes ray
tracing in every iteration and thus is much more time-consuming than deconvolution.
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Figure 5.16: Results of ICA. We use the desired target distribution Gdesired(θ) as the initial pre-
defined target (iteration=0) and the corresponding obtained output is plotted in black curve and
labeled as "Gscatt,0". Obtained outputs after several iterations are plotted in blue curves and
labeled as "Gscatt".
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we investigated the reflector design technique for the cylindrically symmetric case
with linear source. Due to the symmetry, this 3D problem can be transformed to a 2D problem with
point source. The basic theories that we used are the law of reflection and energy conservation.
The main results of this thesis consist of three parts:

• In Chapter 3, we proposed the technique to generate the reflector profile under the specular
reflection assumption.

• In Chapter 4, Monte Carlo ray tracing technique was introduced to simulate the performance
of the optical system. We also derived an estimation of the error. The computation results
in Chapter 3 were evaluated and verified.

• In Chapter 5, scattering was taken into account and we implement two algorithms to solve
the scattering problem.

We will describe in detail our work in these three areas. Our first step is to create a reflector
generation algorithm, which serves as the headstone of the subsequent work. First we derive an
ordinary differential equation governing the shape of the reflector and obtain the integral expression
of the solution with respect to the direction angles t and θ. The relation t→ θ is determined using
energy conservation by solving the integral equation. This procedure can be accomplished either
by the built-in function ode45 of matlab or by matching the cumulative flux of the source and that
of the target. The accuracies of both methods depend on the smoothness of the desired target
distribution. In general, the flux matching method is more accurate. What’s more important,
it is also more robust against the oscillations in the input function and thus is recommended for
calculation.

To simulate the output of the optical system, we employ Monte Carlo ray tracing to trace the
propagation of a light ray through the system: We randomly choose a ray emitted from the source,
compute the intersection of the ray with the reflector and calculate the reflection direction θ̃. The
output intensity distribution is given after tracing millions of rays and collect their reflection
direction θ̃ in bins. The ray tracing error depends on the number of rays Nr and the number of
bins Nb. Unfortunately it is a relatively slow procedure, the error decreases according to 1/

√
Nr

and the dependence on Nb may vary in different case. By experimental verification, all designs in
Chapter 3 were demonstrated to be valid.

Reflectors with diffuse reflection is a more realistic model. Therefore we include the scattering
effect in our design procedure. The propagation of rays is treated as a stochastic process. A ray is
emitted with a random angle and it hits the reflector at a certain point and then deviates from the
original direction with a random deviation angle following some specific distribution. The output
intensity distribution is the deconvolution of the specularly reflected output and the underlying
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density function of the deviation angle. We have two alternative methods to handle this problem.
One is that first solve the deconvolution problem and then use the result as input to generate the
reflector. The other is to iteratively modify the predefined target to compensate the scattering
effect. These methods both perform well in the model problem.

Deconvolution is an ill-posed process. We employ SALSA to solve this problem. SALSA is
a heuristic algorithm that converges fast and is robust to the error. However, how to determine
the setting of parameters, which may have significant effect on the results, remains unknown. We
manually adjusted them during our calculation. A common effect of deconvolution method is the
serious smearing at the edges.

The iterative compensation approach is flexible, regardless of the desired target distribution
and the diffusion density function. It is inefficient when the predefined target distribution yields
serious smearing at the edges. Thus the initial predefined distribution should be considered as
a variable. It seems that this method ultimately leads to overshooting in the obtained intensity
distribution and it’s important to control the strength of the compensation.

In conclusion, we completely accomplished the task of reflector design under the specular
reflection assumption and the evaluation of optical design. Problems including scattering effect
are studied and still need improvement.

6.2 Future work
The work is not finished yet, and a couple of issues remain to be investigated:

• The first one is how to determine the initial predefined target for the iterative compensation
approach. As we have seen in Chapter 5, this initial guess has significant effect on the final
results and simply using the desired target is not always a wise choice.

• Moreover, all the examples in this thesis are somewhat unrealistic: Usually the intensity of
the source changes according to the emitted angle, rather than uniform. The desired target
distributions we used are also ideal. The characterisation of the scattering property is itself
a complicated topic. Thus we cannot adopt a simple function to describe the scattering.
Considering these reasons, it is necessary to test our algorithms on some real data sets.

• Another challenge is to extend our design to a finite source. This requires totally different
techniques and will be much more difficult.
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