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A B S T R A C T

The onset of frictional motion is mediated by rupture-like slip fronts, which nucleate locally
and propagate eventually along the entire interface causing global sliding. The static friction
coefficient is a macroscopic measure of the applied force at this particular instant when
the frictional interface loses stability. However, experimental studies are known to present
important scatter in the measurement of static friction; the origin of which remains unexplained.
Here, we study the nucleation of local slip at interfaces with slip-weakening friction of random
strength and analyze the resulting variability in the measured global strength. Using numerical
simulations that solve the elastodynamic equations, we observe that multiple slip patches
nucleate simultaneously, many of which are stable and grow only slowly, but one reaches a
critical length and starts propagating dynamically. We show that a theoretical criterion based
on a static equilibrium solution predicts quantitatively well the onset of frictional sliding.
We develop an efficient Monte-Carlo model by adapting the theoretical criterion and study
the variability in global strength distribution caused by the stochastic properties of local
frictional strength. The results demonstrate that an increasing spatial correlation length on
the interface, representing geometric imperfections and roughness, causes lower global static
friction. Conversely, smaller correlation length increases the macroscopic strength while its
variability decreases. We further show that randomness in local friction properties is insufficient
for the existence of systematic precursory slip events. Random or systematic non-uniformity in
the driving force, such as potential energy or stress drop, is required for arrested slip fronts.
Our model and observations provide a necessary framework for efficient stochastic analysis of
macroscopic frictional strength and establish a fundamental basis for probabilistic design criteria
for static friction.

. Introduction

Static friction is the maximal shear load that can be applied to an interface between two solids before they start to slide over
ach other. The famous Coulomb friction law (Amontons, 1699; Coulomb, 1785; Popova and Popov, 2015) states that static friction
s proportional to the normal load with the friction coefficient being the proportionality factor. The friction coefficient is generally
eported as function of the contacting material pair, which is often misinterpreted as the friction coefficient being a material
pair) property. While proportionality of friction to normal load is mostly valid, the friction coefficient is geometry-dependent
nd thus varies for different experimental setups with the same material pair (Ben-David and Fineberg, 2011). The underlying
ause for this observation is the mechanism governing the onset of frictional sliding, which has been shown to be a fracture-like
henomenon (Svetlizky and Fineberg, 2014; Kammer et al., 2015; Svetlizky et al., 2020; Rubino et al., 2017). The geometry and
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deformability of the solids lead to a non-uniform stress state along the interface. As a consequence, local frictional strength is
reached at a critical point and slip nucleation starts, from where it extends in the space–time domain – just like a crack – until the
entire interface transitioned and global sliding occurs. This process is well-known in the earthquake mechanics and rock friction
community (Okubo and Dieterich, 1984; Dieterich, 1992; Dieterich and Kilgore, 1996; McLaskey, 2019) and shows clearly that the
macroscopic friction coefficient does not provide a measure for the local friction coefficient (i.e., the material property) if the sample
is larger than a characteristic nucleation length. In such over-sized experiments, the observed friction coefficient is directly affected
by boundary conditions and, hence, presents a size effect.

Variations in the static friction force, however, do not only occur because of changes in the loading configuration. Experiments
have shown that the measured friction force varies also from one experiment to another when the exact same setup and exact same
specimens are used. For instance, Rabinowicz (1992) showed that the static friction coefficient of a gold–gold interface, measured
by a tilting plane friction apparatus, varies from 0.32 to 0.80 for normal load 75 g. Similar but to a lesser extent, Ben-David and
ineberg (2011) also observed variations in the static friction coefficient of glassy polymers when the loading configuration was
ixed.

While these variations are not often reported, they are an important factor in the absence of a complete and consistent theory for
riction (Spencer and Tysoe, 2015). If (seemingly) equivalent experiments lead to a large range of observations without consistent
rends, it is challenging to isolate the relevant from the irrelevant contributions and, therefore, nearly impossible to create a
undamental understanding of the underlying process. Even though the presence of these large variations has important implications
or the study of friction, current knowledge about the origin and properties of these observed variations in macroscopic friction
emains limited.

One possible origin is randomness in local friction properties. Interfaces have been shown to consist of an ensemble of
iscrete micro-contacts (Bowden and Tabor, 1950; Dieterich and Kilgore, 1994; Sahli et al., 2018), which are created by surface
oughness (Thomas, 1999; Hinkle et al., 2020) when two solids are brought into contact. This naturally leads to a system with
andom character, where micro-contacts of random size are distributed randomly along the interface (Greenwood et al., 1966;
ersson, 2001; Hyun and Robbins, 2007; Yastrebov et al., 2015). Since frictional strength is directly related to the cumulative
ontact area of these micro-contacts (Bowden and Tabor, 1950; Greenwood et al., 1966), and the micro-contacts are the result of
andom surface roughness, the local frictional strength is likely also random.

Surprisingly, the effect of interfacial randomness on friction remains largely unexplored. Most of previous work is focused on
ow (random) surface roughness is related to various friction phenomenology including rate-dependence (Li et al., 2013; Lyashenko
t al., 2013), local pressure excursions within lubricated contact (Savio et al., 2016), chemical aging (Li et al., 2018), or the existence
f static friction (Sokoloff, 2001). However, only few studies have considered how interfacial randomness causes variations in these
bservations. Ampuero et al. (2006) and Ripperger et al. (2007, 2008) analyzed the effect of stochastic initial stress heterogeneities
n the critical load for earthquake ruptures, which are essentially localized slip events on tectonic faults. Further, Amon et al. (2017)
howed that systems with a nonuniform initial stress state with long range coupling are characterized by two regimes: at low loading,
mall patches of the system undergo sliding in an uncorrelated fashion; at higher loading, instabilities occur at regular intervals over
atches of increasing size – just like confined stick–slip events (Kammer et al., 2015; Bayart et al., 2016) – and eventually span the
hole system. Geus et al. (2019) simulated interface asperities as an elasto-plastic continuum with randomness in its potential energy
nd show that the stress drop during a stick–slip cycle is a stochastic property which vanishes with increasing number of asperities.
hese results demonstrate well the stochastic character of macroscopic friction due to random interface properties. However, a
omplete understanding of the effects of interfacial randomness on the variability of macroscopic static friction, e.g., the friction
oefficient, remains missing.

Here, we address this gap of knowledge and aim at a better understanding of the stochastic properties of static friction. We
resent a combined numerical and theoretical study that links randomness of local friction properties with observed variability
n macroscopic strength. Using dynamic simulations, we will show that the macroscopic friction threshold is attained when a local
lipping area, of which many can co-exist, reaches a critical length and nucleates the onset of friction. This nucleation patch becomes
nstable and propagates across the entire interface causing global sliding. We will then show that a quasi-static equilibrium theory,
hich takes an integral form, predicts quantitatively well the critical stress level that causes nucleation of global sliding. Based on

his theoretical model, we will develop fast and accurate Monte Carlo simulations using a Fourier representation of the integral
quations, and demonstrate the extent of variability in macroscopic static friction based on random interface strength with various
orrelation lengths. Finally, we will show that a decreasing interfacial correlation length leads to higher macroscopic strength with
ecreased variability.

This paper is structured as follows. First, we provide a problem statement in Section 2 including a description of the physical
ystem, the stochastic properties, and our approach to generate random strength fields. In Section 3, we present the numerical
ethod used to simulate the onset of frictional sliding and compare simulation results of critical stress leading to global sliding
ith predictions based on a theoretical model. This model is then used in an analytical Monte Carlo study, which is developed and
resented in Section 4. The implications of our model assumptions as well as the model results are discussed in Section 5. Finally,
e provide a conclusion in Section 6.

. Problem statement

In this section, we first provide a description of the physical problem that we consider throughout this paper. We then describe
2

he stochastic properties of the strength profile along the interface and, finally, explain how we generate these random fields.
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Fig. 1. Problem statement. (a) A frictional interface (blue line) of strength 𝜏f (𝛿, 𝑥) embedded within two semi-infinite elastic solids, which are periodic in 𝑥
with period 𝐿 and infinite in 𝑦. A uniform loading 𝜏0(𝑡) is applied. (b) The mean interface frictional traction ⟨𝜏⟩(𝑡) increases linearly with time 𝑡 up to the onset
f frictional motion when the stress drops from its critical value 𝜏cr to a kinetic level 𝜏kin. (c) The constitutive relation of the frictional interface is a linear
lip-weakening law 𝜏f (𝛿) with random peak strength 𝜏p(𝑥) and constant weakening rate 𝑊 (see Eq. (1)). (d) 𝜏p(𝑥) is a random field with spatial correlation 𝐶(𝜉)
inset) and probability density function 𝑓 (𝜏p) (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)

.1. Physical problem

We study the macroscopic strength of a frictional interface. Our objective is to provide a fundamental understanding of the effect
f local variations in frictional strength on the macroscopic response. For this reason, we focus on the simplest possible problem —
ithout oversimplifying the constitutive relations of the bulk and the interface. Specifically, we consider a two-dimensional (2D)

n-plane system consisting of two semi-infinite elastic solids, as shown in Fig. 1a . The domain is infinite in the 𝑦 direction and
eriodic in 𝑥 with period 𝐿. Both materials have the same elastic properties.

We apply a uniform shear load 𝜏0(𝑡) that increases quasi-statically with time (see Fig. 1b). Once the mean interfacial shear stress
𝜏⟩(𝑡) = ∫ 𝐿

0 𝜏(𝑥)∕𝐿d𝑥 reaches the macroscopic strength of the interface 𝜏cr , the interface starts to slide and the frictional strength
uddenly reduces to its kinetic level 𝜏kin. This observed reduction in shear stress is typically associated with friction-weakening
rocesses, which may depend on various properties, such as slip, slip rate, and interface state. The critical shear stress 𝜏cr , if divided
y the contact pressure, corresponds to the static macroscopic friction coefficient. Similarly, 𝜏kin is proportional to the kinetic friction
oefficient.

These macroscopic observations depend on the local interface properties, which are the peak strength 𝜏p(𝑥), and residual strength
r (𝑥). As we will show, the local properties are generally different from the macroscopic properties; particularly, in the case of
on-uniform stress or strength. While rate-and-state friction laws (Dieterich, 1979; Ruina, 1983; Rice and Ruina, 1983) provide a
enerally more realistic description of the evolution of local frictional strength during nucleation, we apply here a more simple
inear slip-weakening law. This allows us to predefine important quantities, such as the weakening rate, and, hence, enables us to
tudy unequivocally the effects of randomness on the macroscopic friction. The implications of this simplification are discussed in
ection 5. The linear slip-weakening law, which is shown in Fig. 1c and is given by

𝜏f (𝛿) = 𝜏r +𝑊 (𝑑c − 𝛿)𝐻(𝑑c − 𝛿) , (1)

here 𝛿(𝑥) is local slip, 𝑑c(𝑥) is a characteristic length scale, and 𝑊 (𝑥) = (𝜏p(𝑥) − 𝜏r (𝑥))∕𝑑c(𝑥) is the weakening rate. 𝐻(.) is the
eaviside function. In a symmetric system, this friction law is equivalent to 𝜏f (𝛿) = 𝜇(𝛿)𝑝, where 𝜇(𝛿) = 𝜇k +𝐻(𝑑c − 𝛿)(𝜇s − 𝜇k )∕𝑑c,
ecause contact pressure 𝑝 remains constant over time. Hence, we find local properties of 𝜏r = 𝜇k𝑝 and 𝜏p = 𝜇s𝑝.

We consider a heterogeneous system with local peak strength 𝜏p(𝑥) being a random field, as further described in Section 2.2.
o reduce complexity of the problem, we assume uniform residual strength1 𝜕𝑥𝜏r = 0 and uniform weakening rate 𝜕𝑥𝑊 = 0. The
ariation in local peak strength is thought to represent possible heterogeneity in the material, but also the effect of surface roughness,
hich leads to a real contact area that consists of an ensemble of discrete contact points with varying properties. The implications
f this approach will be discussed in depth in Section 5.

1 We use 𝜕 as short notation for partial derivative with respect to 𝑖.
3
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Fig. 2. Stochastic properties of the random peak strength field 𝜏p(𝑥). (a) The random variable 𝜏p is generated by applying a nonlinear mapping 𝐹 −1◦𝛷(𝑥) (Eq. (2))
nto the Gaussian random variable 𝑧. Two colored dots inked by a line represent a (𝑧, 𝜏p) pair with equal cumulative density 𝐹 (𝜏p) = 𝛷(𝑧), which is the criterion
mposed by the nonlinear mapping. (b) Black line is the normalized input spectral density function 𝑔(𝑘)∕𝑔(0) (Eq. (4)). Gray line is the empirical spectral density
unction of 𝜏p(𝑥). �̄� is the truncation frequency and 𝜆 = 2𝜋∕𝜉0 is the cutoff frequency.

.2. Stochastic properties of the frictional interface

The local peak strength 𝜏p(𝑥) is modeled as a stationary non-Gaussian random field with specified cumulative distribution function
(𝜏p) and corresponding probability density 𝑓 (𝜏p), as shown in Fig. 1d. The random field is defined by the nonlinear mapping

𝜏p(𝑥) = 𝐹−1
(

𝛷
(

𝑧(𝑥)
)

)

, (2)

here 𝑧(𝑥) is Gaussian with zero mean and unit variance and 𝛷 its cumulative distribution, depicted in Fig. 2a-left. 𝐹 and 𝛷 are
onotonic by definition, so their inverse exist, which can be used to prove that 𝑃

(

𝜏p(𝑥) ≤ 𝜏
)

= 𝐹 (𝜏). Further, with 𝜏p being the
local peak strength of the interface, it needs to satisfy some physical requirements. First, the peak strength is always higher than
the residual strength, i.e., 𝜏min

p ≥ 𝜏r . Second, it maximum value is limited by the material properties. For this reason, we require that
𝜏p ∈ (𝜏min

p , 𝜏max
p ), which we achieve by setting 𝐹 (𝜏p) as a Beta cumulative distribution function (see Fig. 2a-right).

The spatial distribution of 𝑧(𝑥) is specified by its power spectral density 𝑔(𝑘), which corresponds to the Fourier transform of the
correlation function 𝐶𝑧(𝜉), i.e.,

𝑔(𝑘) ≡ ∫

+∞

−∞
𝐶𝑧(𝜉)𝑒−𝑖𝑘𝜉d𝜉 , (3)

where 𝑘 is the angular wave number. We assume that 𝑧(𝑥) has a power spectral density

𝑔(𝑘) ∝ (𝑘2 + 𝜆2)−4 , (4)

where 𝜆 is the cutoff frequency, above which the spectral density decays as a power law ∼ 𝑘−8 (see Fig. 2b). The correlation length
𝜉0 is a measure of memory of the random field; the longer 𝜉0 the longer the memory. 𝜉0 is inversely proportional to 𝜆, and we define2

t as 𝜉0 = 2𝜋∕𝜆. The assumption of using this specific spectral density and probability distribution are discussed in Section 5.3.

.3. Random field samples generation

The samples of random field 𝜏p(𝑥) are generated as follows. First, the Gaussian random field 𝑧(𝑥) is generated using a spectral
epresentation

𝑧(𝑥) =
𝐽
∑

𝑗=1
𝜎𝑗

(

𝐴𝑗cos(𝑘𝑗𝑥) + 𝐵𝑗sin(𝑘𝑗𝑥)
)

, (5)

where 𝐴𝑗 and 𝐵𝑗 are independent Gaussian random variables with zero mean and unit variance and modal angular wave-number
is 𝑘𝑗 = 2𝜋𝑗∕𝐿. The fundamental wavelength of the field 2𝜋∕𝑘1 = 𝐿 is chosen such that it corresponds to the domain size 𝐿, which
implies that 𝑧(𝑥) is periodic over 𝐿, and so is 𝜏𝑝(𝑥). The modal variance 𝜎2𝑗 ∝ 𝑔(𝑘𝑗 ) corresponds to the discrete spectral density,
which is normalized to assure that 𝑧 has unit variance

𝜎2𝑗 =
𝑔(𝑘𝑗 )

∑𝐽
𝑗=1 𝑔(𝑘𝑗 )

. (6)

Due to the discrete representation of 𝑧(𝑥), we apply a truncation frequency that is considerably larger than the cutoff frequency
�̄� ≡ 𝑘𝐽 = 2.5𝜆. This ensures that most of the spectral power is preserved:

∫ �̄�
0 𝑔(𝑘)d𝑘

∫ ∞
0 𝑔(𝑘)d𝑘

≈ 0.9997 (7)

2 The correlation length does not have a precise definition. And alternative definition is 𝐶(𝜉 ) = exp(−1).
4
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Further increase in �̄� would include additional high frequency modes but with negligible amplitudes. Finally, once 𝑧(𝑥) has been
generated, we apply the nonlinear mapping 𝐹−1◦𝛷 (Eq. (2) and visualized in Fig. 2a) and obtain the random field 𝜏p(𝑥). Fig. 1d shows
a sample of 𝜏p(𝑥) generated using the described procedure with corresponding correlation function and probability density. Since the
correlation function of 𝑧 is positive, 𝐶𝑧(𝜉) > 0, it is not greatly affected by the nonlinear mapping 𝐹−1◦𝛷 and 𝐶𝑧(𝜉) ≈ 𝐶𝜏p (𝜉) (Grigoriu,

995, p.48) and, therefore, the empirical spectral density of 𝜏p(𝑥) corresponds to the input spectral density 𝑔(𝑘) (see Fig. 2b).

. Dynamic simulations

In the following, we will first present the numerical method and model setup applied in our simulations of the onset of friction.
e then provide a theoretical model to describe the simulations and present a comparison between the theoretical predictions with

he numerical results.

.1. Numerical model

We model the physical problem, as described in Section 2.1, with the Spectral Boundary Integral Method (SBIM) (Geubelle and
ice, 1995; Breitenfeld and Geubelle, 1998). This method solves efficiently and precisely the elasto-dynamic equations of each half
pace. The spectral formulation applied in SBIM naturally provides periodicity along the interface. The half spaces are perfectly
lastic and we apply a shear modulus of 𝐺 = 1 GPa, Poisson’s ratio of 𝜈 = 0.33 and density 𝜌 = 1170 kg∕m3, and impose a plane-

stress assumption. While we will report our results in adimensional quantities, we note that these parameters correspond to the
static properties of glassy polymers, which have been widely used for friction experiments (Svetlizky and Fineberg, 2014; Rubino
et al., 2017).

The interface between the two half spaces is coupled by a friction law as given by Eq. (1). The friction law corresponds essentially
to a cohesive law, as known from fracture-mechanics simulations, but applied to the tangential direction. It describes the evolution of
local strength as a function of slip. We apply peak strength 𝜏p(𝑥) as a random field, following the description provided in Section 2.2,
and constant 𝜏r . 𝜏p(𝑥) follows a Beta distribution with 𝛼 = 1.5 and 𝛽 = 3. We impose a maximum value for relative peak strength
f max(𝜏p(𝑥) − 𝜏r ) = 1.66 MPa and minimum value of min(𝜏p(𝑥) − 𝜏r ) = 0.66 MPa. Therefore, the random field has a mean value of
𝜏p − 𝜏r

⟩

= 1 MPa and standard deviation of 0.2 MPa. We further apply a constant slip-weakening rate of 𝑊 = 0.5 TPa∕m, which
s representative for glassy polymers (Svetlizky et al., 2020). Finally, a slowly increasing uniform shear stress 𝜏0(𝑡) and constant
niform normal stress 𝑝 is applied along the entire interface.

We use a repetition length of 𝐿 = 0.1 m, which is, as we will show, considerably larger than the characteristic nucleation length
cale. The interface is discretized by 512–1024 nodes. We verified convergence with respect to discretization, loading rate, and time
tep.

The results of a representative simulation are shown in Fig. 3. The 𝜏p(𝑥) profile has many local minima (see Fig. 3c). Depending
n their value, these minima cause localized slip, as evidenced by bright blue vertical stripes over most of the time period shown
n Fig. 3b-right. These localized slip patches grow slowly with increasing loading, which is difficult to see for most patches in
ig. 3b-right. Growth is easiest observed for the slip patch at 𝑥∕𝐿 ≈ 0.75. Incidentally, this patch grows enough to reach a critical
ize from which on the patch becomes unstable, marked by a black dot, and starts growing dynamically. This dynamic propagation,
ee green–yellow area in Fig. 3a enlarged from Fig. 3b-right, does not stop and, therefore, causes sliding along the entire interface —
ence global sliding. The effect on the macroscopic applied force on the mean interfacial shear stress ⟨𝜏⟩(𝑡) is shown in Fig. 3b-left.
t the precise moment when the slip patch becomes unstable, marked by a black dot, ⟨𝜏⟩(𝑡) starts decreasing rapidly. The maximum
alue, denoted 𝜏cr , represents the macroscopic strength of the interface.

The simulation shows that macroscopic strength is not reached when the first point along the interface starts sliding but when the
ost critical slip patch becomes unstable, starts propagating dynamically, and ‘‘breaks’’ the entire interface. Therefore, the criterion
etermining macroscopic strength is non-local and depends on the stability of local slip patches. In the following section, we will
resent a theoretical description of this nucleation process and provide a criterion for the limit of macroscopic strength.

.2. Theory for nucleation of local sliding

During the nucleation process, a weak point along the interface starts sliding. Due to local stress transfer, the size of this slipping
rea grows continuously until it reaches a critical size and unstable interface sliding occurs (Campillo and Ionescu, 1997). This
rocess is equivalent to the instability of a cohesive crack, which can be expressed and solved as an eigenvalue problem (Li and
iang, 1993; Bažant and Li, 1995; Dempsey et al., 2010). In this section, we will adapt the criterion developed by Uenishi and
ice (2003), which is shortly summarized in Appendix A, to describe and predict the limits of stable slip-area growth. Uenishi and
ice (2003) considered a similar system with two main differences to the problem studied here. First, in their case, the interface
trength is uniform and the applied load is non-uniform. Appendix A shows that both problems result in the same equation for the
roblem statement and thus lead to the same nucleation criterion. Second, Uenishi and Rice (2003) considered a system with an
solated non-uniformity in the applied load. In other words, the applied stress was mostly uniform but with one well-contained local
ncrease. Therefore, the location of nucleation is known in advanced. In our system, where the non-uniform property is random,
5

he location is unknown. We will address this difference here and discuss it further in Section 5.



Journal of the Mechanics and Physics of Solids 147 (2021) 104242G. Albertini et al.
Fig. 3. Representative numerical simulation of the onset of frictional sliding along an interface with random peak strength. (a) Space–time diagram of slip rate
along the interface. Time is normalized by the time of friction onset 𝑇 . Nucleation occurs at 𝑥∕𝐿 ≈ 0.75. (b-right) Same space–time diagram as in (a) with larger
time span. Nucleation is marked by a black dot at 𝑥∕𝐿 ≈ 0.75 and 𝑡∕𝑇 = 1. (b-left) Evolution of average interface stress ⟨𝜏⟩(𝑡) normalized by its maximum value
𝜏cr . This corresponds to Fig. 1b. (c) Stress state 𝜏(𝑥) at 𝑡∕𝑇 = 1 and random profile of peak strength 𝜏p(𝑥) for simulation shown in (a–b). The correlation length
is 𝜉0∕ℎn = 0.25. The size of the critical nucleation patch ℎn is marked by black arrows. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Uenishi and Rice (2003) showed that on interfaces governed by linear slip-weakening friction (Eq. (1)), there is a unique critical
length for stable growth of the slipping area, which can be approximated by

ℎn ≈ 1.158𝐺
∗

𝑊
, (8)

where 𝐺∗ = 𝐺∕(1−𝜈) for mode II plane-stress ruptures, assuming the stress within ℎn has not attained the residual value 𝜏r anywhere.
Eq. (8) shows that ℎn depends only on the shear modulus 𝐺∗ and the slip-weakening rate 𝑊 . Most importantly, the critical length
is independent of the shape of the non-uniformity in the system. Specifically to our case, it does not depend on the functional form
of 𝜏p(𝑥). Since we have homogeneous elastic solids and a uniform slip-weakening rate 𝑊 , the critical size ℎn is unique and uniform
along the entire interface.

The important question for our problem, however, is to determine the level of critical stress that causes a nucleation patch to
reach ℎn and initiate global sliding. The solution for the stress level leading to nucleation, as derived by Uenishi and Rice (2003),
is given by Eq. (A.7), and can be rewritten in terms of 𝜏p(𝑥) and ℎn as

𝜏n(𝑥) ≈ 0.751∫

+1

−1
𝜏p

(

ℎn
2
𝑠 + 𝑥

)

𝑣0(𝑠) d𝑠 , (9)

where 𝑥 is the center location of the nucleation patch and 𝑣0(𝑠) ≈ (0.925 − 0.308𝑠2)
√

1 − 𝑠2 is the first eigenfunction of the elastic
problem. Note that the transformation applied to the argument of 𝜏p(𝑥) results in the integral being computed over the critical
nucleation patch size ℎ . Eq. (9) shows that the nucleation stress, which leads to a nucleation patch of size ℎ , does clearly depend
6
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Fig. 4. Verification of nucleation criterion on numerical simulations. (a) The random profile of 𝜏p(𝑥) from simulation shown in Fig. 3 is depicted by dashed
ray line. The nucleation stress 𝜏n(𝑥) computed from 𝜏p(𝑥) by Eq. (9) is shown as solid blue line. The point of nucleation given by Eq. (10), i.e., (𝑥cr , 𝜏cr ), is

marked by a black dot. (b) Comparison of critical length from theoretical prediction by Eq. (10) 𝜏predcr as shown in (a) with values measured from numerical
simulations 𝜏simcr as illustrated in Fig. 3. 20 simulations are computed for each 𝜉0∕ℎn value. (c) Comparison of nucleation location from theoretical prediction 𝑥predcr

ith simulation result 𝑥simcr for the same 60 simulations as shown in (b). (b–c) Gray line indicates slope of 1.

n the shape of 𝜏p(𝑥). Eq. (9) assumes that stresses within the nucleation patch have not attained the residual strength yet. Thus,
he assumption of small-scale yielding does not hold, and the Griffith criterion for crack propagation does not apply. Note that this
pproach is based on a continuum description and does not model the failure of individual asperities where locations in between
re contact free and hence have zero frictional strength, as studied by Aghababaei et al. (2016) and Barras et al. (2019).

As stated earlier, the nucleation stress 𝜏n(𝑥) was derived for a contained non-uniformity, for which we know the location.
herefore, 𝜏n(𝑥) corresponds to the critical stress of the system. In our system, however, 𝜏p(𝑥) is random and multiple nucleation
atches might slowly grow. Determining the critical stress 𝜏cr of the system requires computing the nucleation stress 𝜏n for each
ucleation patch and identifying the critical one. To address this aspect, we follow the approach by Ampuero et al. (2006) and
ompute Eq. (9) as a weighted moving average over the entire interface, and define the critical stress to be its minimum (see
ig. 4a). Therefore, we define the critical stress 𝜏cr as

𝜏cr = 𝜏n(𝑥cr ) such that 𝜏cr < 𝜏n(𝑥) ∀𝑥 ≠ 𝑥cr . (10)

or simplicity, we refer to this definition also as 𝜏cr = min(𝜏n(𝑥)) and 𝑥cr = arg min(𝜏n(𝑥)). While it is possible, but not very likely, to
ave multiple minima of 𝜏n with the same amplitude, this does not affect the resulting 𝜏cr . However, multiple 𝑥cr could coexist which
ould result in multiple slip patches becoming unstable simultaneously. By adopting Eq. (9) and defining Eq. (10), we essentially
ssume that there is no interaction between nucleation patches. We will verify the validity of this assumption in the following
ection.

.3. Results

We compare the results from numerical simulations, as described in Section 3.1, with the theoretical prediction from Section 3.2
y analyzing simulations with random 𝜏p(𝑥) generated using the method described in Section 2.3. For each of the three different
orrelation lengths 𝜉0∕ℎn = 0.25, 0.5, and 2.0 we run 20 simulations. The system size is fixed and chosen such that it is considerably
arger than the nucleation length, i.e., ℎn∕𝐿 = 0.034.

A representative example is shown in Fig. 3. The size of ℎn∕𝐿 is indicated in Fig. 3c and appears to provide a reasonable prediction
or the nucleation patch size as observed in Fig. 3a. Further comparison is given in Fig. 4a. First, we illustrate the theoretical
rediction. The nucleation stress 𝜏n(𝑥) (solid blue line) is computed from 𝜏p(𝑥) (gray dashed line) using Eq. (9), and 𝜏cr is, according
o Eq. (10), the minimum of 𝜏n(𝑥) (marked by black dot). We find the location of nucleation to be 𝑥cr∕𝐿 ≈ 0.75, which corresponds

to our observation from the numerical simulation, as seen in Fig. 3.
A more precise and systematic comparison is provided in Fig. 4b&c. We compare the predicted critical stress 𝜏predcr with the

measured value from dynamic simulations 𝜏simcr . We compute 𝜏predcr as described above with Eq. (10), and as illustrated in Fig. 4a.
e further find 𝜏sim = 𝑇 𝜕 𝜏 , where 𝜕 𝜏 is the applied loading rate and 𝑇 is the time at which the mean interface stress, ⟨𝜏⟩(𝑡),
7
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is maximal (see Fig. 3b-left). Comparison of 𝜏predcr with 𝜏simcr is shown in Fig. 4b for all 60 simulations. The results show that the
prediction works generally well. For decreasing 𝜉0∕ℎn the prediction becomes slightly less accurate with a tendency to over-predict
the critical value. The results further show that the predicted and measured critical stress 𝜏cr increases with decreasing 𝜉0∕ℎn.

While the location of nucleation is not relevant for the apparent global strength of our system, we compare the predicted and
imulated 𝑥cr for further evaluation of the developed theory. The comparison shown in Fig. 4c uses 𝑥predcr , as given by Eq. (10) and

shown for an example in Fig. 4a, and 𝑥simcr as found by analyzing the simulation data as illustrated in Fig. 3a&b-right. The data
shows that the prediction works well for most of the simulations. For 8 simulations, 6 of which have 𝜉0∕ℎn = 0.25, the prediction
oes not work. However, as shown in Fig. 4b, 𝜏cr , which is the quantity of interest here, is correctly predicted for all of these cases.
he reason for this discrepancies are likely second-order effects, as we will discuss in Section 5.

Overall, the results show that 𝜏cr is quantitatively well predicted by the theory presented in Section 3.2. This allows us to
tudy systematically the effect of randomness in interface properties by applying the theoretical model in analytical Monte Carlo
imulations.

. Analytical Monte Carlo study

In the following section, we introduce Monte Carlo simulations, which are based on the theoretical framework for nucleation
f frictional ruptures in a random field of frictional strength 𝜏p(𝑥), as derived in Section 3.2. The effect of correlation length 𝜉0 on
he effective frictional strength 𝜏cr (Eq. (10)), and its probability distribution 𝑓 (𝜏cr ), is studied, while keeping all other properties
onstant. A Monte Carlo study based on the full dynamic problem (Section 3.1) would be computationally daunting. However, the
heoretical framework allows us to evaluate 𝜏cr very efficiently and has been validated by 20 full dynamic simulations for each
onsidered 𝜉0 (see Fig. 4).

.1. Monte Carlo methodology

The effective frictional strength 𝜏cr = min(𝜏n(𝑥)) requires the computation of the nucleation strength 𝜏n(𝑥), which involves a
onvolution of the local peak strength 𝜏p(𝑥) with the eigenfunction 𝑣0, given in Eq. (9). Considerable computation time can be saved
y using a spectral representation of the random field 𝜏p(𝑥):

𝜏p(𝑥) =
𝐽
∑

𝑗=0
𝜏p(𝑘𝑗 )𝑒

−𝑖𝑘𝑗𝑥, (11)

here ̃ signifies that 𝜏p(𝑥) is an approximation of 𝜏p(𝑥) and the number of frequencies 𝐽 is chosen such that the approximation error
𝜏p − 𝜏p| is negligible. 𝜏p(𝑘𝑗 ) is the discrete Fourier transform of 𝜏p(𝑥)

𝜏p(𝑘𝑗 ) = ∫

𝐿

0
𝜏p(𝑥)𝑒

−𝑖𝑘𝑗𝑥d𝑥, (12)

here 𝜏p(𝑥) is generated using the procedure described in Section 2.3. By substituting Eq. (11) into Eq. (9) the nucleation strength
onvolution becomes a dot product:

𝜏n(𝑥) ≈ 0.751∫

+1

−1

𝐽
∑

𝑗=0
𝜏p(𝑘𝑗 )𝑒

−𝑖𝑘𝑗 (𝑠 ℎn∕2+𝑥)𝑣0(𝑠)d𝑠

≈ 0.751
𝐽
∑

𝑗=0
𝜏p(𝑘𝑗 )𝑔𝑗 (𝑥)

(13)

here 𝑔𝑗 (𝑥) = ∫ +1
−1 𝑒−𝑖𝑘𝑗

(

ℎn
2 𝑠+𝑥

)

𝑣0(𝑠)d𝑠 is the modal convolution term, which, being independent of the sample specific functional
form of 𝜏p(𝑥), can be pre-computed. This formulation allows for efficient and precise evaluation of the effective frictional strength
𝜏cr = min 𝜏n(𝑥) for a large number of samples 𝑁 = 10,000, such that the probability distribution 𝑓 (𝜏cr ) and its evolution as function
of the correlation length 𝜉0 can be accurately studied.

4.2. Monte Carlo results

Prior to presenting the numerical results we provide some intuition of the effect of correlation length on the nucleation strength
𝜏n based on probabilistic arguments. By exploiting the stationarity of 𝜏p and 𝜏n it is possible to derive an analytical expression of the
expectation of the nucleation strength E[𝜏n] and its variance Var[𝜏n] as function of the corresponding statistical properties of local
strength, E[𝜏p], Var[𝜏p] and 𝜉0∕ℎn (see Appendix B).

One interesting finding is that the expectation is not affected by 𝜉0∕ℎn: E[𝜏n] = E[𝜏p] (see derivation in Eq. (B.2)). The expression
for Var[𝜏n], however, involves a double integral of the product of the correlation function 𝐶(.) and the eigenfunction 𝑣0(.), which
an be evaluated numerically (see derivation in Eq. (B.3)).

For perfect correlation, i.e., 𝜉0∕ℎn = ∞, 𝐶(.) becomes a constant, thus Var[𝜏n] = Var[𝜏p]. Conversely, in the limit of 𝜉0 ≪ ℎn, the
ouble integral in Eq. (B.3) scales with 𝜉 ∕ℎ , thus Var[𝜏 ] ∝ Var[𝜏 ]𝜉 ∕ℎ (see derivation in Eq. (B.5)).
8
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Fig. 5. Analytical Monte Carlo study. (a) The random local friction strength 𝜏p(𝑥) is generated with different correlation lengths 𝜉0. For visual purposes, the
same random seed is used for the 4 cases shown. (b) The corresponding local nucleation strength 𝜏n(𝑥) is computed using (Eq. (9)). The probability densities

of the random fields 𝜏n, min(𝜏n) and 𝜏p are reported on the right of (a) and (b), respectively and computed using 𝑁 = 10,000 samples. 𝑓 (min(𝜏p)) and 𝑓 (𝜏n)
epend on 𝜉0. (c) Probability density of the global friction strength 𝜏cr . (d) Probability density of the position of the critical nucleation patch 𝑥cr . Note that the
eed is not fixed anymore for the samples used in (c) and (d).

Fig. 6. Variation of nucleation strength 𝜏n (a) and effective friction strength 𝜏cr (b) as function of correlation length 𝜉0. Solid lines are the results from the
nalytical Monte Carlo study with 𝑁 = 10,000 (same data as Fig. 5). Data-points for 𝜉0∕ℎn → 0 are based on analytical considerations and connected to the
nalytical Monte Carlo results by dashed lines. Diamonds are results from 60 dynamic simulations (same data as Fig. 4).

We consider a range of correlation lengths 𝜉0∕ℎn = {0.25, 0.5, 1.0, 2.0}, while all other properties remain constant. Fig. 5a-left
hows one sample of 𝜏p(𝑥) for each considered 𝜉0. For clarity of visualization, in Fig. 5a we use the same seed when generating the
andom fields. Hence, the fields have the same modal random amplitudes 𝐴𝑗 and 𝐵𝑗 , see Eq. (5), but have different modal spectral
ensities 𝜎2𝑗 , corresponding to the different 𝜉0. For this reason, all shown samples have a similar spatial distribution and the effect
f varying 𝜉0 can be clearly observed. By definition, all 𝜏p(𝑥) samples are drawn from the same probability distribution 𝑓 (𝜏p) (see
ig. 5a-center). Decreasing 𝜉0, moves the probability density of its minimum 𝑓 (min(𝜏p)) towards the lower bound 𝜏min

p = 0.66⟨𝜏p⟩
see Fig. 5a-right), because with lower correlation lengths it is more likely to visit a broad range of 𝜏p values.

Fig. 5b-left shows the corresponding nucleation strength 𝜏n(𝑥) for each of the local frictional strength fields 𝜏p(𝑥) presented in
ig. 5a, computed using Eq. (13). As mentioned before, 𝜏n is essentially a weighted moving average of 𝜏p with window size ℎn (see
q. (9)). Thus, most of the high frequency content of 𝜏p disappears and the effect of 𝜉0 on 𝜏n is more subtle. One interesting feature is
n the minima and maxima of 𝜏n: increasing 𝜉0 causes lower minima and higher maxima, because the moving average is effectively
omputed over an approximately constant field 𝜏n ≈ 𝜏p. Inversely, decreasing 𝜉0 causes the opposite effect and 𝜏n ≈ ⟨𝜏p⟩.

This effect is more clearly visible by considering the distribution 𝑓 (𝜏n) shown in Fig. 5b-right. Increasing 𝜉0 effectively puts more
eight onto the tails of 𝑓 (𝜏n) (see 𝜉0∕ℎn = 2.0 in Fig. 5b-right), and in the limiting case of 𝜉0∕ℎn → ∞ the distribution of 𝜏n will be

he same as the one of 𝜏p (analogous to Eq. (B.4)). On the other hand, decreasing 𝜉0 puts weight on its mean ⟨𝜏p⟩, making 𝑓 (𝜏n)
imilar to a Gaussian (see 𝜉0∕ℎn = 0.25 in Fig. 5b-right) with variance proportional to 𝜉0 (see Eq. (B.5)). In the limit 𝜉0∕ℎn → 0
he distribution of 𝜏n becomes a Dirac-𝛿 centered at ⟨𝜏p⟩. The described dependence of 𝑓 (𝜏n) on 𝜉0 confirms the previously stated
tatistical arguments (see Appendix B for derivation).

Because 𝑓 (𝜏p) is skewed towards the lower bound of 𝜏p so is 𝑓 (𝜏n); the larger 𝜉0 the larger the skewness. For 𝜏cr this effect is
mplified by the fact that 𝜏cr = min(𝜏n(𝑥)) as depicted in Fig. 5c, causing ⟨𝜏cr⟩ to decrease with increasing 𝜉0. As noted in Section 3.3,
he location where the critical instability occurs 𝑥cr is uniformly distributed over the entire domain as shown in Fig. 5d and is
ndependent on 𝜉 .
9
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We further analyze the effect of 𝜉0 on the probability distribution of 𝜏n and 𝜏cr by reporting the mean, median and 25% percentile
of the probability density function (see Fig. 6). We observe that the nucleation strength tends towards the mean peak strength for
vanishing correlation length, lim𝜉0∕ℎn→0 𝜏n(𝑥) = ⟨𝜏p⟩, because the moving average in computing 𝜏n(𝑥) is evaluated over a window
ℎn that appears infinite compared to 𝜉0 (see Fig. 6a). Consequently, the effective strength also tends towards the mean of the local
strength: lim𝜉0∕ℎn→0 𝜏cr = ⟨𝜏p⟩ (see Fig. 6b). Conversely, if 𝜉0 ≫ ℎn, the moving average is computed over a window ℎn which vanishes,
nd thus (9) becomes the identity: lim𝜉0∕ℎn→∞ 𝜏n(𝑥) = 𝜏p(𝑥). In this case, the effective strength will be more likely to be close to the

actual lower bound of the distribution lim𝜉0∕ℎn→∞ 𝜏cr = min(𝜏p) (see Fig. 6b). The transition between these two limiting cases is
described by the results of the analytical Monte Carlo study, which are validated by 20 dynamic simulations for each 𝜉0∕ℎn by
reporting the mean effective friction strength (see inset in Fig. 6b). For 𝜉0∕ℎn ≥ 0.5 simulations and theory coincide. However, for
𝜉0∕ℎn = 0.25 the theoretical model slightly overestimates the effective friction strength. In Section 5, we will discuss the origin of
he observed lower effective friction at small 𝜉0∕ℎn.

. Discussion

.1. Implications of the physical problem

The analyzed physical problem is simplistic and contains only the absolute minimum of a realistic system with a frictional
nterface — while still maintaining a rigorous representation of the constitutive relation of the bulk and the interface. The objective
s to provide a fundamental understanding of the macroscopic effects on static friction caused by randomness in the local frictional
roperties. While many options exist to complexify the proposed system, we leave them for future work and focus here on the basics.
evertheless, in this section, we will discuss some of these simplifications as well as their implications.

Randomness along the interface may have various origins including heterogeneity in bulk material properties and local
nvironmental conditions (e.g., humidity and impurities). Prominent causes for randomness are geometric imperfections, which
nclude non-flat interfaces and surface roughness. The real contact area, which is an ensemble of discrete micro-contacts (Bowden and
abor, 1950; Dieterich and Kilgore, 1994; Li and Kim, 2008; Sahli et al., 2018) and is much smaller than the apparent contact area,

ntroduces naturally randomness to the interface. Surface roughness is often modeled as self-affine fractals (Pei et al., 2005), which
irectly affects the size distribution of micro-contacts and local contact pressure. The resulting frictional properties are expected to
ary similarly. This would typically lead to small areas of the interface with high frictional strength and most areas with no resistance
gainst sliding, i.e., 𝜏p = 0, since only the micro-contacts may transmit stresses across the interface. Therefore, at this length scale,
ne would expect the random strength field to be bound by zero at most locations, similar to the approach taken by Barras et al.
2019). However, in many engineering systems, the nucleation length is orders of magnitude larger than the characteristic length
cales of the micro-contacts: nucleation lengths of ∼ 10–100 mm (Ben-David and Fineberg, 2011; Latour et al., 2013) and surface

roughness lengths of ∼ 1 μm (Svetlizky and Fineberg, 2014). For this reason, we consider a continuum description with a somewhat
larger length scale. In our approach, the frictional strength profile is continuous and varies due to randomness in the micro-contacts
population without considering individual contact points.

Surface roughness and other local properties directly affect how frictional strength changes depending on slip 𝛿, slip rate 𝜕𝑡𝛿, and
tate (Rabinowicz, 1995; Pilvelait et al., 2020). This is often modeled in phenomenological rate-and-state friction models (Dieterich,
979; Ruina, 1983; Rice and Ruina, 1983). As discussed by Garagash and Germanovich (2012) and demonstrated by Rubin
nd Ampuero (2005) and Ampuero and Rubin (2008), the nucleation length scale of rate-and-state friction models approaches
symptotically the critical length ℎn used in this work and given by Eq. (8) if the rate-and-state friction parameters are favoring
trong weakening with slip rate, i.e., 𝑎∕𝑏 → 0, and the slipping region is prevented to expand laterally. However, if rate-weakening
ecomes negligible, the nucleation criterion tends towards the Griffith’s length (Andrews, 1976), which applies to ruptures with
mall-scale yielding. In this case, the frictional weakening process is contained in a small zone at the rupture tip and most of the
upture surface is at the residual stress level, which is different to the nucleation patches by Uenishi and Rice (2003), where the
ntire rupture surface is still weakening when the critical length is reached.

While on geological faults rate-neutral or even strengthening friction is common (Marone, 1998), engineering materials such as
olymer glasses (Baumberger and Caroli, 2006; Bar-Sinai et al., 2014; Rubino et al., 2017), metals (Rabinowicz, 1995; Armstrong-
élouvry et al., 1994), and paper (Baumberger and Caroli, 2006) have strong rate-weakening friction, which results in large scale
ielding during nucleation. For this reason, we assume a slip weakening friction with strong slip-weakening.

Since many engineering materials present relatively important slip-rate weakening friction, e.g., dynamic weakening of ∼ 1 MPa
or glassy polymers at normal pressure of ∼ 5 MPa (Svetlizky et al., 2020) and, similarly, ∼ 1 MPa weakening for granite at normal
ressure of ∼ 6 MPa (Kammer and McLaskey, 2019), we considered a model system with strong frictional weakening. However, we
eglect the complexity of rate-and-state friction, as extensively demonstrated by Ray and Viesca (2017) and Ray and Viesca (2019),
nd apply a linear slip-weakening friction law at the interface because it has the most important features of friction, i.e., a weakening
echanism, while being simple and well-understood. The advantage is that the weakening-rate 𝑊 is predefined. It further has a
ell-defined fracture energy 𝛤 , which is the energy dissipated by the weakening process, i.e., the triangular area (𝜏p − 𝜏r )𝑑c∕2 in
ig. 1c:

𝛤 (𝑥) =
(𝜏p(𝑥) − 𝜏r )2

2𝑊
. (14)

Since 𝑊 is constant in our system 𝛤 varies with (𝜏p(𝑥) − 𝜏r )2. Assuming that variations in 𝛤 and 𝜏p are predominately caused by
10

surface roughness and, hence, random contact pressure 𝑝(𝑥), a correlation between 𝛤 (𝑥) and 𝜏p(𝑥) can be expected (at least in some
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range of 𝑝) because 𝛤 ∝ 𝑝 (Bayart et al., 2016) and 𝜏p ∝ 𝑝 as assumed in most friction constitutive laws. Nevertheless, the exact
elation applied here is a first-order approximation.

Further, the linear slip-weakening law is contact-pressure independent, which may appear counter-intuitive based on Coulomb’s
ell-known friction laws (Amontons, 1699; Coulomb, 1785). However, the contact pressure is, due to symmetry in similar-material

nterfaces, constant over time and, therefore, any possible pressure dependence becomes irrelevant for the nucleation process itself.
evertheless, local friction properties are expected to change for systems with different normal pressure. This effect has not been
nalyzed here since we did not vary the contact pressure, but could be taken into account by changing the values of 𝜏p, 𝜏r and 𝑑c.

Finally, we note that by assuming a periodic system, we neglect possible boundary effects. We expect that the boundary would
locally reduce 𝜏cr compared to the prediction based on Eq. (10), which assumes an infinite domain, because the free boundary
would locally restrict stress redistribution and thus increase the stress at the edge of the nucleation patch. Therefore, the probability
density of global frictional strength 𝜏cr for a periodic system, as shown in Fig. 5c, has likely a slight tendency towards higher values
compared to a finite system. However, we expect the spatial range of the boundary effect to scale with ℎn and, therefore, 𝑓 (𝜏cr )
will tend towards the periodic solution for ℎn∕𝐿 → 0. Verification would require a large number of numerical simulations, which is
eyond the scope of this work.

.2. Interpretation of numerical simulations

The simulations have shown that uniform 𝜏0 and random 𝜏p(𝑥) cause multiple nucleation patches to develop simultaneously.
e can see in Fig. 3b-right that 20–30 patches (bright blue stripes) coexist by the time global strength is reached, i.e., 𝑡∕𝑇 = 1.

Most of these nucleation patches grow very slowly and their number increases with increasing 𝜏0(𝑡). Nucleation patches can also
merge, which is what happens in this simulation to the critical patch. Furthermore, the simulation shows that unstable growth and
thus global failure is not necessarily caused by the first nucleation patch to appear. For instance, the 𝜏p(𝑥) profile shown in Fig. 3c
presents three local minima with approximately the same value, i.e., at 𝑥∕𝐿 ≈ 0.4, 0.6 and 0.75. Therefore, the first three nucleation
patches appear quasi-simultaneously. Whether one of these patches or another one appearing later is the one becoming unstable first
does only dependent indirectly on the minimum value of 𝜏p(𝑥). More important is whether 𝜏p(𝑥) remains low in the near region of
the local minimum. The nucleation patch at 𝑥∕𝐿 ≈ 0.75 is in an area of relatively low 𝜏p(𝑥), compared to the other early nucleation
patches, which is why it develops faster to the critical size and causes unstable propagation.

This non-local character of the nucleation patches becomes obvious when considering the integral form of Eq. (9) that corresponds
to a weighted moving average of 𝜏p(𝑥). In Fig. 4a, we can see that 𝜏n at 𝑥∕𝐿 ≈ 0.75 is considerably lower than at the location of the
other early nucleation patches 𝑥∕𝐿 ≈ 0.4 and 0.6. This is why 𝑥∕𝐿 ≈ 0.75 gets critical first and causes unstable slip area growth.
Interestingly, 𝑥∕𝐿 ≈ 0.3 is the second most critical point even though the local minimum in 𝜏p is higher than many others in this
system. However, 𝜏p(𝑥) remains rather low over an area that approaches ℎn, and therefore 𝜏n is also low.

In Fig. 4, we compared the prediction of 𝜏cr with measurements from simulations and showed that the prediction works generally
well. However, we noticed that for decreasing 𝜉0∕ℎn the discrepancies increase. The theory generally predicts higher 𝜏cr than
observed in simulations. Schär et al. (2020) showed that the coalescence of subcritical nucleation patches is the cause for these
discrepancies. In this process, two nucleation patches, which individually would require substantial additional load to reach ℎn,
coalesce and, hence, result in a nucleation patch that exceeds ℎn already at 𝜏simcr < 𝜏predcr . Interestingly, a similar phenomenon has
recently been observed in simulations of compressive failure governed by a mesoscopic Mohr–Coulomb criterion, where local damage
clusters interact and eventually coalesce to macroscopic failure (Dansereau et al., 2019). However, Schär et al. (2020) also showed
that critical coalescence, which causes these discrepancies, occurs predominantly for an intermediate range of 𝜉0∕ℎn and becomes
ess likely for small 𝜉0∕ℎn.

The nucleation patch coalescence is likely also the cause for discrepancies observed in the prediction of the nucleation location
cr , as shown in Fig. 4c. While most cases are very well predicted, some simulations present unstable growth that starts from a
ifferent location. In these cases, two nucleation patches have very similar critical stress level. However, the (slightly) less critical
atch coalesces with a neighboring smaller patch and thus becomes unstable at a lower stress level than theoretically expected. This
s more likely to occur for systems with low 𝜉0∕ℎn since this increases the likelihood of another local minimum being located close
o active nucleation patches. Nevertheless, the critical stress level 𝜏cr remains quantitatively well predicted, as shown Fig. 4b and
iscussed above, because these secondary effects are minor.

The representative simulation illustrated in Fig. 3 shows that the frictional rupture front, after becoming unstable, does not
rrest until it propagated across the entire interface leading to global sliding. This is a general feature of our problem and all our
imulations present the same behavior. What is the reason for this run-away propagation? Right after nucleation, the slipping area
ontinues to weaken along its entire length, i.e., 𝛿 < 𝑑c everywhere. However, after some more growth, it transforms slowly into a
rictional rupture front, which is essentially a Griffith’s shear crack with a cohesive zone and constant residual strength (Svetlizky
nd Fineberg, 2014; Svetlizky et al., 2020; Garagash and Germanovich, 2012). The arrest of frictional rupture fronts are governed
y an energy-rate balance (Kammer et al., 2015), which states that a rupture continues to propagate as long as the (mode II) static
nergy release rate 𝐺II is larger than the fracture energy, i.e., 𝐺II > 𝛤 . In our system, the stress drop 𝛥𝜏 = 𝜏0 − 𝜏r is uniform since
0 and 𝜏r are uniform. Thus, the static energy release rate grows linearly with rupture length 𝐺II ∝ ℎ, and it becomes increasingly
ifficult to arrest a rupture as it continues to grow. Specifically for our case, we find that 𝐺II > 𝛤max for ℎ∕ℎn ⪆ 3, where 𝛤max
s 𝛤 from Eq. (14) for 𝜏max

p . Hence, once the slipping area reached a size of ℎ∕ℎn ⪆ 3, nothing can stop it anymore — not even
max
p . For ℎ∕ℎn ⪅ 3, it is theoretically possible for the slipping area to arrest after some unstable propagation. However, a large
11

ncrease in 𝜏p(𝑥) would need to occur simultaneously on both side, which is very unlikely, in particular for 𝜉0∕ℎn > 1. Therefore,
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our assumptions of constant stress drop 𝛥𝜏 and limited variation of local frictional strength causes arrested rupture fronts to be
extremely rare. Nevertheless, since 𝛤max depends on the probability distribution function 𝑓 (𝜏p), a larger variance, and thus a larger
𝜏max
p , would make crack arrest (slightly) more likely.

It is interesting to note, however, that arrest of dynamically propagating slipping areas may occur in other systems. Amon et al.
(2017), for instance, showed in their simulations that multiple smaller events nucleate and arrest in order to prepare the interface
for a global event. In their system, the initial position along the interface is random as well as the friction properties. Therefore, the
available elastic energy, which is the driving force, is random and may fluctuate enough to cause arrest. For the same reason, Geus
et al. (2019) observed arrested events of various sizes in simulations with random potential energy along the interface. On the
contrary, our system, as outlined above, is characterized by steadily increasing available energy and, thus, behaves differently.

Experimental evidence for arrest of frictional rupture fronts is rather limited. The arrest of confined events observed by Rubinstein
et al. (2007) on glassy polymers and by Ke et al. (2018) on granite, is caused by non-uniform loading due to the experimental
configuration as demonstrated by Kammer et al. (2015) and Ke et al. (2018, 2021). While small scale randomness in the applied shear
stress may occur, it does not cause arrest — at best, it may slightly delay or expedite it. Therefore, these experimental observations
do not support the presence of any important randomness in the applied shear load; at least at these scales. In much larger systems,
such as tectonic plates, randomness in the background stress is likely very important, as discussed in Section 5.4.

5.3. Interpretation of Monte Carlo study

In an engineering context, it is usually not enough to know the mean value of a macroscopic property, e.g., the static friction
strength, since design criteria are determined based on probability of failure; and risk assessments require failure probability analysis.
If the stochastic properties of local interfacial strength 𝜏p(𝑥) are known, the developed theoretical framework in Section 4 provides
a tool to evaluate the global strength distribution and, hence, the failure probability. However, 𝜏p(𝑥) is not directly observable in
experiments (at least so far). In the absence of experimental evidence, the stochastic properties of 𝜏p(𝑥) have been chosen based
on physical considerations but our specific parameter choice is arbitrary. This approach is a first approximation that enables us to
develop an efficient Monte Carlo method to study the effects of such variations on macroscopic properties. This method may be
adapted to more realistic random friction profiles. In the following section we will discuss the choice of each stochastic property of
𝜏p(𝑥) and its effect on the variability of global strength, 𝜏cr .

We assumed that 𝜏p(𝑥) is a random variable following a Beta distribution because it provides simultaneously a non-Gaussian
property and well-defined boundaries for minimum and maximum strength, which is physically consistent since mechanical
properties are bounded. The parameters of the Beta distribution are chosen such that it is skewed towards the lower bound of 𝜏p.
Physically this means that the local interface strength is mostly weak with few strong regions. Under this assumption, we observed
that the global interface strength 𝜏cr is close to the lower bound of 𝜏p and that decreasing correlation length 𝜉0 leads to higher 𝜏cr
with smaller variation (see Fig. 6). Nucleation is governed by the strength of the weakest region which size equals or exceeds the
nucleation length. Hence, if the skewness would be towards high values of 𝜏p – this would corresponds to a mostly strong interface
with few weak regions – the variation of 𝜏cr would be larger because of the longer tail at the lower bound. However, the effect of
correlation length would remain unchanged: lower 𝜉0 would cause higher 𝜏cr with smaller variation.

Further, we assumed that 𝜏p has a power spectral density specified in Eq. (4) with a specific exponent, which affects the memory
of the random field. A smaller exponent would result in a flatter decay above the cutoff frequency, and thus generate a field with
more high-frequency content. However, when considering equivalent correlation lengths3, effects of different assumptions regarding
the functional form of the power spectral density are expected to be minor in the probability density of 𝜏cr .

It is noteworthy that there are three relevant length scales: 𝐿, ℎn and 𝜉0. Here, we have not considered the effects of changes in
𝐿 so far. Based on our theoretical model, we expect that a larger 𝐿 would result in smaller variance of 𝜏cr . One approach to explore
this effect, while avoiding to change the size of the experimental system, could be to modify the normal load, which would affect
𝜏p and 𝜏r , and hence the critical nucleation size ℎn ∝ (𝜏p − 𝜏r )−1, as shown experimentally by Latour et al. (2013).

5.4. Implications for earthquake nucleation

In the current study, we are interested in estimating the probability distribution of the macroscopic strength of a frictional
interface of given size 𝐿. Similar systems but with a focus on other aspects have been studied in order to gain a better understanding
of earthquake nucleation. The challenges in studying earthquake nucleation are associated with the size of the system (hundreds of
kilometers) and the limited physical access to measure important properties, such as stress state and frictional properties. However,
when and how an earthquake nucleates affects directly the average stress drop level ⟨𝛥𝜏⟩ ≡ 𝜏cr −𝜏kin, and the earthquake magnitude,
which is more easily determined. Hence, there is a need to infer the fault properties and their variability from earthquake magnitude
observations, to learn about the risk of potential future earthquakes. This is a similar inverse problem as described above.

Previous studies have shown that randomness in simplified models present earthquake magnitudes that follow a power-law
distribution (Carlson and Langer, 1989; Ampuero et al., 2006). The simulations presented a large range of magnitudes because the
slipping areas arrested, which is the result of randomness in the local stress drop, as discussed in Section 5.2. Interestingly, small
events were shown to smoothen the stress profile, which reduces the randomness, thus prepared the interface for larger events, as

3 𝐶(𝜉 ) = 𝑒−1.
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also observed experimentally (Ke et al., 2018). This would suggest that nucleation of larger events tend to be caused by randomness
in fault properties rather than (background) stress level, since the stress is getting smoothed. Therefore, our model provides a simple
but reasonable tool to study nucleation of medium to large earthquakes.

Our results show that smaller correlation length lead to higher overall strength and more variation. In the context of earthquakes,
his would suggest that smaller 𝜉0∕ℎn support larger earthquake magnitudes since nucleation at a higher stress level translates

into larger average stress drops, which provides more available energy to release and, thus, makes arrest more difficult. This is
complementary to observations by Ampuero et al. (2006) that showed a trend to higher earthquake magnitudes for decreasing
standard deviation of the random stress drop field 𝛥𝜏(𝑥) while keeping 𝜉0∕ℎn constant.

In addition to the important question on critical stress level for earthquake nucleation, it also remains unclear how the nucleation
process takes place. Two possible models (Beroza and Ellsworth, 1996; Noda et al., 2013; McLaskey, 2019) are discussed. The
‘‘Cascade’’ model, where foreshocks trigger each other with increasing size and finally lead to the main earthquake; and the ‘‘Pre-Slip’’
model, which assumes that nucleation is the result of aseismic slow-slip. In our simplistic model, nucleation occurs in a ‘‘Pre-Slip’’
type process, with a long phase of slow slip and an abrupt acceleration after the nucleation patch reached its critical size (see
Fig. 3b-right). However, if the amplitude range of our random 𝜏p(𝑥) field was much larger, the likelihood of arrest would increase
and, thus, interaction between arrested small events could emerge. This would lead to a nucleation process that resembles more the
‘‘Cascade’’ model. We, therefore, conclude that the type of nucleation process that may occur at a given fault depends on extent of
randomness in the local stress and property fields.

6. Conclusion

We studied the stochastic properties of frictional interfaces considering the nucleation of unstable slip patches. We considered
a uniform loading condition and studied the effect of random interface strength, characterized by its probability density and
correlation function. Using numerical simulations solving the elastodynamic equations, we demonstrated that macroscopic sliding
does not necessarily occur when the weakest point along the interface starts sliding, but when one of possible many slowly slipping
nucleation patches reaches a critical length and becomes unstable. We verified that the nucleation criterion originally developed
by Uenishi and Rice (2003) predicts well the critical stress leading to global sliding if the criterion is formulated as a minimum
of the local strength convolved with the first eigenfunction of the elastic problem. The simulations further showed that increasing
correlation lengths of the random interface strength lead to reduced macroscopic static friction. Using the theoretical nucleation
criterion, we perform a Monte Carlo study that provided an accurate description of the underlying probability density functions for
these observed variations in macroscopic friction. We showed that the probability density function of the global critical strength
approaches the probability density of the minimum in the random local strength when the correlation length is much larger than the
critical nucleation length. Conversely, a vanishingly small correlation length results in generally higher macroscopic strength with
smaller variation. We showed that the presence of precursory dynamic slip events, as in more complex models, is extremely unlikely
under the assumption of uniform stress drop. Finally, we discussed discrepancies between the theoretical model and simulations,
which suggest that for small correlation lengths the theoretical prediction overestimates the frictional strength, possibly because it
neglects coalescence of neighboring nucleation patches.
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Appendix A. Nucleation criterion

The nucleation criterion used in this work is based on the theory developed by Uenishi and Rice (2003). It is not our intention
of re-deriving the theoretical framework. Nevertheless, in this section, we provide a clear problem statement such that our work
can easily be related to the work by Uenishi and Rice (2003). The peak strength along the interface is given by

𝜏p(𝑥) = 𝜏min
p + 𝑞(𝑥) , (A.1)

where 𝜏min
p is the minimum value of 𝜏p(𝑥). The functional form 𝑞(𝑥) satisfies 𝑞(𝑥𝑚) = 0 and 𝑞(𝑥) > 0 for 𝑥 ≠ 𝑥𝑚. If local slip occurs

at any point along the interface, the local strength decreases because of the slip-weakening friction law, as defined by Eq. (1).
Therefore, any point that is in the weakening process, i.e., 𝑑c > 𝛿(𝑥, 𝑡) > 0, presents a local shear stress that is given by

min
13

𝜏(𝑥) = 𝜏p(𝑥) −𝑊 𝛿(𝑥, 𝑡) = 𝜏p + 𝑞(𝑥) −𝑊 𝛿(𝑥, 𝑡) , (A.2)
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where Eq. (A.1) was used and the weakening rate satisfies 𝑊 > 0.
The applied shear stress, which starts at the level of the minimum strength, is defined by

𝜏0(𝑡) = 𝜏min
p + 𝑅𝑡 , (A.3)

where 𝑅 > 0 is the shear-stress loading rate.
Following Uenishi and Rice (2003), we can consider the quasi-static elastic equilibrium (Bilby and Eshelby, 1968) that relates

the stress change along the interface with the local slip through

𝜏(𝑥, 𝑡) = 𝜏0(𝑥, 𝑡) −
𝐺∗

2𝜋 ∫

𝑎+(𝑡)

𝑎−(𝑡)

𝜕𝛿(𝜉, 𝑡)∕𝜕𝜉
𝑥 − 𝜉

d𝜉 , (A.4)

where 𝐺∗ = 𝐺∕(1 − 𝜈) and 𝑎−(𝑡) < 𝑥 < 𝑎+(𝑡) are the boundaries of the slowly expanding slipping area. By substituting Eqs. (A.2) and
(A.3) into Eq. (A.4), we find

−𝑊 𝛿(𝑥, 𝑡) = 𝑅𝑡 − 𝑞(𝑥) − 𝐺∗

2𝜋 ∫

𝑎+(𝑡)

𝑎−(𝑡)

𝜕𝛿(𝜉, 𝑡)∕𝜕𝜉
𝑥 − 𝜉

d𝜉 , (A.5)

for 𝛿(𝑥, 𝑡) > 0 and 𝑎−(𝑡) < 𝑥 < 𝑎+(𝑡). This corresponds exactly to (Uenishi and Rice, 2003, Eq.4).
Starting from this equation, Uenishi and Rice (2003) show that quasi-static solutions cease to exist for slipping areas larger than

a critical length ℎn, which is given by

ℎn ≈ 1.158𝐺
∗

𝑊
. (A.6)

Interestingly, the critical length only depends on the shear modulus 𝐺∗ and the slip-weakening rate 𝑊 , and is independent of the
loading rate 𝑅 and the shape of the peak strength 𝑞(𝑥).

Uenishi and Rice (2003) further show that a slipping area exceeding ℎn is reached at time 𝑡𝑐 when the critical stress level is
given by (Uenishi and Rice, 2003, Eq.14)

𝑅𝑡𝑐 ≈ 0.751∫

+1

−1
𝑞[𝑎(𝑡𝑐 )𝑠 + 𝑏(𝑡𝑐 )]𝑣0(𝑠)d𝑠 , (A.7)

where 𝑎(𝑡) = [𝑎+(𝑡)−𝑎−(𝑡)]∕2 and 𝑏(𝑡) = [𝑎+(𝑡)+𝑎−(𝑡)]∕2 are the half-length and center location of the slipping area, respectively, and
𝑠 = [𝑥 − 𝑏(𝑡)]∕𝑎(𝑡) and 𝑣0(𝑠) ≈ (0.925 − 0.308𝑠2)

√

1 − 𝑠2. It becomes obvious that the stress level at which the slipping area reaches
he critical length depends on the shape of 𝑞(𝑥).

Appendix B. Simplified statistical analysis of the nucleation strength

In order to give some intuition of the effects of correlation length 𝜉0 on the nucleation strength 𝜏n (Eq. (9)), we provide a statistical
argument, which is based on the property of stationarity of 𝜏p. Note that 𝑣0(.) has the following property

0.751∫

+1

−1
𝑣0(𝑠)d𝑠 = 1 (B.1)

We aim to evaluate the expectation and variance of 𝜏n as function of 𝜉0. The expectation is an integral with respect to a probability
measure rather than a Lebesgue measure. Since 𝜏p and 𝜏n are stationary, we can apply the Fubini’s theorem, which states that the
rder of integration can be changed, and express the expectation E[𝜏n] as function of the expectation of the local strength E[𝜏p].

E[𝜏n] = E

[

0.751∫

+1

−1
𝜏p

(

𝑠 ℎn∕2 + 𝑥
)

𝑣0(𝑠)d𝑠

]

= 0.751∫

+1

−1
E
[

𝜏p
(

𝑠 ℎn∕2 + 𝑥
)]

𝑣0(𝑠)d𝑠

= E[𝜏p]0.751∫

+1

−1
𝑣0(𝑠)d𝑠 = E[𝜏p]

(B.2)

Similarly, we can express its variance Var[𝜏n] as function of the variance of the local strength Var[𝜏p] by applying Fubini’s Theorem
and the definition of the correlation function 𝐶(𝜉) = E[(𝜏p(𝑥) − E[𝜏p])(𝜏p(𝑥 + 𝜉) − E[𝜏p])]∕Var[𝜏p]

Var[𝜏n] = E[(𝜏n(𝑥) − E[𝜏n])2] = E
⎡

⎢

⎢

⎣

(

0.751∫

+1

−1
𝜏p

(

𝑠 ℎn∕2 + 𝑥
)

𝑣0(𝑠)d𝑠 − E[𝜏p]

)2
⎤

⎥

⎥

⎦

= E
⎡

⎢

⎢

⎣

(

0.751∫

+1

−1

(

𝜏p
(

𝑠 ℎn∕2 + 𝑥
)

− E[𝜏p]
)

𝑣0(𝑠)d𝑠

)2
⎤

⎥

⎥

⎦

= 0.7512 ∬[−1,1]2
E
[(

𝜏p
(

𝑠 ℎn∕2 + 𝑥
)

− E[𝜏p]
) (

𝜏p
(

𝑡 ℎn∕2 + 𝑥
)

− E[𝜏p]
)]

𝑣0(𝑠)𝑣0(𝑡)d𝑠 d𝑡

= Var[𝜏p]0.7512 𝐶((𝑠 − 𝑡)ℎn∕2)𝑣0(𝑠)𝑣0(𝑡)d𝑠 d𝑡

(B.3)
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Fig. B.7. Numerical evaluation of Eq. (B.3). (a) Correlation function. (b) First eigenfunction of the elastic problem. (c) Normalized variance of the nucleation
strength 𝜏n. (d) Zoom over 𝜉0 < ℎn. Dashed line in (c,d) represents approximation Eq. (B.5) for 𝜉0 ≪ ℎn.

For the limiting cases the expression for the variance can be expressed analytically. For perfectly correlated 𝜏p, 𝜉0 = ∞, 𝐶(.) = 1

lim
𝜉0∕ℎn→∞

Var[𝜏n] = Var[𝜏p] (B.4)

oth 𝐶(.) and 𝑣0(.) are known. Therefore, the integral of Eq. (B.3) can be solved numerically (see Fig. B.7). For 𝜉0 ≪ ℎn the correlation
unction 𝐶(.) ≈ Dirac-𝛿 and the double integral collapses to a single integral.

𝜉0 ≪ ℎn ⇒ Var[𝜏n] ∝ Var[𝜏p]∫

+1

−1

𝜉0
ℎn

𝑣20(𝑠)d𝑠 ∝ Var[𝜏p]
𝜉0
ℎn

(B.5)

Note the linear scaling for 𝜉0 ≪ ℎn in Fig. B.7d.
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