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Abstract

Modeling and analysis of rough contact
by computational homogenization

Keywords: Rough contact; Rough surface generation; Computational contact homoge-
nization; Multiscale modeling.

In typical theoretical and computational contact mechanics problems, it is often tacitly
assumed that the boundaries of contacting bodies are smooth. However, it can be re-
garded as today’s engineering common-sense that all surfaces are rough at some length
scale. A numerical discretization accounting for all the details involved in a rough surface,
usually spanning several length scales, would quickly render the numerical model exces-
sively heavy. Multiscale approaches, based on contact homogenization techniques, have
been proposed in the last years, in order to model several roughness length scales, while
reducing the total computation time, in comparison with the direct numerical approach.

In this work, the elastic, non-adhesive and frictionless contact between a Gaussian self-
affine topography and a rigid and flat plane is modeled within a single and multiscale
finite element method framework, coupled with the dual mortar contact discretization.
The numerical framework starts with the generation of randomly rough topographies,
that reproduces any given input Power Spectral Density (PSD). Single scale 2D simula-
tions are first performed, in order to define a statistically Representative Contact Element
(RCE). Rules of thumb for mesh spacing, length and height of the RCE, and also the num-
ber of topography realizations are established. These conditions are, then, embedded
within a multiscale framework, defining a contact problem for each involved scale. The
original topography is divided into distinct scales, by introducing several splitting frequen-
cies in the PSD. The multiscale solution for the real contact area fraction is computed in
a multiplicative homogenization step, by multiplying the results of each scale, which are
obtained independently of each other.

In comparison with the single scale response, the multiscale solution provides similar
results over a wide roughness spectra, while benefiting from a very attractive computa-
tional cost. Moreover, an improved homogenization scheme is proposed, which aims at
better capturing the influence of the contact pressures distribution throughout the en-
tire load range. This new approach relies on a weighted average multiplicative scheme,
showing to provide accurate results for both light (low pressure) and nearly full contact,
independently of the number of scales considered in the PSD splitting. By employing this
technique, novel results for 2D problems with extremely wide spectra and complex 3D
rough contact problems are obtained, with short simulation time and memory usage.
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Resumo

Modelação e análise de contacto rugoso
através de homogeneização computacional

Palavras-Chave: Contacto rugoso; Geração de superfícies rugosas; Homogeneização com-
putacional de contacto; Modelos multi-escala.

Em problemas típicos de mecânica do contacto teórica e computacional, é comum as-
sumir implicitamente que as fronteiras dos corpos em contacta são lisas. Contudo, hoje
em dia, é senso-comum em engenharia que todas as superfícies são rugosas a alguma
escala de observação. Uma discretização numérica que inclua todo os detalhes de uma
superfície rugosa, que com frequência existem ao longo de várias ampliações, rapida-
mente torna o modelo numérico excessivamente pesado. Várias estratégias multi-escala
baseadas em homogeneização de contacto têm vindo a ser propostas nos últimos anos,
com o intuito de modelar várias escalas de rugosidade, consumindo menos tempo de
cálculo em comparação com a via numérica direta.

Neste trabalho, o contacto elástico, não adesivo e sem atrito entre uma topografia Gaus-
siana auto-similar (self-affine) e um plano rígido é modelado num contexto de estratégias
multi-escala e a uma única escala, através do método dos elementos finitos, com a for-
mulação dual mortar para a discretização do contacto. A estratégia numérica parte da
geração de topografias rugosas aleatórias, que verificam qualquer Densidade de Potência
Espectral (DPE) (Power Spectral Density) pretendida, de modo a se definir um Elemento
de Contacto Representativo (ECR). Regras de ouro para a malha, comprimento e altura
do ECR, e também para o número de ECRs são estabelecidas. Após, estas condições são
incluídas na estratégia multi-escala, para a definição do problema de contacto a cada
escala. A topografia original é separada em diferentes escalas, através da introdução de
várias frequências de divisão na DPE (PSD). A solução multi-escala para a fração da área
real de contacto é calculada num passo de homogeneização multiplicativa, através da
multiplicação dos resultados a cada escala, que são obtidos de forma independente.

Em comparação com a estratégia a uma única escala, a solução multi-escala é idêntica
para espetros de rugosidade amplos, beneficiando de tempos de cálculo muito atrativos.
Adicionalmente, é proposta uma estratégia de homogeneização melhorada, com o ob-
jetivo de incorporar a influência da distribuição das pressões de contacto ao longo de
todo o carregamento com mais informação. Esta nova abordagem é baseada num es-
quema multiplicativo com médias ponderadas, produzindo resultados precisos tanto
para contacto infinitesimal como completo, independentemente do número de escalas
consideradas. Utilizando esta técnica, resultados inovadores para problemas em 2D com
espetros extremamente largos e ainda problemas complexos de contacto rugoso em 3D
são obtidos, com tempos de simulação curtos e baixa utilização de memória.
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Chapter 1

Introduction

This introductory chapter provides a context for the current dissertation, and sets its main
objectives. The work was developed on the numerical modeling of rough contact with the
Finite Element Method (FEM), within a dual mortar contact formulation. Both single scale
modeling by Direct Numerical Simulation (DNS) and multiscale modeling by contact
homogenization were investigated. The problem analyzed in this contribution can be
described as the elastic, non-adhesive and frictionless contact between a deformable
rough block and a flat rigid surface. The outline of the dissertation is provided at the end
of the chapter, in order to facilitate the navigation within the document.

1.1 Motivation

Contact is one of the fundamental ways by which bodies interact. Mechanical loads and
energy are generally transfered by contact, together with other physical quantities such
as electric current and thermal energy. Contact mechanics problems can be regarded
as classical continuum mechanics problems for deformable bodies, with the additional
difficulties associated with the complex contact boundary conditions. These specify, e.g.,
that solid bodies shall not penetrate each other. Apart from the classical geometry and
material nonlinearities, contact introduces boundary nonlinearities, since the contact in-
terface, i.e., the partition of the domain where the contact conditions apply, is not known
beforehand. Furthermore, in addition to the material bulk properties required for the
modeling of solid mechanics problems, contact mechanics requires interface properties,
such as the coefficient of friction. These are extremely difficult to predict and depend on
several conditions, like the local contact pressure, relative tangential velocity and tem-
perature, just to name a few. Frictional contact plays a major role in the technological
and economic landscape of today’s society. Tzanakis et al. (2012) reports that 1% of the
gross national product in several nations comes from frictional loses. Another example
is the power dissipation at the tire-road interaction, which makes about 20-30% of the
total fuel consumption (Nitsche, 2011). In engineering, the study of contacting interfaces,
typically provided with relative motion, is commonly designated tribology. The word was
introduced by Jost (1966), standing for the study of ("logy") rubbing ("tribo").



2 1.1. Motivation

Awareness to contact and friction related issues can be traced back to the ancient
Egypt, regarding the transportation of large stone blocks to the construction of the pyra-
mids (≈2500 BC). Notorious developments are documented in the personal scripts of
Leonard da Vinci (1452-1519) on the phenomenological laws of friction. However, it was
only through Guillaume Amontons (1663-1705) and later by Charles-Augustin Coulomb
that these laws became widely accepted by the scientific community. Back in that time,
only empirical formulation of contact mechanics was known, specially in the context on
friction. The first analytical formulation of elastic and frictionless contact was provided in
the seminal work by Hertz (1882). Several analytical models regarding distinct situations
have been proposed since then, e.g. in reference textbook by K. L. Johnson (1987).

Hertz contact theory and the vast majority of contact models, however, are restricted to
very simple situations, such as the elastic frictionless contact under small deformations.
In the last decades, developments in computer hardware boosted the utilization of nu-
merical methods to find the solution of several engineering problems. In particular, the
finite element method became the gold standard of the numerical methods for industrial
applications. Due to its versatility in modeling large deformations and arbitrary material
laws, together with frictional contact formulation (where the dual mortar methods can be
regarded as the current state of the art methodology), the FEM is capable of answering the
ever-growing industry pressure for shorter development periods. This requires a system-
atic approach based on numerical solutions, rather than trial-and-error processes. The
employment of numerical techniques is further substantiated by the excessive cost, or
even impossibility, of performing experimental research on some subjects. Typical engi-
neering applications where contact mechanics is paramount, and computational contact
mechanics earns its leaving, are sheet metal deep drawing, slip between reinforcing steel
and concrete and crashworthiness assessment tests, for the automobile industry.

The aforementioned interface properties required for the application of FEM to fric-
tional contact problems result from micromechanical features of the contact interface,
namely, from the rough character of the boundaries. If fact, roughness influences several
features of the contact, namely, the real contact area, which is substantially smaller than
the apparent contact area. The real contact area has a considerable influence in several
physical phenomena, regarding purely normal frictionless elastic (and eventually elasto-
plastic) contact. It has been verified from experimental and numerical investigations that
the friction force is proportional do the real contact area. Also, electrical and thermal con-
tact resistances are drastically impacted by the real contact area, rather than the apparent
counterpart. For the latter, examples of applications where a precise control of thermal
contact resistance is required are aircraft joint subjected to aerodynamic heating and
structural joints in machine tools (Madhusudana, 2014). Heat dissipation in microelec-
tronics through the application of Thermal Interface Materials (TIM), which maximize the
heat transfer from the components to the heat sinker, is also a field of growing interest.
The sealing of valves in nuclear power plants is assured by steel to steel contact, owing
to the high pressure of the involved fluids (Yastrebov, Durand, et al., 2011). In order to
avoid micro-leakage, the free volume between two contacting rough surface must verify
some conditions, which can be established heuristically, but also predicted numerically.
Figure 1.1 illustrates some engineering applications where rough contact is paramount.
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(a) Example of a TIM (b) Theoretical foundations of the application of TIM

(c) Tire performance in wet and dry conditions (d) Fluid flow in the free volume of
two contacting rough surfaces

Figure 1.1: Influence of rough contact in engineering problems. Thermal Interface Mate-
rials (the blue paste in (a), adapted from HENKEL (2017)) are applied to the interface of
microelectronics devices at heat dissipation components, in order to promote maximum
heat transfer, by decreasing the inherently high contact thermal resistance, as illustrated
in (b) (adapted from Suh et al. (2015)). Roughness has a crucial influence on tire per-
formance in several conditions, to the hysteretic effect of rubber materials, at different
scales— see figure (c), adapted from Wagner (2018). Roughness also plays a central role
in sealing, since the contact area resulting from the contact of rough surfaces is usu-
ally composed by several isolated islands, i.e., disconnected regions, therefore fluids can
flow through the free volume of the contact interface. This is illustrated in (d), where the
dark regions represent the contact spots and the reddish colors suggest higher flow rates
(adapted from Dapp, Lücke, et al. (2012)).

There is only a small number of cases where frictionless rough contact can be assumed.
The frictional rough contact, which occurs more often, impacts, for example, tire-road
interactions. This topic has been continuously studied by tires manufacturers, in order to
optimize tire profiles and, consequently, safety and rolling noise.

Roughness has been observed to behave like a fractal, meaning that its features extend
across several length scales—the so called self-affine rough surfaces. The multiscale na-
ture of roughness turns impracticable the direct application of finite element techniques,
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in order to model its mechanical response, due to the excessively large meshes that it
would require. This motivates the formulation of numerical multiscale strategies, with
the purpose of reducing the computational resources for modeling the frictionless and
frictional rough contact. Commonly, these strategies are designated by contact homoge-
nization, which establishes the analogy with typical homogenization techniques applied
the bulk of heterogeneous materials (Stupkiewicz, 2007). In a contact homogenization ap-
proach, the rough surface is replaced with a smooth version having equivalent interface
properties (real contact area and coefficient of friction). A review on multiscale modeling
of rough contact was recently published in Vakis et al. (2018).

Other class of contact problem which are amenable for the treatment with contact
homogenization schemes are the frictional contact with third bodies. In these cases, par-
ticles are assumed to exist between the two contacting media. This class of problems
is also extremely important in engineering, e.g., in powder lubrication (Iordanoff et al.,
2002), wheel-rail contact with grains of sand (Berthier et al., 2004) and also in biomedical
application, such as in wear induced by particles in the knee joint, typically associated
with osteoarthritis (Berthier et al., 2004).

1.2 State of the art

A brief literature review on the main topics of this dissertation is presented next. In the
respective chapter, the following state of the art is extended. Here, only the fundamental
aspects and main references are discussed.

1.2.1 Roughness characterization

It is current practice in engineering to characterize rough surfaces by a given set of rough-
ness parameters, such as the RMS height and slope, which condense in a single number
all roughness features (Thomas, 1999; ISO 4287, 1997). Furthermore, it has been repeat-
edly verified experimentally that the RMS parameters are scale dependent, hence are
not suited to describe the multiscale character of roughness (Sayles and Thomas, 1978).
More complete descriptions of roughness have been attempted following the concept
of Autocorrelation Function (ACF). Exponentially decaying ACF roughness models were
initially proposed, but it has been realized that the correlation length (parameter of the
exponential ACF) was scale dependent, as well (Thomas, 1999). The technique that al-
lows a truly scale independent roughness characterization is the Fourier transform of
the autocorrelation length, called the Power Spectral Density (PSD). It contains the spec-
tral information of the rough topography, such that the surface can be synthesized from
this function as the superposition of several harmonics (sinusoidal waves) with random
phases—the amplitudes are extracted from the PSD itself. The power spectrum of real
surfaces verify a power law (Sayles and Thomas, 1978), typical of fractal surfaces (Russ,
1994), and is experimentally verified to be scale independent (Persson, 2014). The PSD of
fractal rough surface, usually termed self-affine rough surface, is expressed in terms of the
Hurst roughness exponent H . In turn, this is a measure of the fractal dimension of the to-
pography. The fractal characterization of roughness can be extended to model anisotropy
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in rough surfaces. In addition to the spectral characterization of rough topography, also
the heights distribution is paramount, specifically for the distinction between Gaussian
and non-Gaussian heights distributions. The characterization of non-Gaussian topogra-
phies is usually reduced to the identification of two parameters, namely the skewness
and kurtosis.

1.2.2 Numerical generation of rough surfaces

The application of numerical methods to rough contact requires the discretization of the
rough topography. One alternative for performing such discretization is by experimental
measurements. While this may seem a safe and practical alternative for rough profiles, the
measurement of 3D rough topography is cumbersome and costly in time. A methodology
perfectly fit to be embedded in a numerical framework is the numerical generation of ran-
domly rough topography. The main goal of these numerical techniques is the synthesis of
rough profiles and surfaces verifying prescribed spectral properties and also features of
the heights distribution—skewness and kurtosis. Initial algorithms were based on time-
series concepts, such as Autoregressive Moving Average models (ARMA). The cornerstone
of these methods were the establishment of coefficients of a recursive expression, which
represents the transformation of a white noise signal (Staufert, G., 1979; DeVries, W. R.,
1979). An important category of generation algorithms was started with the work of Patir
(1978), based on the linear transformation of random matrices. Several extensions of this
method have been proposed, namely in the work of Bakolas (2003), by employing the
Nonlinear Conjugate Gradient Method NCGM to improve the efficiency in the solution
of the system of nonlinear equations. Algorithms based on Fast Fourier Transforms (FFT)
became very popular, since the seminal work of Hu and Tonder (1992). Several variations
and improvements have been proposed, from which it is important to cite the contri-
butions by J.-J. Wu (2000b, 2004). The generation of non-Gaussian topography, which is
already incorporated in several of the previous references, is based on Johnson system
of frequency curves (N. L. Johnson, 1949; Elderton and N. L. Johnson, 1969), and on the
fitting algorithm by I. D. Hill, R. Hill, et al. (1976).

1.2.3 Single scale modeling of frictionless elastic rough contact

Two major approaches have been adopted for modeling frictionless elastic rough contact,
namely, analytical and numerical models. The first widely accepted analytical model for
rough contact was proposed by Greenwood J. A. and Williamson J. B. P. (1966), based on
the hypothesis that the asperity heights (surface summits or profile peaks) have spherical
caps with the same radius every height. Several multiasperity models have succeeded
the original theory by Greenwood and Williamson, by incorporating features of the exact
theory for isotropic Gaussian random rough surfaces, developed by Nayak (1971). Among
these multiasperity theories, the BGT model proposed by Bush, Gibson, and Thomas
(1975) and a simplified version by J. A. Greenwood (2006) have raised notoriety in the
scientific community. A completely different contact theory was developed by Persson
(2001a,b). This model is based on the probability distribution of the contact stresses, and
does not concern topography characteristics directly. Analytical theories are mostly for-
mulated in the realm of small deformations, and are limited to elastic contact (the only
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kind of material behavior concerned in this dissertation). Numerical methods allow the
incorporation of complex effects, neglected in the aforementioned theories, such as con-
tact spots coalescence. The Boundary Element Method (BEM) is a very popular strategy
for numerical modeling of rough contact (Campañá, Müser, and Robbins, 2008; Yastre-
bov, Anciaux, et al., 2015). Despite the computational advantages of this method, it is also
restricted to simple cases, such as linear elasticity and small strains. The Finite Element
Method (FEM) is the the most versatile tool for solving rough contact problems, allowing
the modeling of large strains and nonlinear material laws. It has been successfully applied
to frictionless rough contact with elastic and elasto-plastic material laws by Hyun, Pei,
et al. (2004), Pei et al. (2005), and Hyun and Robbins (2007).

1.2.4 Multiscale modeling of rough contact

The major downside of the application of the FEM to rough contact is due to the multi-
scale character of rough surfaces. Since several length scales are involved in the model,
prohibitively fine finite element meshes are required and, consequently, the computa-
tion time turns out to be excessive very rapidly. In order to circumvent this issue, several
multiscale strategies have been employed, lately. Computational homogenization, usually
applied to the bulk of heterogeneous materials, can also be extended to contact interfaces
(Stupkiewicz, 2007; Temizer and Wriggers, 2008). It consists, primarily, on the replacement
of a rough and complex boundary, with a smooth one, having equivalent contact prop-
erties. Significant effort has been put on multiscale strategies for rough contact within
the context of rubber friction, within finite element frameworks (Reinelt, 2009; Nitsche,
2011; Wagner, 2018). In the recent works by Wagner, Wriggers, Klapproth, et al. (2015) and
Wagner, Wriggers, Veltmaat, et al. (2017), and in opposition to several preceding strate-
gies, the rough surface is split into scales based on its PSD, such that each scale covers a
portion of the frequency range. These multiscale approaches, despite being formulated
for frictional contact and, typically, viscoelastic materials, can often be readily restricted
to frictionless contact and, thus, provide a multiscale solution for the real contact area
prediction.

1.3 Objectives

The main objective of this dissertation is to analyze rough contact by means of a mul-
tiscale finite element approach based on computational homogenization. The scope is
restricted to Signorini-type problems, comprising the elastic, non-adhesive and friction-
less contact between a deformable self-affine rough block and a flat and rigid surface.
Multiscale strategies are employed for predicting the real contact area evolution with
pressure, using less computational resources and having similar precision in comparison
with Direct Numerical Simulation (DNS) solutions. To accomplish this goal, a numerical
framework is built from the ground up, wrapping around the in-house finite element
code LINKS, equipped with the dual mortar contact discretization. The numerical tool
encompasses preprocessing features for random rough topography generation, finite el-
ement mesh generation and input data files writing for LINKS, which have all been im-
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plemented from scratch, together with the post-processing routines required within the
implementation of the multiscale strategies. In a first stage, the numerical tool is used
to accurately characterize the micromechanical contact problem, in a single scale setup,
such that a Representative Contact Element (RCE) can be defined. In a second stage, the
implemented multiscale schemes are employed to predict the real contact area for differ-
ent micromechanical contact problems, and the results are properly validated. By using
the multiscale techniques, rough contact problems with features typically beyond the
scope of application of DNS solutions are analyzed.

1.4 Outline

Following the presentation of the motivation for this dissertation, and a brief overview
of the state of the art references, this introduction ends with a succinct outline of the
remaining document.

Chapter 2 - On rough surface characterization

The fundamental concepts of multiscale roughness characterization are thoroughly ex-
plained in this chapter. The sequence on which the different subjects are presented in-
tends to emphasize, in a sequential manner, the importance of each quantity for the
complete and scale independent characterization of roughness. Focus is given to the
spectral characterization of roughness via the Power Spectral Density and the respective
spectral moments. With grounds on these ideas, the definition of self-affine rough sur-
face is introduced and the mathematical treatment of fractal roughness is addressed. The
description of non-Gaussian roughness is presented, as well. This chapters ends with a
reformulation of all concepts for discrete topography, thus bridging the gap between pure
analytical characterization and the future application of numerical methods.

Chapter 3 - Numerical generation of randomly rough topography

The algorithms for generating rough surfaces and profiles from prescribed spectral prop-
erties are introduced in this chapter. Both the Gaussian and non-Gaussian topography
generators implemented in this work are discussed and the respective flowcharts are il-
lustrated. Following the introduction of each algorithm, some characteristics are assessed
in a series of numerical tests, both for the profile and surface generation versions. This
chapter is closed by the application of the numerical generation algorithms to real cases
of roller bearings and gear surfaces.

Chapter 4 - Micromechanical elastic contact: analytical models

The most relevant rough contact analytical models for frictionless elastic contact are dis-
cussed in this chapter. It covers several multiasperity models, namely, the Greenwood and
Williamson, the BGT and the simplified elliptical model, and also the Persson contact the-
ory. These models have been implemented and the results for each one, in particular, the
contact area evolution, are plotted. A shallow comparison of these models is performed,
and some inherent caveats are referred.
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Chapter 5 - Single scale dual mortar finite element modeling of rough contact

In this chapter, a through presentation of the mathematical formulation of contact prob-
lems within a dual mortar formulation is provided. It comprises a concise presentation of
fundamental aspects of general solid mechanics problems, and of the contact constraints
for frictionless and frictional contact. The mortar based finite element formulation is
introduced in the weak form, concerning only frictionless contact. This chapter also fea-
tures a description of the numeral model and the embedding numerical framework. The
single scale representativeness tests, performed in order to define a statistically Represen-
tative Contact Element (RCE) in 2D, are analyzed.

Chapter 6 - Multiscale finite element modeling of rough contact by contact homoge-
nization

The multiscale approach to rough contact is explained in this chapter. Both the method-
ology and specific issues, often overlooked in the literature, are discussed. The results
and computational requirements are assessed and compared with single scale results.
An improved multiscale strategy is proposed, and compared with the initial scheme. The
application of the multiscale approach to three dimensional contact, case where the avail-
able computational resources would quickly be exhausted, seals this chapter.

Chapter 7 - Concluding remarks and future work

The main conclusions and most relevant contributions of this work are summarized in
this last chapter. In addition, suggestions for future continuation of the work developed
during this dissertation are mentioned.

Appendix A - Notes on Fourier transforms

This appendix provides an overview of the fundamental aspects of Fourier analysis, namely,
on Fourier transforms, required for a smooth understanding of all the dissertation. The
numerical generation of rough surfaces and even the spectral characterization of rough-
ness are fundamentally based on such concepts, hence, this appendix was written in
order for the dissertation to be self-contained.

Appendix B - Recipe for BGT model computation

The BGT model for rough contact lies on a complex mathematical formulation. The
authors, through extensive analytical transformations, proposed simplified expressions,
prone to computer implementation. Due to misprints in the original publication, and
for the sake of clarity, this appendix resumes the sequence of operations required for
implementing this model.

Appendix C - Determination of RMS parameters from spectral properties

The derivation of the analytical relations between RMS parameters in two and three
dimensions, with the Autocorrelation Function and Power Spectral Density is presented
in this chapter. These results are paramount in roughness analysis, yet their origin is often
hidden in the literature.
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Chapter 2

On rough surface characterization

Surfaces are boundaries between two media. Intrinsic attributes such as color and hard-
ness can intuitively be attributed to surfaces. Yet, within contact mechanics, the most
fundamental property is the geometrical features of these boundaries. In fact, surface
geometry is not only fundamental, but poses major obstacles to the analysis of physi-
cal phenomena involving roughness. Frequently, engineering surfaces are represented as
nominally smooth and, thus, described by an analytical function. The rolling elements
from roller bearings, gear tooths with involute profile, are examples of such cases. Nev-
ertheless, real surfaces do not match their nominal shape due to several inevitable ab-
normalities that take place in their genesis. Roughness contributes to the geometrical
deviations relative to the real surface shape, however, there are other sources of error
which must be identified and isolated.

2.1 Fundamental concepts

As a thought experiment, one can breakdown the production of an hypothetic surface
into several sub-processes, and then study the individual influence of each one in the fi-
nal surface shape. Consider the top face of a cube, which is ideally flat and parallel to the
bottom face, as shown in Figure 2.1. This cube is to be produced by milling, from a block
of metal. First, consider that, during the machining process, there will be a misalignment
of the tool, while theoretically controlling every other variable. This can be visualized by
a vibration free operation, in which the material removal process results in continuous
chip formation, producing a perfectly clean cut on the metal. As a result, the top face is
made flat, but having a slight slope. Nevertheless, this surface is smooth, i.e., there is no
roughness, even though it already presents some error relative to the nominal surface.
Next, consider the equipment vibration. This will superimpose some kind of waviness
over the flat (inclined) top surface. Regardless the wavy appearance of the surface, one
can still conceive it as smooth, yet it is no longer parallel to the bottom surface nor flat.
The surface is said to be smooth, because the wavelength is sufficiently long, which does
not conflict with our perception of roughness—it is possible to imagine sliding a finger
through the surface with a virtual sensation of smoothness, as long as wavelength is kept
large enough. Indeed, one can conceive that by progressively reducing this wavelength,
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Nominal shape Error of form Waviness Roughness

Figure 2.1: Nominal surface and sources of error. The nominal geometry of surfaces
differs from the real geometry due to errors of different nature. Errors of form are of very
large wavelength, usually represented by a trend surface. For shorter wavelengths, errors
are said to belong to the waviness profile. Deviations due to roughness are attributed to
the shortest wavelengths. The definition of waviness and roughness is scale dependent.

the surface would cease to be smooth, at a certain point. Finally, the mechanics of mate-
rial removal are included in such virtual experiment. This generates random errors of high
spatial frequency, or short wavelength, that may even go down to the atomic scale, cre-
ating a high number of protuberances (cf. Figure 2.1). At this point, one can comfortably
call this a rough surface—roughness corresponds to the high frequency variations. The
final surface height h(x, y) is reconstructed, roughly speaking, by adding the roughness
contribution z(x, y) to the waviness w(x, y) and error of form e(x, y)

h(x, y) = e(x, y)+w(x, y)+ z(x, y) . (2.1)

Typically, each of these variations, error of form, waviness and roughness, are increasing
in frequency and decreasing in amplitude

This thought experiment leads to the vague definition of roughness as the high fre-
quency contribution of deviations. However, this statement implies a scale dependency,
as a high frequency variation in a country road can be interpreted as low frequency in a
small gearbox shaft. In fact, when using a finger to access whether a surface is rough or
smooth, the finger is a sensor itself, which can detect variations in height with a particular
resolution. The multiscale nature of roughness can also be assessed from the impact of
surface geometry in the performance of physical systems. For example, roughness of am-
plitude around 1 mm may increase drag on ships due to hull friction, while variations of
1µm in amplitude in gear tooths will affect friction and wear (Thomas, 1999)—in this case,
errors around 1 mm would, mosts likely, be classified as errors of form. Another interest-
ing example is the interaction between car tires and rough road surfaces. In this case, the
long wavelengths rule the mechanics of the car’s suspension system, while shorter wave-
lengths are responsible for the frictional behavior between the rubber tires and the road.
The smallest wavelengths may fit into the atomic scale, and are related with atom packing
and dislocations, which have emerged and form step shapes on the surface (Einax et al.,
2013; Misbah et al., 2010). Certainly, a finger could not distinguish between a perfectly
smooth surface and other which presented roughness only at atomic scales. From this
perspective, the definition of roughness and its separation from the other sources of error,
namely, from waviness, seems quite arbitrary. To go into further detail, it is convenient to
dig down to surface topography measurement.



2. On rough surface characterization 11

2.1.1 Topics on roughness measurement and filtering

The concept of topography is responsible for the characterization of surface geometry.
For instance, a surface may be described by a height function h(x, y), which holds all in-
formation of its topography. If h(x, y) is known, the surface slope at every point ∇h(x, y)
and the mean curvature 1

2∇2h(x, y) would be completely defined.1 Equation (2.1) empha-
sizes that surface topography is not the same as roughness, unless there is zero error of
form and waviness. Unfortunately, it is not physically possible to perform a continuous
description of real surfaces. Instead, surfaces are sampled at a finite number of points,
and every point provides some information. In general, each sampled point describes the
local height, but has no information neither about the slope, nor curvature, which must
be computed a posteriori, e.g., by using finite difference techniques. The sampling pro-
cedure may be performed along a line, called profile measurement, or on a area, termed
areal measurement.2

When the topography of any surface is obtained from experimental measurements, a
filtering procedure must be employed, in order to remove the unwanted frequency con-
tributions, such that the roughness profile can be isolated. The filtered frequencies are
either low frequency deviations, associated with errors of form and waviness, or even high
frequencies, that are not relevant for the physical phenomena under study—called func-
tional filtering (Thomas, 1999). Regarding the removal of the error of form, it is common
practice to fit a trend line (or trend plane, for areal measurements), to the experimental
data. Eventually, the fitting function may be a quadratic surface, when one wants to cap-
ture some curvature that is known to exist a priori—for example, the involute profile of
gear tooths. The fitted surface is then subtracted to the data, resulting in a zero mean
set, usually— in fact, w(x, y) and z(x, y) in Equation (2.1) are zero mean functions, by
definition. The transformed data is filtered, in order to remove the waviness profile. Fil-
tering techniques can be applied either by computer software or by electronic circuits.
This operation detaches the waviness from the roughness profile, by defining a separa-
tion frequency called cut-off frequency—or the respective cut-off wavelength. The set up
of this parameters is crucial, since roughness measurements are comparable as long as
the filtering is performed with the same cut-off between measurements. This issue is ad-
dressed by standards, such as ISO 4287 (1997), that suggest practical values for the cut-off
as a function of the sample length and expected roughness.

The extraction of the roughness profile from experimental data is always accompa-
nied by unintentional filtering, specially if the measurement instrument is a stylus device
(profilometer). Very high frequency variations cannot be measured due to the finite ra-
dius of the stylus tip. This also leads to distortion of the measured surface, relative to

1The operator ∇(·) denotes the gradient of a function. When applied to the surface height function, which
is a scalar field, it represents a vector whose magnitude equals the maximum surface slope. In Cartesian co-

ordinates, and for a two variable function, it writes
(
∂h
∂x , ∂h

∂y

)
. The mean curvature at a point (x, y) is defined

as the average between the curvatures at two perpendicular directions, which is related to the second partial

derivative on each direction, separately. It can also be written in Cartesian coordinates as 1
2

(
∂2h
∂x2 + ∂2h

∂y2

)
, or

by using the Laplacian operator, 1
2∇2h(x, y). Note that this is not the real, physical, curvature at every point,

but a quantity which closely relates to it.
2Area or surface measurement are also common designations.
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the real one—the measurement output is termed the traced profile, with the purpose of
distinguishing it from the real topography. However, it has been verified that for common
engineering surfaces, the error due to this distortion is negligible (Thomas, 1999). The
sampling process also limits the measured frequency bandwidth, by setting the upper
limit equal to the Nyquist frequency—half the sampling frequency (see Appendix A.3.1,
in page 212). Wavelengths larger than the sample length cannot be reliably represented,
hence low frequency frequency is also inevitable

2.1.2 Classification of rough surfaces

Surfaces can be classified according to several criteria. Figure 2.2 shows the common
typology of engineering surfaces. The first criteria concerns the variation of properties
along the surface. If several surface patches have similar properties, the surface is said
to be homogeneous, otherwise, it is inhomogeneous. For instance, a surface which was
sandblasted in a certain region and lapped in other neighboring patch is inhomogeneous.
Based on their stochastic nature, surface can be classified as either deterministic or ran-
dom. Rough surface are random, but, in contrast, some waviness profiles can be predicted
deterministically, e.g., in surfaces produced by turning (Thomas, 1999). Following the
characteristics of the height distribution, one can further subdivide surfaces as Gaussian
and non-Gaussian. If heights are normally distributed, i.e., follow a Gaussian distribution,
the surface is called Gaussian, naturally; if not, they are termed non-Gaussian. The last
criterion concerns the directionality of roughness properties. An isotropic surface shows
similar properties in every direction. As an example, if profile measurements were car-
ried over lines with arbitrary orientation, they would look statistically similar. In contrast,
an anisotropic surface shows different roughness properties in profiles measured along
different directions. Usually, the visual identification of anisotropy is immediate, through
the presence of scratches along a preferential direction (roughness lay), or even from a
non-uniform stretch of the topography properties. The mathematical characterization of
anisotropy is not obvious, though.

2.1.3 Roughness in today’s engineering and further readings

Functional performance of surfaces depends greatly on their roughness properties. Re-
ported work on the influence of roughness on several physical phenomena is extremely
vast, and interest on this field has been growing, in the last years (Bruzzone et al., 2008;
Persson, Albohr, et al., 2005). Topics like surface optimization for contact resistance, seal-
ing, adhesion, friction and manufacturing of extremely small equipment drags attention
to rough surface analysis. A good understanding on the mechanisms by which roughness
influences physical systems must be preceded by a solid background on rough surface
characterization. The following sections present a brief review on the main aspects of ran-
dom rough surface characterization. This will serve as the basis for the development of
numerical tools, aiming at the generation of random rough topography. For further details
on roughness measurement the user is referred to the work of Thomas (1999), Mainsah
et al., 2013 and Mummery (1992). The textbook by Bhushan (1998) lays an extensive pre-
sentation of roughness measurement and characterization at micro and nanoscale, and
highlights the importance of these concepts for several engineering applications. Rough-
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Figure 2.2: Types of surfaces, adapted from Nayak (1971). The dashed lines suggest that
subdivision continues following the same rules of the other branches and are not repre-
sented here for simplicity. Colored boxes highlight the types of surface of interest for this
work.

ness measurement, and respective parameter computation, are widely standardized. The
interested reader shall find extremely useful and practical information on the standards
ISO 4287 (1997), ISO 25178 (2016) and ASME B46 (2009).

2.2 Roughness parameters

In engineering, rough surfaces are characterized by roughness parameters, traditionally.
This practice tries to condense all relevant information about the rough topography in a
given set of parameters, which are to be easily computed from measured data. Reducing
the rough topography to a numerical value is convenient for comparative studies. They
allow for an easy assessment of the evolution of roughness before and after some load-
ing condition. Roughness parameters can be calculated both from profiles and surface
measurements. The symbol R(·), along with a specific subscript, denotes profile parame-
ters, and similarly, surface data is referred by S(·). Even though profile measurements are
much easier, faster and cheaper to perform, surface parameters provide a more mean-
ingful information about the topography. In fact, surface parameters are computed from
all profiles contained in the surface. Moreover, physical phenomena involving rough con-
tact, intrinsically being a three-dimensional problem, depend on surface, rather than on
profile geometry. For example, a local maximum of a roughness profile is termed a peak,
which is defined at points where

∂z

∂x
= 0 or

∂z

∂y
= 0 , (2.2)
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depending on the measurement direction. On the other hand, a local maximum in a
rough surface, called a summit, must prove

‖∇z‖ = 0 . (2.3)

Since roughness profiles result from intercepting the rough surface with a measurement
plane, their peaks are very unlikely to occur at the same position of the summits. The
mathematical definitions in Equation (2.2) and Equation (2.3) do also suggest the pre-
vious statement: for a tortuous surface, there are several points where only one of the
partial derivatives vanish and, thus, peaks will show up at points where there are no sum-
mits.

Nowadays, there are a large number of roughness parameters proposed in the litera-
ture, and referred in international standards. Whitehouse (1982) even used the parlance
parameter rash, satirizing the overwhelming number of roughness parameters available.
Actually, it happens that some are known not to bring new information, when compared
to other existing parameters. The current work does not aim at presenting an extensive
review on roughness parameters, but simply at commenting on their utility for roughness
characterization. For a more thorough discussion on roughness parameters, their inter-
pretation and application, the reader is encouraged to take look at the work of Thomas
(1999), Mainsah et al. (2013) and Mummery (1992).

Remark 2.1 on the graphical representation of rough topography.
In the following sections, whenever a rough topography is illustrated, being either a
profile or surface, the material is assumed to extend along the negative direction of z.

2.2.1 Root Mean Square parameters

Among the large collection of roughness parameters, some are noteworthy for rough
surface analysis, due to their importance on micromechanical contact models, and owing
to their relation with other roughness characterization techniques (K. L. Johnson, 1987;
McCool, 1986; Nayak, 1971). These are the root mean square parameters (abbreviated
RMS, for root mean square). In particular, one shall be interested in the RMS height (or
roughness) slope and curvature.

RMS height

For a continuous roughness profile z(x), or surface z(x, y), one defines RMS height, alter-
natively designated RMS roughness, as

zrms,x =
√

1

L

∫ L

0
z2(x) dx =

√
z2(x) ; (2.4a)

zrms,x y =
√

1

Lx Ly

∫ Lx

0

∫ Ly

0
z2(x, y) dydx =

√
z2(x, y) . (2.4b)

Here the notation (•) is introduced as the spatial average operator. RMS roughness is
a measure of the surface height relative to the mean plane. It is computed as the aver-
age of squared heights, thus making this parameter sensible to extreme values, being
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either peaks or valleys. Although it cannot distinguish between these two types of ex-
trema, because it only considers the square real values, which are, by definition, positive.
Since one works with sampled surfaces most of the time, Expressions (2.4) are rarely ap-
plicable. Sampling the profile z(x) over x ∈ [0,L] results, typically, in N equally spaced
points. If the sampling is to be performed on a surface z(x, y) over the region defined by
(x, y) ∈ [0,Lx ]× [0,Ly ], it will then result in a grid of N by M equally spaced points, in the
x and y directions, respectively.3 For discrete data, RMS roughness writes

zrms,x ≈ Rq =

√√√√ 1

N

N−1∑
n=0

z2
n ; (2.5a)

zrms,x y ≈ Sq =

√√√√ 1

M N

M−1∑
m=0

N−1∑
n=0

z2
m,n . (2.5b)

RMS roughness contains information on the global height variation. Higher values
of RMS height suggest surfaces with higher contribution of extreme values, thus higher
deviations from the mean value (zero). However, this mean variation might occur over
any distance, which is not considered in the computation of Rq or Sq . One can readily
conceive two rough profiles with the same value of Rq , but having considerably different
topography. To illustrate this concept, two different profiles with equal length and Rq are
plotted in Figure 2.3. In average, the profile displayed in Figure 2.3a has larger slopes, in
magnitude, than the one in Figure 2.3b, even though they share the same value of RMS
roughness. Thus, RMS roughness alone is unable to capture all information of rough
topography.

Remark 2.2 on the notation for discrete variables indices.
When a continuous function z(x, y) is sampled on a grid of N equally spaced points
in the x direction and M in the y direction, the result will be denoted by the discrete
variable zm,n , with m = 0, ..., M −1 and n = 0, ..., N −1. While the traditional argument
order (x, y) is kept for the continuous function, when the sampling is introduced, the first
index m refers to the y coordinate, while the second index n refers to the x coordinate.
This way, the position of matrix element (m,n) resembles the physical position of the
respective point on plane xO y, where the x axis is, traditionally, horizontal (number of
column), and the y axis is vertical (number of line). Since this convention was used in
programming the surface generators (for personal convenience), it will be used through
the text, to keep the notation consistent.

RMS slope

The previous discussion suggests the usage of slope related parameters to distinguish
between surfaces with the same average amplitude characteristics. Analogously to RMS

3Here, the operator [•,•]× [•,•] denotes the Cartesian product.
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L
−Rq

+Rq

(a) Profile with high average slope magnitude

L
−Rq

+Rq

(b) Profile with low average slope magnitude

Figure 2.3: Comparison between different profiles with same value of Rq . Both profiles
have the same sampling length and roughness RMS, yet visual differences are quite ev-
ident. The profile in Figure 2.3b is smoother than of Figure 2.3a. This is, in average, the
magnitude of the profile slope and curvature in Figure 2.3b are smaller, when compared
to Figure 2.3b.

roughness, one defines RMS slope of continuous topographies as

z ′
rms,x =

√√√√
(

dz(x)

dx

)2

; (2.6a)

z ′
rms,x y =

√
‖∇z(x, y)‖2 . (2.6b)

Application of Expressions (2.6) to discrete surfaces requires numerical computation
of derivatives. Several strategies can be adopted to discretize derivate operations, and,
typically, finite-differences formulae are used. Namely, a first-order finite difference sten-
cil is recommended by ISO 25178 (2016), while ASME B46 (2009) suggests a sixth-order
stencil. Both of these alternatives may lead to inaccuracies due to smoothing and sharp
corners (Jacobs et al., 2017). Following a simpler alternative, based on a forward finite-
difference scheme (Bhushan, 1998), RMS slope simply comes

z ′
rms,x ≈ R∆q =

√√√√ 1

(N −1)

N−2∑
n=0

( zn+1 − zn

∆x

)2
; (2.7a)

z ′
rms,x y ≈ S∆q =

√√√√ 1

(M −1)(N −1)

M−2∑
m=0

N−2∑
n=0

( zm,n+1 − zm,n

∆x

)2
+

(
zm+1,n − zm,n

∆y

)2

. (2.7b)

RMS curvature

Just like two surfaces with different RMS slope can share the same value of RMS rough-
ness, it may happen that two surfaces have the same value of RMS slope, yet different
curvature properties. Therefore, a curvature parameter shall also be useful for a consis-
tent characterization of rough surfaces. Curvature relies on the computation of second
derivatives, then the discretization shall follow the same mindset behind slope calcula-
tion, i.e., based on finite-difference schemes. Starting with the continuous scenario, the
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RMS curvature comes

z ′′
rms,x =

√√√√(
d2z(x)

dx2

)2

; (2.8a)

z ′′
rms,x y =

1

2

√
[∇2z(x, y)

]2 . (2.8b)

It is important to emphasize that Expressions (2.8) are not numerically equal to the
geometrical curvature κ of a profile or surface. Concerning profile curvature, the classical
result follows

κ= z ′′(x)
(
1+ [z ′(x)]2) 3

2

, (2.9)

where z ′(x) and z ′′(x) denote the first and second derivative of z(x) in order to x. From
Equation (2.9), one sees that curvature equals the second derivative of z, only when the
slope vanishes, i.e., at profile peaks and valleys.4 Most of the time, the interest is on these
extrema, hence it is common, in rough surface analysis, to address z ′′

rms,x as profile RMS
curvature. (Bhushan, 1998; Nayak, 1971; Greenwood J. A. and Langstreth J. K., 1984). Fur-
thermore, this quantity can be used in rough contact theories, in order to approximate
the mean curvature of summits and peaks (McCool, 1986). These reasons support the
designation of curvature for z ′′

rms,x and z ′′
rms,x y .

Identically, the actual surface curvature is not equal to the Laplacian of surface height
at every point. In addition, depending on the measurement direction, one will find dif-
ferent curvatures at the same point. For a smooth surface, one can always find two or-
thogonal directions where curvature is maximum and minimum—principal curvatures,
associated with the principal directions of curvature. To account for the variation of cur-
vature with direction, the average between the principal curvature is taken. It can be
proved that the average between principal curvatures is equal to the average of curva-
tures between any two orthogonal directions (Sokolnikoff, 1951). Hence, one can work
with the mean curvature between x and y direction, case where the mean summit curva-
ture equals half the Laplacian, at the summits. For the discrete case, adopting a centered
finite difference scheme (Bhushan, 1998), the curvature is approximated by

z ′′
rms,x ≈ R∆2q =

√√√√ 1

(N −1)

N−3∑
n=0

(
zn+1 −2zn + zn−1

∆x2

)2

; (2.10a)

z ′′
rms,x y ≈ S∆2q =

[
1

(M −2)(N −2)

M−3∑
m=0

N−3∑
n=0

1

4

(
zm,n+1 −2zm,n + zm,n−1

∆x2 + (2.10b)

+ zm+1,n −2zm,n + zm−1,n

∆y2

)2] 1
2

.

4Also at inflection points, where the second derivate also vanishes. These are less relevant cases.



18 2.3. Random process

2.2.2 Scale dependency and representativeness

This analysis could be continued by including new RMS parameters, since it is certain that
two surfaces sharing the same value of RMS curvature can have different RMS parameter
involving third-order derivatives of the height function. Nevertheless, new complications
arise, related to derivative computation, such as the decreasing number of points avail-
able for the application finite-differences, and also to the loss of physical meaning of such
parameters.

A key point to mention is that these three parameters, and a great number of roughness
parameters currently in use, are average quantities, which express the global behavior of
the surface, but contain no information of the local geometry, e.g., about the shape of
the summits. Moreover, to state that these parameters are characteristics of the surface,
one needs to have experimental evidence on the invariance of such quantities under
variations of sampling length, discretization and measurement equipment. In fact, it is
verified that RMS roughness is very sensible to low cut-off wavelength, typically decreas-
ing for shorter low cut-off wavelengths (Bhushan, 1998; Sayles and Thomas, 1978). On the
other hand, it has been observed that RMS slope and curvature increase for decreasingly
smaller high cut-off wavelengths (P. I. Oden et al., 1992). These results suggest that RMS
parameters are scale dependent. RMS roughness is sensible to large scales, while curva-
ture and slope are more sensible to smaller scales. RMS slope and curvature do not even
seem to converge, and tend to increase indefinitely with decreasing sampling interval.

As a final remark, it is noteworthy to mention that this discussion does not intend to
drive out attractiveness from roughness parameters. Repeating a previous statement in
this text, roughness parameters are paramount in engineering due to their convenient
measurement and computation. This provides an efficient workflow for assessing rough-
ness impact on certain phenomena, regardless of their scale and instrument dependence.
In fact, all these parameters are verified to affect surface functional performance, yet, usu-
ally only one of these parameters dominate in a particular instance. For example, RMS
height dominates contact stiffness (Campañá, Persson, et al., 2011), while RMS slope and
curvature are mostly responsible for adhesion properties (Pastewka and Robbins, 2014).
Nonetheless, it is fair to state they are not properties of a rough surface, therefore ill-suited
for the characterization of roughness across scales.

2.3 Random process

Attending to the random nature of rough surfaces (cf. Figure 2.2), it is logical to proceed
their analysis in view of random or stochastic processes. The surface height at every point
can be interpreted as a rough topography is a random variable, denoted Z, which can
have several realizations z(k)(x, y)—or z(k)(x), for profiles. Stochastic analysis is a vast
field of mathematics, from which just very basic concepts are referred in the following
section. A rigorous mathematical description of random processes and random variables
is unnecessary for the level of understanding required for its application to rough surface
analysis. Hence, precise mathematical definitions will be avoided, and focus will be given
to physical interpretation of the concepts. Meirovitch (2001) gives a tangible presentation
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on random vibrations, that can be directly applied to random surface description.

2.3.1 Autocorrelation function

A random variable is characterized by all the possible surfaces z(k)(x, y) that can be ob-
tained from a measurement, termed the ensemble. There is a probability measure asso-
ciated with each realization, i.e., the probability of the output surface being similar to a
given reference. One shall attempt to describe the random surface by the statistics com-
puted across the collection of realizations, termed ensemble averages. Consider that there
are K realizations. The ensemble mean value of Z at some point i of coordinates (xi , yi )
is given by

µz (xi ) = 1

K

K−1∑

k=0
z(k)(xi ) = 〈z(k)(xi )〉 ; (2.11a)

µz (xi , yi ) = 〈z(k)(xi , yi )〉 . (2.11b)

The average in Equations (2.11) is taken not over the the sample function, but over all
realizations, at the specific point (xi , yi ). It does not represent the mean height of the
surface, but the mean height of the ensemble at that particular point. Observe that 〈•〉
denotes the ensemble average operator, and that µz is a function of (xi , yi ). Another
important ensemble average, called the autocorrelation function (ACF), follows

R(xi , xi +τ) = 〈z(k)(xi )z(k)(xi +τ)〉 ; (2.12a)

R(xi , yi , xi +τx , yi +τy ) = 〈z(k)(xi , yi )z(k)(xi +τx , yi +τy )〉 . (2.12b)

Note that R is a function of the position (xi , yi ) and also of the shift (τx ,τy ). Figure 2.4
illustrates the points involved in the ACF calculation. This function is defined as the
ensemble average of the product between the surface height at two points, whose relative
position in given by the vector (τx ,τy ). Thus, such function reports to the joint probability
density function of surface height at point (xi , yi ) and (xi +τx , yi +τy ). This is, it can be
intuitively associated with the probability of simultaneously existing a point with height
z(k)

i , occurring at point (xi , yi ), and another with height z(k)
i+τ, at point (xi + τx , yi + τy ),

in the same realization. Ultimately, if the ensemble averages involving the product of
more points is specified, it would be possible to evaluate the probability of that particular
realization to occur—or more precisely, of realizations infinitesimally similar it.

Regarding the characterization of some topography, a description based on ensemble
averages is quite unsatisfactory, since it is not able to aggregate the characteristics of each
realization. In addition, all previous ensemble averages are a function of the position,
which is also inconvenient, due to the stochastic behavior of surface height. Nonetheless,
rough surfaces are commonly assumed to be stationary, which implies that all ensemble
averages are independent of the position (xi , yi ). Usually, it suffices to consider that rough
surfaces are weak-sense stationary, i.e., that the ensemble mean and ACF are position
independent. For a stationary rough surface, increasing the sampling domain beyond
a certain threshold does not introduce new information. Moreover, rough surfaces are
also considered ergodic processes, which implies that a sample is representative of all
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z(k)(xi +τ)

z(k)(xi )

Figure 2.4: Points involved in the computation of the ACF. By taking the ensemble aver-
age of the height product at these two points, one gets a result related with the probability
of both heights occurring separated by τ in a same profile. For a rough surface, the idea
is similar, yet the displacement between both points is a two dimensional vector.

realizations—a single profile contains characteristics which are identical to every other
profile measured on the surface.

By using the stationarity property, one can remove the position dependency from the
ensemble averages—µz turns into a constant and ACF is left as a function of the shift
(τx ,τy ). Besides this, from the ergodicity property, ensemble averages can be replaced
by sample averages.5 In this scenario, one can drop the superscript (k) referring to a
particular realization, and rewrite Expressions (2.11) as

µz = z(x) , (2.13a)

µz = z(x, y) . (2.13b)

As for the redefinition of ACF in Expressions (2.12), it is important to mention that the
number of points (x, y) having a corresponding point (x +τx , y +τy ) decreases with in-
creasing τx and τy , unless the surface is infinite, or periodic. Thus, if surface length is
finite and non-periodic in each direction, the matching region reduces as it slides over its
clone. Based on the previous argument, the ACF for an ergodic finite-length topography
becomes

R(τ) = 1

L−τ

∫ L−τ

0
z(x)z(x +τ) dx , (2.14a)

R(τx ,τy ) = 1

(Lx −τx )(Ly −τy )

∫ Lx−τx

0

∫ Ly−τy

0
z(x, y)z(x +τx , y +τy ) dydx . (2.14b)

Note that, for a profile, R(0) = (zrms,x )2 and for a surface R(0,0) = (zrms,x y )2, cf. Expres-
sions (2.4). In statistical terms, and for zero mean functions (µz =0), which happens to
be the case of rough topography, this quantity is also equal to the sample variance of
heights σ2

z , which is defined as the sample average of the squared heights. The standard

5Ergodic surfaces are necessarily stationary, yet stationary surfaces may not be ergodic. Both properties
are referred in the text to show their separate effect.
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deviation of the sample heights is defined as the square root of variance

σz =
√

(z(x))2 = zrms,x =
√

R(0) , (2.15a)

σz =
√

(
z(x, y)

)2 = zrms,x y =
√

R(0,0) . (2.15b)

In contrast with all roughness parameters previously referred, the ACF is a function,
rather than a value, so it intrinsically holds a larger set of information about surface
topography than a simple parameter. This quantity measures how similar the surface
looks with a shifted copy of itself, i.e., its level of periodicity. Inspecting Expressions (2.14),
it can be seen that when no shift is applied (τ= 0), the integral is reduced to the squares
of local heights, which are all positive quantities. If a non-zero shift is considered (τ 6= 0), it
is expected that positive values of height will be multiplied by negative ones, thus leading
to a negative contribution from these points, and, ultimately, causing a decay on the ACF.
It is expected that the tendency will be of decreasing ACF with increasing shift magnitude.
Actually, it can be proven that the global maximum value of the autocorrelation function
does occur at the origin. The rate at which ACF decreases depends on the shape of the
profile: if a profile is nearly smooth with gentle slopes, the decay will be slower than a
profile with high frequency oscillations. From this argument, it is seen that ACF is related
to the local shape of the profile. Furthermore, if a profile is periodic, the its ACF will also
be periodic, with the same period.

2.3.2 Exponentially decaying ACF roughness model

Experimental evidence suggests that several surfaces have profiles verifying an exponen-
tially decaying ACF (Whitehouse and Archard, 1970; Greenwood J. A. and Langstreth J. K.,
1984; Panda et al., 2016). This roughness model is usually stated by

R(τ) = R2
q exp

(−|τ|β)
. (2.16)

Here, β is termed the autocorrelation length (ACL), and is equal to the shift that results in
a decrease of the initial ACF value by a factor of e−1, which is about 37% of R2

q .6 In general,
this distance is less that 10% of the sample length (Panda et al., 2016). The influence of
the ACL on the profile topography can be seen in Figure 2.5. This figure displays two
profiles with same RMS roughness and same length, yet with different ACL. The profile
with longer ACL shows gentler slopes and wider peaks.

Remark 2.3 on the definition of autocorrelation function and length.
The autocorrelation function was defined as the spatial average of the product of surface
heights with a shifted copy of itself, after ergodicity and stationarity considerations. In
other bibliographic sources, namely in Thomas (1999) and Mainsah et al. (2013), this
function is called the autocovariance function, while the autocorrelation functions is
considered as the autocovariance normalized by the square of RMS roughness. In this

6In literature, autocorrelation function and length are commonly referred under the designation of Tex-
ture Parameters,
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Figure 2.5: Effect of autocorrelation length on profile topography. Both profiles have the
same length L and roughness RMS. The profile having longer ACL is smoother than the
one with shorter ACL. These quantities can described local geometrical features of rough
topography.

work, the definition given by Equation (2.14) is adopted. Regarding the definition of
autocorrelation length, in this work it is considered the distance from the origin where
the ACF decays to 1/e of its initial value, with e = exp(1). Another common definition in
literature uses the distance on which ACF decays to 10% of the value at the origin. If this
definition is adopted, all previous expressions related with exponential autocorrelation
need to be changed, accordingly.

The exponentially decaying ACF, as expressed in (2.16), does not allow the existence of
curvature in the profile. This was pointed out by Nayak (1971), who justified the consis-
tency of results from Whitehouse and Archard (1970) based on the applied finite sampling
length. Nayak suggested that real profiles may exhibit exponential ACF only at a certain
distance from the origin, so that it can be fourth-order smooth at the origin. This re-
sult was later confirmed by Whitehouse (1978) and Greenwood J. A. and Langstreth J. K.
(1984). Based on exponential ACF model, Whitehouse and Archard (1970) developed a
theory characterizing the geometry and the statistics of profile peaks. Namely, theoretical
predictions were derived for the areal density of peaks, mean peak height, variance of
peak height, mean peak curvature, variance of peak curvature and mean slope. Focusing
the theory on profile peaks is essential, since contact is primarily established on peaks
(actually, on summits, but peaks are a good first approximation). These results predicted
that the mean slope and curvature increase with decreasing sampling length, which was
already mentioned earlier in Section 2.2—yet, from different arguments.

The concept of exponentially decaying ACF can easily be extended for two dimensions.
The existence of two directions opens the possibility of existing directional properties,
i.e., it allows anisotropy to exist—anisotropic rough profiles cannot exist, since only one
direction is concerned. Anisotropic behavior can be incorporated within the exponential



2. On rough surface characterization 23

ACF model by setting different autocorrelation lengths for each direction. In general, the
exponential ACF for a surface reads

R(τx ,τy ) = S2
q exp

(
−

√
(τx/βx )2 + (

τy/βy

)2
)

. (2.17)

If the autocorrelation length is equal in both directions, the surface is isotropic and, hence,
the ACF becomes circularly symmetric relative to the origin—it is only dependent on the
distance relative to origin. When different autocorrelation lengths are specified, curves
of constant ACF are elliptical whose aspect ratio is βx /βy . Surface summits also have
approximate elliptical shape with same aspect ratio. The effect of ACL in both directions
is represented in Figure 2.6. In particular, two isotropic surfaces with different ACL along
with an anisotropic surface are shown. Comparing both isotropic surfaces one reaches the
foregoing conclusions regarding profile analysis, where it was observed that increasing
ACL leads to a overall smoother surface. As for the anisotropic surface, roughness marks
can be observed along the y direction, i.e. in the direction of larger correlation length.

To summarize, it has been shown that roughness parameters are ill-suited to charac-
terize rough topography, since they depended on sampling length, sampling frequency
and instrument specifications. Furthermore, as they are average measures, they cannot
describe local topography. The autocorrelation function and, in particular, the classical
exponentially decaying ACF, solves this problem, since it holds information about the
average amplitude and also on the local shape of peaks and summits. However, some
limitations arise when using this technique. Zhang et al. (2014) and Panda et al. (2016)
observed in real measurements that the autocorrelation length changes with sample size
and with sampling frequency. Therefore, it suffers from the same drawbacks as rough-
ness parameters: it is scale dependent. Thomas (1999) reached similar conclusions by
observing that the ACF of rough profile is dependent on the cut-off length. Moreover,
ACF alone is not able to uniquely characterize surface topography. As an illustration,
Figure 2.7 shows profiles with similar ACF, yet considerable different topography. While
profile in Figure 2.7a has peaks and valleys with similar height, profile in Figure 2.7b has
very low peaks and deep valleys. This examples suggests that key to distinguish between
these profiles lies on the height probability distribution.

Thus, there are two different problems that need to be tackled. First, a roughness model
which is not scale dependent is sought, in order to incorporate an appropriate framework
for studying roughness across scales. Second, the height probability distribution should
be considered in order to model certain topographic features, cf. Figure 2.7. Before ad-
dressing these topics, however, the most notorious tool for roughness characterization,
called the Power Spectral Density (PSD), is introduced and several aspects, such as the
relations with previous techniques, are explored.

2.3.3 Power spectral density

An alternative tool for rough surface analysis, and arguably the most important one, is the
Power Spectral Density (PSD).7 Before stating the definition of PSD, one shall assume in

7The designation power spectral density comes from the signal processing theory, which usually concerns
a value of electric voltage instead of surface height, and time instead of spatial coordinates. For a clearer
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Figure 2.6: Effect of autocorrelation length in x and y directions in surface topography.
Blue colors suggest higher values of ACF while white represents lower values (the maxi-
mum value is S2

q at the origin). In the same breadth with the observations on rough pro-
file, it is observed that when the ACL decreases, the topography is less smooth. Anisotropy
on surface topography results when different ACL are specified for each direction.
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(a) Gaussian profile (b) Non-Gaussian profile

Figure 2.7: Profiles with different topography, yet having similar ACF. Profile plotted in
Figure 2.7b shows deeper valleys and low peaks. Its topography can be characterized
essentially by an high concentration of points neat the top . On the other hand, profile
represented in Figure 2.7a shows valleys and peaks with approximately the same height,
without any noticeable trend.

this section that z(x, y) or z(x) have infinite length, for simplification. In these conditions,
one writes ACF as

R(τ) = lim
L→∞

1

L

∫ L
2

− L
2

z(x)z(x +τ) dx , (2.18a)

R(τx ,τy ) = lim
Lx→∞
Ly→∞

1

Lx Ly

∫ − Lx
2

− Lx
2

∫ − Ly
2

− Ly
2

z(x, y)z(x +τx , y +τy ) dydx . (2.18b)

The PSD, denoted here by Φ for surfaces and Φθ for profiles, is formally defined by the
Wiener–Khinchin theorem, which assumes stationarity for the topography height, as the
Fourier transform of the ACF8

Φθ(k) =F {R(τ)} =
∫ +∞

−∞
R(τ)e−ikτ dτ ; (2.19a)

Φ(kx ,ky ) =F
{
R(τx ,τy )

}=
Ï +∞

−∞
R(τx ,τy )e−i(kxτx+kyτy ) dτx dτy . (2.19b)

The F {•} stands for continuous Fourier transform, and i =
p
−1 is the imaginary number.

The ACF can be recovered from PSD by applying the inverse Fourier transform, here
denoted by F−1 {•}, as

R(τ) =F−1 {Φθ(k)} = 1

2π

∫ +∞

−∞
Φθ(k)e ikτdk ; (2.20a)

R(τx ,τy ) =F−1 {
Φ(kx ,ky )

}= 1

4π2

Ï +∞

−∞
Φ(kx ,ky )e i(kxτx+kyτy ) dkx dky . (2.20b)

In order to understand the notation used in Expressions (2.19) and (2.20), some aspects
of Fourier analysis shall be mentioned in the following paragraphs. The reader is referred
to Appendix A for a more detailed review of this topics. Only essential interpretation and
results will be given in the present section.

view on this designation, the user is referred to Proakis and Salehi (2002).
8Fore a detailed proof of the theorem, the reader is referred to the book from Proakis and Salehi (2002).
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In one dimension, Fourier transforms describe the decomposition of aperiodic func-
tions as the sum of sinusoidal waves, spanning all frequencies/wavenumbers k. Each
wave is characterized by its amplitude and phase, which are related to the magnitude
and argument of the function’s Fourier transform at that specific frequency. Notice that
the Fourier transform of a real function is, in general, complex valued. Equation (2.20a)
represents the synthesis of ACF by summing waves with all possible frequencies, with
magnitude equal to |Φθ(k)| and phase ∠Φθ(k). Note that the ACF is a real valued function,
while each contribution e ikτ is complex valued. For this reason, the integration includes
negative frequencies (which are not physically meaningful) with equal amplitude, yet
anti-symmetric phases, in order to cancel the imaginary contribution. This is called the
conjugate symmetry property, and for the one dimensional transform is expressed by

Φθ(k) =Φθ(−k)∗ , (2.21)

where (•)∗ denotes the complex conjugate. The two dimensional scenario follows the
same ideas, but instead of summing one dimensional sinusoidal waves, two-dimensional
waves are used as the basis of functions (see Figure A.6 on page 223). These waves are
also characterized by amplitude, phase and frequency, but additionally also by a propa-
gation direction. The information of frequency and direction is given by a wave vector
k = (kx ,ky ), whose components are the frequency in each direction. The magnitude of
the wave vector equals the frequency of the wave, and the direction gives its propagation
direction. The ACF can be rebuilt by spanning all wave vectors, cf. Equation (2.20b). As a
consequence of using complex notation, the conjugate symmetry property holds

Φ(k) =Φ(−k)∗ . (2.22)

At this stage, additional details on the adopted notation are given carefully. When au-
tocorrelation function was introduced in Section 2.3.1, the symbol R was used for both
profiles and surfaces. Bearing in mind that the physical units associated with ACF are
[length]2, independently of the number of dimensions involved, it seems reasonable to
keep the same symbol for both cases. However, this is not verified for PSD of profiles and
surfaces. In Equations (2.20), spatial frequency k has units of [radian per length]. There-
fore, Φθ must have units of [length]3 per [radian], such that integral in Equation (2.20a)
comes in [length]2. For surfaces, a double integral on spatial frequency is involved, thus
Φ must have units of [length]4 per [radian]. The difference of physical units between both
cases justifies this distinction. As a matter of fact, the PSD of a surface is related to the
PSD of a profile taken along the direction defined by θ, so using the same symbol for
both would not be consistent. Longuet-Higgins (1957b) related both PSD’s by

Φθ(k) =
∫ +∞

−∞
Φ(kx ,ky ) dl , (2.23)

with l =
√

k2
x +k2

y −k2. In Equation (2.23), kx and ky denote the spatial frequency of the
surface wave in each direction, or the projection of its wavevector onto the plane coor-
dinate axis. The variable k denotes the frequency of a sinusoidal wave in a rough profile.
The geometrical interpretation of this relation is based on the fact that two dimensional
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waves have a one dimensional projection along the line defined by θ, whose frequency
differs from the wave frequency ‖k‖, unless θ is coincident with propagation direction
of the wave. This means that waves of frequency different than k can contribute to the
profile PSD Φθ at that frequency, hence one needs to sum the contribution of all waves
whose projection along direction θ is a one dimensional wave of frequency k.

Remark 2.4 on the definition of Fourier transform.
In the current work, the following definition for the 1D Fourier transform was adopted

F (k) =F
{

f (x)
}=

∫ ∞

−∞
f (x)e−ikx dx ,

and the respective inverse transform comes

f (x) =F−1 {F (k)} = 1

2π

∫ ∞

−∞
F (k)e ikx dk .

These definitions are not rigid, and alternative formulations are found in the literature,
by simply moving the factor 1/2π from the inverse to the forward transform, and the
same regarding the factor 1/4π2 in two dimensional transforms. As a consequence of
adopting different definitions for the transform, several relations involving the power
spectrum change accordingly to the underlying convention. One must pay attention to
the definitions adopted in different works, before comparing certain results involving the
surface, or profile, power spectrum. This will have consequences mainly on the topogra-
phy synthesis from inverse Fourier transform, on the definition of spectral moments and
their relation with RMS parameters.

Relation with height spectrum

For the first time since the start of this chapter, frequency is introduced in the mathemat-
ical description of roughness, even though the term frequency contribution has already
been referred. It is important to note that the PSD, from its definition, holds the frequency
content of the ACF, not from the surface itself. The relation between PSD and a char-
acteristics of a rough surface itself is given by the autocorrelation theorem, for Fourier
transforms. Applying the 2D version of this theorem, it can be proved that

Φ(k) = lim
Lx→∞
Ly→∞

∣∣F
{

z(x, y)
}∣∣2

Lx Ly
, (2.24)

and in a similar fashion for rough profiles

Φθ(k) = lim
L→∞

|F {z(x)}|2
L

. (2.25)

Equations (2.24) and (2.25) relate the power spectral density of a rough surface (often
termed as the surface’s spectrum or power spectrum) to the squared magnitude of its
Fourier transform. While the Fourier transform of a surface or profile is a complex valued
function, its PSD is real valued and always non-negative—it equals the squared mag-
nitude of a complex number. As consequence of being real valued, the PSD has zero
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phase for every frequency. From this perspective, it can be interpreted as a measure of
the frequency content on a surface, describing what frequencies are present and their
amplitude. Yet it does not provide any information on the phases associated with each
frequency. In fact, the random behavior of rough surfaces is dictated by the randomness
of phases. For a clearer understanding on the physical meaning of PSD, different profiles
having increasingly complex PSD’s are plotted in Figure 2.8. This figure also emphasizes
the symmetry of PSD relative to the origin, as a consequence of the conjugate symmetry
property.

One can apply the inverse Fourier transform directly to surface height to give

z(x, y) = 1

4π2

Ï +∞

−∞
Z (kx ,ky )e i(kx x+ky y) dkx dky . (2.26)

From the result expressed in Equation (2.24), it writes |Z (kx ,ky )| =
√
Φ(kx ,ky )Lx Ly and

∠Z = φ(kx ,ky ) is a random phase, associated with a specific wave vector. The surface
height z(x, y) can then be synthesized by its PSD and a random phases field

z(x, y) = 1

4π2

Ï +∞

−∞

√
Φ(kx ,ky )Lx Ly e i(kx x+ky y+φ(kx ,ky )) dkx dky . (2.27)

In Equation (2.27), the limit of sample length to infinity was dropped for cleaner percep-
tion of the procedure, but without loss of generality. A similar expression can be written
for a rough profile

z(x) = 1

2π

∫ +∞

−∞

√
Φθ(k)L e i(kx+φ(k)) dk . (2.28)

Relation with ACF and RMS parameters. Spectral moments

It is interesting to note that some roughness parameters, in particular, the RMS parame-
ters, can be obtained from the PSD. Starting with profile statistics, it can readily be seen
from Equation (2.20a) that

R(0) = (zrms,x )2 = 1

2π

∫ +∞

−∞
Φθ(k) dk , (2.29)

and similarly for surfaces

R(0,0) = (zrms,x y )2 = 1

4π2

∫ +∞

−∞

∫ +∞

−∞
Φ(kx ,ky ) dkx dky . (2.30)

The topography RMS roughness, which can be obtained from the autocorrelation func-
tion as the square of its value at the origin, can also be computed by integrating the
power spectrum over all frequencies. In fact, similar relations linking the ACF with RMS
slope and curvature can be established. For rough profiles, it can be shown that (see
Appendix C, in page 229, for the derivation)

d2R(τ)

dτ2

∣∣∣∣∣
τ=0

=−(
z ′

rms,x

)2 ; (2.31)

d4R(τ)

dτ4

∣∣∣∣∣
τ=0

= (
z ′′

rms,x

)2 . (2.32)
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Figure 2.8: PSD of different profiles with different frequency contributions. Each fre-
quency in PSD represents the infinitesimal contribution of a single frequency. In Fig-
ure 2.8a and Figure 2.8c these contributions are represent by impulse functions δ(k), in
order to reproduce a finite contribution in the function. The PSD is symmetric relative
to zero frequency, as observed in Figures 2.8a, 2.8c and 2.8e. A single PSD can represent
infinite surfaces, since the particular topography on a surface is ruled by its phases, which
are not described by the power spectrum.

Thus, all relevant profile RMS parameters can be computed from the even order deriva-
tives of the ACF at the origin. Regarding rough surfaces, the expressions for the RMS slope
and curvature are cumbersome to derive, and shall not be presented here.

A more convenient approach to RMS parameters computation is through the so called
spectral moments. These are defined differently for rough profiles and surfaces, respec-
tively, as

mθp = 1

2π

∫ +∞

−∞
kpΦθ(k) dk ; (2.33)

mpq = 1

4π2

Ï +∞

−∞
kp

x kq
yΦ(kx ,ky ) dkx dky . (2.34)
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The spectral moments relate to profile and surface RMS parameters by

zrms,x =p
mθ0 , (2.35a)

z ′
rms,x =p

mθ2 , (2.35b)

z ′′
rms,x =p

mθ4 ; (2.35c)

zrms,x y =
p

m00 , (2.36a)

z ′
rms,x y =

p
m20 +m02 , (2.36b)

z ′′
rms,x y =

√
m40 +2m22 +m04

4
. (2.36c)

For the sake of completeness, the derivation of Expressions (2.35) and (2.36) is provided in
Appendix C. The determination of RMS parameters both from an ACF and PSD, in some
way, closes the framework cycle of surface description (with the exception of the height
probability distribution, which will be discussed later). Yet, it should be emphasized the
importance of both the ACF and PSD: by specifying one of these functions to model
roughness, one determines, uniquely, the associated RMS parameters, while the converse
is not true.

Remark 2.5 on the definition of spectral moments.
The definitions of spectral moments in Equations (2.33) and (2.34) does not match the
traditional expression, commonly found in the literature, where the coefficients 2π and
4π2 are not present. Following a previous remark, this is a consequence of the adopted
definition for the Fourier transform, and in order to be able to write Expressions (2.35)
and (2.36), it was necessary to alter the definition of spectral moment.

For isotropic rough surfaces, case where the subscript θ can be dropped, since PSD
depends only on the magnitude of wave-vector ‖k‖ and not on its direction, it is verified
that (Nayak, 1971)

m00 = m0 ; (2.37a)

m20 = m02 = m2 ; (2.37b)

m11 = m13 = m31 = 0 ; (2.37c)

3m22 = m40 = m04 = m4 . (2.37d)

From the profile spectral moments of an isotropic surface, it is possible to compute an ex-
tremely important parameter for surface analysis, termed the spectral breadth or Nayak’s
parameter α, named after the seminal work by Nayak (1971). It is defined by

α= m0m4

m2
2

. (2.38)

For anisotropic surfaces, Equation (2.37) are not verified and, hence, Nayak’s parame-
ter cannot be computed explicitly form profile moments. For such cases, Sayles and
Thomas (1976) suggest the definition of equivalent profile spectral moments, such that
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Equation (2.38) can be applied. The equivalent second and fourth order profile spectral
moments come

mθ2 =
p

m02m20 ; (2.39a)

mθ4 =
p

m04m40 . (2.39b)

Figure 2.9 illustrates the differences in profile topography caused by different profile
PSD’s. It reformulates Figure 2.5, replacing the ACF plot with the PSD. For an exponential
ACF, the profile PSD is given by

Φθ(k) ∝ 2β

β2 +k2 . (2.40)

Recall that it was verified that the exponential ACF roughness model is scale dependent,
thus it is not suited for roughness characterization. A larger autocorrelation length implies
more contribution of long wavelengths, while a shorter ACL suggests that low and high
frequencies have increasingly similar amplitudes, which is in line with the differences in
topography observed earlier.

From the previous relations between spectral moments and derivatives of ACF, the
requirement of a fourth order smooth function at the origin for the existence of slopes
and curvatures, as referred in Section 2.3.1, is justified. Furthermore, inspecting Figure 2.9
and Equation (2.40), it can be verified that an exponentially decaying ACF implies a non-
null zero frequency contribution. The zero frequency contribution can be interpreted as
the mean value of function, since the integral of a sinusoidal function over any integer
number of periods is zero. As a consequence, the mean value of z will not be zero. This
contradicts the hypothesis that roughness z is measured relative to the mean plane, which
in turn supports that the exponential ACF can not be verified in all domain.

The preceding discussion started with the definition of PSD, which does also depend
on the definition of Fourier transform, in Equation (2.19). It happens that the definition of
Fourier transform is not unique, since the coefficients 2π and 4π2 could be moved from
the inverse transform to the forward transform, changing some of previous expressions—
as remarked previously. For example, Nayak (1971) uses this coefficients on the forward
transform, reaching slightly different relations, for instance between spectral moments
and RMS parameters. A point often overlooked in the literature on rough surface descrip-
tion is the distinction between PSD of a profile and of a surface, specially regarding the
difference of physical units of both quantities. Not only the definition of Fourier transform
is not unique throughout literature, but also the definition of PSD itself does also show
inconsistency. In fact, some authors apply the conjugate symmetry property implicitly,
and instead of considering negative frequencies, they take only the positive frequencies
and double their amplitudes. Jacobs et al. (2017) addresses the problem of incoherency
of PSD definition, and the reconstruction of real PSD’s from theoretical measurements
as well. Practical aspects of PSD measurement are also discussed by Nayak (1973), which
explores the effect of filtering the surface height data on the profile spectrum. Profile PSD
measurement is currently standardized by SEMI MF1811 (2010), which also refers surface
measurements, although briefly.



32 2.3. Random process

1

L

10

L

100

L

1000

L
Wavenumber k

Lo
g-

P
SD

Φ
θ

0
(k

)

β= L/10
β= L/100

β= L/10

β= L/100

Figure 2.9: Effect of PSD on profile topography. It repeats Figure 2.6 based on the profile
PSD, instead of ACF. For the longer ACL, low frequencies, i.e., long wavelengths show a
larger contribution in power spectrum, while high frequencies have low amplitude, which
explains the overall smoothness of this profile. Regarding the shorter ACL, amplitudes
of long and short wavelengths are similar, which causes high frequencies to contribute
more to the profile topography.

2.3.4 Gaussian and non-Gaussian surfaces

Alongside with ACF or PSD, the heights distribution allows for a complete description of
rough topography (Persson, Albohr, et al., 2005). Actually, this has been suggested earlier
in Figure 2.2, when surfaces were classified according to their height probability distri-
bution. The topographic features of profiles in Figure 2.7a and Figure 2.7b differ, since
the heights of the former are normally distributed while in the latter they follow a non-
Gaussian distribution. The height Probability Density Function (PDF) fZ (z) is defined as
the probability per unit height of having points whose height belongs to an infinitesimal
interval around a particular value

fZ (z)dz = Pr(Z ∈ [z, z +dz]) . (2.41)

Other quantity, the height cumulative distribution function (CDF), measures the proba-
bility of the surface height being equal or smaller than some value

FZ (z) = Pr(Z ∈ [−∞, z]) =
∫ z

−∞
fZ (t ) dt . (2.42)

The PDF is usually described by its first four central moments, for practical purposes
(Elderton and N. L. Johnson, 1969). The central moment of order i of a probability density
function is defined as

µi =
∫ +∞

−∞
fZ (z)

(
z −µz

)i dz, for i = 2, ...,∞ . (2.43)

Note that the first-order moment is not included in the central moments definition. The
first-order non-central moment is the mean value, which is used in Equation (2.43)—the
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respective central moment is necessarily zero. The mean value is determined by

µz =
∫ +∞

−∞
fZ (z)z dz . (2.44)

From this definition and knowing that the integral of fZ over all domain is one, it is
immediate to see that the first-order central moment is null. The second-order central
moment equals the variance of the distribution

σ2
z =

∫ +∞

−∞
fZ (z)

(
z −µz

)2 dz . (2.45)

By taking the square root of variance, one gets the standard deviation of the heights. In Ex-
pressions (2.15) the symbol σz was used to denote the sample standard deviation, which
might not match exactly the standard deviation of the height distribution, yet it provides
a good estimation, once ergodicity is assumed. A Gaussian distribution of surface heights
is fully described by these two moments. Again, when dealing with rough surfaces, it is
tacitly assumed that µz = 0. The third-order moment normalized by the cube of stan-
dard deviation is called skewness, frequently denoted by γ1 for a continuous variable, and
writes

γ1 =
1

σ3
z

∫ +∞

−∞
fZ (z)

(
z −µz

)3 dz . (2.46)

Finally, the fourth moment normalized by the fourth power of standard deviation is
termed kurtsosis, β2, which is given by

β2 =
1

σ4
z

∫ +∞

−∞
fZ (z)

(
z −µz

)4 dz . (2.47)

For a Gaussian distribution, γ1 = 0 and β2 = 3. Sometimes, it is common to refer to the
excess of kurtosis γ2, which is the difference of kurtosis relative to normal distribution, i.e.

γ2 =β2 −3 . (2.48)

Distributions having positive excess of kurtosis are called leptokurtic, and the ones with
negative excess of kurtosis are termed platykurtic. Skewness and kurtosis must verify the
following inequality (Shohat, 1929)

β2 ≥ γ1 +1 . (2.49)

Skewness depends on the odd power of the distance to the mean value, then surface
summits and valleys have different impact on this parameter. In fact, skewness is a mea-
sure of the height distribution asymmetry. Positively skewed surfaces tend to show sum-
mits much taller than valleys, and the heights are concentrated on the base of the surface,
while negatively skewed surfaces show deeper valleys when compared to summits, and
heights are concentrated near the surface’s top. This can be observed in the heights PDF,
noting that positively skewed surfaces have a longer tail for positive heights, and the peak
is on the left of the mean. The opposite happens for negatively skewed surface, which
hold a longer tail for negative heights, and the distribution peak is on the right of the
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mean value. Regarding kurtosis, it involves a fourth power of heights, meaning that it
mainly concerns the presence of outliers, i.e., points which are much taller (or deeper)
than the average surface.

The effect of skewness and kurtosis on the height distribution can be seen in Fig-
ure 2.10. Skewness pushes the distribution to the left of right, depending whether it is
positive of negative . Kurtosis most relevant effect is on the tails of the distribution, which
are representative of the outliers. Larger values of kurtosis suggested longer and higher
tails—Figure 2.10b is plotted in semi-logarithmic scale so that it emphasizes the impact
of kurtosis on the extremes of the PDF. In Figure 2.11, several roughness profiles with
same ACF, but varying values of skewness and kurtosis are depicted. Combining skew-
ness and kurtosis, one can get very different topographies, either having deeper valleys,
or taller peaks.

2.3.5 Statistical geometry of isotropic Gaussian surfaces

Gaussian surfaces have been the foundation of rough surface analysis, motivated by the
extensive knowledge that has been built on the analytical expression for its PDF, and thus,
is a trustworthy and simple tool for any investigation. The problem of characterizing
rough surface statistics is drastically simplified if the surface is assumed to be Gaussian
and isotropic. In fact, these two hypothesis make the problem amenable for analytical
treatment. Surfaces satisfying, nearly, both criteria can be produced, e.g., by shot-peening,
yet very few other examples are know to respect both properties (K. L. Johnson, 1987).

Following the work of Longuet-Higgins (1957b,a) on the statistical geometry of random
moving surfaces, Nayak (1971) developed a similar theory concerning static, random,
isotropic and Gaussian surfaces. Nayak’s analysis is mostly based on the profile power
spectrum and its spectral moments, from which he introduces the spectral breadth α—
called bandwidth parameter in his work. By using this parameter, Nayak proceeds to
compute profile and surface geometry statistics, which are only dependent on α, fol-
lowing a continuous description of surface height, i.e., with a vanishing small sampling
interval. In particular, he derives analytical expressions for the probability distribution
of summit heights (the probability of existing a summit with a certain height), spatial
density of summits and the probability distribution of summit mean curvature. Nayak’s
theory was further complemented by Bush, Gibson, and Keogh (1976), who presented
a closed-form solution for the joint probability density of summit height and curvature
in two orthogonal directions, i.e., the probability of existing a summit with a particular
value of height an curvature, in each direction.

The lower bound for α is 1.5, regarding isotropic surfaces, and can assume arbitrarily
large values. From Nayak’s theory, it can be concluded that the summit heights distri-
bution of a Gaussian surface is non-Gaussian, yet it approximates a Gaussian curve for
increasing values of α. Additionally, higher summits are sharper (largest curvature), in
general, but increasing α reduces the difference between mean curvature at different
summit heights—curvature is increasingly steadier with summit height, with increasing
α. Nayak extended his analysis for profile statistics, and compared the results with the
surface counterpart. It is found that the profile peak heights distribution distorts the
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summits distribution, and predicts peaks smaller than summits. This distortion is more
aggressive for α closer to the limiting value 1.5. Furthermore, for α< 2.5 profile statistics
suggest lower peak mean curvature and slope, relative to the respective surface param-
eters. This theory gives good results even for slightly non-Gaussian heights distribution
(Thomas, 1999; Sayles and Thomas, 1976).

Since Nayak’s theory concerned continuous surfaces, it was unsuited for practical ap-
plications involving discrete topography measurements. Whitehouse David J. et al. (1978,
1982) extended Nayak’s theory to account for a finite sampling interval, and provided
results which could be related with real discrete profiles and surfaces. Discrete profile
peaks were found from a three point scheme, such that a point which is higher than the
previous and next point is considered a peak. For surface summits, a five point stencil
was used. Greenwood J. A. and Langstreth J. K. (1984) reformulated Whitehouse and
Phillps’ ideas in a cleaner theory. They emphasized that a 5 point summit may not co-
incide with a real summit, but with ridges or settle points with particular orientations.
In contrast, three point peaks are always peaks. In this new theory, discrete surface and
profile statistics were related to RMS parameters (roughness, slope and curvature) as
a function of sampling interval. The most relevant results are the weak dependence of
summit and summit curvature distribution relative to sampling interval and that mean
summit curvature is approximately equal to mean peak curvature. Furthermore, summit
distributions are nearly Gaussian for all sampling intervals. Even though the distribution
of non-dimensional slopes and curvatures does not depend strongly on sampling inter-
val, their numerical (dimensional) value does depend strongly on it, as it was observed
earlier—RMS slope and curvature are very sensitive to short wavelengths.

Several surfaces are indeed verified to be Gaussian, even if anisotropic (Persson, Albohr,
et al., 2005; Thomas, 1999). The major caveat in approximating surface height by a Gaus-
sian distribution is the lack of representativeness in the tails of the distribution. There is
a clear bound on summit height for real surfaces, which suggests a non-Gaussian distri-
bution of heights near the tails—a truncated Gaussian would be adequate. Even though
this seems a small approximation, contact mechanics applications concern mainly the
tails of the distribution, where most of surface summits are present—the summits will be
the first points in contact, so they require special care in this situation (Bhushan, 1998;
Thomas, 1999). Some authors tried to fit other distribution to collections of heights mea-
surement in order to find a better fit, yet Gaussian distribution prevails up to the date as
reference (Thomas, 1999).

In contrast, most real surfaces are, in fact, non-Gaussian. A metal surface after grinding
is certainly non-Gaussian, since this process removes mostly roughness summits, while
leaving valleys intact—it would produce a negatively skewed surface. Figure 2.12 shows
typical ranges for profile skewness and kurtosis, produced by a different conventional
machining processes. Typical values of skewness lie between -2 and 2, while for kurtosis,
value between 2 and 10 are reasonable. Nevertheless, value of skewness down to -6 and
of kurtosis high as 100 have been measured in practice (Minet et al., 2010).
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Figure 2.10: Effect of skewness and kurtosis on the shape of PDF. The effect of skewness
is portrayed in Figure 2.10a, and compared to a normal distribution. The three distribu-
tions have different mean values. A positively skewed distribution is pushed to positive
values of z, while for negative skewness, the distribution is pushed for negative values
of z. Figure 2.10b shows the effect of kurtosis, also compared with a normal distribution.
This plot is presented with fZ axis in log-scale in order to emphasize that the effect of
kurtosis is mainly on the tail, which is associated with increasingly higher probability
with increasing kurtosis.

(a) γ1 = 0 and β2 = 3 (b) γ1 = 0 and β2 = 6

(c) γ1 =−1 and β2 = 4 (d) γ1 = 1 and β2 = 4

Figure 2.11: Effect of skewness and kurtosis on the topography of a rough profile. All pro-
files have the same ACF. Figure 2.11a show a Gaussian profile, and Figures 2.11b to 2.11d
non-Gaussian profiles. By changing only the value of kurtosis, Figure 2.11b, one gets a
more peaky profile, both in valleys and peaks. Introducing a value for skewness, one
biases the peakedness of the profile for valleys (Figure 2.11c) or peaks (Figure 2.11d).
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Figure 2.12: Typical values of skewness and kurtosis for surface produced by common
machining processes. Representative values for skewness lie between -2 and 2, and be-
tween 1 and 10 for kurtosis. EDM stands for Electrical Discharge Machining. Adapted
from Whitehouse (1994).

2.4 Self-affine rough surfaces and profiles. Fractal roughness

The mathematical tools examined earlier provide a complete framework for rough to-
pography characterization. However, rough surface models, such as the exponential ACF,
fail in providing a scale independent description this is, no consistent surface property
has yet been discussed. Sayles and Thomas (1978) stated that rough surfaces are not sta-
tionary processes, based on the observation that profile power spectrum of several real
surfaces increase with increasing cut-off length. In other words, roughness, and in particu-
lar, RMS roughness, increases with sampling length. If variance is dependent on sampling
length, then rough topography violates the stationarity hypothesis. Furthermore, these
authors verified that power spectrum of real surfaces followed a power law like

Φθ(k) = Bk−2 , (2.50)

where B was termed the surface topothesy and has units of length. It is difficult to under-
stand the physical interpretation of this quantity; sometimes, it is referred as the length of
the cord over which a slope of 1 radian occurs (Russ, 1994). With this argument, B seemed
a real property of the surface, because it was not dependent of sampling length, and the
power-law in Equation (2.50) would be uniquely defined. In practice, Equation (2.50) was
not verified for all surfaces, and it was reformulated such that it can accommodate other
exponents for the power spectrum

Φθ(k) = Bk−c . (2.51)

In a logarithmic representation of Φθ as a function of k, the power law shows as a line,
whose slope is equal to −b and the intersect is logB . Profiles whose spectrum verify a
power law are self-affine profiles, which are a type of fractal curves (B. B. Mandelbrot,
1983; Peitgen and Saupe, 2012).
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Fractal theory deals with geometric entities that are not encompassed by Euclidean
geometry. For example, a fractal profile or surface is continuous, yet non-differentiable at
all points. Fractal curves have infinite perimeter, yet finite enclosed area, which is other
property that makes fractals unique geometrical constructions. Likewise, fractal surfaces
have infinite surface area and finite volume. Fractals show an unfolding symmetry, tech-
nically termed self-similarity or self-affine behavior, i.e., they look similar at different
magnifications. As an illustration, Figures 2.13 and 2.14 show two fractal curves which
are self-similar and self-affine, respectively. The self-similar fractal in Figure 2.13 scales
equally in both directions, meaning that when a magnification is applied, say in the hor-
izontal direction, the incremental curve, scaled with the same magnitude, is appended
to the previous magnification. Repeating this iterative process produces a self-similar
geometry, which looks exactly equal at different magnifications. In contrast, self-affine
fractals show different magnification for different directions. This can be seen in Fig-
ure 2.14, where the scale of roughness height becomes smaller with increasing horizontal
magnification. Figures 2.13 and 2.14 also present other distinction between fractal ge-
ometries. In Figure 2.13, the curve is generated by a well defined rule, that states how to
add new geometry features after each iteration, while for a rough profile in Figure 2.14,
such rule do not exist. In fact, fractals does not need to have a regular structure, and quite
complex shapes like the coastline of countries are fractal (B. Mandelbrot, 1967). The term
self-affine for such cases imply a statistical resemblance, rather than an exact one.

Figure 2.13: The Koch snowflake, an example of self-similar fractal. Increasing the level
of magnification, i.e., the required detail, the curve is progressively more complex, and
each new small geometry increment added at each magnification is a scaled version of
the geometry increment at previous magnification.

Figure 2.14: Example of self-affine rough profile. As the level of magnification increases,
new roughness profiles are added the previous one. Yet, the roughness profile scale dif-
ferently in horizontal and vertical direction, hence it is called self-affine, not self-similar.

Self-affine geometry is of special interest in surface analysis, as fractals provide mean
to characterize roughness across several scales. More specifically, rough topography can
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be treated as a multiscale construct, on which nanoscale roughness exists on top of mi-
croscale roughness, and the same from the microscale to the next larger scales. The idea
of roughness covered in roughness was proposed early by Archard, J. F. (1957), yet long
before fractals where mathematically described.

Fractals are characterized by their fractal dimension, which is different from their topo-
logical dimension. The topological dimension of a self-affine profile is 1, since it is a curve.
However, its fractal dimension Dp lies between 1 and 2, because it fills more area than
a non-fractal curve but less than a surface. This argument similarly applies to self-affine
surfaces, whose fractal dimensions Ds lies between 2 and 3. The fractal dimension of a
profile taken from an isotropic surface, which results from the interception between that
surface and vertical plane, is related with the fractal dimension of the surface by (Russ,
1994)

Dp = Ds −1 . (2.52)

Commonly, fractal dimension is expressed by the Hurst roughness exponent, defined as
the difference between the upper bound for a fractal dimension and the fractal dimension
itself, this is

H = 2−Dp ; (2.53a)

H = 3−Ds . (2.53b)

Fractal dimension and Hurst exponent measure the space-filling capacity of the topogra-
phy. Higher fractal dimensions, conversely, lower Hurst exponents, indicate more space
filling fractals. This can be observed in Figures 2.15 and 2.16, that show rough profiles
and surfaces with varying Hurst exponent. This roughness measure takes values between
0.7 and 0.9, for several surfaces (B. B. Mandelbrot et al., 1984).

(a) H = 0.3 (b) H = 0.8

Figure 2.15: Effect of Hurst roughness exponent on profile topography. Both profiles
have same RMS roughness and same phase field. Lower Hurst exponent increases the
contribution of high frequency, creating a more space filling profile, when compared with
a higher Hurst exponent.

One aspect of particular interest is that the PSD of self-affine isotropic rough surfaces
can be related to their fractal properties. In particular, it can be expressed in a multitude
of formulas, by using surface fractal dimension, fractal dimension of profiles contained
in the surface or using Hurst exponent. This relation writes (Russ, 1994; J.-J. Wu, 2000a;
Yastrebov, Anciaux, et al., 2015)

Φ(kx ,ky ) = g 2Dp−2

(
k2

x +k2
y
)3−Dp

= g 2Ds−4

(
k2

x +k2
y
)4−Ds

= g 2(1−H)

‖k‖2(H+1)
. (2.54)
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(b) H = 0.8

Figure 2.16: Effect of Hurst roughness exponent on surface topography. Both profiles
have same RMS roughness, phase field and both are isotropic. Lower Hurst exponent
increases the contribution of high frequency, creating a more space filling surface, similar
to what can be observed in Figure 2.15.

Regarding the profile PSD, it comes from the surface PSD by Equation (2.23), and reads9

Φθ(k) = G2Dp−2

k5−2Dp
= G2(1−H)

k1+2H
. (2.55)

Thus, both self-affine surfaces and profiles have a power law PSD, whose slope in a log-log
plot is related to the Hurst exponent. Constants g and G in Equations (2.54) and (2.55)
are the surface and profile fractal scale constants, which express the absolute scale of
roughness, while H gives the relative scale between frequency contributions.

Several engineering surfaces have been confirmed to be fractal, for example, machined
and fracture surfaces (Russ, 1994). The fractal description of roughness does seem to be
the answer for a scale independent characterization of surfaces. From experimental mea-
surements, and power spectrum computation, the power law for PSD, thus self-affinity,
has been observed for several cases. For example, Panda et al. (2016), which was cited
earlier for his results showing that autocorrelation length is scale dependent, verified for
several sampling lengths and sampling interval that the PSD matched for every case, with
exception at high wavelengths, where instrument filtering shows a critical influence. Also
in Persson (2014), the PSD computed from measurements at different scales with differ-
ent instruments and resolutions, the invariance of the PSD is confirmed. Hence, PSD is
mostly unbiased by sampling length and size. Experimental results for Hurst exponent
can be repeated with good accuracy, however this is not always verified for fractal scale
constants. These still seem to be instrument dependent in some cases, as for the experi-
mental result from Majumdar and Bhushan (1991). Some discussion still exists about the
topic

Real surfaces cannot be fractal at all scales. For wavelengths reaching atomic scale, frac-
tal behavior ceases, alongside with the continuum hypothesis. Also, for large wavelengths,
most surfaces do not evidence fractal properties. In practice, real surfaces have the PSD
represented in Figure 2.17. The fractal behavior is observed between a high frequency

9For a complete derivation see J.-J. Wu (2000a).
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ks and a lower frequency, called roll-off frequency kr , where the fractal behavior is lost.
Between the roll-off frequency and a even lower frequency kl a plateau of constant PSD
is observed (Persson, Albohr, et al., 2005; Dodds and Robson, 1973; Vallet et al., 2009). For
frequencies higher than ks the fractal behavior is lost, and the PSD is often assumed to
be null. The same happens for wavelengths larger than kl , which is related to the sam-
pling length. The plateau can be justified, e.g., for machined surfaces, because machining
typically reduces high amplitude longer wavelengths, while keeping short wavelengths
intact. Thus, machined surfaces are fractal at least at small scales. The determination of
the cut-off frequencies kl and ks for different cases remains an open question. For these
cases, the profile and power spectrum can be written with considerably more convenient
expressions (C0 and C ′

0 are just scale constants):

Φ(kx ,ky ) =





C0 , kl ≤ ‖k‖ < kr

C0

(
kr

‖k‖

)2(H+1)

, kr ≤ ‖k‖ ≤ ks

0 , elsewhere ;

(2.56)

Φθ(k) =





C ′
0 , kl ≤ k < kr

C ′
0

(
kr

k

)1+2H

, kr ≤ k ≤ ks

0 , elsewhere .

(2.57)

logkl logkr logks log‖k‖

logΦ(k)

Figure 2.17: Typical PSD of an isotropic rough surface. Fractal behavior is observed be-
tween the frequency ks associated with a short wavelength and a roll-off frequency kr .
For wavelengths larger than the roll-off wavelength there is a plateau of approximately
constant Φ. For frequencies higher than ks or lower than kl the PSD is truncated, i.e., it
is assumed null.

Other surfaces are multi-fractal. For these cases, different fractal behaviors dependent
on the scale of observation are observed (Thomas, 1999). Using Figure 2.17 as reference,
the PSD of a bifractal surface would have a Hurst exponent between kr and ks and other
Hurst exponent between kl and kr , thus, different slopes at this two ranges. Surfaces pro-
duced by several processes, e.g., several machining processes, may verify a multi-fractal
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PSD, with a fractal dimension relating to each process. A less practical example, yet cer-
tainly useful for understanding multi-fractal surfaces, concerns mountainous terrain cov-
ered with vegetation. Mountain topography, like roughness topography, is a fractal with
a particular dimension at a large scale. Vegetation, which shows up at smaller scales, is
also fractal with a different dimension. A broader justification for the restriction of fractal
behavior for a specific scale is that no process acts across all scales.

It is interesting to confirm previous results on the scale dependence of RMS parameters,
based on the freshly introduced fractal ideas. Considering a self-affine profile, whose
power spectrum is given by Equation (2.55), and assuming that the spectrum is bounded
at large scales by kl = kr and at small scales by ks , RMS roughness, slope and curvature
comes from the profile spectral moments Equation (2.35)

zrms,x =
∫ ks

kl

C1

k1+2H
dk =C2

(
1

k2H
s

− 1

k2H
l

)
≈C3λ

2H
l ; (2.58a)

z ′
rms,x =

∫ ks

kl

C1k2

k1+2H
dk =C ′

2

(
1

k−2+2H
s

− 1

k−2+2H
l

)
≈C ′

3λ
2−2H
s ; (2.58b)

z ′′
rms,x =

∫ ks

kl

C1k4

k1+2H
dk =C ′′

2

(
1

k−4+2H
s

− 1

k−4+2H
l

)
≈C ′′

3λ
4−2H
s . (2.58c)

The constants C are included to express the idea of proportionality, although their exact
value is not important for the ongoing discussion. In the last step of all previous equa-
tions, the wavenumber is substituted by the respective wavelength λ, and the following
expressions are derived assuming kl << ks . The value of RMS roughness is dominated
by the large wavelength, and increases with increasing longer wavelength, thus with sam-
pling size, as already mentioned. Concerning RMS slope and curvature, since 2H < 2 (cf.
the definition of Hurst exponent) it is observed that both parameters are dominated by
the shortest wavelength, or high frequency, and increase with increasing high frequency.
Curvature increases faster the slope, because it involves a higher power of the short wave-
length. From this analysis, one can conclude that there must be a high frequency filter
in order to enable measurements on fractal surfaces, either in the measurement device
itself or by a change in fractal behavior. This also justifies the unbounded increase on
summit density predicted by Nayak (1971), since high frequencies create small summits
around larger ones, progressively increasing summit density.

2.5 Anisotropy

It was referred in Section 2.3.1 that an exponential autocorrelation function in two dimen-
sions could be used to describe anisotropic surfaces. Longuet-Higgins (1957b) discussed
briefly anisotropy in his works, but only found expressions for the spatial density of sum-
mits. Nayak (1973) concluded that the problem of anisotropic statistical geometry could
be reduced to the determination of seven invariants from five non-parallel rough pro-
files, which is quite unpractical. McCool (1978) characterized anisotropy by the ratio of
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maximum and minimum mθ2 along several directions.

The concept of strong anisotropy was introduced by Bush, Gibson, and Keogh (1979),
in contrast to that of weak anisotropy. Weakly anisotropic are stretched isotropic surfaces,
while strong anisotropic surfaces show a distinct lay along which roughness exists. This
lay can be interpreted, for example, as the direction of machining marks in a surface.
Bush, Gibson, and Keogh (1979) stated that for a strongly anisotropic surface, the problem
is reduced to the determination of 5 invariants, that can be computed from only 2 profiles,
one perpendicular to the lay, and other parallel to it, providing very convenient strategy
for practical applications.

The extension of the fractal theory to anisotropic surfaces is not straightforward. For an
isotropic surface one can speak of a surface fractal dimension, that relates to the dimen-
sion of each profile, which is equal for all profiles. However, when dealing with anisotropic
surfaces, profiles may have different fractal dimensions, and the concept of surface fractal
dimension becomes blurry. Russ (1994) suggested that for a weakly anisotropic surface,
the profile fractal dimension does not depend on the profile direction, but topothesy
(or fractal scaling factor) does. Concerning strong anisotropy, Hall and Davies (1995) ob-
served that the fractal dimension is constant nearly in every direction, expect along the
lay, where it decreases rapidly. J.-J. Wu (2002) proposed analytical expressions for the PSD
of both weakly and strongly anisotropic surface, based on the prepositions of Russ (1994)
and Hall and Davies (1995), in order to perform numerical generation of random rough
surfaces. For weakly anisotropic surface, Wu suggests the following PSD:

Φ(kX ,ky ) = g 2Dp−2

[(
kx

bx

)2

+
(

ky

by

)2
]3−Dp

= g 2(1−H)

[(
kx

bx

)2

+
(

ky

by

)2
]1+H

, (2.59)

where bx and by responsible for changing the profile scale factor along different direc-
tions and Dp is the profile fractal dimension of any profile in the surface. With respect to
strong anisotropy, the same author proposes the following relation

Φ(kx ,ky ) = J
2Dx

p−2
x ∆(ky )

k
5−2Dx

p
x

+
J

2D y
p−2

y ∆(kx )

k
5−2D y

p
y

= J 2(1−Hx )
x ∆(ky )

k1+2Hx
x

+
J

2(1−Hy )
y ∆(kx )

k
1+2Hy
y

. (2.60)

Here,∆(·) is a function which verifies ∆(0) = 1, and is null elsewhere. Therefore, this PSD is
null everywhere except along the lines kx = 0 and ky = 0. Opposed to what J.-J. Wu (2002)
presented, the scale constants for strongly anisotropic rough surfaces are denoted here
by J instead of G , to account for the difference between physical units of Φ and Φθ. Fig-
ures 2.18 and 2.19 show different textures, characterized by weak and strong anisotropy,
respectively.

2.6 Application to discrete surfaces and profiles

Most previous concepts, specifically those concerning random processes and spectral
analysis of rough surfaces, were established for continuous topography. When working
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(a) H = 0.3 and bx = 2by

x

y

(b) H = 0.3 and bx = 4by

Figure 2.18: Weakly anisotropic rough surfaces. Both surfaces have the same value of
RMS roughness, and also the same field. By stretching Figure 2.18a on obtains Fig-
ure 2.18b.
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y

(a) H = 0.3 and Jy = 20Jx

x

y

(b) H = 0.1 and Jy = 20Jx

Figure 2.19: Strongly anisotropic rough surfaces. The surface is very similar to an extru-
sion of a profile along x, in the y direction.
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with data from real measurements, or with artificially synthesized surfaces, one needs
to reformulate those concepts such that they can be applied for discrete surfaces and
profiles. RMS parameters in Section 2.2 have already been derived assuming a discrete
description of roughness. The extension of ACF, skewness and kurtosis for discrete data
is straightforward, and follows the same idea. Firstly, consider the following: a discrete
profile, sampled at N equally spaced points, identified by index n; a discrete surface
sampled on a grid of N points in the x direction and M points in the y direction, denoted
by the symbols n and m, respectively. The discrete estimate of ACF comes as

R̂q = 1

N −q

N−1−q∑
n=0

zn zn+q , q = 0,1,2, ...., N −1 ; (2.61a)

R̂p,q = 1

(M −p)(N −q)

M−1−p∑
m=0

N−1−q∑
n=0

zm,n zm+p,n+q ,

{
p = 0,1, ..., M −1

q = 0,1, ..., N −1
. (2.61b)

One refers to R̂ as an estimate of the ACF, because it is computed from a discrete set
of data and, consequently, it will differ from R at the sampling points, in general. Also,
note that with increasing shift, less points are available for ACF computation, and thus
estimates become less reliable as the shifts become larger. Skewness and kurtosis can also
be readily reformulated, assuming a zero mean data set. It is noteworthy to mention that
skewness and kurtosis are stable with sampling size (Mainsah et al., 2013). The discrete
computation of these PDF moments follows

Rsk = 1

R3
q

1

N

N−1∑
n=0

z3
n ; (2.62a)

Ssk = 1

S3
q

1

M N

M−1∑
m=0

N−1∑
n=0

z3
m,n ; (2.62b)

Rku = 1

R4
q

1

N

N−1∑
n=0

z4
n ; (2.63a)

Sku = 1

S4
q

1

M N

M−1∑
m=0

N−1∑
n=0

z4
m,n . (2.63b)

The discretization of Fourier transforms must be performed both in spatial and fre-
quency. This procedure is accomplished by the Discrete Fourier Transform (abbreviated
DFT, see A.4 for more details). The DFT of a rough topography comes

DFT(zn) = Zq =
N−1∑
n=0

zne−i2πqn/N , q = 0,1,2, ...., N −1 ; (2.64a)

DFT(zm,n) = Zp,q =
M−1∑
m=0

N−1∑
n=0

zm,ne−i2π(qm/M+pn/N ),

{
p = 0,1, ..., M −1

q = 0,1, ..., N −1
; (2.64b)
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and the inverse transform (IDFT) reads

IDFT(Zq ) = zn = 1

N

N−1∑
q=0

Zq e i2πqn/N , n = 0,1,2, ...., N −1 ; (2.65a)

IDFT(Zp,q ) = zm,n = 1

M N

M−1∑
p=0

N−1∑
q=0

Zp,q e i2π(qm/M+pn/N ),

{
m = 0,1, ..., M −1

n = 0,1, ..., N −1
. (2.65b)

The DFT writes a discrete rough profile as the superposition of N discrete sinusoidal
waves with frequencies equally spaced between 0 and Ωs/2. The symbol Ωs denotes the
sampling frequency, which is related to the sampling interval ls (defined as the spacing
between sampled points) by

Ωs =
2π

ls
. (2.66)

The same holds for the two dimensional case, where the frequencies in each direction
are sampled between 0 and the sampling frequency on that direction. When performing
a DFT operation, one must have in mind that it is implicitly assumed that the profile or
surface are periodic in each direction, with period equal to the number of sampled points
in each direction. The discrete transform is also periodic in each direction, also with
same period. Furthermore, the conjugate symmetry property still holds for the discrete
scenario, writing

Zq = Z∗
−q = Z∗

N−q ; (2.67a)

Zp,q = Z∗
−p,−q = Z∗

M−p,N−q . (2.67b)

The main difference relative to the continuous case, is that PSD is not the DFT of the dis-
crete ACF R̂ from Equation (2.61), but of the circular ACF, denoted by R̃. The definition of
circular ACF is similar to Equation (2.61), yet it assumes periodicity of the profile/surface,
which allows the average to be performed over all domain. One writes the discrete circular
ACF as

R̃q = 1

N

N−1∑
n=0

zn zn+q , q = 0,1,2, ...., N −1 , (2.68a)

R̃p,q = 1

M N

M−1∑
m=0

N−1∑
n=0

zm,n zm+p,n+q ,

{
m = 0,1, ..., M −1

n = 0,1, ..., N −1
, (2.68b)

where it is assumed that

zn = zn+N ; (2.69a)

zm,n = zm+M ,n = zm,n+N = zm+M ,n+N . (2.69b)

Moreover, it is reasonable to name DFT of circular ACF as an estimate of the power spec-
tral density, rather than PSD itself, since it is an estimation of a continuous PSD from
discrete data. Henceforth, one can write the relation between the PSD estimate and cir-
cular autocorrelation

DFT
(
R̃n

)= Φ̂θq =
N−1∑
n=0

R̃ne−i2πqn/N , q = 0,1,2, ...., N −1 ; (2.70a)

DFT
(
R̃m,n

)= Φ̂p,q =
M−1∑
m=0

N−1∑
n=0

R̃m,ne−i2π(qm/M+pn/N ),

{
p = 0,1, ..., M −1

q = 0,1, ..., N −1
. (2.70b)
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The inverse relation holds

IDFT
(
Φ̂θq

)
= R̃n = 1

N

N−1∑
q=0

Φ̂θq e i2πqn/N , n = 0,1,2, ...., N −1 ; (2.71a)

IDFT
(
Φ̂p,q

)= R̃m,n = 1

M N

M−1∑
m=0

N−1∑
n=0

Φ̂p,q e−i2π(qm/M+pn/N ),

{
m = 0,1, ..., M −1

n = 0,1, ..., N −1.
(2.71b)

From the autocorrelation theorem, the estimate of PSD can be related with the discrete
spectrum of the sampled surface, which now comes

Φ̂θq = |Zq |2
N

; (2.72a)

Φ̂p,q = |Zp,q |2
M N

. (2.72b)

Substituting the previous relations in the discrete surface’s IDFT, one reaches an expres-
sion describing the discrete surface synthesis via the estimate of its PSD

zn = 1

N

N−1∑
q=0

√
NΦ̂θq e i(2πqn/N+φq ), n = 0,1,2, ...., N −1 ; (2.73a)

zm,n = 1

M N

M−1∑
p=0

N−1∑
q=0

√
M NΦ̂p,q e i(2π(qm/M+pn/N )+φp,q ),

{
m = 0,1, ..., M −1

n = 0,1, ..., N −1
. (2.73b)

Note that in Expressions (2.73) random phases φq and φp,q were introduced, since Ex-
pressions (2.72) only relate the magnitude of DFT and not to the phases.

A key point to mention here is the relation between the discrete estimate of the surface
spectrum Φ̂ and the continuous Φ. While complex phenomena may happen in the trans-
formation from the continuous into the discrete, such as frequency aliasing, there is no
interest in exploring that topic here. Thus, one shall focus on a completely clean transfor-
mation of the continuous spectrum into the the discrete. Referring to Equation (A.22), on
page 212, it can be seen that the discrete spectrum is obtained by sampling the contin-
uous one, followed by a division with the sampling length ls . Hence, for an aliasing free
sampling, it writes

Φ̂θ[q] = 1

ls
Φθ

( q

N
Ωs

)
, q = 0,1,2, ...., N /2 , (2.74)

Φ̂[p, q] = 1

lsx lsy

Φ
( q

N
Ωsx ,

p

M
Ωsy

)
,

{
p = 0,1, ..., M/2

q = 0,1, ..., N /2
, (2.75)

for profiles and surfaces, respectively.

At last, the computation of spectral moments from discrete data is addressed. Several
strategies have been proposed in the literature. For example, Longuet-Higgins (1957b)
proposed the computation of these quantities based on the density of extrema and zero
crossings in a profile. Other method consists in computing RMS parameters, and the
spectral moments are deduced from Equation (2.35) to (2.36). Still, another alternative is
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based on the numerical computation of the derivative of ACF at the origin. The problem
of such method is that it relies either on the topography of a particular discrete surface
and on numerical computation of derivatives. This is undesirable, since spectral moments
would not be uniquely determined from PSD and would be dependent, for example, on
the method adopted for derivative computation. Additionally, RMS slope and curvature
are largely affected by noise at small scales, which would introduce errors in spectral
moments. Yastrebov, Anciaux, et al. (2017) suggests to compute spectral moments directly
from surface of profile spectrum, in order to avoid such errors. The spectral moment for
a discrete profile writes

mθn = 1

N

N /2∑

j=−N /2+1

(
2π j

L

)n

Φ̂θj . (2.76)

The zeroth moment is exactly equal to profile RMS roughness squared, but relation to
RMS slope and curvature holds approximately, rather than exactly:

R2
q = mθ0 ; (2.77a)

R2
∆q ≈ mθ2 ; (2.77b)

R2
∆2q ≈ mθ4 . (2.77c)

Similar expressions can be written for surfaces. Starting by defining the spectral moment
for a discrete surface, it comes

mpq = 1

M N

M/2∑

i=−M/2+1

N /2∑

j=−N /2+1

(
2π j

Lx

)p (
2πi

Ly

)q

Φ̂i , j . (2.78)

The relation between surface spectral moments and discrete surface RMS parameters
come analogously

S2
q = m00 ; (2.79a)

S2
∆q ≈ m02 +m20 ; (2.79b)

S2
∆2q ≈ m04 +2m22 +m04

4
. (2.79c)

While the previous strategy for computation of spectral moments does not depend on
the discretization techniques for the derivative, it stills depends on the number of points
used to sample a given PSD, and thus, will produce different results for different levels
of discretization. To circumvent this issue, the best way to compute spectral moments is
through analytical solution for each case, whenever possible.

Remark 2.6 on the definition of the Discrete Fourier transform.
It is important to emphasize the definition of the Fourier transform adopted in the cur-
rent work, as remarked previously regarding the continuous transform. The DFT of a one
dimensional discrete function is here defined as

DFT( fn) = Fq =
N−1∑
n=0

fne−i2πqn/N , q = 0,1,2, ...., N −1 ,
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and the inverse transform (IDFT) writes

IDFT(Fq ) = fn = 1

N

N−1∑
q=0

Fq e i2πqn/N , n = 0,1,2, ...., N −1 .

Analogously to the continuous transform case, these definitions vary from the work of
some authors to another, by moving the division by N from the inverse to the forward
transform—this influences how several equations are written. The above definitions were
adopted in the current work in order to match the ones used in the Python scientific
computing library SciPy. This package was used for the computer implementation of
the random topography generator, thus the connection between implementation and
documentation is simpler if the same definition is used for both.
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Chapter 3

Numerical generation of
randomly rough topography

Numerical simulations are a powerful tool to predict mechanical interaction between
rough surfaces. Techniques such as the Finite Element Method (FEM) rely on a discrete
mesh to approximate rough topography, thus requiring a discretization of surface and
profile geometry. Discrete profiles can be readily measured in real surfaces with stylus
devices, in a relatively cheap and fast fashion. However, discrete surface measurements
are very time consuming. Numerical generation of random rough topography comes as a
very attractive tool, that provides artificially generated discrete heights having statistical
and spectral properties identical to real world surfaces. Not only it allows the genera-
tion of a large number of rough topography realizations in an extremely short period of
time—when compared to that that would be needed to acquire an equivalent amount of
experimental data—but it also promotes the realization of parametric studies involving
surface statistics. For instance, if the influence of surface kurtosis on real contact area
was to be studied from experimental data, one would need to measure different surfaces
until finding one which verified the required statistics. This seems a rather inefficient
approach to the problem, when a random surface generator would be able to reproduce
those statistics consistently and a lot faster.

Several rough surface generation strategies have been proposed since around 1970. In
this chapter, a brief literature review on generation algorithms is presented. Two partic-
ular algorithms, one for Gaussian (J.-J. Wu, 2000b) and other concerning non-Gaussian
topography (J.-J. Wu, 2004), are described in detail. Both algorithms were implemented
using the Python programming language. Validation results and numerical tests are also
documented, in order to access algorithm performance. This chapter closes with an as-
sessment of these numerical methods against experimental data on profile and surface
roughness.

3.1 Brief literature review

Following the ideas presented in Chapter 2, the challenge of numerical generation of
profiles and surfaces is to create topographies with prescribed statistics, such as skewness
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and kurtosis, and spectral content—this is, verifying some required ACF or PSD. Most
generation methods fall into the category of Autoregressive Moving Average techniques
(ARMA), which are concepts rooted in the field of time series modeling. Generally, ARMA
methods describe the height at position n as a function of the previous height values zi

and an input white noise ηi . In other words, it models the response of a linear closed
loop system to white noise. For example, the general expression for ARMA methods when
applied to rough profiles writes

zn =
m∑

i=0
aiηi+n +

n−1∑

j=0
b j z j . (3.1)

Equation (3.1) expresses height zn as a function of previous heights (autoregressive) and
a weighted average of the input white noise ηi . The average of ηi is computed over a set
which changes with changing n—hence the designation moving average. These models
can be reduced to simpler ones such as Autoregressive models (AR) or Moving Average
models (MA), when coefficients ai or bi are set to zero, respectively. Complete ARMA
methods are not as popular as their simplified versions, when it comes to random topog-
raphy generation. The work of Gu and Huang (1990) is cited as an example of application
of such methods.

AR methods were the first to get attention, by Staufert, G. (1979) and DeVries, W. R.
(1979). Both authors generated Gaussian rough profiles from an input ACF, yet adopted
different strategies for the computation of coefficients b j . Whitehouse (1983) extended
the application of AR models to Gaussian surface generation. The major drawback from
AR models is that they can only consider few terms of the sum in Equation (3.1), hence
only a small number of points near the origin of the ACF can be accounted.

Concerning MA models, the method proposed by Patir (1978) is one of most popular
strategies for random surface generation, and serves as starting point for many other
methods. Even though it can be considered as a moving average method, Patir’s method
does not follow the idea behind typical time series modeling. Instead, the moving aver-
age procedure is thought as a linear transformation of a random matrix. By imposing
that all input points are uncorrelated (the autocorrelation function is zero everywhere
except at the origin), and also that the output surface ACF must verify a set of prescribed
values, a system of nonlinear equations on the transformation matrix coefficients can be
written. In the original work, Patir proposed to solve this nonlinear system with Newton-
Raphson method. Overall, this generation method revealed convergence issues for large
autocorrelation lengths. Furthermore, once it needs to solve a system of nonlinear equa-
tions, memory requisites and computation times grow rapidly with increasing surface
size. Patir (1978) also suggested a strategy to generate non-Gaussian surfaces. However, it
did not become as notorious, and currently is rarely employed. Some authors proposed
alternative methods based on Patir’s, in order to reduce computational costs and increase
speed. Bakolas (2003) reformulated Patir’s method, transforming a root finding problem
(solution of the nonlinear system of equations) into an optimization problem, which
could be solved using the Nonlinear Conjugate Gradient Method (NCGM). Additionally,
Bakolas used a FFT-based strategy to compute the ACF, to reduce computation time even
further. Since the solution of a optimization problem is not necessarily equal to the cor-
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responding root finding problem, due to the existence of local extrema, Bakolas’ method
may prove unsatisfactory in some cases. Liao et al. (2018) redefined the problem as a
nonlinear least squares problem, to improve the method’s efficiency and stability.

The cornerstone of non-Gaussian topography generation was laid by Watson and Sped-
ding (1982), whose analysis started from ARMA models, and then focused on pure MA
models. The authors presented formulas relating the skewness and kurtosis of the output
of a pure moving average procedure zn with coefficients ai and the skewness and kurtosis
of the input white noise ηi . By knowing a priori the MA coefficients, one can compute
the skewness and kurtosis needed for ηi , such that they will result in the prescribed val-
ues at the output zn . For this purpose, a non-Gaussian set random numbers ηi needs to
be generated, which can be accomplished with Johnson translator system of frequency
curves (N. L. Johnson, 1949; Elderton and N. L. Johnson, 1969). Johnson frequency curves
are non-Gaussian probability density functions, which result from a transformation of
the Gaussian distribution. This transformation involves 4 parameters and can be per-
formed with 3 different types of frequency curves. Using the fitting algorithm proposed
by I. D. Hill, R. Hill, et al. (1976), the curve type can be selected, and the parameters can
be fitted such that the probability distribution verifies the prescribed values of skewness
and kurtosis for ηi . Thus, requesting a particular combination of skewness and kurtosis
for a rough topography, the required skewness and kurtosis for a random number set ηi

is computed using the results from Watson and Spedding (1982), and such sequence ηi

can be generated by transforming a set of normal numbers using Hill’s algorithm. In fact,
this is the mainstream scheme for generating artificial non-Gaussian surfaces, and is also
integrated in the methods proposed by Bakolas (2003) and Liao et al. (2018).

While all the works on topography generation cited so far used as input an ACF, the pos-
sibility to prescribe a particular power spectrum is also of particular interest. Topography
generation from MA models can be tackled with Fourier transforms, in particular FFT and
IFFT. These tools provide a convenient framework to handle the power spectrum of arti-
ficial topography. Newland (1984) presented a method to generate rough surface either
from PSD or ACF. A similar strategy was applied by Ganti and Bhushan (1995) for rough
profiles, and J.-J. Wu (2000b) extended the previous method for surface generation. These
methods consist in synthesizing rough topography as the superposition of waves, whose
amplitudes depend on the input PSD, and the phases are randomly generated. This can
be reduced to imposing a particular DFT to a rough topography, which is then generated
by performing an IDFT operation on the explicitly built DFT. Newland’s method differs
from Wu’s in the scheme adopted to compute the amplitude of each wave from PSD or
ACF. In the pioneer work of Hu and Tonder (1992), topography generation was initially
approached by transforming a MA model into the frequency space. Hu and Tonder’s con-
cept lies in the similarity between surface height generation from MA models and the
application of a digital filter to an input signal. With this analogy, it is possible to generate
rough surfaces from a given ACF. Moreover, generation from PSD is also straightforward.
This work also incorporated the previously mentioned non-Gaussian surface generation
framework, based on Watson and Spedding work, Johnson translator system and Hill’s fit-
ting algorithm. Reizer (2011) compared both Wu and Newland’s method, and concluded
that Wu’s represents rough topography with higher accuracy, although differences are
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generally small. J.-J. Wu (2000b) carried out a comparison between his, Newland’s and
Hu and Tonder’s method, regarding Gaussian topography. All methods showed good re-
sults, as long the autocorrelation length is kept small. Wu claims that, even though all
method shows similar result, his method performs better, and points out mathematical
mistakes in the formulation of Hu and Tonder’s method. Despite such eventual mistakes,
Hu and Tonder’s method achieved great success amongst the scientific community study-
ing rough contact, and it is currently used by many researchers (Yastrebov, Anciaux, et
al., 2015; Urzică et al., 2012). However, generation of non-Gaussian surfaces with this
method has revealed unsatisfactory results for skewness and kurtosis of artificially gener-
ated surfaces. This may owe directly to the method itself, or to the limitations of Johnson
translator system (Ao et al., 2002). An iterative process was proposed by J.-J. Wu (2004) in
order to improve the performance of Hu and Tonder’s method, concerning verification
of spectral properties, skewness and kurtosis. Francisco and Brunetière (2016) presented
an hybrid analytical/numerical method, in order to cope with the limitations of typical
non-Gaussian generators, and to extend the range of skewness and kurtosis of generated
surfaces.

Different techniques have also been applied to surface generation, yet with far less
expression. Some examples are random field theory (Temizer, 2011), Monte Carlo sim-
ulations (Zou et al., 2007), neural network schemes (Patrikar, 2004), random midpoint
displacement method (Zahouani et al., 1998) and fractal simulation with Weierstrass-
Mandelbrot function (Majumdar and Tien, 1990). Surface generation methods have also
been used to produce stratified surfaces, which result from the superposition of two in-
dependent surfaces with different height distributions (Pawlus, 2008).

Remark 3.1 on the selection of the generation methods.
Both methods proposed by Wu (J.-J. Wu, 2000b, 2004) were selected as rough topography
generators for the present work. This selection was based, firstly, on the convenience of
having at our disposal two generations methods, one for Gaussian topography and other
for non-Gaussian (even though non-Gaussian generators can produce Gaussian surfaces
as a particular case). With this division, the complexity and limitations associated with
non-Gaussian methods are separated from Gaussian topography generation. Secondly,
both methods are based on FFT, which means that the enforcement of the rough surface
power spectra is simplified. The two methods are well established in literature, and are
used frequently in rough contact numerical studies. Note that the work of Francisco and
Brunetière (2016) seems a reliable alternative to explore in future works.

3.2 Gaussian topography

In the following section, a detailed description of the random rough Gaussian topography
generation algorithm proposed in J.-J. Wu (2000b) is shown. It applies to both rough
profiles and surfaces, yet only surface generation will be described, for simplicity.

The synthesis of a random rough surface can be performed as the superposition of dis-
crete waves with different frequency, amplitude and phase. Recalling Expressions (2.73),
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the discrete surface zm,n is the result of an IDFT operation

zm,n = 1

M N

M−1∑
p=0

N−1∑
q=0

√
M NΦ̂p,q e i(2π(qm/M+pn/N )+φp,q ),

{
m = 0,1, ..., M −1

n = 0,1, ..., N −1
. (3.2)

Recall that M and N are the number of sampled points in y and x direction, respectively,
Φ̂p,q is the estimate of the real power spectral density (related to the circular autocorre-
lation function) and φp,q is an array of random phases. Note that the sampled points
are uniformly spaced in the interval [0,L[, where L is the sample length on the consid-
ered direction. By specifying the values for Φ̂p,q and the phases φp,q , a discrete surface
can be generated by Equation (3.2). For the specification of Φ̂, the two cases of interest
are generation from input PSD and ACF. Starting with surface synthesis from PSD, it is
convenient to repeat that Φ̂ is a discrete estimate of the real power spectrum Φ(kx ,ky ).
If the real PSD is bandwidth limited (i.e., that above a certain wavenumber the power
spectrum is null) and further considering that the Nyquist frequency is higher than this
limiting wavenumber, frequency aliasing, caused by the topography discretization, can
be neglected. In such conditions, it is reasonable recall Equation (2.75), which states

Φ̂p,q = 1

lsx lsy

Φ
(
kx = q

N
Ωsx , ky =

p

M
Ωsy

)
,

{
p =−M/2+1, ..., M/2

q = 0,1, ..., N /2
. (3.3)

Note that, from the properties of discrete Fourier analysis, Φ̂ is periodic in both directions,
with period equal to M and N on y and x directions, respectively. Hence, only M and N
need to be defined, in order to compute Φ̂p,q from a required continuous PSD. Sampling
frequencies in both direction are here denoted by Ωs . It proves convenient to rewrite
Equation (3.3) with both indexes starting at 0, which comes, in a compact notation, and
attending to the discrete surface periodicity

Φ̂p,q = 1

lsx lsy

Φ
(
kx = q

N
Ωsx , ky =

[
(1−χ)

p

M
+χ

(
1− p

M

)]
Ωsy

)
,

{
p = 0, ..., M −1

q = 0, ..., N /2
,

(3.4)
with

χ=





0, p ∈
[

0,
M

2

]

1, p ∈
]

M

2
, M −1

] . (3.5)

In Equation (3.3), index p spans all M values, while q index spans only half of required
points. This is due to the conjugate symmetry property, expressed by Equations (2.67),
which states that only half of frequency space needs to be regarded, since the remaining
points are obtained by

Φ̂p,q = Φ̂M−p,N−q ,

{
p = 0, ..., M −1

q = 0, ..., N /2
. (3.6)

In the previous discussion it was assumed that index p spans all indexes, while q covers
only half the needed indexes. The inverse would also be true, in which case p would
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only span half the indexes and q would cover available points in that direction. The first
option was adopted for no particular reason, and shall be kept throughout the text.

Moving to the generation from a prescribed linear autocorrelation function R, recall
that it is the circular ACF R̃ that relates to the estimate of surface power spectrum Φ̂p,q

by Equations (C.13)
FFT

(
R̃m,n

)= Φ̂p,q . (3.7)

In Equation (3.7), the notation for Fast Fourier Transform (FFT) replaces DFT, so that
implementation details are explicit in the algorithm. Circular ACF is symmetric relative
to the origin, and periodic in both directions—also with period equal to M and N in y
and x directions. Combining these two properties, it results in symmetry relative to lines
m = M/2 and n = N /2. Nonetheless, one needs the relation between linear and circular
ACF needed, such that the coefficients Φ̂p,q contain information of the required linear
ACF. Instead, the circular ACF can be related to the estimate of linear ACF R̂ by, namely
(Newland, 1984)

R̃m,n = M −m

M

N −n

N
R̂m,n + m

M

N −n

N
R̂M−m,n + M −m

M

n

N
R̂m,N−n + m

M

n

N
R̂M−m,N−n . (3.8)

Notice that the estimate of linear ACF is computed over the discrete surface, which is not
generated yet. Hence it is difficult to explicitly apply Equation (3.8). Newland’s method
consists in replacing R̂m,n , in Equation (3.8), with the prescribed linear correlation Rm,n .
In contrast, Wu suggests to build the circular ACF directly with Rm,n , avoiding Equa-
tion (3.8). This writes

R̃m,n = R̃M−m,n = R̃m,N−n = R̃M−m,N−n = Rm,n ,

{
p = 0, ..., M/2

q = 0, ..., N /2
. (3.9)

From this circular ACF, Φ̂p,q can be computed from Equation (3.7), and it verifies the
conjugate symmetry property, necessarily. Having computed the amplitudes, the array
of random phases remains the only unknown. While each wave verifies a deterministic
amplitude, which only depends on the input PSD, or input ACF, the random nature of
rough topography will be ensured in the phases φp,q . These should be generated by a
random number generator following a uniform distribution between 0 and 2π, in order to
avoid some phases showing with higher probability than others. This would synchronize
the respective frequencies and deteriorate the required random behavior. Following the
conjugate symmetry property, the phases must ensure

φm,n =−φM−m,N−n ,

{
p = 0, ..., M −1

q = 0, ..., N /2
. (3.10)

Combining the conjugate symmetry property and the DFT periodicity, the conjugate sym-
metry property applies to points which lie on other period of the DFT, hence, it must be
condense in a relation between points in the same period. Then, the follow relationships
must also be verified

φ0,0 =φ0,N /2 =φM/2,0 =φM/2,N /2 = 0 ; (3.11a)

φm,0 =−φM−m,0, m = 0, ..., M/2 ; (3.11b)

φ0,n =−φ0,N−n , n = 0, ..., N /2 . (3.11c)
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By using the amplitudes computed form the prescribed PSD or ACF, and generating a uni-
formly distributed grid of phases φp,q verifying the conjugate symmetry property, along-
side with the periodic behavior DFT, a discrete rough surface can be generated from
Equation (3.2). To enhance computational efficiency of the generation algorithm, Equa-
tion (3.2) shall not be implemented explicitly, but using a Inverse Fast Fourier Transform
algorithm as

zm,n = IFFT

(√
M NΦ̂p,q e iφp,q

)
. (3.12)

The Gaussian distribution of heights is guaranteed from the superposition, of indepen-
dent random variables—the height of each wave—at every point. From the central limit
theorem, it comes that the height distribution is Gaussian. The flowchart of this algorithm
is presented in Figures 3.1 and 3.2 for surfaces and profiles, respectively.

Remark 3.2 on the distinction between generated length and period.
There are two different lengths that shall be recognized in the profile/surface generation
methods. The first one is the period L over which the points are sampled. This is, L is
the period of the hypothetically continuous topography. Focusing on the profile case, but
with conclusions valid for surfaces as well, when N points are sampled over the period,
the points lie between x = 0 and x = L(N −1)/N , inclusively. The generation algorithm
only takes these points into account, since the points at x = L is equal to x = 0 and
does not required explicit generation. Hence, one can distinguish between the generated
profile length L(N −1)/N and the periodic profile length L.

Usually, it is more convenient to work with the periodic profile length, since by de-
termining the wavelength associated with each discrete frequency,

q

N
Ωs =

q

N

2π

ls
= q

N

2πN

L
= 2π

L/q
,

each discrete frequency can be associated with the wavelength L/q. This goes up to the
Nyquist frequency, where the wavelength is 2L/N = 2ls , which is the maximum frequency
that the discretization can represent. Furthermore, note operations such as discrete PSD
computation and ACF estimate are computed over the generated length.

Remark 3.3 on the input of the power spectrum.
It was emphasized earlier that the discrete spectrum is a sampled and scaled version of
the continuous spectrum, see Equation (3.3). However, the roughness models discussed
in Chapter 2 were formulated for continuous topography. Thus, one needs to scale the
models for different levels of discretization of the topography. Adding this inconvenience
to the fact that the generated profile is often normalized in a post processing step, one
shall adopt the inverse strategy. The models in Equation (3.3) shall be used for the dis-
crete spectrum, and whenever the continuous spectrum is required, one multiplies the
model by the respective sampling lengths. For instance, any reference to parameters in-
volved in fractal modes, such as the profile fractal scale factor G, refer directly to the
discrete spectrum.
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Figure 3.1: Flowchart of Gaussian random rough surface generation algorithm.
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Figure 3.2: Flowchart of Gaussian random rough profile generation algorithm.
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3.2.1 Numerical tests

In order to evaluate the quality of implementation of the Gaussian topography generation
algorithm, and outline its performance under several circumstances, different numerical
experiments were carried out with the method. In particular, both profiles and surfaces
were synthesized by prescribing ACF and PSD, and these functions were recomputed from
the generated topography and compared with the input ones. Profile and surface genera-
tion follow a very similar structure, hence only results concerning one of the topography
types will be shown for each case, which shall be emphasized at the time—conclusions
are identical for both cases. Although physical units are not relevant for numerical tests,
they will be displayed in graphical representation of results, such that some aspects can
be clarified. As a matter of fact, almost every profile and surface used so far, for illustra-
tion of theoretical aspects, were generated by the implemented generation algorithms.
Figure 3.3 shows two more examples of artificially generated Gaussian isotropic surfaces,
verifying a fractal PSD.

(a) H = 0.8 (b) H = 0.2

Figure 3.3: Examples of artificially generated isotropic Gaussian surfaces. Both surfaces
are generated from 1024 points in each direction with Lx = Ly = 1mm, and their heights
are normalized, such that Sq = 0.01mm. The high frequency cut-off is set to λs = L/256
and the low cut-off to λ= L/4. There is no roll-off in both surfaces, i.e., λr =λl .

Starting with profile generation from input exponential ACF, Figure 3.4 shows the ACF
computed over 5 artificially generated profiles, with Rq = 1mm, L = 1mm and 1024 points,
alongside with the theoretical ACF. For every case, the computed ACF recovers its value
at the origin with practically zero error. For longer autocorrelation lengths however, the
ACF computed from the artificial profile shows increasingly higher deviations relative to
the exact value at each points, and these deviations also increase, on average, with the
distance to the origin. For autocorrelation lengths shorter than L/50, the input ACF is
recovered almost exactly. This results show good agreement with the ones presented by
J.-J. Wu (2000b). A disadvantage of topography generation from exponential ACF, which
was already referred earlier in this text, is that artificial profiles and surfaces have a non-
zero mean height, which contradicts roughness definition. It is convenient to investigate
how the output ACF will behave, if the mean value of height is removed from the profile.
Figure 3.5 illustrates the influence of the mean value on ACF, for two different autocorre-
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lation lengths. Both profiles are generated from 1024 points, from input data Rq = 1mm
and L = 1mm. It can be seen that the mean value has little influence for low autocorrela-
tion lengths, while for longer ones it distorts the output ACF.
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Figure 3.4: Effect of correlation length on the accuracy of the Gaussian profile genera-
tor. ACF computed from 5 profiles generated with L = 1mm, Rq = 1 and 1024 points are
plotted. With increasing autocorrelation length, the generated profile show increasingly
higher deviations relative to the input ACF, and the mean deviation increases with in-
creasing distance to the origin. For β < L/50 the algorithm can recover the input ACF
with high accuracy, at every point.

A feature of generation algorithms based on FFT, is that they imply periodicity of the
generated topography. The discrete Fourier transform assumes that the discrete profile
zn or surface zm,n are periodic in every direction over which the transform is computed.
This is emphasized in Figure 3.6, regarding a rough profile. From this figure, one sees
that points x = 0 and x = L are correlated, once it is very likely that profile height is
similar at both points. Actually, some authors, who used FFT-based algorithms for surface
generation, actually mention that they considered periodic surfaces or profiles, in their
analysis.

Coming to topography generation from PSD, since the amplitude of DFT is explicitly
prescribed in the algorithm (cf. Figures 3.1 and 3.2), one expects that the input PSD is
recovered exactly. This result is confirmed in Figure 3.7, where the PSD of two fractal pro-
files, generated artificially, are plotted. The artificial profiles in question have 1024 points,
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Figure 3.5: Influence of the profile mean value in ACF. Two profiles are generated with
L = 1, Rq = 1 and 1024 points. Profiles artificially generated from an exponential ACF do
not verify the zero mean height condition implied in roughness definition. If the mean
value is removed from the profile and the ACF of this new profile is computed, the ACF
moves away from the theoretical curve. The error due to mean value removal increases
with increasing autocorrelation length.

and the algorithm inputs are L = 1mm, G = 1, H = 0.5, λl = L, and λs = L/256, where λ
denotes wavelength.1 One of the profiles is generated without roll-off (λl =λr ) and other
with roll-off λr = L/10. Following the previous comment on artificial topography peri-
odicity, an approach to remove correlation between extreme points in a profile consists
in trimming the profile, i.e., considering just a part of it. By doing so, only one extreme
of the profile is kept, and the resemblance with the other extreme is discarded. How-
ever, it should be expected that the input quantities, such as the PSD, will no longer be
verified with same accuracy. Together with the validation of generation from input PSD,

0 L
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Periodic
extension

x/mm

z/
m

m

Figure 3.6: Illustrating periodicity of artificially generated profiles. IDFT assumes period-
icity of the profile, with period equal to the sampled length. Thus, profiles generated from
FFT-based algorithms are always periodic, which suggests that points x = 0 and x = L are
correlated.

1G is not dimensionless, yet dimensional compatibility between this parameter, k and Φθ , results in
strange powers of length, which may lead to difficult physical interpretation. It was opted to ignore the
dimensions of such quantity, for simplicity. The same reasoning applies to physical dimensions of surface
fractal scale factor g and profile-surface parameter J .
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Figure 3.7 shows the PSD of the profile with roll-off after trimming. The trimming proce-
dure reduces the sampling length, but leaves sampling frequency unchanged. Hence, the
frequency range that is covered by PSD is the same, yet the number of discrete frequen-
cies frequency is smaller—frequency resolution is reduced. The power spectrum relative
to the trimmed profile is different from the untrimmed, but its points are positioned
around the prescribed function.
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Figure 3.7: Power spectral density of artificially generated profiles. Profiles are gener-
ated from a fractal PSD with L = Lx = Ly = 1mm, G = 1, H = 0.5, λl = L, λs = L/256 and
1024 points. One profile is generated without roll-off, i.e., λl =λr , and other with roll-off
λr = L/10. Since the method lies in explicitly setting the profile DFT, the input PSD is
recovered exactly. If the profile is trimmed, in order to remove the correlation between
extreme points, due to periodicity, the output PSD is distorted relative to the exact values,
yet it follows a similar trend.

A last aspect which must be raised is the verification of whether the Gaussian topogra-
phy generator does, indeed, synthesize Gaussian sets. This point was addressed by Yastre-
bov, Anciaux, et al. (2015), regarding Hu and Tonder’s method, and the authors observed
that for longer low wavelength cut-offs λl , artificial surfaces were non-Gaussian, even
though the mean distribution was Gaussian. This distinction is paramount, since, citing
the previous authors, ’the averaged mechanical response of non-Gaussian surfaces is not
equivalent to the response of the averaged surface, whose distribution is Gaussian’. Based
on these observations, similar tests to those carried by Yastrebov, Anciaux, et al. (2015)
for the method from Hu and Tonder, were explored. The test consisted in generating 100
rough surfaces with 1024×1024 points, from an input fractal PSD with g = 1 and H = 0.8.
For each realization, the height distribution is computed, dividing the the z domain in
1000 bins (subintervals) between the maximum and minimum height value generated.
From all probability distributions relative to each surface, the averaged height distribu-
tion is then computed, together with the standard deviation of the probability density in
each bin. This process was repeated for several values of the low frequency cut-off kl and
the high frequency cut-off ks . A reference Gaussian curve is plotted, with mean and stan-
dard deviation computed over all generated heights. The results for each combination of
low and high cut-offs are presented in Figure 3.8.
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Looking at the results, they are similar to the ones published by Yastrebov, Anciaux,
et al. (2015). The main conclusion is that the effect of high cut-off frequency on height
distribution is practically unnoticeable. In contrast, long low cut-off wavelengths distort
the height distribution, which is a consequence of the discrete synthesis of rough surfaces.
For λl = L the averaged distribution is very near the Gaussian reference, yet the standard
deviation is high, and individual realizations are considerably non-Gaussian. By reducing
the low cut-off wavelength, the standard deviation of height distribution decreases, and
individual realizations height distribution are closer to the Gaussian curve. For λl = L/16,
the averaged distribution, the reference Gaussian and each individual distribution are
almost coincident, and standard deviation vanishes, in each bin. Figure 3.9 repeats Fig-
ure 3.8 using logarithmic scale in the probability density axis, in order to highlight the
tails of the distribution. These curves support previous observations that the height dis-
tribution is essentially Gaussian, even in the extremes. It should be mentioned that the
previous results on topography height are similar for profiles, and even for topography
generated from ACF. In this case, longer autocorrelation lengths have a similar effect to
longer low cut-off wavelengths, i.e., longer ACL leads to artificial topography whose height
distribution differs from a Gaussian curve.

As a final comment on Gaussian topography generation, one shall refer to computation
time. In a machine equipped with a quad-core Intel® Core™ i7-7700HQ CPU at 2.8 GHz,
the algorithms takes in average less than 1 second to compute a 1024×1024 surface, from
an input PSD, without any parallelization strategy. For this case, which is already a rather
extreme one, computation time is extremely small, hence for simpler cases cases, i.e.,
surfaces and profiles with smaller number of points, computation time is even smaller.

3.3 Non-Gaussian topography

In this section, the non-Gaussian rough topography generation method proposed by J.-J.
Wu (2004) is described . Actually, the implemented algorithm is slightly different from the
one presented by Wu, which will be clarified later. Following a similar structure to the
presentation of the Gaussian generator, the algorithm will only be described for surface
generation, yet algorithm flowcharts will be given for both scenarios. Despite the fact
that the non-Gaussian algorithm departs from different grounds, when compared to the
Gaussian generator, they share several aspects, such as the generation of phases verifying
conjugate symmetry, and amplitude computation from input PSD or ACF. These routines
are highlighted in Figures 3.1 and 3.2, such that the following algorithms can be simplified,
by referring to the previous ones.

Non-Gaussian topography generation is based on the analogy between surface gener-
ation and digital filtering. Rough surfaces zm,n can be thought as the output of a digital
filtering operation applied to an input white noise ηm,n .2 Denoting filter coefficients by
hp,q , the resulting rough surface is written as the convolution of the filter coefficients

2For a more detailed discussion on digital filters, and in particular, digital filters in two dimension, the
interested reader is referred to Lu (1992).
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Figure 3.8: Probability density of artificial surfaces for several low and high frequency
cut-offs. 100 surfaces with 1024×1024 points were generated from a fractal PSD, with
H = 0.8, g = 1. For each realization, the height distribution was computed, using 1000
subintervals. Each plot contains the averaged height distribution, the standard deviation
of probability density at each bin and the distribution of two particular realizations.
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Figure 3.9: Probability density of artificial surfaces for several low and high frequency
cut-offs: semi-logarithmic scale. It is a repetition of Figure 3.8 using a semi-logarithmic
scale on the probability density axis, to highlight differences in the distribution’s tails.
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with the periodic input white noise ηm,n , i.e.

zm,n =
M−1∑
p=0

N−1∑
q=0

hp,qηm−p,n−q ,

{
m = 0, ..., M −1

n = 0, ..., N −1
. (3.13)

Again, note that both the input signal ηm,n and the output rough surface zm,n are periodic,
with period M and N in y and x directions, respectively. From the convolution theorem of
discrete Fourier transforms, the rough surface DFT can be written as the frequency-wise
product of the DFT of hm,n and ηm,n ,

Zp,q = Hp,q Ap,q ,

{
p = 0, ..., M −1

q = 0, ..., N −1
, (3.14)

where Hp,q denotes the DFT of the filter coefficients, also called the transfer function of
the system, and Ap,q the DFT of ηm,n . Multiplying each side of Equation (3.14) by the
complex conjugate of Zp,q , and dividing by the total number of points, Equation (3.14)
can be rewritten in terms of the power spectrum of both signals

Φ̂(z)
p,q = |Hp,q |2Φ̂(η)

p,q ,

{
p = 0, ..., M −1

q = 0, ..., N −1
. (3.15)

If the input signal ηm,n is pure white noise, i.e., if its PSD is one for every frequency, the
transfer function follows directly

Hp,q =
√
Φ̂(z)

p,q . (3.16)

Filter coefficients can be computed using an IFFT algorithm, and setting the phases of
the transfer function arbitrarily to zero

hm,n = IFFT
(
Hp,q

)
. (3.17)

Observe that the hypothesis of Hp,q being equal to the square root of the discrete rough
surface power spectrum is coherent with the assumption that the phases of the filter
transfer function are zero. A random signal ηm,n which verifies a unit PSD for all frequen-
cies can easily be generated recalling Equation (3.2)

ηm,n = 1

M N

M−1∑
p=0

N−1∑
q=0

p
M N e i(2π(qm/M+pn/N )+φp,q ),

{
m = 0,1, ..., M −1

n = 0,1, ..., N −1
. (3.18)

Phases φp,q must verify the conjugate symmetry relations, expressed by Equations (3.10)
and (3.11). For implementation purposes, it is more efficient to write ηm,n as

ηm,n = IFFT
(p

M N e iφp,q

)
. (3.19)

Furthermore, note that once the phases of Hp,q are zero, the phases of Zp,q will neces-
sarily be equal to the phases of Ap,q , i.e., they are equal to φp,q —this result comes from
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Equation (3.14). The rough surface can then be synthesized from Equation (3.12), which
rewrites here as

zm,n = IFFT

(√
M NΦ̂(z)

p,q e iφp,q

)
. (3.20)

In sum, a rough surface can be generated by IFFT, as the result of digital filtering of an in-
put white noise (signal with unit PSD). The filter coefficients are related with Φ̂(z)

p,q , which
in turn are computed from the input PSD or ACF, following exactly the same expressions
presented in Section 3.2. This procedure is reduced to the Gaussian generator algorithm,
viewed from the perspective of digital filters.

The purpose of reformulating the Gaussian algorithm, as starting from a filtering oper-
ation given by Equation (3.13), relates to the work of Watson and Spedding (1982). These
authors derived expressions relating the skewness and kurtosis of the input white noise
ηm,n of a pure MA process (digital filter), with the same statistics of the output signal zm,n .
This relation is expressed as a function of the filter coefficients. For two dimensional sig-
nals, it writes

S(z)
sk =

∑M N−1
r=0 h3

r
(∑M N−1

r=0 h2
r
)3/2

S(η)
sk , (3.21a)

S(z)
ku =

S(η)
ku

∑M N−1
r=0 h4

r +6
∑M N−2

r=0
∑M N−1

p=r+1 h2
p h2

r
(∑M N−1

r=0 h2
r
)2 , (3.21b)

with hr = hm,n and r = mN +n for m = 0, ..., M −1 and n = 0, ..., N −1. This is, hr is the
one dimensional array which results from stacking the rows of hm,n in ascending order.
Hence, from Equations (3.21) one could compute the particular values of skewness and
kurtosis for ηm,n , which would produce the prescribed values of surface skewness and
kurtosis in zm,n . If one could generate a random set of numbers, verifying unit PSD for all

frequencies, and whose skewness and kurtosis were S(η)
sk and S(η)

ku , then, a rough surface
with prescribed spectral and statistical properties can be synthesized from Equation (3.12)
or Equation (3.13). This idea relies on the generation of a random set of non-Gaussian
numbers, which can be accomplished with Johnson system of frequency curves. When
ηm,n is a Gaussian signal, from Equations (3.21) it follows that the output surface is also
Gaussian. This case reduces the algorithm to a Gaussian generator, and supports the
Gaussian algorithm described in Section 3.2. In fact, it is not necessary to resort to Equa-
tions (3.21) to reach such conclusion, since the result that the output of a linear system
is Gaussian as long as the input is also Gaussian (Lu, 1992).

3.3.1 Johnson frequency curves

Johnson frequency curves are probability density functions of non-Gaussian variables,
which result from transformations of Gaussian variables (N. L. Johnson, 1949; Elderton
and N. L. Johnson, 1969). They are defined from three different types of curves, which
transform a standardized normal variable ζ (zero mean and unit variance) into a Johnson
variable η. The three types of curves are the lognormal system SL , the unbounded system
SU and the bounded system SB . For each system, the transformation of the Gaussian
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variable follows

SL : η= γ+δ ln(ζ−ξ) , ξ< ζ ; (3.22a)

SU : η= γ+δsinh

(
ζ−ξ
λ

)
; (3.22b)

SB : η= γ+δ ln

(
ζ−ξ

ξ+λ−ζ

)
, ξ< ζ< ξ+λ . (3.22c)

One can generate a non-Gaussian number from a Gaussian set of random numbers by
using the transformations defined in Equations (3.22). However, the generation of non-
Gaussian random numbers verifying a specific value of mean, standard deviation, skew-
ness and kurtosis needs a judicious analysis, since for each combination of prescribed
statistics, a particular transformation must be selected, and parameters γ, δ, ξ and λ need
to be fitted carefully. I. D. Hill, R. Hill, et al. (1976) developed an algorithm which performs
this fitting procedure—it selects the curve type, and computes the parameters γ, δ, ξ and
λ, taking as input the four first moments of the PDF, which are required for the output. An
implementation of the Gaussian-Johnson transformation, which corresponds to inverse
relations of Equations (3.22) was also proposed by I. D. Hill (1976). Note that a remark
was issued by I. D. Hill and Wheeler, E. (1981), concerning the definition of probability
curves which was assumed in both algorithms, and providing corrections for alternative
conventions. These algorithms were originally written in FORTRAN 77, and were rewritten
in Python for the current work.

Johnson translator system, and in particular, Hill’s algorithm, cannot span all skewness-
kurtosis plane. In particular, Johnson curves must verify Equation (2.49), hence combi-
nations of skewness and kurtosis which violate that inequality cannot be fitted. Further-
more, Hill’s algorithm does not always converge to a good fit, and alternative solutions
are suggested by the algorithm itself, even though the user is warned to check if that
solution produces good results. This is illustrated in Figure 3.10, which shows the distri-
bution type and convergence of the algorithm for several combinations of skewness and
kurtosis. The fitting algorithm shows convergence issues near the boundary specified by
Equation (2.49). The ST distribution is a particular case of SB curves, when points are
very near the admissible boundary. Negative values of skewness are not presented, since
symmetry exists relative to the kurtosis axis.

Even though Johnson system provides a framework for transforming Gaussian to non-
Gaussian variables with prescribed statistics, it should be noted that these statistics are
not guaranteed for all generated sets. In fact, it may be needed to generate several non-
Gaussian signals, in order to get one with small error in the prescribed statistics.

3.3.2 Iterative procedure

It has been concluded in previous sections that, if one generates a set of non-Gaussian
numbers ηm,n , verifying unit PSD and particular values of skewness and kurtosis given by
Equation (3.21), then a rough surface can be synthesized from Equation (3.20). However,
it is impossible, or at least, very difficult, to guarantee both spectral and statistical prop-
erties simultaneously with currently employed methods. Preceding any non-Gaussian
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Figure 3.10: Distribution type and convergence of Hill’s fitting algorithm, as function of
the input skewness and kurtosis. The algorithm shows convergence problems near the
skewness-kurtosis boundary. Negative skewness are not presented, due to symmetry.

transformation, one needs to first get a Gaussian set, and Wu suggests that this initial
Gaussian set shall verify unit PSD. The generation of this set follows Equation (3.19), with
phases begin generated from a uniform distribution between 0 and 2π, just like in the
algorithm regarding Gaussian topography synthesis. Then, one computes the values of
skewness and kurtosis needed for ηm,n , in order to get the prescribed values of these
moments in the rough profile

S(η)
sk =

(∑M N−1
r=0 h2

r

)3/2

∑M N−1
r=0 h3

r

S(z)
sk ; (3.23a)

S(η)
ku =

S(z)
ku

(∑M N−1
r=0 h2

r

)2 −6
∑M N−2

r=0
∑M N−1

p=r+1 h2
p h2

r
∑M N−1

r=0 h4
r

; (3.23b)

with hr = hm,n and r = mN +n for m = 0, ..., M −1 and n = 0, ..., N −1. From the resulting

moments S(η)
sk and S(η)

ku , the Gaussian set ηm,n is transformed into a non-Gaussian one,
denoted by η′m,n , with Hill’s algorithm and Johnson system. The input of Hill’s algorithm

should be the mean and standard deviation of ηm,n , and PDF moments S(η)
sk and S(η)

ku . The

non-Gaussian set η′m,n will have statistics near the prescribed values S(η)
sk and S(η)

ku , but it
will no longer verify the condition of unit PSD. Since skewness and kurtosis are mostly
phase sensitive parameters, a new array of phases φ′

p,q can be extracted from η′m,n as

φ′
p,q =∠FFT

(
η′m,n

)
. (3.24)



3. Numerical generation of randomly rough topography 71

A new set of non-Gaussian numbers with unit PSD can be synthesized, again from Equa-
tion (3.19), but using phases φ′

p,q , instead:

η′′m,n = IFFT
(p

M N e iφ′
p,q

)
. (3.25)

With this transformation, the condition of unit PSD is recovered, at dispense of accuracy
on surface statistics. This is, skewness and kurtosis will change relative to η′m,n , and,
in general, the error relative to the required values will increase, when compared with
η′m,n statistics. Sequence η′′m,n does not even need to be created, since the result from
convolution expressed in Equation (3.13) is know a priori. Thus, the rough surface can
be readily generated by

zm,n = IFFT

(√
M NΦ̂(z)

p,q e iφ′
p,q

)
. (3.26)

This procedure permits the generation of a surface with exact PSD, however output
skewness and kurtosis will deviate considerably from the input values, most of the time.
With the purpose of improving the quality of the output surface skewness and kurtosis,
Wu proposes the realization of an iterative procedure on surface statistics. It consists in
evaluating the error of Ssk and Sku of the output zm,n at the end of the first iteration
(Equation (3.26)), and if the result is not satisfactory, one adjusts the required statistics

at the output S(z)
sk and S(z)

ku to new values S(z)2

sk and S
(z)2

ku , and repeats the procedure from
Equations (3.23). This process is based on the idea that, if by prescribing the values of
required skewness S(z)

sk and S(z)
ku in Equations (3.23), the output surface does not match

these values, then, by adjusting these parameters, it is possible move towards the correct

values. This condenses in an optimization problem, which tests new values of S
(z)i

sk and

S
(z)i

ku , then goes from Equations (3.23) to (3.26), and evaluates the quality of the output

skewness and kurtosis. The strategy for defining the new values of S
(z)i

sk and S
(z)i

ku was not
specified by Wu, and he just referred to the use of some optimization technique, such as
bisection method. Note that the random Gaussian set ηm,n is generated only once in the
algorithm, and the iterative process operates over that particular set, which allows the

optimization to be carried only with variables S
(z)i

sk and S
(z)i

ku .

From the numerical experience gained in this work with this algorithm, where Powell’s
method was used for the optimization procedure, it has been observed that convergence
was extremely dependent on the initial Gaussian random set ηm,n—on the initial guess
for the optimization problem. This can be justified as: first, based on the fact that out-
put from Gaussian to Johnson transformation will not necessarily verify the required
skewness and kurtosis values, which will distort the theoretical output for zm,n in Equa-
tion (3.21); last, Equations (3.21) are exact only for completely uncorrelated input signals,
whose ACF in non-zero only at the origin, hence they hold approximately true for real sig-
nals (Francisco and Brunetière, 2016). These two factors introduce errors in the method,
which are dependent on the initial Gaussian set ηm,n—actually, on the combination of
the initial random set and prescribed parameters. Furthermore, it was also verified that

small variations in S
(z)i

sk and S
(z)i

ku lead to large changes in S
(η)i

sk and S
(η)i

ku . Then, if the opti-

mization algorithm is carried with S
(η)i

sk and S
(η)i

ku instead, one would have a finer control
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over the output surface statistics, since smaller steps on S
(z)i

sk and S
(z)i

ku could be obtained.

To cope with such limitations, Wu’s algorithm was slightly modified, with a rather brute
force strategy. Before applying the optimization procedure, the previously named first
iteration is repeated several times, generating different random Gaussian sets η(i )

m,n , by
using S(z)

sk and S(z)
ku in Equations (3.23). This locks the inputs and, necessarily, the outputs

of Hill’s algorithm. Then, the set η(i )
m,n from which the surface with the lowest error on

statistics was generated is used as the initial guess, in the optimization procedure. For
the optimization, Powell’s method is used, and the dependent variables are chosen to be

S
(η)i

sk and S
(η)i

ku . If a large number of surfaces is generated in the trial-and-error process, it
is very likely that a solution with statistics very similar to the required ones is generated,
hence only fine tuning may be necessary in order to converge to accurate values—which

justifies the optimization to be carried on S
(η)i

sk and S
(η)i

ku .

Remark 3.4 on the computer implementation of Equations (3.23).
The non-Gaussian topography generator requires the computer implementation of Equa-
tions (3.23). These expressions, involve a double sum over the coefficient filter vector,
whose length is M N . For surfaces, this length can grow quite rapidly, since it depends,
roughly speaking, on the square of number of points in each direction. For a 256×256
surface, this vector would hold 65536 elements. The computation of the double sum is
then crucial for computation time. For an efficient computing of this quantity, note that
for two successive values of r , the inner sum for both r differs only in one term. Hence,
the outer sum shall start on the largest index r = M N−2, for which the inner sum reduces
to only one term, which is saved into a variable s. The double sum value ds, initialized
at zero, is incremented by s for each r . For decreasing r , the term h2

r+1 is added to s and
ds is incremented by h2

r ·s. This strategy reduces the number of operations, and greatly
decreases computation time for large data sets.

The flowchart of the non-Gaussian surface generator algorithm is presented on Fig-
ure 3.11. Note that some operations already presented for the Gaussian algorithm (cf.
Figure 3.11, on page 58) are condensed in Figure 3.11, in order to simplify the diagram
and focus on the additional aspects introduced in the present method. Also for this pur-
pose, other two sub-processes, namely, the computation of required statistics for white
noise, and the sequence for generating a non-Gaussian surface from Hill’s algorithm, are
presented in Figures 3.15 and 3.16. Observe that the first step of the algorithm is the
computation of amplitudes from the input ACF or PSD, followed by the initial necessary

skewness S(η)
sk and kurtosis S(η)

ku for the white noise ηm,n . Then, a finite number of Gaussian

sets η(i )
m,n are randomly generated, and transformed with Hill’s algorithms to verify the

aforementioned statistics S(η)
sk and S(η)

ku . Next, a non-Gaussian surface z(i )
m,n is synthesized,

following the sequence in Figure 3.16. The best surface z(i )
m,n is selected as the initial guess

z[1]
m,n for Powell’s method. It is important to remark the change of notation, where the su-

perscript (i ) indicates a surface generated in the trial-and-error process for selecting the
best random set, and [ j ] relates to the result of each iteration of the optimization process.
By picking the best surface z(i )

m,n , one is actually saving the random phases φ(i )
p,q , which

result in the smallest statistics error, amongst all randomly generated sets. Finally, in the
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optimization process, the values of skewness and kurtosis input in Hill’s algorithm, re-

garding the transformation of ηm,n , are iterated. This process uses S(η)
sk and S(η)

ku as starting

values, and updates these values to S(η[ j ])
sk and S(η[ j ])

ku on each iteration [ j ], until acceptable
errors are obtained. In sum, the first block performs an optimization by changing the
phase field with a trial-and-error scheme, and the second block improves this result by
iterating the skewness and kurtosis specified for the transformation of ηm,n , on Hill’s al-
gorithm. Figure 3.14 repeats the flowchart for the non-Gaussian profile generation, and
Figures 3.15 and 3.16 present the auxiliary sub-processes. Note that in Figure 3.15 there is
no need to transform hn into a vector, since it is already one, hence the notation comes
simplified.

3.3.3 Numerical tests

Numerical performance and accuracy of the non-Gaussian generation algorithm has also
been evaluated with simples tests. Since amplitude prescription is analogous in both
Gaussian and non-Gaussian algorithms, their performance in recovering the input ACF
or PSD is identical. Therefore, tests comparing input and output spectral content will be
disregarded—see Section 3.2.1 for these results. Recall that the input PSD is recovered
exactly, and output ACF shows increasingly smaller deviations with decreasing autocorre-
lation length. Since the quality of output PSD and ACF is already verified, focus is given
to the algorithm capacity to recover input skewness and kurtosis. Figure 3.17 shows two
examples of artificial surfaces generated by the implemented non-Gaussian generator.

(a) Ssk ≈−1 and Sku ≈ 5 (b) Ssk ≈ 1 and Sku ≈ 5

Figure 3.17: Examples of artificially generated isotropic non-Gaussian surfaces. Both
surfaces are generated from 256 points in each direction with L = Lx = Ly = 1mm,
and heights are normalized to verify Sq = 0.01mm. The high frequency cut-off is set
to λs = L/128, the low to λ= L/4, there is no roll-off, and H = 0.2.

In order to evaluate the algorithm accuracy on surface statistics, examples with dif-
ferent combinations of skewness and kurtosis were performed. For each combination,
the number of attempts in the trial-and-error process were varied, without further opti-
mization. For the largest number of attempts analyzed, an additional test was performed,
where optimization was introduced. The results of these tests are gathered in Table 3.1. If
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Figure 3.11: Flowchart of non-Gaussian random rough surface generation algorithm.
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Figure 3.13: Non-gaussian surface generation sequence: block flowchart.
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Figure 3.14: Flowchart of non-Gaussian random rough profile generation algorithm.
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Figure 3.15: Required skewness and kurtosis for profile white noise: block flowchart.
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Figure 3.16: Non-gaussian profile generation sequence: block flowchart.
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a single surface is generated in the trial-and-error process, and optimization is ignored,
the output surface cannot reproduce surface statistics accurately, in most cases. Yet, by
increasing the number of attempts, surface skewness and kurtosis get closer to prescribed
values. Exact values for these statistics are practically recovered for non-skewed surfaces
(Ssk = 0). When non-zero skewness is specified, the algorithm convergence slows down,
and results show larger deviations, for the same number of attempts, in the selection of
the initial guess. When optimization is performed, results improve considerably, at the
cost of increasing computation time. Thus, in general, the algorithm can reproduce input
statistics if a sufficiently good initial guess for the optimization problem can be found—if
a reasonable number of attempts are generated, to find a good initial solution for the
optimization algorithm. In general, 100 trials are enough to ensure good precision on the
results, yet this depends on several factors, from which the number of points is stressed.
Extending the number of attempts further leads to an inconvenient increase of computa-
tion time, and it may not necessarily reduce statistics error. The fact that when non-zero
skewness are prescribed, algorithm convergence is impacted is also a paramount result.
Also, note that while computation time for generating a 1024×1024 rough surface using
the Gaussian generation was about 1 second, the generation of a 256×256 non-Gaussian
surface with relatively accurate statistics can take around 20 seconds (in a personal com-
puter, with a quad-core Intel® Core™ i7-7700HQ CPU at 2.8 GHz). Thus, the generation
of a non-Gaussian surface with 8 times less points can take up to 20 times longer, which
is also a key point to mention, regarding the performance analysis of this algorithm.

Recalling Figure 3.8, on page 65, similar figures can be produced, in order to check if
height distribution of artificial topography is non-Gaussian, by visual inspection of the
probability density function. Following the same test structure adopted for Gaussian sur-
face testing, 100 random non-Gaussian surfaces with 1024×1024 were generated from a
fractal PSD, requiring Ssk =−0.5 and Sku = 4. For each realization, the height distribution
is computed, using 1000 bins between the maximum and minimum generated height.
The average PDF is plotted in Figure 3.18, alongside with the Gaussian reference—a Gaus-
sian PDF with mean and standard deviation computed across all generated surfaces. As
expected, the non-Gaussian averaged PDF shows a higher peak relative to the Gaussian
curve, since the specified kurtosis is higher than 3, and its peak is moved to the right of
the mean value—zero, in this case—which is also normal for negatively skewed surfaces
(see Section 2.3.4).

As it was seen from Table 3.1, convergence for accurate statistics may prove difficult,
specially when the prescribed skewness is high. Other very inconvenient scenario hap-
pens when convergence is not met at all, and unrealistic topography is generated, with
skewness and kurtosis very different from the prescribed. In Figure 3.19, a profile which
was produced by the non-Gaussian algorithm in such conditions is plotted. This is ex-

plained by the fact that skewness and kurtosis (R(η)
sk , R(η)

ku ), resulting from Equations (3.23),
do not necessarily verify the inequality expressed by Equation (2.49). This is, the required
skewness and kurtosis for the input white noise may violate the limit established for John-
son frequency curves, hence Hill’s algorithm cannot fit any distribution, and sequences
with those statistics are impossible to generate with Johnson system (cf. Figure 3.10).
Since the required statistics for ηm,n cannot be computed, all the algorithm is compro-
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Table 3.1: Output surface skewness and kurtosis from non-Gaussian surface generator.
Non-Gaussian surfaces with 256×256 points and L = Lx = Ly = 1mm are generated from
a fractal PSD verifying λl = L/4, λr = λl , λs = L/127, H = 0.2 and g = 1. Surfaces are
generated for several input skewness and kurtosis, with different number of attempts in
the trial-and-error process, with and without optimization.

Number of trials

Required 1 10 100 100 + opt.

Ssk 0.00000 −0.00149 −0.00149 0.01119 0.00000

Sku 3.00000 2.98724 2.98724 3.00124 3.00000

Time/s - 0.14610 0.31897 2.04780 10.59405

Ssk 0.00000 −0.03523 0.03142 0.03142 0.00000

Sku 4.00000 3.22111 3.58994 3.58994 4.00000

Time/s 0.14749 0.32911 2.12166 11.33867

Ssk −0.75000 −0.48945 −0.52122 −0.62639 −0.73081

Sku 4.00000 3.51683 3.70461 3.80637 4.00424

Time/s 0.15130 0.40695 2.99757 19.45790

Ssk 0.00000 −0.05110 0.06620 −0.15507 0.00000

Sku 5.00000 3.39848 4.29412 4.65645 5.00000

Time/s 0.14610 0.32887 2.15530 18.00355

Ssk −1.00000 −0.69050 −0.70674 −0.77952 −0.86319

Sku 5.00000 4.14864 4.41829 4.54488 5.01758

Time/s 0.15427 0.43070 3.28910 21.38146

Ssk 0.50000 0.10348 0.38700 0.38700 0.50000

Sku 8.00000 3.70467 6.54360 6.54360 8.00000

Time/s 0.14469 0.33831 2.20978 16.51218
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Figure 3.18: Probability density of artificial non-Gaussian surfaces. 100 non-Gaussian
surfaces were generated with 1024×1024 from a fractal PSD, with Ssk =−0.5 and Sku = 4.
A Gaussian curve with same mean and standard deviation of all generated heights is
plotted along with the averaged surface PDF. The averaged probability density shows
a higher peak, which is moved into positive values of z. This is expected behavior for
kurtosis higher than 3 and negatively skewed surfaces.

mised, and the result will diverge from the prescribed values. The divergence of the non-
Gaussian generation algorithm is unpredictable, once it depends on the required statistics
for zm,n and on the filter coefficients of Equations (3.23). In turn, these coefficients are re-
lated to the input ACF or PSD and the number of points. The synthesis of non-Gaussian
rough topography must be preceded by a simple check, with the purpose of verifying
whether the algorithm can converge for that case or not. From numerical experience,
high Hurst exponents H and larger low wavelength cut-off, i.e., high amplitude low fre-
quencies, tend to narrow the range of applicability of the algorithm. On the other hand,
low H allow the simulation of a wider range of skewness and kurtosis on the output.
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Figure 3.19: Example of artificial profile generated by the non-Gaussian algorithm, when
convergence is not met. This profile is generated from a fractal PSD with Rsk = −1 and
Rku = 4, and the outputs verifies Rsk = 8.1607 and Rku = 82.17906.
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3.4 Application to real topography

Following the numerical validation of rough topography generation algorithms, this topic
is closed with their application to real roughness measurements. Experimental data on
profile roughness, obtained with a stylus device, and areal measurements, acquired by an
optical instrument based on interferometry, were kindly provided by CETRIB, a tribology
laboratory in Faculty of Engineering of University of Porto (FEUP). Profile measurements
were performed on the flank of a gear tooth with the contact profilometer Hommelwerke
LV-50, equipped with a TKL 300 stylus probe, with tip radius 0.5µm. The flank roughness
was in two different stages: the first measurement concerned the surface after machin-
ing, termed the new tooth from here on; the second measurement was carried after the
gear was subjected to power loss tests, and the measured tooth will be termed the used
tooth. Profiles were measured along a sampling length equal to 4.8 mm (six times the cut-
off wavelength 0.8 mm), and with a sampling interval of 1µm. A Gaussian filter is then
applied to profile data, which is finally trimmed, so that it results in a 4 mm long scan.
Regarding surface measurements, the raceways of the housing washer from a cylindrical
roller thrust bearing SKF® 81107 TN was used. Measurements were also performed before
and after power loss tests, involving the roller bearing, using the optical measurement
device Burker NPFLEX™. In order to perform areal measurements over a 5 mm×5 mm
area, since the equipment cannot focus regions that large at once, a stitching procedure
is adopted to link all smaller measured regions. The mean value, and a polynomial back-
ground is removed from surface data, and outliers, which may indicate badly measured
points, are discarded. The application of numerical generation algorithms to real topogra-
phy starts with the computation of real statistical and spectral measures—ACF, PSD, skew-
ness and kurtosis. Then a random artificial topography is generated from these quantities,
and it is checked whether those input measures are verified in the output topography. As
an ultimate resource, one validates topography reconstruction by visual inspection. Note
that all surfaces and profiles presented verify the zero mean conditions, regarding rough-
ness definition, and that PSD gives directly the standard deviation of PDF, i.e., either Rq or
Sq —recall Section 2.6. For this reason, standard deviation and mean shall not be referred
when comparing heights distribution.

Starting with profile generation, Figure 3.20 shows the real topography of the profiles
measured on the new and used tooth, side by side with artificial topography generated
from both real ACF and PSD. Profile skewness and kurtosis, for real and artificial profiles,
is presented in Table 3.2. Note that the new tooth is nearly Gaussian, hence, artificial pro-
file generation may follow the Gaussian algorithm, in this case. On the other hand, the
used tooth is clearly non-Gaussian, then artificial profiles regarding this case are synthe-
sized with the non-Gaussian algorithm, from 1000 attempts in the trial-and-error process,
followed by the optimization procedure. From Table 3.2, one sees that for the used tooth
(non-Gaussian), these parameters are recovered with zero error, while for the new tooth
(Gaussian), since no restrictions are imposed on these statistics, the recomputed values
are not exact, yet they are acceptably close to the reference. As a side note, it can be
seen that the power loss test led to a reduction of Rq (see ACF value at the origin on
Figure 3.21), and transformed the height distribution, from an initially Gaussian, into a
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Table 3.2: Skewness and kurtosis of experimentally measured profiles and artificial pro-
files generated from ACF and PSD.

New tooth Used tooth

Real ACF PSD Real ACF PSD

Rsk 0.242411 -0.086841 0.041112 -0.640556 -0.640556 -0.640556

Rku 2.925664 3.167411 2.952987 5.177983 5.177983 5.177983

negatively skewed and leptokurtic—the power loss test removed roughness peaks, but as
little influence on the valleys. Figure 3.21 plots the ACF of the experimentally measured
profile and of the artificial one, generated from the real ACF. Autocorrelation function of
the output profiles match closely the real ACF. An exact fit was not expected, based on
the conclusions obtained in Section 3.2.1. Power spectrum of real profiles is plotted in
Figure 3.22, and it matches the PSD of any artificial profile generated from it, following
earlier observations. It is interesting to point out the similitude between the real profiles
PSD and a theoretical fractal PSD (cf. Figure 2.17). For very high wavenumbers, there
is a small tail on the PSD, deviating from the fractal-like curve. This is mainly due to
measurement noise, and similar results have been reported by Panda et al. (2016).
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Figure 3.20: Profiles measured on gear tooth flanks, after machining and power loss test,
in comparison with artificially generated profiles from input ACF and PSD.

Finally, by visual inspection of Figure 3.20, one sees that profiles generated from input
ACF seem more noisy than the original. In general, generation from input PSD produces
profiles which are visually similar to the reference, even though statistically, both genera-
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Figure 3.21: Autocorrelation function of experimental profiles and recovered from artifi-
cial profiles, generated from input ACF.
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Figure 3.23: Heights distribution of the experimental profile and artificial profiles gener-
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tion alternatives give accurate results. Peaks on generated profiles from PSD look sharper,
yet all statistical and spectral properties are identical between real and artificial topogra-
phies. Height distribution for all cases are plotted in Figure 3.23. Naturally, the height
distribution differs slightly between real and artificial profile. It is suggested, based on
the height distribution referring to the real profile of the used tooth, that skewness and
kurtosis cannot completely describe the heights PDF. In fact, this distribution appears
too be bimodal, from the existence of two separate peaks of probability density. This is
supported by a previous statement on the height distributions of stratified surface. For
such surfaces, heights distribution results from the superposition of two independent
distributions, produced by different processes—machining and wear, in this case. This
effect cannot be reproduced by Johnson system, which raises a new limitation for the
applicability of the presented algorithms to such profiles, where skewness and kurtosis
are insufficient to characterize heights distribution.

With respect to the generation of artificial surfaces, Figure 3.24 shows the 5 mm by
5 mm image resulting from the measurement performed on the washer raceway, after
leveling, preceding and proceeding the power loss test—the positive direction moves
out of the page. About 5000 points were recorded in each direction, which represents a
dataset which is oversized for a practical numerical application. Thus, in order to apply
any generation algorithm, one shall restrict to a small patch of the surface with dimen-
sions 1 mm×1 mm, that is discretized in 1022 points in each direction. Figure 3.25 shows
the region of interest for the artificial surface generation. In these two cases, scratches
are visible on the surface, which may result either from machining or wear. Apart of these
scars, one can say that before the power loss test, the surface is isotropic, with randomly
oriented scratches, while after the power loss test it is markedly anisotropic, and scratches
are preferably oriented in one direction.

Artificial surfaces were generated only from PSD, based on previous observations on
profile generation. Table 3.3 shows the skewness and kurtosis of the real and artificially
generated surfaces. Both experimental surfaces are non-Gaussian, hence the non-Gaussian
generator was applied. For each case, the non-Gaussian algorithm was employed with
1000 trials for the selection of the initial solution for the optimization process, followed
by the optimization. Skewness and kurtosis are recovered almost exactly, regarding the
surface previous to the power loss test. For the surface proceeding the test, both kurtosis
and skewness increase, in magnitude, and the algorithm converges to a solution with
relatively small error on kurtosis, and a larger deviation on skewness—this is mainly due
to the prescription of a larger value, in magnitude, of skewness.

Table 3.3: Skewness and kurtosis of experimentally measured surfaces and artificial sur-
faces generated from PSD.

Before test After test

Real PSD Real PSD

Ssk -0.334944 -0.334944 -1.027649 -0.674759

Sku 4.506406 4.506406 6.542165 6.569589
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(a) Before power loss test

(b) After power loss test

Figure 3.24: Roughness areal measurement on the housing washer of the roller bearing
in analysis, obtained with an optical instrument. The positive direction moves out of the
page.
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The artificial surfaces generated from the measured surfaces’ PSD are plotted in Fig-
ure 3.26. Analyzing this figure, one can conclude that the overall trend of surface rough-
ness is captured by the algorithm, even though individual marks are not exactly generated.
In particular, the algorithm reproduces the mean isotropic and anisotropic characteristic
of surface roughness correctly, at the cost of neglecting local topography features. As a
matter of fact, the individual scratches on each surface are likely to result from the syn-
chronization of specific harmonics in the surface, which is completely out of the scope
of the implemented generation algorithm.

To complete the comparison between the two topographies, Figure 3.27 plots the
heights distribution for real and artificial surface, in both scenarios in analysis. Differ-
ences between heights PDF are small, even though skewness and kurtosis are very sim-
ilar. This results does also suggest that these parameters do not define the probability
distribution in a strict sense, and small deviations in the heights distribution may still
occur for the same PDF moments.
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(a) Before the test (b) After the test

Figure 3.25: Square region, with side 1 mm and 1022 points in each direction, used for
surface generation. Wear and machining marks are noticeable in the surface in both
cases. however, before the power loss test, the surface is generally isotropic, and marks
are randomly oriented, while after the test, it is greatly anisotropic, with marks preferably
oriented in one direction.

(a) Before test (b) After test

Figure 3.26: Artificial surfaces generated by the PSD computed from surfaces plotted
in Figure 3.25.The general trend of surface geometry is captured, namely isotropy and
anisotropy. However, individual surface marks cannot be generated.
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Figure 3.27: Heights distribution of real surface measured in an optical instrument, com-
pared with the same distribution regarding a synthetic surface, generated from the real
PSD.
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Chapter 4

Micromechanical elastic contact:
analytical models

When two nominally flat surfaces come into contact, they only touch locally at regions
where the roughness features of both interfere. As a consequence, the real contact area
is expected to be smaller than the apparent, or nominal, contact area. This has already
been demonstrated by several experiments, e.g., by Dieterich and Kilgore (1994) (see Fig-
ure 4.1). In fact, owing to the multiscale nature of roughness, the real contact area is
resolution dependent, and can be also characterized by fractals (Borri-Brunetto et al.,
1999). Although the surfaces of solids are typically assumed smooth in classical contact
mechanics problems, the ability to evaluate the real contact area is paramount in several
applications, such as contact conductance, sealing, wear and friction. The range of values
that it can take depends on each specific situation. In general, one can consider 20% as a
reference for the upper bound of real contact area fraction, for typical applications.

The link between friction and real contact area reports back to Leonardo da Vinci
(1452-1519), who formulated that the frictional force is proportional to weight, and does
not depend on the apparent contact area. However, it was through Guillaume Amontons
(1663-1705) that the laws of friction were first recognized by the scientific community.
Among Amontons’ postulates, the proportionality between friction force and applied nor-
mal pressure and its independence on sliding velocity are the most notorious. Following
Amontons’ work, Charles-Augustin de Coulomb (1736-1806) carried an extensive experi-
mental research, in order to investigate the influence of several physical parameters on
the coefficient of friction, such as contact time and size.1

Early experimental data, and also recent numerical results, suggest that the frictional
force is proportional to real contact area. Following this observation and Amonton’s laws,
it can be stated that the contact area is proportional to the applied normal load. This was
initially explained by Bowden and Tabor, in 1950, based on the hypothesis that roughness
summits would undergo plastic deformation very rapidly after contact—the friction force

1An interesting review of the work of Amontons and Coulomb on friction was authored by Popova and
Popov (2015). There is no consensus about the individual to whom the laws of friction shall be attributed.
Some authors suggest that laws of friction should be named after Leonardo da Vinci, instead (Israelachvili,
2015). In numerous textbooks the designation Coulomb’s laws of friction is preferred.



90 .

Figure 4.1: Photomicrograph from Dieterich and Kilgore (1994) highlighting the real con-
tact area between a surface of acrylic plastic and other of soda-lime glass, for different
load stages. With increasing load, the size of each contact spot increases, together with
the number of contact spots.

would come as the material’s shear strength and the real contact area (Bowden et al.,
2001). However, their theory proved unrealistic for several practical applications.

Micromechanical contact theories generally describe a constitutive law for the physics
at the contact interface between rough surfaces, establishing relations between the ap-
plied load, separation and contact area. When the contact between two elastic surfaces
is considered to be frictionless and nonadhesive, the problem can be reduced to the
contact of an equivalent elastic flat surface with a rigid rough indenter (K. L. Johnson,
1987). Rough contact models pursue the linear relation between real contact area and
load, based on the purely elastic deformation—in opposition to the model of Bowden and
Tabor. It should be noted, though, that there are no experimental evidences supporting
linearity between friction and real contact area for all ranges of applied load and contact
area fraction (Paggi and Ciavarella, 2010). For example, experimental results suggest that
linearity is lost for very large normal loads and very small slidings. Rabinowicz (1965)
compiles a large collection of experimental data, showing the influence of several param-
eters on the coefficient of friction, which also supports the nonexistence of linearity for
very wide ranges of nominal pressure. Curiously enough, proportionality between area
and load holds even if adhesion is present (Persson, Sivebaek, et al., 2008).

The contact between rough surfaces is inherently a three dimensional problem. Thus
the vast majority of analytical models available are formulated in 3D, indeed. However, nu-
merical simulations of such problems, e.g. by using the Finite Element Method, are com-
putationally expensive. As a workaround, 2D simulations provide a cheaper and faster
alternative to model rough contact, at the cost of some physical significance of the results.
This is, the contact of rough profiles is less representative of practical application, yet it
serves as a framework from which qualitative information can be obtained quickly.

This chapter reports analytical models for the elastic, frictionless, nonadhesive, rough
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contact of surfaces and profiles. Several models available in literature are reviewed, and
their most important aspects are documented. Multiasperity models and Persson’s diffu-
sive contact theory, the two most popular rough contact theories, are discussed in more
detail, and analytical expressions relating real contact area with load are presented. De-
spite the large number of models provided in the literature, a physically precise explana-
tion of Amontons’ laws of friction is yet to be reported (Carbone and Bottiglione, 2008;
Persson, Sivebaek, et al., 2008).

4.1 Bibliographic survey

The linearity between real contact area and load was initially explained by Bowden and
Tabor, based on the hypothesis of plastic deformation of roughness summits. Nonetheless,
it proves unrealistic to consider that a real surface, which completes several contact cycles
during its life, will withstand the load with plastic deformation in every cycle, without
suffering excessive damage. Archard, J. F. (1957) proved that proportionality could be
obtained from elastic deformation, by using, what would be called now, a multiscale or
fractal theory—long before fractals were introduced in mathematics. In Archard’s model,
roughness was idealized as protuberances (spheres), covered with micro-protuberances,
which in turn were covered with micro-micro-protuberances, and so on (cf. Figure 4.2).
Archard did not describe how the quantities required by his model could be obtained
from profilometers traces. This compromised the success of his theory, when compared
with others that relied on experimental data, effectively.

4.1.1 Review of multiasperity models

The first widely accepted micromechanical contact model was proposed by Greenwood J.
A. and Williamson J. B. P. (1966). Their seminal work originated, throughout the years, the
class of multiasperity contact theories. Greenwood and Williamson model (denoted GW
from here on) limits the contact to a set of geometrical entities, called asperities (sum-
mits), under the hypothesis that all asperities are spherical and share the same radius of
curvature. By doing so, and modeling the contact between each asperity and a flat plane
with Hertz (1882) theory, the real contact area and load can be predicted as functions of

R1 R2 < R1
R3 < R2 < R1

Figure 4.2: Archard’s multi-scale roughness model: in each iteration, spheres with pro-
gressively smaller radius of curvature are padded to the previous ones. This a fractal
concept, since with increasing magnification, more and more detail on the surface is re-
vealed, even though fractals were only introduced many years after Archard published
this model. Adapted from Archard, J. F. (1957)
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the separation between the surface and the reference plane. From this, area and load can
be related indirectly by the separation. GW model became popular amongst tribologists,
since it relies exclusively on quantities that can be computed from profilometer traces—
the most reliable roughness data available at that time. By predicting that the area of each
contact spot increases with the load, but so does the number of contact spots, such that
the average contact spot area remains constant, this model provided a relatively simple
justification for linearity between contact area and load. In fact, if the number of con-
tacts is constant, the area will increase with load as F 2/3, while for increasing number of
contact, linearity can be achieved (K. L. Johnson, 1987; Greenwood J. A. and Williamson
J. B. P., 1966). GW theory was improved by McCool (1986), who referred to the random
theory of Nayak (1971) and the results from Bush, Gibson, and Keogh (1976), both on
isotropic Gaussian surfaces, in order to compute more accurate values for the asperity
radius, standard deviation of summit heights and density of asperities (this improved GW
model shall be referred as GW-McCool).

The most complete multiasperity theory was developed by Bush, Gibson, and Thomas
(1975) (abbreviated BGT), which accounted for the variation of asperity principal curva-
tures in each direction with height, by recalling the work of Nayak (1971) and Longuet-
Higgins (1957b,a), as well. Summits are modeled as elliptic paraboloids, and the probabil-
ity of having a certain combination of principal curvatures changes with asperity height.
For this purpose, BGT model requires the joint probability distribution of summit heights
and principal curvatures, or radius or curvature. J. A. Greenwood (2006) proposed a sim-
plification of BGT theory, where asperities were treated as having spherical caps, with
curvature equal to the square root of the product of principal curvatures (referred as GW-
SE in the present document, denoting Greenwood-Williamson Simplified Elliptic model).
An approach similar to GW-SE considers the arithmetic mean of principal curvatures,
instead.2 The last two models reduce the mathematical complexity inherent to BGT, by
eliminating one degree of freedom of the problem, while trying to conserve its accuracy.

Asymptotic limit for small nominal pressure

All multiasperity contact models rely on Hertz contact theory, hence they must verify its
fundamental hypothesis. In particular, the consideration that the contact area is small
compared with the radius of curvature of contacting asperities (K. L. Johnson, 1987).
These models do not include interaction between contacts, i.e., the deflection of neigh-
boring asperities due to the compression of a certain summit—this effect is illustrated in
Figure 4.3. Additionally, coalescence of contact areas is not modeled, neither. For these
reasons, multiasperity theories are expected to verify only in infinitesimal contact, at very
low loads and contact areas. The asymptotic limit of multiasperity models, for vanishingly
small loads, reads3

Ac = k
F

E∗
√

‖∇z(x, y)‖2
, (4.1)

2The origins of this last model are unclear (Carbone and Bottiglione, 2008), reporting to the work of
Thomas (1999), and is commonly called the Nayak-Thomas model.

3This relation, derived from analytical grounds can also be predicted from dimensional analysis, as in
Prodanov et al. (2014).
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which can also be written as

Ac

A
= k

p0

E∗
√

‖∇z(x, y)‖2
. (4.2)

The symbols used in Equations (4.1) and (4.2) denote

• A Nominal contact area

• Ac Real contact area

• F Applied load

• p Nominal external pressure

• E∗ Effective Young modulus, given by
1

E∗ = 1−ν2
1

E1
+ 1−ν2

2

E2
•

√
‖∇z‖2 Surface RMS slope

• k Linearity coefficient

For multiasperity theories accounting for the variation of asperity curvature with height,
it can be proved that the coefficient k is

p
2π (Bush, Gibson, and Thomas, 1975; Carbone

and Bottiglione, 2008). Thus, every multiasperity theory cited so far verifies this asymp-
totic relation, with the exception of GW and GW-McCool. However, the linear limit of
multiasperity theories is reached for unrealistic values of contact area. Divergence occurs
for fractions of real contact area smaller than 0.0001, and separations about six times
the RMS roughness, where the existence of contact is questionable. Furthermore, conver-
gence to the linear relationship is very sensitive to the spectrum breadth α. In particular,
for large values of spectrum breadth α, which are representative of several real surfaces,
the linear asymptote is verified for decreasingly smaller and unrealistic values of contact
area (Carbone and Bottiglione, 2008; Paggi and Ciavarella, 2010).

Remark 4.1 on the non-dimensionalization of load.
Some authors opt to use a different form for the normalized external pressure, in Equa-
tion (4.2). In those cases, the parameter

p
m2/π substitutes the RMS slope, and the non-

dimensionalization uses the parameter Ω=p
m2/πE∗ to write the dimensionless pres-

sure as F /(ΩA). Naturally, this changes the coefficient of linearity between the real con-
tact area fraction and dimensionless load. Here, the version with the RMS slope will be
preferred, whenever possible.

Inclusion of asperity interaction and coalescence

Many different strategies were pursued in order to incorporate, in multiasperity mod-
els, the interaction between the displacement field produced by each contact. Ciavarella,
J. A. Greenwood, et al. (2008) introduced a zeroth-order interaction on the GW model, by
applying a uniform deformation of the subtract, due to a uniformly distributed contact
pressure. This is equivalent to an increase in the effective separation between surfaces.
Paggi and Ciavarella (2010) followed the same strategy for the BGT model. Ciavarella,
Delfine, et al. (2006) included first-order interaction on a discrete version of the GW
model, and Paggi and Ciavarella (2010) simplified the former formulation in order to
include only zeroth-order interaction effects. By introducing interaction effects on con-
tact models, their accuracy increases considerably, approaching state-of-the-art results
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No contact No interaction Interaction

Figure 4.3: Effect of asperity contact interaction on real contact area. When one asperity
is compressed by the flat plane, all points in the subtract are displaced, thus moving the
neighbor asperity away from the plane. If this effect is included, it leads to a decrease in
contact area relative to a model without interaction, for the same applied load.

(Paggi and Ciavarella, 2010). The problem of coalescing contact areas was addressed by
Afferrante et al. (2012), by replacing two coalescing asperities with a single one with equiv-
alent properties. By considering both interaction and coalescence, the former method
extended the linear regime for real contact area fractions up to 20%.

Two dimensional contact model

A two dimensional GW model (denoted here by GW-2D) was proposed by J. A. Greenwood
et al. (2011). It restricts the original 3D model to the contact of rough profiles, whose
peaks are modeled as circles having constant radius of curvature. A 2D contact model
raises a problem related with the line contact of a cylinder with an elastic half-space,
where the penetration is dependent on the thickness of the half-space. Actually, the rel-
ative displacement between the center of the cylinder and a point inside the half-space
depends on how deep the point is located inside the half-space. This results from the fact
that penetration, in line contact, cannot be determined uniquely from the local contact
stresses, requiring the prescription of the stress distribution on the bulk (K. L. Johnson,
1987). Owing to this theoretical detail, the formulation of GW-2D lacks the cleanliness
of its 3D relative, but may provide a simple tool for comparison with numerical results,
despite the inconvenient dependence on half-space thickness.

Remarks and models comparison

Among all multiasperity models, GW is arguably the least accurate, yet it also is the most
flexible for particular applications, once it requires only simple statistical measures of
the surface topography. In contrary, BGT and GW-SE rely heavily on the assumption of
Gaussian isotropic surfaces, for which a random theory is fully developed (Nayak, 1971;
Longuet-Higgins, 1957b,a). However, the contact area predicted by GW-McCool and BGT
do not differ considerably, which suggests that GW-McCool is the most effective theory,
even though it does not verify the same asymptotic limit (Carbone and Bottiglione, 2008).
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Multiasperity models still predict asymptotic linearity between area and load, even
for asperity heights distribution different from those associated with Gaussian surfaces.
In particular, Ciavarella (2016) tested GW-McCool theory with several Weibull distribu-
tions, for different parameters, finding a linear relation between area and load for small
contact areas. The resulting linearity coefficient was near to that predicted by Gaussian
surfaces. Paggi and Ciavarella (2010) also verified that small deviations from the Gaussian
distribution of heights do not correlate with errors associated with the models.

With the rise of fractal characterization of roughness, multiasperity models started be-
ing questioned, since the definition of asperity seemed no longer obvious. For a long
time, asperities were identified in profile and surface measurements by the three and five
points rules (Greenwood J. A. and Williamson J. B. P., 1966). In a profile trace, a point
which is higher than its two neighbors was defined as a peak. The same was followed
for summits in area measurements, and the five points rule. From the moment that one
considers that an asperity is, in fact, covered with several smaller asperities, this defini-
tion turns unclear. J. Greenwood and J. Wu (2001) published an apology concerning this
issue, stating that asperities can no longer be defined as peaks or summits, but as what
makes contact (cf. Figure 4.4). In spite of the criticism, multiasperity models prevail in
the scientific literature due to their overall simplicity, and to the fact that they capture
the qualitative behavior of micromechanical contact— proportionality between real con-
tact area and load and approximately negative exponential dependence of pressure on
separation (Persson, 2007; Ciavarella, 2016).

Smooth asperity Asperity covered with smaller asperities

Figure 4.4: Comparison between a smooth asperity, as idealized by GW model, and a
fractal asperity. If surface summits were smooth, there would be no conflict in the defi-
nition of asperity. However, due to the self-affine nature of rough surfaces, summits will
contain smaller microscopical summits. Comparing both cases, the smaller asperities will
only be relevant for contact stiffness at high separations. Thus, the definition of asperity
is not straightforward once fractal roughness is accepted. Adapted from J. Greenwood
and J. Wu (2001).

4.1.2 Fractal models

Several fractal models have been proposed in the literature, aiming at modeling the
contribution of the multiscale roughness features. Many of fractal models make use of
the Weierstrass-Mandelbrot function to simulate fractal roughness (Majumdar and Tien,
1990). A list of fractal and multiscale contact theories is provided in Jackson and Green
(2011), and a comparison between multiasperity and fractal approaches is presented by



96 4.1. Bibliographic survey

Kogut and Jackson (2005). The global popularity of fractal contact models, compared with
other famous developments, is quite low, and they shall not be addressed in this work.

4.1.3 Persson’s model

Persson (2001a,b) proposed a novel micromechanical contact theory, which intrinsically
models the multiscale roughness characteristics and does not rely on Hertz contact the-
ory. Instead of considering topographical features, Persson worked with the contact stress
probability distribution, and how it changed as new frequency components are added to
the surface. In other words, and following the nomenclature adopted in the original work,
Persson evaluates the probability distribution of contact pressure at different magnifica-
tions.

For the case of two nominally flat surfaces in contact, when no frequencies are present,
the only value that contact stress can take is the nominal pressure p0. By successively
adding shorter wavelengths to the topography, contact stress can take values in an in-
creasingly wider interval, since points in the surface will be compressed by different
amounts. Thus, while in the initial magnification there was only one value for the contact
stress, and the probability distribution would reduce to a Dirac delta function centered
on p0, by increasing the magnification of observation, contact stress are allowed to take
different values and the probability distribution broadens. This is, the probability dis-
tribution of contact stress diffuses with magnification (see Figure 4.5, in page 97, for a
graphical representation). In fact, this is precisely the result obtained by Persson: a diffu-
sive partial differential equation. It is derived assuming full contact between an elastic
flat surface and a rigid rough one, which implies that the power spectrum of both the de-
formed and rigid surfaces are equal. Partial contact is imposed by a boundary condition,
specifying that traction cannot exist—nonadhesive contact. From Persson’s model, the
result for the contact area simply comes

Ac

A
= erf




p
2p0

E∗
√

‖∇z(x, y)‖2


 , (4.3)

where erf(·) is the error function, defined as

erf(x) = 2p
π

∫ x

0
e−a2

da . (4.4)

For small values of the nominal pressure, the asymptotic limit of Equation (4.3) is

Ac =
√

8

π

F

E∗
√

‖∇z(x, y)‖2
. (4.5)

Thus, Persson’s theory also predicts linearity between load and area, with linearity coeffi-
cient k =

p
8/π—smaller than the value predicted by multiasperity models.

Comparison with multiasperity models

Persson’s theory brings several improvements over asperity-based models. The asymp-
totic linearity holds approximately true up to realistic values of the real contact area,
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p0

p0

p0

p0

p0

0

0

0

p

p

p

δ(p −p0)

f1δ(0)

f2δ(0)

ζ1 = 0

ζ2 > ζ1

ζ3 > ζ2

P (p,ζ1)

P (p,ζ2)

P (p,ζ3)

Elastic

Rigid

Figure 4.5: Schematics of Persson’s contact model. In the initial magnification ζ1 = 0, only
the zero frequency is included, thus contact pressure p is equal to the nominal pressure
p0 at every point, and the probability distribution of contact stresses P (p,ζ) reduces to a
Dirac delta function, centered on nominal pressure. When magnification increases, more
frequencies of the spectrum are included in the surface, and the probability distribution
of contact stresses spreads over p. Due to partial contact, infinite points have null contact
pressure, hence, one makes P go to zero at p = 0, and a new Dirac delta is added at this
point, multiplied by a factor f1 (or f2), such that the integral of P along p is unitary.
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around 15-20%. Furthermore, since it does not rely on Hertz theory, a full contact solu-
tion is provided. Actually, it starts from the exact solution at full contact, and departs from
it, in order to model partial contact. Along with the full contact solution, it also predicts
that Ac goes to A with increasing nominal pressure, which was not predicted by multi-
asperity models. Interaction between different contact zones is naturally handled, and,
even though the 3D theory produces better results, the extension for two dimensional
contact is straightforward (Carbone, Lorenz, et al., 2009; Carbone, Scaraggi, et al., 2009).

Multiasperity and Persson’s model have been extensively compared in literature, c.f.
the work by Carbone and Bottiglione (2008), Paggi and Ciavarella (2010), Persson (2006),
and Zavarise and Paggi (2007). In general, these works highlight the inherent advantage of
Persson’s theory over multiasperity models for large values of contact area. In contrast to
multiasperity theories, Persson’s model does not depend on the spectrum breadth α, but
recent numerical results suggest such dependence may exist (Yastrebov, Anciaux, et al.,
2017)

Theoretical limitations and criticism

Despite accounting for multiscale roughness and interaction effects, this theory is not
exact. In fact, numerical results suggest, repeatedly, that Persson’s theory underestimates
contact area (Pei et al., 2005; Hyun, Pei, et al., 2004; Yang and Persson, 2008). The theo-
retical grounds of Persson’s model were assessed by Manners and J. A. Greenwood (2006)
and Dapp, Prodanov, et al. (2014).

Manners and J. A. Greenwood (2006) emphasized the contradiction inherent to the
boundary conditions specifying partial contact, within a derivation of differential equa-
tions relying on full contact. Thus, these assumptions are contradictory, and it is not
easy to understand how do they influence the accuracy and even the validity of Pers-
son’s model. Other problem pointed by these authors is the independence of the contact
pressure p and the increment of contact pressure dp, assumed in the derivation of the
differential equation. While this is correct in full contact, under partial contact conditions
these two quantities are not independent, since traction cannot exist. By specifying that
p cannot be negative, a relation between dp and p is created, which renders p and dp
dependent.

Dapp, Prodanov, et al. (2014) explored several explicit and implicit assumptions in this
theory, and suggested that the accuracy of Persson’s model might result form a fruitful
cancellation of errors associated with several hypothesis—which might not happen in
all situations. Some rely on more mathematical than physical grounds, and there is no
interest here in covering all of them. However, it is curious to refer the re-entry effect,
neglected by Persson’s model. Figure 4.6 shows the contact at different magnifications, as
idealized by this theory. One can see that as magnification increases, the global deflection
is not much affected, but the local topography changes considerably. By adding more and
more length scales, some points might fall out of contact at a certain magnification, and
re-enter contact in a higher magnification. This effect is not predicted by Persson’s model,
and contributes for the underestimation of contact area.
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Re-entry

Figure 4.6: Contact between a rigid rough subtract (blue) and an elastic, initially flat sur-
face (orange), at different magnification, illustrating the re-entry effect. The gap between
the two surfaces is colored in white. When the magnification is increased, some points
which have fallen out of contact in a previous magnification may re-entry contact, which
is not modeled by Persson’s contact theory. Adapted from Dapp, Prodanov, et al. (2014).

4.2 Multiasperity contact models

The following section covers a brief mathematical treatment of multiasperity models.
First, GW and GW-McCool are formulated. They illustrate, concisely, the underlying physics
of asperity-based theories, and do not require complex tools to express the results. Next,
the BGT model is presented, followed by GW-SE. A complete derivation of the equations
will only be provided for GW and GW-McCool models, because the analytical and alge-
braic procedure required for more complex theories becomes cumbersome, and strays
from the main purpose of this work.
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4.2.1 Greenwood-Williamson model

Consider an arbitrary surface z(x, y), whose summits heights zs satisfy a probability den-
sity function denoted by ϕsum(zs). Additionally, assume that all summits are spherical,
with radius of curvature R = −1/κ.4 When a summit at height zs is compressed by δ,
it originates a circular contact area with radius a =

p
δR (K. L. Johnson, 1987). By the

definition of PDF, the probability of summit having a particular value of height zs is

Pr(Zs ∈ [zs , zs +dzs]) =ϕsum(zs)dzs , (4.6)

Then, if there are Nsum summits in a surface with nominal area A, the number of summits
with height zs is Nsumϕsum(zs)dzs . The contact area associated with summits of height zs

equals the area of a single contact times the number of contacts

dAc =πa2Nsumϕsum(zs)dzs =πδRNsumϕsum(zs)dzs . (4.7)

Assuming that the rough surface is in contact with a flat plane, at a distance d from the
surface’s reference plane, i.e., the plane from which zs is measured, one can relate summit
height and separation d with the penetration δ by

δ= zs −d . (4.8)

Since contact occurs only at summits higher that d , the total contact area can be com-
puted by integrating Equation (4.7) from d to infinity,

A(d) =
∫ ∞

d
πRNsum(zs −d)ϕsum(zs)dzs . (4.9)

At this stage, it proves convenient to rewrite Equation (4.9) in terms of the real contact
area fraction. Therefore, by introducing the density of summits per unit area Dsum =
Nsum/A, and taking the constants out of the integral, one can write that

Ac (d)

A
=πRDsum

∫ ∞

d
(zs −d)ϕsum(zs)dzs . (4.10)

Additionally, denoting ẑs = zs/σs and d̂ = d/σs as the summit height and separation
non-dimensionalized by the standard deviation of summit heights σs , and referring to
ϕ̂sum(ẑs) =σsϕsum(ẑsσs) as the PDF of the dimensionless summit heights, Equation (4.10)
becomes

Ac (d̂)

A
=πσsRDsum

∫ ∞

d̂
(ẑs − d̂)ϕ̂sum(ẑs)dẑs . (4.11)

A similar reasoning can be applied to nominal contact pressure p0 and load F . The
mean contact pressure pm of a circular contact is (K. L. Johnson, 1987)

pm = 4E∗

3π

√
δ

R
. (4.12)

4Summits have negative curvature, by definition.
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The infinitesimal load supported by peaks of height zs equals the mean contact pressure,
multiplied by the infinitesimal contact area related with those asperities,

dF = 4

3
δ

3/2R
1/2E∗Nsumϕsum(zs)dzs . (4.13)

Again, integrating from d to infinity, introducing the dimensionless variables and dividing
both members by the nominal contact area, it comes

p0(d̂) = F (d̂)

A
= 4

3
R

1/2σ
3/2
s E∗Dsum

∫ ∞

d̂

(
ẑs − d̂

)3/2
ϕ̂sum(ẑs)dẑs . (4.14)

Equations (4.11) and (4.14) relate the real contact area fraction and nominal pressure
with the dimensionless separation d̂ between the rough surface and a flat plane. Thus, in
general, the real contact area and load can be related indirectly, by this variable. The re-
quired inputs for this theory are the asperities radius of curvature R, effective Young mod-
ulus E∗, density of summits Dsum and the probability distribution of surface summits
ϕsum. The input ϕsum can be divided into two contributions, being the standard deviation
of summit heights σs and the PDF of dimensionless summit heights ϕ̂sum. Greenwood
J. A. and Williamson J. B. P. (1966) considered that summit heights were normally dis-
tributed, following

ϕ̂sum(ẑs) = 1p
2π

exp

(
− ẑ2

s

2

)
. (4.15)

The radius of curvature R was computed as the inverse of the profile RMS curvature, the
summit heights standard deviation σs could approximated by the profile RMS roughness,
and the density of summits Dsum was estimated from the density of profile peaks.

Remark 4.2 on the reference for measuring separation.
Equation (4.15) implies that the average summit height is zero, i.e., the average summit
height is the same than mean surface height, which is also zero, by definition. How-
ever, mean summit height does not necessarily equal mean surface height. Then, with
Equation (4.15) it is actually being considered that separation d is measured relative to
summit mean height, and not relative to surface mean height. This issue is paramount in
comparing with other models, which measure separation from the surface mean plane.

McCool’s incorporation of spectral properties

Holding the hypothesis of the summit heights distribution being Gaussian, and by re-
calling the work of Nayak (1971) and Bush, Gibson, and Keogh (1976) on isotropic Gaus-
sian surfaces, McCool (1986) proposed a new strategy for computing some of the previ-
ous quantities. He suggested that the asperities radius R, standard deviation of summit
heights σs and density of summits Dsum could be estimated by profile spectral moments
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mn and power spectrum breadth α as

1

R
= 8

3

√
m4

π
, (4.16)

σ2
s =

(
1− 0.8968

α

)
m0 , (4.17)

Dsum = 1

6π
p

3

m4

m2
. (4.18)

From these results, GW-McCool model comes

Ac (d̂)

A
= 1

48

p
3π(α−0.8968)

1/2

∫ ∞

d̂
(ẑs − d̂)

1p
2π

exp

(
− ẑ2

s

2

)
dẑs ; (4.19)

F (d̂)

AE∗pm2
= 4

π3/418
p

8
(α−0.8968)

3/4

∫ ∞

d̂
(ẑs − d̂)

3/2 1p
2π

exp

(
− ẑ2

s

2

)
dẑs . (4.20)

For a isotropic surface, the profile spectral moment m2 equals the surface RMS slope
divided by

p
2. Hence one can readily rewrite Equation (4.20) with RMS slope, instead.

For anisotropic surfaces, this theory can still be applied, by using Expressions (2.39). The
results predicted by GW-McCool, which inherently assume that surfaces are Gaussian
and isotropic, are plotted in Figure 4.7. In particular, the area-load curve, and load versus
separation are presented, for physically relevant ranges of real contact area. These results
depend strongly on Nayak’s parameter α, and no truly linear relation exists, even though
for α= 100 the area-load curve seems to approach a line.
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Figure 4.7: Contact area, load and separation from GW-McCool model, for different val-
ues of spectrum breadth α. The curves change considerably with varying α, evidencing
an inconvenient feature of multiasperity theories.

Nayak (1971) showed that the summit heights distribution for a Gaussian isotropic sur-
face depends on the spectrum breadth α= m0m4/m2, and it only approaches a Gaussian
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curve for very large values of α. The general case follows5

ϕ̂sum(t = zs/σz ) = 3

2π

p
2α−3

α
t exp(−C1t 2)+

+ 33/2

2α
p

2π
(t 2 −1)exp(−t 2/2)

(
1+erf

(
β
))+

+
p
αp

2π(α−1)
exp

(
− αt 2

2(α−1)

)(
1+erf

(
γ
))

,

, (4.21)

where

C1 =
α

2α−3
, (4.22)

β= t

√
3

2(2α−3)
(4.23)

and

,γ= t

√
α

2(α−1)(2α−3)
. (4.24)

In the analytical distribution in Equation (4.21), separation is non-dimensionalized by
the standard deviation of the surface heights σz , such that the dimensionless separation
comes t = d̂/σz . In this case, d̂ is measured from the surface mean plane, and not from
the mean summit height. Hence, d̂ and t are not proportional, in general, and one can
argue that a more accurate version of GW-McCool model can be formulated, by using
Equation (4.21). However, the attractiveness of the GW-McCool model lives, precisely, in
its simplicity, and in the abstraction of a complex mathematical formulation.

4.2.2 General formulation of GW models

At this point, it is also interesting to reformulate GW, without applying explicit relations
based on contact theories, e.g., between the contact area radius and penetration, from
Hertz theory. One can rewrite Equations (4.7) and (4.13) as

dAc =πa2(δ)Nsumϕsum(zs)dzs , (4.25)

dF =πa2(δ)pm(δ)Nsumϕsum(zs)dzs . (4.26)

The integration of this two equations results in

Ac

A
=Dsum

∫ ∞

d
πa2(zs −d)ϕsum(zs) dzs ; (4.27)

F

A
=Dsum

∫ ∞

d
πa2(zs −d)pm(zs −d)ϕsum(zs) dzs . (4.28)

Equations (4.27) and (4.28) express the results of GW and GW-McCool in a general formu-
lation, without considering elastic deformation and any particular contact theory. This

5Apparently, the formula for the probability distribution of summit heights displayed in the original work
of Nayak (1971) is misprinted. See J. A. Greenwood (2006) for a presumably correct expression.
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can be extremely useful for further extensions of micromechanical theories to more com-
plex situations.

4.2.3 Bush-Gibson-Thomas model

At the time of writing, the most general formulation of multiasperity theories is provided
by the BGT model. The assumption of asperities with spherical caps and constant radius
of curvature is replaced with a complete description of summit geometry. This model
allows different principal curvatures to exist in each summit, i.e., asperities are modeled
as elliptic paraboloids, and the distribution of principal curvatures changes with height.
Thus, it requires the joint probability distribution of asperity height zs and principal cur-
vatures in each direction κ1 and κ2. This can can be derived from the statistical geometry
theory developed by Nayak (1971) and Longuet-Higgins (1957b,a), and it writes

Υ(zs ,κ1,κ2) = 27

8π

1

m2
4
p

m0m4
C

1/2
1 exp

[
−C1

(
zsp
m0

+ 3

2
p
α

κ1 +κ2

2
p

m4

)2]
|κ1 −κ2|

·κ1κ2 exp

[
−9(κ1 +κ2)2 −24κ1κ2

16m4

]
,

(4.29)

with C1 given by Equation (4.22). In the original publication of Bush, Gibson, and Thomas
(1975), the authors used a rather different form of Equation (4.29), by specifying the joint
probability distribution of asperity height and radius of curvature per unit area, instead.6

Following the path outlined in the derivation of Equations (4.27) and (4.28), similar ex-
pressions accounting for the variation of curvature with height can be derived

Ac

A
=Dsum

∫ ∞

d

∫ 0

−∞

∫ 0

−∞
πabΥ(zs ,κ1,κ2) dκ1dκ2dzs ; (4.30)

F

A
=Dsum

∫ ∞

d

∫ 0

−∞

∫ 0

−∞
πabpmΥ(zs ,κ1,κ2) dκ1dκ2dzs . (4.31)

The integrals in Equations (4.30) and (4.31) are carried over all summits (negative cur-
vature, in both directions) higher than the separation. Since asperities are now allowed
to take ellipsoidal shape, the contact area is also elliptical, with semi-axis a and b. In
turn, the dimensions of the elliptical contact area are a function of the curvatures κ1 and
κ2 and also of the penetration δ. This raises a major complication in this model, since
the Hertzian solution for elliptical contact is expressed through implicit relations, which
makes the aforementioned integration impractical. By making a change of variables, and
after a long analytical process, the authors of BGT model present a solution for the con-
tact area and load that can be computed through numerical integration. The derivation of
that solution falls out of the scope of the present work. Appendix B presents a numerical
recipe for the computation of real contact area and load, as shown in the original work
by Bush, Gibson, and Thomas (1975).7 This model predicts an asymptotic linear limit, for

6The probability distribution of asperity height per unit area can be obtained by multiplying the respec-
tive joint probability distribution by the density of summits Dsum (Nayak, 1971).

7Carbone and Bottiglione (2008) identified a misprint in one equation, in the original BGT publication,
and presented the correct expression.
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very small nominal pressures, that writes

Ac

A
=
p

2π
p0

E∗
√

‖∇z(x, y)‖2
. (4.32)

Figure 4.8 shows the results for real contact area fraction versus dimensionless load,
and dimensionless load as a function of dimensionless separation, for BGT model, as
done with GW-McCool. Note that in BGT, the separation d is non-dimensionalized by the
standard deviation of surface heights σz =p

m0, resulting in the dimensionless separation
t . Since the separation is measured relative to surface mean plane, instead, the direct
comparison of results with GW-McCool for the same value of dimensionless separation
is not possible (see remark on page 101). Contact area-load curves varies significantly
with spectrum breadth α. Namely, with increasing values of α, the curves depart from the
asymptotic limit for increasingly smaller and unrealistic values of contact area. Even for
small values of α, whose lower bound is 1.5, the linear relation is approximated at very
small values of contact area.

It should be remarked that the computer implementation of this model is rather expen-
sive, compared with others, which are practically instantaneous. It requires the numerical
integration of one definite double integral, and an indefinite triple integral—the upper
boundaries are infinite, see Appendix B. In addition, these integrals need to be evaluated
at every value dimensionless separation. In a machine equipped with a quad-core Intel®

Core™ i7-7700HQ CPU at 2.8 GHz, and by using the integration routines provided in the
numerical library QUADPACK (accessed through Python’s library SciPy) it takes, on av-
erage, between 1 and 2 seconds, per value of dimensionless separation, to compute the
respective area and load. The convergence of the integrals, and as a consequence, the
computation time depends, rather dramatically, on the value of t and α. For example,
for very large compressions t << 0, the integration process takes longer to finish. This
process can be speed up by using a parallelization strategy, where different processes are
responsible for computing area and load for individual segments of the dimensionless
t vector. In the machine whose specification were referred earlier, which can run 8 pro-
cesses in parallel, the computation of area and load for 40 values of t , between 0 and 3,
took approximately 2 minutes with sequential execution, and this time was reduced to
about 30 seconds, with 8 parallel processes.

4.2.4 Greenwood-Williamson simplified elliptic model

Regarding the complexity of multiasperity theories, GW and BGT lie within the two ex-
tremes of the complexity spectrum, with GW being the most simple and BGT the most
complex. J. A. Greenwood (2006) proposed a contact theory with intermediate intricacy,
arguing that the summits of a Gaussian isotropic surface are only mildly ellipsoidal. Thus
they can be modeled as spherical, with an equivalent radius of curvature, but keeping
the variation of curvature with height. By doing so, the contact area can be considered
circular and: on one hand, the solution for Hertzian contact comes simplified; on the
other, the problem can be described with only two variables. In the GW-SE model, an
ellipsoidal asperity with principal curvatures κ1 and κ2 is replaced by a spherical asperity
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Figure 4.8: Contact area, load and separation from BGT model, for different values of
spectrum breadth α. Identically to the results of GW-McCool, BGT predictions for real
contact area as a function of load change drastically with increasing α. The higher α,
the sooner the curves deviate from the asymptotic linear limit. Note that dimensionless
separation t is defined differently from d , since the non-dimensionalization is performed
with the standard deviation of heights σz =p

m0, and the reference plane is the surface
mean plane instead, hence direct comparison between separation-load of the two models
is not feasible.

with curvature κG =p
κ1κ2. Without entering in details on the derivation of the theory

(see the original work of J. A. Greenwood (2006) for a detailed explanation), and introduc-
ing the dimensionless curvature g = κG /

p
m4, the contact area and load can be obtained

from

Ac (t )

A
= 3α

4
p

6π(α−1)

∫ ∞

t

∫ ∞

0
(ẑs − t )g 2 f (ẑs , g ) dg dẑs ; (4.33)
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π3/2
p

6(α−1)

∫ ∞

t

∫ ∞

0
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3/2g
5/2 f (ẑs , g ) dg dẑs . (4.34)

The function f (ẑs , g ) is defined by

f (ẑs , g ) = erfc

[
µ

(
3g − ẑs

p
α

α−1

)]
exp

[
1

2

(
3g 2 − ẑ2

sα

α−1

)]
, (4.35)

where erfc(·) denotes the the complementary error function

erfc(x) = 2p
π

∫ ∞

x
e−a2

da (4.36)

and µ comes

µ=
√

α−1

4α−6
. (4.37)
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Figure 4.9: Contact area, load and separation from GW-SE model, for different values of
spectrum breadth α. Results from this theory match closely the results from BGT, sug-
gesting that it can used as a low cost alternative, for representing multiasperity models.

Following the same structure adopted for the results of GW-McCool and BGT, Figure 4.9
shows the contact area, load and separation predictions from GW-SE. It can be observed
that they resemble, closely, the results from BGT, and does also converge for the same
asymptotic line, at low loads. This theory requires the numerical computation of only
two double integrals, which is accomplished much faster, compared with BGT. After all,
it reveals to be a good alternative for representing multiasperity theories reliably and
effectively.

4.3 Persson’s contact theory

This section is devoted to discussing some theoretical details of Persson’s model. Note
that in the original work (Persson, 2001a), and even in later presentations of his theory
(Persson, Bucher, et al., 2002; Persson, 2001b) the derivation of the diffusive differential
equation and other aspects are quite difficult to follow, as already pointed out by other
authors (Manners and J. A. Greenwood, 2006). Thus, the following text does not aim
at presenting a complete derivation of the theory, but only at clarifying some features
instead. For a simplified derivation of the differential equation, the reader is referred to
Manners and J. A. Greenwood (2006).

Persson’s theory deals with the probability density function of the contact stresses, or
contact pressures. Thus, the variance of contact pressures is an extremely useful quantity
for its characterization. For this purpose, it is convenient to analyze the pressure distri-
bution which flattens a sinusoidal displacement field. This classical result (K. L. Johnson,



108 4.3. Persson’s contact theory

1987) states that a sinusoidal displacement field w(x), say in the z direction, given by

w(x) = pmλ

πE∗ cos(k · x) = 2pm

‖k‖E∗ cos(k · x) , (4.38)

where x = (x, y), is flattened by a sinusoidal pressure distribution with amplitude pm ,
which writes

p(x) = pm cos(k · x) . (4.39)

To say that the pressure field given in Equation (4.39) flattens the displacement expressed
by Equation (4.38), is equivalent to stating that such pressure field is generated whenever
the former displacements are applied. By assuming that the surface contains a certain
range of frequencies, from the superposition principle, each infinitesimal contribution,

dw(x) = 4P(k)dk

‖k‖E∗ cos(k · x) , (4.40)

is flattened by a certain component of the pressure spectrum, with P(k) denoting the
Fourier transform of the pressure distribution. The factor 2 comes from the fact that
Fourier transform concerns complex exponentials, while Equation (4.40) is written with a
real valued trigonometric function. By integrating Equation (4.40) in the frequency space,
i.e., by summing all frequencies, one can relate the Fourier transform of the surface height
with the pressure spectrum as

F {w} = 2F
{

p
}

‖k‖E∗ . (4.41)

Equation (4.41) can be rewritten in terms of the surface power spectrum Φ and also the
power spectrum of the pressure field Φp as

Φ(k) = 4Φp (k)

‖k‖2 [E∗]2 . (4.42)

Finally, by recalling that the variance σ2
z equals the spectral moment m00 of the spectrum

in question, and that m02 +m20 equals the variance of the surface slopes, integration
Equation (4.42) in the frequency domain yields

m20 +m02 =σ2
z (‖∇z‖) = ‖∇z‖2 = 4σ2

z (p)

[E∗]2 . (4.43)

Equation (4.43) relates the surface RMS slope with the variance of contact pressure dis-
tribution, in full contact conditions. Note that the surface RMS slope depends on the
bandwidth over which the spectrum is integrated. Consider that the surface spectrum is
defined between the zero frequency and an upper bound ζ‖k0‖, with ‖k0‖ = 2π/L. Here,
L is the characteristic length of the surface, and ζ is a magnification factor. The magnifi-
cation ζ is the extent at which the surface spectrum is represented, or in other words, the
level of detail in the surface. Then, the variance of pressures σ2

p depends on the magnifi-
cation factor ζ, and comes

σ2
p (ζ) = [E∗]2

4
‖∇z‖2 . (4.44)
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The proceeding analysis, by Persson, concerns only the variance of contact pressures,
and how it changes with increasing magnification. A key point to mention is that if the
surface heights is Gaussian, then the contact pressure distribution is also Gaussian, since
it results from the superposition of a large number of independent random variables.
Denoting P (p,ζ) as the contact pressure probability distribution at magnification ζ, and
assuming that the contact pressure variation dp is independent of the actual pressure p,
the following differential equation holds

∂P

∂ζ
=G ′(ζ)p2

0

∂2P

∂p2, (4.45)

with

G(ζ) = 1

2

σ2
p (ζ)

p2
0

. (4.46)

Equation (4.45) models how P (p,ζ) evolves as increments of roughness dζ are added
to the surface, i.e., as PSD covers wider ranges, while the nominal pressure p0 remains
constant—in the case of full contact. The solution of the diffusive differential equations
must verify the boundary conditions:

P (p,0) = δ(p −p0) ; (4.47)

P (∞,ζ) = 0 ; (4.48)

P (0,ζ) = 0 . (4.49)

The boundary condition Equation (4.47) specifies that when the magnification is null, i.e.,
when only the zero frequency component is considered, the only value that the contact
pressure can take is the nominal pressure (cf. Figure 4.5). Equation (4.48) simply prohibits
the existence of infinity large contact stresses, which are physically meaningless. Finally,
the boundary condition Equation (4.49) is responsible for modeling partial contact, by
imposing that the probability of existing negative contact pressure (traction, since p > 0
corresponds to compression) is null. The solution for P (p,ζ) comes

P (p,ζ) = 1√
2πσ2

p (ζ)

(
exp

[
− (p −p0)2

2σ2
p (ζ)

]
−exp

[
− (p +p0)2

2σ2
p (ζ)

])
. (4.50)

The solution provided in Equation (4.50) does not verify unit integral, in partial contact—
a necessary condition for a probability density function. In fact, in partial contact, there
is a infinite number of points which are not in contact, hence have zero contact pressure.
Thus, Equation (4.50) must be complemented by a Dirac delta function at the origin,
multiplied by a factor that makes the integral of the PDF unit, as illustrated in Figure 4.5.
The fraction of real contact area is necessarily given by the probability of having positive
contact pressure

A

Ac
=

∫ ∞

0+
P (p,ζ) dp = erf




p0√
2σ2

p (ζ)


 , (4.51)
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and recalling Equation (4.44), one recovers Equation (4.3)

Ac

A
= erf




p
2p0

E∗
√

‖∇z(x, y)‖2


 . (4.52)

The results of Persson’s theory for the real contact area and contact pressure probability
density function are plotted in Figures 4.10 and 4.11, respectively. From Figure 4.10 it
can be seen that Persson’s model predictions match closely the linear asymptotic, up to
20% of real contact area fraction. It can also be observed, in the same figure, that as the
normalized external pressure increases, the real contact area approaches unit (the full
contact solution). When the dimensionless pressure reaches the value around 1.6, the
deviation of contact area fraction from 1 is negligible. As for Figure 4.11, the PDF spread-
ing with increasing magnification can readily be seen, together with the different values
for the area under each curve, i.e., their integral—this is compensated by the additional
Dirca delta at the origin.

Even though the former concepts concerned the three dimensional formulation of
Persson’s model, the restriction to the contact of rough profiles is straightforward. In
fact, the 2D rough contact can be thought as the contact of strongly anisotropic rough
surfaces, in which case roughness exists only in one direction. The 2D formulation of
Equation (4.52) comes (Carbone, Lorenz, et al., 2009)

Ac

A
= erf




p
2p0

E∗
√

(dz/dx)2


 . (4.53)

4.4 Closing comments

As a final discussion to close this chapter, a brief comparison between the contact area-
load predictions for all micromechanical contact theories discussed previously is per-
formed. The results for all the models are presented in Figure 4.12. Persson’s asymptotic
results is discarded since, for this range of contact area, it is almost indistinguishable
from the exact solution. Regarding the multiasperity theories, the results for two different
values of spectrum breadth α are plotted.

Persson’s multiscale model and the asymptotic BGT are the two major references for
linearity between real contact area and load. The two models predict different slopes for
the area-load curve, with Persson’s predicting the smallest. All multiasperity models are
very sensitive to α, and deviate from linearity for unrealistically smaller loads and contact
areas as α increases.

Even though it is observed that GW-McCool does not converge to same asymptotic
limit, for the physically meaningful range of contact area fractions considered, it predict
values very close to other more complex multiasperity models.
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Figure 4.10: Real contact area fraction as a function of dimensionless load predicted by
Persson’s theory. With increasing nominal pressure, the real contact area fraction goes to
1, as expected for full contact conditions. The linear asymptotic limit for small nominal
pressures holds with very small error up to 20% of the nominal contact area.
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Figure 4.11: Contact pressure probability density function, for two values of magnifi-
cation, computed from Persson’s model. With increasing magnification, the probability
distribution spreads over the contact pressure axis. It can be observed that the area below
the two curves is not equal. This difference is complemented by adding a Dirac delta
function at the origin, multiplied by a coefficient, which depends on magnification.



112 4.4. Closing comments

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p0/E∗
√

‖∇z‖2

A
c
/A

Persson
Asymptotic BGT
GW-McCool α= 2
GW-McCool α= 10
BGT α= 2
BGT α= 10
GW-SE α= 2
GW-SE α= 10

Figure 4.12: Comparison of real contact area fraction versus normalized external pressure
curves, between different multiasperity contact theories, with different values of spectrum
breadth α, and Persson’s model. Persson’s model and asymptotic BGT provide to reference
linear relations. Multiasperity models are sensible to spectrum breadth α, and increasing
this value makes multiasperity curves go down, and deviate from the asymptotic limit for
smaller loads. All three multiasperity models predict similar real contact area fractions,
for the same load, for physically meaningful contact area fractions.



113

Chapter 5

Single scale dual mortar
finite element modeling of rough contact

Analytical modeling of rough contact provides some relatively simple and immediate
results for the evolution of contact area with load. However, such approach poses some
limitations, even on the solution of micromechanical frictionless and elastic contact prob-
lems, since it lacks an ubiquitous answer regarding the accuracy of the currently proposed
theories. With the rapid growth of computational resources over the last decades, numer-
ical methods and, in particular, the Finite Element Method (FEM), became increasingly
more attractive for the investigation of rough contact. In comparison with analytical the-
ories, these techniques are more flexible and relax the base hypothesis of rough contact
formulation. Furthermore, topography realizations can be modeled directly, along with
every individual geometrical feature.

Micromechanical contact is intrinsically multiphysical, with numerous phenomena oc-
curring at the contacting interface, see Figure 5.1. While they are strongly coupled in real
applications, they can be isolated rather easily by the application of numerical methods,
where each individual contribution can be assessed. In fact, in experiments it is diffi-
cult to isolate individual effects, yet in the numerical model it is cumbersome, not to
say impossible, to account for every possible interaction. Therefore, computational meth-
ods and experimental work are, altogether, powerful methods to address the problem of
rough contact.

In this chapter, the main numerical approaches to rough contact adopted are reviewed.
Special attention is given to the FEM, and to the features on which it shows superior be-
havior relative to other alternatives. Computational contact algorithms are also subjected
to attention, with focus on dual mortar methods. Then, the fundamental theoretical as-
pects of continuum contact mechanics within the framework of the dual Mortar method
are briefly introduced, and the global solution algorithm for the contact problem is pre-
sented. Frictionless elastic rough contact finite element simulations within a dual mortar
contact algorithm are performed in a single scale framework, in order to establish a sta-
tistically Representative Contact Element (RCE). All simulations address the 2D contact of
a self-affine rough elastic block and a rigid subtract—a Signorini contact problem. These
preliminary studies are paramount for the future application of multiscale strategies to
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Figure 5.1: Illustration of the multiphysical phenomena involved in the tribological in-
teractions between two rough surfaces in contact. These interactions range from the
thermal and electrical behavior of the contact to phase transformations of the material’s
microstructure. Adapted from Vakis et al. (2018).

rough contact, inasmuch that the micromechanical problem is well characterized, and
the representativeness of the mechanical response is known beforehand.

5.1 State of the art

When it comes to the numerical treatment of rough contact, two topics must be distin-
guished: the technique for modeling the continuum media and the contact algorithm.
These two subjects are covered in the next paragraphs, individually.

5.1.1 Numerical modeling of the continuum

The Finite Element Method and the Boundary Element Method (BEM) are two well es-
tablished numerical procedures for the solution solid mechanics problems, which have
been extensively used in numerical investigations of rough contact. A review of the recent
numerical investigations on rough contact is provided in Yastrebov, Anciaux, et al. (2015).
The interested reader is also referred to Vakis et al. (2018) for a more comprehensive
review and comparison of numerical methods used to model rough contact.

The application of the BEM requires only the discretization of the surfaces of contact-
ing bodies. The bulk is modeled with fundamental (analytical) solutions, which are only
provided for simple situations, e.g., for elastic half-spaces. These can be still applied to
rough contact, as long as the RMS slope is small. For this reason, the associated com-
putational cost is drastically reduced, allowing the simulation of rough surfaces with a
large number of degrees of freedom. In fact, one the finest meshes used lately in rough
contact simulation, containing 4096 elements in each direction (about 50 millions de-
grees of freedom), was solved with a BEM approach, in Campañá, Müser, and Robbins
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(2008). Typically, published works regarding BEM as the modeling technique for rough
contact practice a minimum of approximately 1000 elements in each direction. Two ma-
jor families of BEM strategies commonly employed in micromechanical contact analysis
can be distinguished, namely the Green’s Function Molecular Dynamics (GFMD) and a
FFT based boundary element.

The GFMD technique, initially developed by Campañá and Müser (2006), are bound-
ary element strategies based on molecular dynamics concepts. In a molecular dynamics
approach, each point is considered as a particle, which interacts with its neighboring
particles through some potential field. This branch of boundary element methods has
successfully been applied to the normal contact of two elastic solids by Campañá and
Müser (2006), Campañá and Müser (2007), Campañá, Müser, and Robbins (2008), and
Prodanov et al. (2014) to both normal and transverse loading in Campañá, Persson, et al.
(2011).

The aforementioned FFT based boundary element methodology, proposed by Stanley
and Kato (1997), makes use of the highly efficient FFT algorithms to solve the rough con-
tact problem in the frequency domain. This method has been used recently by Yastrebov,
Anciaux, et al. (2012, 2015, 2017) in extensive numerical investigations, and by Jackson
and Green (2011) for comparison with analytical strategies.

With regard to the FEM, its expression in the general picture of frictionless elastic con-
tact modeling is far less evident, because the BEM provides a cheaper but still reliable
solution for this class of problems. The works of Hyun, Pei, et al. (2004) and Hyun and
Robbins (2007) on elastic contact of self-affine surface are widely known for the applica-
tion of the FEM, in this context. Yet, their results have been criticized due to the lack of
smoothness of the artificial surfaces considered for the simulations (Yastrebov, Anciaux,
et al., 2012, 2015). Other noteworthy application of the FEM to elastic rough contact mod-
eling is the work of Yastrebov, Durand, et al. (2011), where single asperity simulations and
a large scale simulation were performed.

As one moves way from the simple case of normal elastic and frictionless contact,
by adding sources of nonlinearity to the model, such as large deformations and nonlin-
ear constitutive laws, FE based approaches dominate every other method in the realm
of rough contact, due to its high versatility. It should be emphasized that the much-
publicized BEM is not naturally fit to handle such complex problems, then engineers and
researchers must necessarily opt to more flexible alternatives. Pei et al. (2005) revisited
the problem of contact between self-affine surfaces, including plasticity in the numerical
model. Also Bandeira, Wriggers, et al. (2004) and Bandeira, Pimenta, et al. (2008) used 3D
elastic and elastoplastic FE models, respectively, to establish contact interface laws. Sev-
eral studies on rubber friction, which is mainly due to the hysteretic viscoelastic behavior
of rubber, and where a large deformation formulation is mandatory, have been carried
out with the FEM, e.g., by Reinelt and Wriggers (2010), De Lorenzis and Wriggers (2013),
and Wagner, Wriggers, Klapproth, et al. (2015). All in all, FE techniques can deal with ar-
bitrarily complex problems, at the cost of more expensive computational resources. As
a side note, it should also be mention that commercial FE packages are more abundant
than boundary element software.
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Remark 5.1 on the application of a FE formulation for the present work.
The current work concerns only the elastic and frictionless contact of self-affine topogra-
phy, through the application of the finite element method. At this stage, it may appear
that a BEM formulation would be more profitable, instead. One of main objectives of
this work is the development of a single and multiscale numerical framework for rough
contact. This is intended to provide a numerical tool for further investigations, on which
more complex phenomena shall be included. Thus, since the present work represents
the first step in such development, the simplest case of the elastic contact is a natural
starting point.

5.1.2 Contact algorithms

Several computational techniques have been employed in order to incorporate contact in
FE frameworks. Initial methodologies by Francavilla and Zienkiewicz (1975) and Hughes
et al. (1976) modeled contact constraints on a purely nodal approach, and was restricted
to meshes with matching nodes, undergoing small deformations. The last two conditions,
and specially the requirement of a node-matching meshes, are very restrictive, since the
contact interface must be determined as part of the solution, in general.

Node-To-Segment (NTS) contact algorithms are the most widely used discretization
techniques in computational contact mechanics, and are widespread in commercial FE
codes. The contact constraints are enforced in a point-wise fashion, related to some seg-
ment/surface on the opposite boundary, thus allowing for dissimilar meshes to be used.
Applications of this algorithm have evolved from simple (Hallquist, 1979) to general con-
tact scenarios (Laursen and Simo, 1993). The NTS algorithm poses some limitations, as
demonstrated, e.g., in Papadopoulos and Taylor (1992), which lead to the employment of
higher order contact interpolations of the contacting surfaces in order to overcome such
difficulties (M. A. Puso and Laursen, 2002).

The so called Mortar-based contact formulations have been developed during the last
two decades as more robust alternatives to model contact constraints. These were pre-
luded by similar ideas of the Segment-To-Segment algorithms, on which the contact in-
terface is partitioned into individual segments for numerical integration, see Simo et al.
(1985) and Papadopoulos and Taylor (1992). The mortar method, introduced by Bernardi
et al. (1993), allows for the variationally consistent treatment of contact constraints. This
is, the contact constraints enter directly in the weak formulation of the contact problem,
and are imposed on an optimal weak sense, by introducing Lagrange multipliers. These
must be carefully chosen to preserve the accuracy of the solution. Mortar finite element
technologies have been successfully applied, for example, by Belgacem et al. (1998) and
M. Puso (2004).

In the current state of the art mortar methodology for contact problems, the dual ba-
sis for Lagrange multipliers is commonly adopted. On the theoretical foundation of the
dual Lagrange multipliers is the bi-orthogonality condition, which allows the conden-
sation of some elements of the mortar matrices, without compromising the accuracy (B.
Wohlmuth, 2000). This approach has been applied to small deformations, e.g., in Flemisch
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and B. I. Wohlmuth (2007), and was extended to the general finite deformation realm by
Popp, Gee, et al. (2009) and Popp, Gitterle, et al. (2010). Moreover, dual Lagrange multi-
pliers are naturally fit for the application of Primal-Dual Active Set Strategies (PDASS),
which area well established techniques from constrained optimization (Alart and Curnier,
1991). The cornerstone of PDASS is the regularization of the inequality contact constrains
by using Nonlinear Complementarity (NCP) Functions. These allow the application of
Newton-Raphson type algorithms to solve for both the displacement field and the con-
tact interface (active set) within a single loop.

It is noteworthy that several alternative contact discretization techniques exist, apart
from the previously discussed ones. In particular, the contact domain method proposed
in Oliver et al. (2009) and Hartmann et al. (2009). This method appeared in the advent of
mortar methods, which ended up absorbing all attention from the scientific community.

5.2 Contact modeling with the dual mortar method

In the following sections, the mathematical formulation of continuum contact mechanics
problems is presented, followed by the FE discretization, within the framework of the
dual mortar method. The following description does not claim to be exhaustive, and shall
only go through fundamental concepts and equations. For the sake of completeness, a
list of references is provided for each topic discussed here, where more comprehensive
introductions to the subjects can be found:

• Nonlinear continuum mechanics - Holzapfel (2000) and Bonet and Wood (2008);

• Contact mechanics - Wriggers (2006) and Wriggers and Laursen (2008);

• Finite element method - Zienkiewicz et al. (2000a,b);

• Dual mortar methods for contact problems - Popp (2012) and Pinto Carvalho (2018).

5.2.1 Continuum mechanics and governing equations

The general continuum mechanics framework for deformable bodies departs from the
geometrical description of motion and deformation kinematics, which are illustrated in
Figure 5.2. The following analysis considers the classical continuum description for every
configuration. Additionally, and without loss of generality, all configurations are consid-
ered to share the same Cartesian coordinate system. The Lipschitz open set Ω0 ⊂ Rd

denotes the deformable body in the reference configuration, and some point P ∈Ω0 is
referred by the position vector X . The symbol d represents the number of spatial di-
mensions of the problem—for the cases of interest in this work d = 2,3. Each point X is
mapped from the reference configuration Ω0 to the current configuration Ωt by a bijec-
tive nonlinear deformation map ϕ at each time instant t , which writes

x =ϕ(X , t ). (5.1)

The displacement of the material point tracked by point P is

u(X , t ) = x(X , t )−X (t ) . (5.2)
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The function ϕ is a one-to-one mapping of material points between the reference and
current configuration, thus not allowing the superposition of material points and opening
of gap within the material. The independent variable of the formulation is the position in
the reference configuration X , which is known a priori, and x is treated as the dependent
variable through the displacement field u. The point X is associated with a Lagrangian
description, since it tracks an individual material point, while x relates to an Eulerian
description, on which a specific fixed point in space is monitored.

The boundary of the deformable body in the reference configuration is denoted by
∂Ω0, and is divided in two open disjoint subsets, namely the Neumann partition Γσ and
the Dirichlet partition Γu . At these regions, stresses and displacements are prescribed as
boundary conditions, respectively. The disjointness property writes

Γσ∪Γu = ∂Ω0 , (5.3a)

Γσ∩Γu =; . (5.3b)

The counterparts of the Neumann and Dirichlet partition in the current configuration are
denoted by γσ and γu .

The deformation gradient, denoted by F , is a fundamental measure of deformation and
strain of the body. It is a second order two-point tensor, defined as the partial derivative of
the current configuration position x to the relative quantity in the reference configuration

F =
∂x(X , t )

∂X
= I +

∂u(x , t )

∂X
. (5.4)

Here, I denotes the second-order identity tensor. For clarity, Equation (5.4) can be rewrit-
ten as

Fi j =
∂xi

∂X j

= δi j +
∂ui

∂X j

, (5.5)

with δi j denoting the Kronecker delta. The Jacobian J is defined as the determinant of
the gradient tensor

J = detF , (5.6)

and it relates the volumes in the reference and current configuration, denoted V0 and V
respectively, by

dV = JdV0 . (5.7)

Strain measures

Alternative strain measures can be derived from the deformation gradient. For example,
it may prove convenient to have a strain measure which only depends on the reference
configuration—recall that the deformation gradient is a two-point tensor and, thus, de-
pends on both configurations. This is satisfied by the right Cauchy-Green tensor

C = F TF . (5.8)

Other important property of the right Cauchy-Green strain tensor (and others) is that
it is an objective measure, i.e., it discards any rigid body rotations that are present in
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Figure 5.2: Deformable bodies in the reference and current configuration, and respective
nomenclature. Adapted from Pinto Carvalho (2018).

the deformation gradient.1 To ensure that a zero strain state occurs at the reference, or
undeformed, configuration, one can define additional strain tensors such as the Green-
Lagrange strain tensor E

E = 1

2
(C − I ) . (5.9)

Similarly, strain measures which depend solely on the current configuration can also be
defined, e.g., the left Cauchy-Green tensor. The references listed in Section 5.2 provide a
wider view of strain measures and their physical interpretation.

Stress measures

In parallel with strain measures, also several stress measures can be defined in nonlinear
solid mechanics. The conventional Cauchy stress tensor σ, widely known from the theory
of infinitesimal deformations, is a stress measure which maps the current configuration
surface element area to the true internal force in the body

d f =σ ·dAn , (5.10)

with n denoting the outward normal vector to the surface element of area dA, in the cur-
rent configuration. Alternatively, one can map the surface element area in the reference
configuration to the true internal force in the current configuration by using the first
Piola-Kirchoff tensor P

P = Jσ ·F−T , (5.11)

and introducing the outward normal N to the surface element of area dA0 in the reference
configuration, the mapping writes

d f = P ·dA0N . (5.12)

1From the polar decomposition theorem, the deformation gradient can be decomposed in two multi-
plicative quantities: a volume-preserving rigid body rotation tensor, and a volume-changing stretch contri-
bution.
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In Equation (5.11), F−T denoted the inverse of the deformation gradient transposed. The
Cauchy stress tensor is symmetric, while the first Piola-Kirchoff is not. Other convenient
stress measure is the second Piola-Kirchoff S

S = F−1 ·P = JF−1 ·σ ·F−T , (5.13)

which recovers the symmetry property, but does not have a clear interpretation like the
previous ones.

Despite the variety of stress and strain measures, it should be kept in mind that these
cannot be combined arbitrarily. There are stress-strain pairs, defined based on work con-
jugacy, which guarantee that the internal work is the same across combinations. For
example, the first Piola-Kirchoff P must be used together with the deformation gradient
F , while the second Piola-Kirchoff must be combined with the Green-Lagrange strain
tensor E in energy considerations.

Constitutive laws

Stresses and strains are not independent of each other. In fact, materials are characterized
by constitutive laws, which specify the relation between these two physical quantities.
Constitutive models can be expressed in terms of the strain energy function Ψ—also
termed elastic potential. This function must satisfy some physical requirements, such as
independence from rotation, and verification of the second law of thermodynamics. For
example, the relation between the second Piola-Kirchoff tensor and the Green-Lagrange
strain tensor writes

S =
∂Ψ

∂E
. (5.14)

The strain energy function allows the definition of the fourth-order constitutive tensor CCC ,
which then specifies the relation between increments in stress and strain by

CCC =
∂S

∂E
. (5.15)

The specific nature of Ψ or CCC comes from a the particular constitutive model adopted,
for example, hyperelasticity or viscoelasticity.

Further than the continuous descriptions, mechanical systems must be characterized
by their equilibrium conditions. In particular, conservation of mass, equilibrium of linear
and angular momentum and energy balances must be verified. Equilibrium of angular
momentum simply reduces to the conditions of symmetry of the Cauchy and second
Piola-Kirchoff stress tensors. As for energy balance, since purely mechanical systems are
considered in this work, it is redundant with linear momentum equilibrium. The laws of
conservation of mass and equilibrium of linear momentum are presented next.

Conservation of mass

From a physical view frame, the mass of a given particle in the reference configuration
must be conserved after deformation, even if its volume changes. Denoting ρ0 and ρ the
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body density at the reference and current configurations, and m as the mass of the body,
the conversation of mass equation writes

dm

dt
=

d

dt

∫

Ω0

ρ0 dV0 =
d

dt

∫

Ωt

ρ dV = 0 . (5.16)

By applying Reynold’s transport theorem, and recalling that both the reference configura-
tion and its density ρ0 do not depend on time, the conservation of mass reduces to the
local verification of

ρ̇+ρdivu̇ = 0 ; (5.17a)

ρ̇0 = 0 . (5.17b)

In Expressions (5.17), the notation ˙(•) stands for the total time derivative, and divu̇ de-
notes the divergence of the vector field u̇ and reads

divu =
∂u̇1

∂x1

+
∂u̇2

∂x2

+
∂u̇3

∂x3

. (5.18)

Equilibrium of linear momentum

Newton’s second law describes the equilibrium between linear momentum and external
forces. This works is only concerned with quasi-static problems, therefore, the linear
momentum is null. Under this condition, the balance of linear momentum is reduced
to the equilibrium between external forces in the current configuration. Denoting the
body forces in the current configuration by b (forces per unit volume of the body in the
current configuration), and the surface traction in the current configuration boundary
by t (forces per unit area of the boundary of the body in the current configuration), the
equilibrium of forces comes

∫

Ωt

b dV +
∫

∂Ωt

t dA = 0 . (5.19)

Introducing Gauss divergence theorem, the local formulation of the equilibrium of forces
in the current configuration follows

divσ+b = 0 . (5.20)

In Equation (5.20), 0 is a null vector, and the divergence of a second-order tensor is a
first-order tensor which verifies

ei ·divσ=
∂σi 1

∂x1

+
∂σi 2

∂x2

+
∂σi 3

∂x3

. (5.21)

5.2.2 Strong form of nonlinear solid mechanics problems

Based on the governing equations established previously, and on the definition of the
Neumann and Dirichlet partitions of the domain’s boundary, the strong form of the Initial
Value Boundary Problem (IBVP) of finite deformation of solids can now be stated:
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Problem 5.1 (Strong form of the IBVP of nonlinear solid mechanics).
For every solid sub-domain Ωi

t , the deformed solution must verify the system of equations
which encompasses both the momentum balance and the boundary conditions of the
problem (Neumann and Dirichlet):

divσi +bi = 0, in Ωi
t × [0,T ], (5.22a)

ui = ūi , in γi
u × [0,T ], (5.22b)

σi ni = t̄ i , in γi
σ× [0,T ], (5.22c)

where ūi and t̄ i denote the prescribed displacements and surface tractions at the current
configuration Dirichlet and Neumann boundaries, respectively, and T the total simula-
tion time.

Despite the fact that the above strong formulation does not includes dynamic equilib-
rium, the total simulation time T is included in order to account for static time dependent
phenomena, such as plasticity. For the same reason, the initial boundary conditions are
not explicitly present in the formulation, and can be thought as part of the Dirichlet set.

5.2.3 Contact mechanics

So far in this chapter, the problem of solid mechanics undergoing quasi-static finite de-
formations has been established, assuming that the Neumann and Dirichlet partitions of
the boundary were known beforehand. In addition to geometry and material laws, con-
tact brings another source of nonlinearity to the problem, called boundary nonlinearity.
This comes from the fact that the contacting boundary is not known a priori and must
be determined as part of the solution itself—in opposition to what happens to the other
boundary partitions. Despite the diversity of categories on which contact problems can
be sorted (such as Signorini contact between an elastic surface a rigid wall, contact be-
tween multiple bodies and self contact), it can be formulated without loss of generality
for the general case of two deformable bodies in unilateral contact.

The Figure 5.2 can be recovered with some modifications for the representation of this
problem, and is illustrated in Figure 5.3. Henceforth, two solid bodies are considered, and
these shall be referred as the non-mortar and mortar bodies, identified by the superscripts
s and m, respectively. Each kinematic quantity discussed earlier can be attributed to
each body individually. The boundary of each body is now partitioned in three disjoint
open sets. Apart from the aforementioned Neumann and Dirichlet, a new partition Γc is
introduced in each domain boundary, called the potential contact boundary, cf. Figure 5.3.
For each body, it must verify

Γi
σ∪Γi

u ∪Γi
c = ∂Ωi

0 , (5.23a)

Γi
σ∩Γi

u = Γi
σ∩Γi

c = Γi
c ∩Γi

u =; . (5.23b)

In fact, the designation potential contact surface itself suggests that it does not match
the so called active contact surface Γa ⊆ Γc, because it must be found together with the
displacement solution. Regions which belong to the potential contact surface but fall out
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Figure 5.3: Schematic illustration of a two deformable bodies in unilateral contact, along
with respective nomenclature. Adapted from Pinto Carvalho (2018).

of the active contact boundary must be considered as part of the Neumann boundary:

Γc \Γa ⊂ Γσ . (5.24)

The current configuration counterparts of the potential contact boundaries Γm
c and Γs

c

are denoted by γm
c and γs

c, respectively—cf, Figure 5.3.

Contact kinematics

The formulation of contact mechanics problems relies on the definition of kinematic
quantities responsible for describing the potential interaction between the contacting
bodies. Such description must have the ability to characterize both normal and tangential
contact. Furthermore, it is convenient to use one of the potential contact boundaries to
parametrize contact related quantities. Here, the non-mortar potential contact boundary
γs

c is chosen for that purpose.

As a fundamental measure of proximity, potential contact and penetration of two bod-
ies, it is convenient to define the gap function g at some point xs ∈ γs

c as the distance be-
tween xs and its projection on the mortar side, along the unit normal of the non-mortar
interface η(xs, t ). The projected point at the mortar side is denoted by x̂m ∈ γm

c . For a
graphical illustration of the gap function, see Figure 5.4. Formally, the gap reads

g (xs, t ) =−η(xs, t ) · [xs − x̂m(xs, t )
]

. (5.25)
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Alternatively, the gap vector can be defined as

g (xs, t ) = xs − x̂m(xs, t ) . (5.26)
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Figure 5.4: Graphical definition of the gap function. The gap is defined as the distance
between some point in the non-mortar interface and its projection on the mortar surface
along the outward unit normal of the former boundary. All these quantities are evaluated
in the current configuration. Adapted from Pinto Carvalho (2018).

Gap related quantities regard the contact description in the normal direction. For tan-
gential contact, the primary kinematic variable is the relative tangential velocity. It can be
formulated by two different approaches, either using slip advected bases or by difference
of material velocities. Adopting the latter formulation, for simplicity, the relative tangen-
tial velocity vτ is the projection in the tangential direction of the time derivative of the
gap vector

vτ = (
I −η⊗η)

ġ , (5.27)

where the dyadic product between two first-order tensors follows η⊗η=η ·ηT. It should
be noted that the tangential relative velocity, as defined in Equation (5.27), is only true if
the points are in contact. Nevertheless, it is common practice to used this approach to
quantify tangential relative movement.

Contact constraints

The contact kinematic quantities allow the establishment of physical meaningful con-
straints for the contact problem. Before introducing this formulation, it is paramount to
emphasize the decomposition of contact tractions into the normal and tangential com-
ponents. Taking the surface traction at the non-mortar contact interface, it writes

t s
c(xs, t ) = pηη+ tτ , (5.28)

where pη denotes the contact normal pressure, which is the only component of the con-
tact traction in frictionless contact, and tτ is the tangential contact traction. By applying
the conservation of linear momentum to the interface, it comes

t m
c (x̂m, t ) =−t s

c(xs, t ) . (5.29)
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The contact constraints in the normal direction must guarantee that bodies do not
penetrate each other, and that only compressive stresses are originated at the contact
interface—adhesive contact is neglected. By inspecting the definition of the gap function
Equation (5.25), it can be seen that this function is non-negative for all points. For g = 0,
points are in the active contact boundary, and must necessarily verify pη < 0. In oppo-
sition, points which verify g > 0 are not part of the active contact boundary, and shall
meet pη = 0. Contact constraints in the normal direction can be formulated from the
Karush-Kuhn-Tucker (KKT) conditions, often designated Hertz-Signorini-Moreau (HSM),
which read

g (xs, t ) ≥ 0 , (5.30a)

pη(η, t s
c) ≤ 0 , (5.30b)

pη(η, t ) g (xs, t ) = 0 . (5.30c)

The KKT conditions must be verified for every point in the non-mortar surface, i.e., for
xs ∈ γs

c. The first condition imposes the condition of non-penetration. The second con-
dition forces contact pressures to assume only negative values—compressive stresses.
The third condition, commonly termed the complementarity condition, guarantees that
if bodies are in contact (g = 0) then the contact pressure is necessarily negative, whereas
if points are not contacting (g > 0) then contact normal pressure vanishes.

The contact constraints in the tangential direction are responsible for modeling fric-
tional contact. The phenomenological Coulomb’s friction law is often adopted to model
such constraints by introducing the well-known coefficient of friction µ. It considers two
different states, namely the stick and slip state. While in the stick state, the tangential
contact stress can increase up to a certain limiting value µpη, and the relative tangential
velocity remains null. If the tangential contact stress reaches µpη, then vτ can occur in
the opposite direction to the tangential stress, with a certain magnitude. These conditions
can be formulated as

ψ(tτ, pη) ≡ ‖tτ(xs, t )‖−µ|pη(xs, t )| ≤ 0 , (5.31a)

vτ(xs, t )+βtτ(xs, t ) = 0 , (5.31b)

β≥ 0 , (5.31c)

ψ(tτ, pη)β= 0 . (5.31d)

In the tangential contact constraints, ψ(tτ, pη) is designated the slip function, and β is a
positive scalar parameter. It can be seen that when ψ< 0, the magnitude of the tangen-
tial contact traction is smaller than the limiting value µpη, which forces β= 0, and thus
there is no tangential relative velocity—stick state. When ψ = 0, the tangential contact
traction has reached the limiting value, and tangential relative motion is free to occur, but
it is ensured that it is collinear with the tangential contact traction, and in the opposite
direction—slip state.

A graphical representation of the contact constrains is given in Figure 5.5. It should
not be overlooked that both contact constraints are non-smooth and multivalued at the
origin.
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Figure 5.5: Graphical representation of contact constraints in the normal and tangential
direction. Both conditions are non-smooth and multivalued at the origin.

5.2.4 Strong form of the finite deformation frictional contact

Attending to the formulation of the contact constraints, continuum contact mechanics
problems can be formulated as a constrained classical solid mechanics problem. The
IBVP for the general scenario of finite deformation frictional contact follows:

Problem 5.2 (Strong form of the IBVP of finite deformation frictional contact).
For every solid sub-domain Ωi

t , the deformed solution must verify the system of equations
which encompasses both the momentum balance and the boundary conditions of the
problem (Neumann and Dirichlet):

divσi +bi = 0, in Ωi
t × [0,T ], (5.32a)

ui = ūi , in γi
u × [0,T ], (5.32b)

σi ni = t̄ i , in γi
σ× [0,T ], (5.32c)

and the contact constraints in the normal and tangential directions

g ≥ 0 , pη ≤ 0 , pη g = 0 , in γs
c × [0,T ] , (5.33a)

ψ≤ 0 , vτ+βtτ = 0 , β≥ 0 , ψβ= 0 , in γs
c × [0,T ] . (5.33b)

5.2.5 Weak form of the contact problem

The strong formulation of the contact problem within the context of finite deformation
solid mechanics must be conveyed to a weak formulation, prone to the application of
the FEM. The weak form is derived from the application of the Principle of Virtual Work
(PVW), by introducing a kinematically admissible virtual displacement field δu. The solu-
tion spaces Ui and Vi for the displacement and virtual displacement fields are defined,
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respectively, as

Ui ≡
{

ui ∈
[

H 1
(
Ωi

t

)]d
| ui = ūi in γi

u

}
, (5.34)

Vi ≡
{
δui ∈

[
H 1

(
Ωi

t

)]d
| δui = 0 in γi

u

}
, (5.35)

where H 1
(
Ωi

0

)
denotes the space of all square integrable functions over the domain—the

so called Sobolev space. With the purpose of simplifying the notation, the product spaces
U≡Us×Um and V≡Vs×Vm are introduced, and the superscripts are dropped from the
physical and virtual displacements. The PVW states that

δΠint (u,δu)−δΠext (δu)+δΠc (u,δu) = 0 , ∀δu ∈V . (5.36)

In the above, δΠint is the internal virtual work due to internal forces, which reads

δΠint (u,δu) =−
∑

i∈{s,m}

[∫

Ωi
t

σi : ∇x

(
δui

)
dΩi

t

]
. (5.37)

The operator (•) : (•) represents the tensor double contraction, in this case, for two second
order tensor, which writes

A : B ≡
∑

i

∑

j
Ai j Bi j , (5.38)

and ∇x (•) denotes the spatial gradient of a vector field

∇x (δu) =
3∑

i=1

3∑

j=1

∂δu j

∂xi

ei ⊗e j . (5.39)

Regarding the virtual work from external forces, this classical result writes

δΠext (δu) =−
∑

i∈{s,m}

[∫

Ωi
t

bi ·δui dΩi
t +

∫

γi
σ

t i ·δui dγi
σ

]
. (5.40)

Finally, the virtual work due to contact interactions comes

δΠc (u,δu) =−
∫

γs
c

t s
c

(
δus −δûm

)
dγc . (5.41)

In Equation (5.41), the conservation of momentum at the contact interface expressed in
Equation (5.29) is introduced. The symbol δûm denotes the virtual displacement of the
projected point at the mortar boundary—as defined in Section 5.2.3.

Enforcement of the contact constraints

In the formulation of mortar finite element methods, the contact constraints are treated
via the introduction of a Lagrange multiplier vector λ. Here, it is set to the negative con-
tact traction vector on the non-mortar boundary, i.e.

λ=−t s
c . (5.42)
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Analogously to the decomposition of the surface traction vector in the normal an tangen-
tial direction (see Equation (5.28)), also the Lagrange multiplier can be similarly decom-
posed as

λ=ληη+λτ . (5.43)

At this stage, the solution space for the Lagrange multipliers must be defined, so that it
can be included in the weak form. In the context of the dual mortar method, the solu-
tion space M(λ) is defined as the dual space of the restriction of the solution space Us

to the potential contact boundary γs
c. For a rigorous mathematical definition of M(λ),

the reader is referred to Hüeber (2008). This solution space satisfies the KKT optimality
conditions and the Coulomb’s laws of friction in the weak sense.

By writing the contact constrains as variational inequities (see the work of Kikuchi and
J. T. Oden (1988)), the weak form of the IBVP problem of finite deformation frictional
contact can be summarized as follows:

Problem 5.3 (Weak form of the IBVP of finite deformation frictional contact).
Find the kinematically admissible displacement field u ∈U and the Lagrange multiplier
vector λ ∈M(λ), such that, for all t ∈ [0,T ], the PVW holds

δΠint (u,δu)−δΠext (δu)+
∫

γs
c

λ
(
δus −δûm

)
dγc = 0 , ∀δu ∈V , (5.44)

∫

γs
c

g
(
δλη−λη) dγs

c ≥ 0 , ∀δλ ∈M (λ) , (5.45)

∫

γs
c

vτ · (δλτ−λτ) dγs
c ≤ 0 , ∀δλ ∈M (λ) . (5.46)

Remark 5.2 on the restriction of the finite element formulation to normal contact.
So far in the current chapter, both the normal and tangential contact constrains were re-
ferred, in order to present the general formulation of finite deformation frictional contact.
Henceforth, in particular, for the finite element approximation, the frictional constraints
will be omitted, since the numerical simulations were performed assuming frictionless
contact. In order to preserve some coherence between the mathematical formulation and
the numerical work, the next section shall focus only on normal contact.

5.2.6 Mortar finite element discretization

The weak formulation of the finite deformation contact problem can be discretized by re-
curring to the finite element method. The fundamental idea of the FEM is the utilization
of the finite dimensional spaces Uh ⊂U and Vh ⊂V for the solution spaces of the dis-
placement and virtual displacement fields. The problem domain Ω=Ωs

t ∪Ωm
t is divided

into ne sub-domains Ωe ⊂Ωh (the superscript h denotes a FE discretized variable), such
that

Ω≈Ωh ≡
ne⋃

e=1
Ωe . (5.47)

The finite elements are connected at nodes, which form a finite element mesh. The basis
functions of the finite dimensional spaces Uh and Vh have compact support, meaning



5. Single scale dual mortar finite element modeling of rough contact 129

they are zero everywhere, except in the elements immediately surrounding a given node.
These interpolation, or shape, functions are usually specified in an element-basis, using
standardized parameter spaces

ξ= (ξ1, ...,ξd ) . (5.48)

Adopting an isoparametric approach, the same shape functions are used to interpolate
both the displacement field and the geometry at every sub-domain. The finite discretiza-
tion of the bulk is completely independent of the mortar approach adopted for modeling
contact.

The boundary geometry and field variables are also interpolated the using shape func-
tion, with dimension d −1. The boundary geometry interpolation writes

xs ≈ {
xs}h

∣∣∣
{γs

c}h =
ns∑

k=1
N s

k

(
ξs)xs

k , (5.49a)

xm ≈ {
xm}h

∣∣∣
{γm

c }h =
nm∑

l=1
N m

l

(
ξm)

xm
l , (5.49b)

and similarly the field variables at the boundaries

us ≈ {
us}h

∣∣∣
{γs

c}h =
ns∑

k=1
N s

k

(
ξs)ds

k , (5.50a)

um ≈ {
um}h

∣∣∣
{γm

c }h =
nm∑

l=1
N m

l

(
ξm)

dm
l . (5.50b)

In the above, ns and nm represent, respectively, the number of nodes in the non-mortar

and mortar boundaries,
{
γi

c

}h
denotes the discretized boundaries, N (ξi ) the shape func-

tion at the boundaries, x the nodal coordinates and d the nodal displacements. Accord-
ingly, the Lagrange multipliers are interpolated from the finite dimensional set Mh ⊂M

λ≈λh =
nλ∑

j=1
Φ j

(
ξs)z j , (5.51)

where nλ denotes the number of non-mortar nodes carrying Lagrange multipliers, Φ j the
Lagrange multiplier interpolation function and z j the discrete nodal Lagrange multipliers.

With the introduction of the mortar finite element discretization in the weak form of
the contact problem (cf. Equation (5.44)), the virtual work of the contact tractions results
in the so called first mortar coupling matrix and the second mortar coupling matrix, here
termed D and M, respectively. The elements of both these matrices are defined by

D j k =
∫

{γs
c}h
Φ j (ξs)N s

k (ξs) dγs
c , for j = 1, ...,nλ , k = 1, ...,ns ; (5.52)

M j l =
∫

{γs
c}h
Φ j (ξs)N m

k (ξ̂m) dγs
c , for j = 1, ...,nλ , l = 1, ...,nm . (5.53)

The first mortar matrix involves only the integration of quantities related to the non-
mortar boundary, while the second mortar matrices requires the integration over the
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discrete non-mortar boundary of quantities which relate to both boundaries—including
projected quantities ξ̂m. Numerical schemes for the integration of the mortar matrices,
such as segmentation, can be found in Popp (2012), Farah et al. (2015), and Pinto Carvalho
(2018).

5.2.7 Dual Lagrange multipliers

When the standard basis for the Lagrange multipliers is adopted, the boundary displace-
ments interpolation functions N s

j are also chosen for Φ j , regarding the interpolation of
the Lagrange multipliers. This leads to strong coupling relations between displacements
and the Lagrange multipliers—the first mortar matrix is densely populated. By adopt-
ing the dual Lagrange multipliers, proposed in B. Wohlmuth (2000), the bi-orthogonality
condition applies, viz.

∫

{γs
c}h
Φ j (ξs)N s

k (ξs) dγs
c = δ j k

∫

{γs
c}h

N s
k (ξs) dγs

c . (5.54)

On one hand, this diagonalizes the first mortar matrix and, thus, localizes the coupling
between Lagrange multipliers and displacements. Furthermore, it decouples the weak
form of the normal contact constraints in Equation (5.45), which can now be written as a
set of point wise conditions (Hüeber, 2008)

g̃ j ≥ 0 , (5.55a)

zηj ≥ 0 , (5.55b)

g̃ j zηj = 0 , (5.55c)

at all non-mortar nodes, i.e., for j = 1, ...,ns. The discrete weighted gap g̃ writes

g̃
(
ξs)=

∫

{γs
c}h
Φ j

(
ξs)g h (

ξs) dγs
c . (5.56)

It must be noted that for the case of frictionless contact considered here, the only com-
ponent of the Lagrange multiplier vector is λη, hence λτ = 0. All things considered, the
discretization of the weak form of the frictionless contact problem by using a dual mor-
tar finite element approach results in a system of generally nonlinear equations, derived
from Equation (5.44), and a set of point-wise inequalities, in Equations (5.55).2

5.2.8 Primal-Dual active set strategy

The latter discrete formulation of the normal contact problem is still not amenable for
an efficient numerical treatment, due to the necessity to treat inequalities. To cope with
this difficulty, the problem can be regularized by the introduction of a Nonlinear Comple-
mentarity (NPC) function. Regarding frictionless contact, the NPC function for normal
constraints follows (Hüeber and B. I. Wohlmuth, 2005)

Cη

j (d, z) = zηj −max
{

0, zηj − cηg̃ j

}
, cη > 0 . (5.57)

2For simplicity, the system of equations is not explicitly presented.
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The point-wise verification of the inequalities in Equations (5.55) can be transposed to
the point-wise verification of the following equalities

Cη

j = 0, j = 1, ...,ns . (5.58)

The normal complementarity parameter cη is an algorithmic parameter, which has been
thought to influence only the convergence rate and not the accuracy of the method.
Nonetheless, it has not been verified yet to impact any of the previous characteristics.
The NCP function for the normal direction is plotted in Figure 5.6, and the resemblance
with the KKT conditions can readily be seen. In its branched structure, there is a natural
distinction between the active and inactive contact nodes.

With the introduction of the NCP function for the normal direction, the problem can
be regularized and expressed as a set of nonlinear equalities. This is due to the nature
of the maximum function max(•), which is semi-smooth and allows the computation of
directional derivatives. Therefore, the application of semi-smooth Newton-Raphson type
algorithms can be used to include all sources of nonlinearities of the problem, within a
single loop.

00

0

active
inactive

g̃ jzηj

C
η j

Figure 5.6: Nodal nonlinear complementarity function Cη

j for the normal contact con-

straints, with cη = 1.

In brief words, the global solution algorithm consists in finding the primal-dual pair(
∆d, zk+1

)
by solving the regularized system of nonlinear equations (∆d is the displace-

ment increment), followed by the update of the displacement vector and the active set (set
of nodes in contact, as evaluated by Equations 5.55). When the active set stops changing
and the system of equations residuals meets some user defined tolerance, the iterations
have converged, and a new load step can be started.



132 5.3. A FEM approach to rough contact

5.3 A FEM approach to rough contact

The present work, namely, the current chapter, concerns the single scale numerical mod-
eling of rough contact by means of the finite element method, coupled with dual mortar
technology. The numerical framework was built on top of a in-house Fortran program
called LINKS (Large Strain Non-linear Analysis of Solids Linking Scales), developed by
CM2S (Computational Multi-Scale Modeling of Solids and Structures) at the Faculty of En-
gineering of University of Porto. LINKS is a finite element code for implicit small and large
strain analysis of several types of materials, such as elastic and elasto-plastic, equipped
with a dual mortar contact formulation, introduced in Pinto Carvalho (2018).

Figure 5.7: LINKS logo.

A preprocessing toolbox for rough contact has been implemented as part of this thesis,
focusing on rough topography synthesis and respective finite element mesh generation.
The code was written in the programming language Python, in order to take advantage
of its extensive scientific libraries and its versatility in merging the different programming
frameworks necessary for the execution of LINKS analysis.

5.3.1 Numerical model setup

For modeling micromechanical contact, a new analysis type was specified in the code,
named a Representative Contact Element (RCE). It is meant to characterize the contact
interface only at the roughness level, ignoring the macroscale geometrical structure of
the body.3 For the definition of the numerical micromechanical model, one needs, firstly,
to setup the geometry and materials for the contacting bodies. Then, a set admissible
boundary conditions must be specified, together with physically reasonable loads. For
computational convenience, only two dimensional single scale FE simulations are ad-
dressed in this chapter, due the fast scaling of computational resources required to model
the problem—as observed in later sections of this chapter. Regardless, the problem def-
inition for both 2D and 3D analysis follows, for the sake of completeness. Figure 5.8
illustrates the micromechanical problems for both cases.

General geometry description

Starting off with the contact geometry, here only Signorini type problems will be solved.
This is a two body contact problem, where one of the bodies is deformable and elastic,
and the other is infinitely rigid. In the following, the rough block (body 1) is considered
the deformable body. Its geometry is defined, naturally, by a numerically generated pe-

3In fact, the future practical application of the methods described below requires this additional model-
ing feature, which must then be coupled with the henceforth discussed micromechanical contact analysis.
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Figure 5.8: Numerical model setup, with emphasis on the boundary conditions, for sim-
ulating micromechanical contact with the FEM, in two and three dimensions.
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riodic topography at one side, and flat boundary, parallel to the rough boundary mean
plane. In sum, the rough block is a parallelepiped/rectangle where one of the faces was
replaced by a rough boundary. The required height and length for the rough block are
not known beforehand, and must be established with further investigations. The analysis
is restricted to self-affine rough profiles and surfaces. The rigid flat base (body 2) is mod-
eled simply as a rectangular box, whose planar dimensions, i.e., at the contact interface,
are slightly larger than the rough block’s, such that expansion in the plane directions can
be accommodated without causing dropping edges. Its height is set to the mesh size at
the non-mortar interface. This is, the flat rigid block is realized by a single layer of square
elements, thus its height changes with the discretization of the rough boundary. However,
this does not impact the results, since there are virtually no displacements in this body.

Rough boundary features

The geometry of the self-affine rough boundary is characterized by its Hurst exponent
H , the large and short cut-off wavelengths λl and λs , respectively, the roll-off frequency
λr and a scaling factor. As a starting point, only Gaussian topographies will be consid-
ered throughout this work. In order to remove one degree of freedom from the numerical
studies, only topography without roll-off frequency shall be analyzed, i.e., λr =λl . By fix-
ing all previous parameters and varying only the scaling factor, one can control specific
properties of the topography, such as the RMS slope and, thus, the overall smoothness
of the topography. This is crucial for the convergence of the numerical method, since
the field of unit outward normals for very rough profiles (very high RMS slope) changes
drastically within the FE mesh. In fact, the selection of the scaling factor can be inter-
preted as a normalization of the generated surface height. For example, if the profile was
prescribed a value for the RMS slope, one could simply compute this RMS parameter by
a finite differences formula (see Equations (2.6)) or by the discrete spectral moments (see
Equations (2.76) and (2.78)), and normalize the topography heights through an arithmetic
division. However, as pointed out by Yastrebov, Anciaux, et al. (2015), this approach intro-
duces an implicit dependence on the discretization, and often results in underestimated
RMS properties.

To circumvent this difficulty, one can stray from discretized operations by computing
the required scaling factor that prescribes a specific spectral moment directly from the
analytical expression of the PSD—and then relate it to the RMS parameter. The discrete
PSD of a self-affine profile follows

Φ̂θ
[

k = p

N
Ωs

]
=





Ĉ ′
0 , kl ≤ k < ks

Ĉ ′
0

(
kr

k

)1+2H

, kr ≤ k ≤ ks

0 , elsewhere .

(5.59)

Note that here the discrete PSD is used, in contrast with the previous presented formula in
Equation (2.57), and Ĉ ′

0 denotes the discrete PSD scaling factor. Additionally, for the sake
of completeness, the expressions are derived for the general case of topography with roll-
off frequency. By relating the discrete PSD with its continuous version via Equation (2.74),
and from the definition of spectral moments in Equation (2.33), the analytical formulas



5. Single scale dual mortar finite element modeling of rough contact 135

for the spectral properties of self-affine profiles come

m0 =
lsĈ ′

0kr

π

(
1−ξ+ 1−ζ−2H

2H

)
; (5.60a)

m2 =
lsĈ ′

0k3
r

π

(
1−ξ3

3
+ ζ2−2H −1

2−2H

)
; (5.60b)

m4 =
lsĈ ′

0k5
r

π

(
1−ξ5

5
+ ζ4−2H −1

4−2H

)
; (5.60c)

α=
(
1−ξ+ 1−ζ−2H

2H

)(
1−ξ5

5
+ ζ4−2H −1

4−2H

)/(
1−ξ3

3
+ ζ2−2H −1

2−2H

)2

. (5.60d)

In Equations (5.60a), ξ=λr /λl and ζ=λr /λs . When the roll-off frequency is not regarded,
kr = kl , ξ= 1 and ζ=λl /λs . Equations (5.60a) allow the computation of the scaling factor
Ĉ ′

0, which can be passed to the topography generator, in order to generate profiles whose
analytical RMS parameter have a given value (cf. Equations (2.35) and (2.36)). By doing
so, the scaling factor is uniquely determined and does not depend on the discretization
of the derivative or integral operations. The same procedure can be applied to self-affine
rough surfaces, whose discrete spectrum writes

Φ̂
[

k =
( q

M
Ωsy , k = p

N
Ωsx

)]
=





Ĉ0 , kl ≤ ‖k‖ < ks

Ĉ0

(
kr

‖k‖

)2(H+1)

, kr ≤ ‖k‖ ≤ ks

0 , elsewhere ,

(5.61)

and the spectral properties similarly come
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lsx lsy Ĉ0k2
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In recent numerical investigations, surfaces with RMS slope around 0.1 have been em-
ployed, which is verified to be physically reasonable (Yastrebov, Anciaux, et al., 2012, 2015;
Pei et al., 2005). In this work, rough profiles are normalized by the previous procedure in
order to fix the RMS slope at 0.2.

Materials

The deformable rough block is modeled with an elastic constitutive model, and the nu-
merical values of the properties selected from steel’s conventional elastic properties—
these values were chose inasmuch that to keep a practical point of view consistent with
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the experimental roughness measurements presented in Chapter 3— mostly steel compo-
nents. As for the rigid block, the infinite stiffness is approximated by setting a large value
for the elastic modulus, compared with the equivalent property of the rough block. Fur-
thermore, for completeness, it should be mentioned that ν2 = 0, for all the examined cases.
Table 5.1 shows the elastic properties of both bodies. The chosen value Young modulus
for the flat body was verified to satisfy both the stiffness criterion, i.e., that displacements
are virtually zero in this body, and also to provide acceptable numerical stability in the
simulations.

Table 5.1: Elastic properties of the flat and rough block, used throughout the tests.

Body E /GPa ν

Rough (1) 210 0.3

Flat (2) 5000 0.0

Boundary conditions

With regard to the boundary conditions, several instances must be referred. The mortar
and non-mortar boundaries, where the contact boundary conditions apply, are set to the
upper face of the flat block and the rough boundary of the rough block. By doing so,
the values of the Lagrange multipliers at the rough contact are explicitly obtained in the
solution, which allows for a direct treatment of the pressure distribution at this boundary.
The bottom face of the flat block, here termed ∂Ωm

fix, is fixed

u(x) = 0, for x ∈ ∂Ωm
fix . (5.63)

Since the micromechanical rough contact is intended to represent a particular feature
of a macroscopic contact situation, occurring, typically, at considerably different scales,
periodic boundary conditions are adopted for the side faces of the rough block. Note
that this is admissible as long as the micromechanical problem is solved in a small scale
compared with the macroscopic contact. This can be thought, for example, as the con-
tact of nominally flat surfaces, or as if the micromechanical problem is contained within
the nominal contact area of an Hertz contact problem. Rough topography must also be
periodic, in order to have a consistent formulation of this boundary condition. This is-
sue is easily handled at this stage, since the implemented rough topography generator
is naturally fit to generate periodic topography (see Chapter 3). If such condition is not
met, an artificial strategy should be adopted in order to guarantee periodicity, such as
spline reconstruction (Wagner, Wriggers, Veltmaat, et al., 2017). The periodicity implies
the equality of the displacements at matching points in the positive and negative bound-
aries, respectively ∂Ωs

+ and ∂Ωs
−, and writes

u(x−) = u(x+), for x+ ∈ ∂Ωs
+, and x−(x+) ∈ ∂Ωs

− , (5.64)

and that the surface traction must be antisymmetric at the same matching points in both
boundaries

t (x−) =−t (x+), for x+ ∈ ∂Ωs
+, and x−(x+) ∈ ∂Ωs

− . (5.65)
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At the top boundary of the rough block, herein called exterior boundary ∂Ωs
ext, all points

have the same vertical displacement ū3, which is not prescribed and is part of the solution.
In order to prevent rigid body motions, which would occur for slight force unbalances in
the plane directions, an arbitrary point xfix (node of the finite element mesh) is blocked
in these directions—it can only move in the vertical direction. Additionally, a uniform
pressure p0 is applied on this boundary, following an incremental strategy. At each load
step, the equilibrium equation is solved until the final load is reached. The specification
of load steps from the beginning of the simulation requires that contact must exist at
the initial configuration. This is accomplished in a simple preprocessing step, where the
rough geometry is translated in order to close the gap at the maximum summit/peak
of the topography—which is trivial, because one of the contacting boundaries is flat.
Otherwise, displacement steps should be specified until the active set is non-null, and
from there on pressure steps can be applied (Wagner, 2018). The 2D simulations are
regarded as plane strain cases—the rough profile can be tough as taken across the lay of
a strong anisotropic surface.

Remark 5.3 on the boundary conditions at corners of the non-mortar boundary.
Some points belonging to the non-mortar boundary are also part of the periodic bound-
aries. Since the contact specification within the dual mortar method is formulated in
a vectorial fashion, i.e., one works directly with the Lagrange multiplier vector (surface
traction), the constraints for all degrees of freedom of a non-mortar point are inher-
ently included. Therefore, if in addition to the contact boundary condition, a periodic
boundary condition was prescribed at these corner points, the problem would be over-
constrained, and no solution could be found. A physically reasonable set of boundary
conditions would be the periodicity of the plane displacements, and contact on the verti-
cal displacement. The displacement of the corner nodes would be necessarily equal in the
2D problem, since they would become active at the same time. Nevertheless, this would
require a slight deviation from the original formulation, and considerable changes to the
currently available implementation. This issue is often overlooked in the literature, and
practically no references exist regarding it, possibly because it does not seem to impact
the results considerably. Here, the contact boundary condition prevails relative to the
periodic conditions, which are discarded at these points.

5.3.2 Preprocessing and mesh generation

The fundamental preprocessing steps preceding the rough contact analysis with the FEM
are the surface topography discretization and finite element mesh generation. The for-
mer can be obtained either from experimental measurements or by the application of
a randomly rough topography generation algorithm. Naturally, the second alternative is
adopted here, as already discussed thoroughly in Chapter 3. The topography generation
algorithm provides the coordinates of the discrete points in a vector, or structured grid.
This list of coordinates is then fed into the mesh generator together with the rough block
height, in order to generate the required finite element mesh.

Rough contact is primarily an interface problem, then all relevant physical phenomenon
occur in a relatively thin layer near the surface, requiring a fine discretization. In opposi-
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tion, the height of the rough block subtract must be sufficiently large in order to model the
mechanical response of the bulk properly and, thus, provide enough stiffness to the block.
In regions close to the exterior boundary, the effect of roughness decreases, and only bulk
phenomena are considerable. Therefore, for the case of micromechanical contact, the
FE mesh can coarse with increasing distance to the rough boundary, without any signifi-
cant harm to the results. With the purpose of reducing the computational costs in each
simulation, a mesh transition strategy shall be adopted, on which the size of the finite
elements increase as one moves away from rough boundary. This can be accomplished
simply by applying a gradient in the element characteristic length along the height of the
block, producing a unstructured grid of irregularly shaped elements. Regular transition
schemes with well defined geometries are often employed, such as in Stupkiewicz (2007),
Yastrebov (2011), and Yastrebov, Durand, et al. (2011). Systematic combinations of finite
elements with different geometries are used in these works, in order to merge a cell of 9
elements with a single element, with larger dimensions, in 3D problems. Also transition
from cell of 4 elements to only 1 are employed. Transition strategies for 2D problems are
readily formulated from the more complex 3D versions, and may allow the reduction of
the number of elements by 3 or 2 in a single transition layer.

In this contribution, a variation of the strategy used in Stupkiewicz (2007) and Yastre-
bov, Durand, et al. (2011) and was implemented, and is illustrated for both 2D and 3D
meshes in Section 5.4.2. A high resolution region is defined near the rough boundary,
on which a structured FE mesh of quadrilateral elements is generated. Several layers of
elements are generated with a transfinite interpolation between the rough boundary and
a reference flat plane, within this region. The height of the elements is slightly larger
than their width, in order to maintain an approximately square shape during the com-
pressive deformation. Then, a certain number of transition layers reduces the number of
elements by a factor of 3 at each level. The remaining region is filled with a conforming
coarse structured grid. For the 3D case, the transitions layers must be applied at differ-
ent directions successively, so that the aspect ratio is approximately preserved after the
transition. This meshing strategy enables, on one hand, the reduction of the number of
elements compared with a uniform grid with high resolution, and on the other hand, the
periodic boundary conditions are easier to enforce, since there are matching nodes at
both the positive and negative boundaries—otherwise, mortar methods should be ap-
plied to connect the non-conforming meshes.

The open source software Gmsh, by Geuzaine and Remacle (2009), was used for the
establishment of the numerical framework, as the mesh generator. Gmsh provides an
Application Programming Interface (API) for several programming languages, including
Python. This facilitates the definition of the operations flow, by allowing to perform the
mesh generation of the rough topography within Python itself, in a single sequence of
instructions. The implementation of the current meshing scheme is based on the defini-
tion of different transfinite interpolation curves, surfaces and volumes, within Gmsh self
philosophy. For further insights into the functionalities of Gmsh, the respective manual
should be consulted in Geuzaine and Remacle (2019).

Since only elastic material laws are considered, both blocks in 2D are meshed with
four-node quadrangular bilinear elements (QUAD4-FBAR), and for the 3D scenario, 8-
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(b) 2D FE mesh

Figure 5.9: Example of the finite element meshes of the rough blocks generated by Gmsh.
These serve mainly to illustrate the mesh transition strategy, and are not necessarily rep-
resentative of the one used in the course of this work.

node hexahedral elements are used (HEXA8-FBAR). The F-bar finite element technology
is used in this work, in order to prevent volumetric locking typically associated with low
order standard finite elements in large strain formulations, and to guarantee accurate
results (Souza Neto et al., 1996). Such spurious locking of the solution could also be elim-
inated by considering high order elements, however, the inherent simplicity of low order
elements is predominantly attractive. The F-bar methodology consists in splitting the
deformation gradient into an isochoric (volume preserving) component and a volumetric
(purely dilatational) contribution. The isochoric component is computed in the Gauss
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point where the stress tensor is to be established, and the volumetric component is com-
puted at the centroid of the element. Regarding the mortar and non-mortar interface, the
same mesh size is prescribed at both, in order to improve accuracy and stability of the
numerical method.

Remark 5.4 on the smoothness of the numerical mesh.
The finite element mesh at the rough boundary must be smooth enough, in order to favor
the application of the FEM. One could be tempted to generate a coarse surface discretiza-
tion with the topography generator algorithm, and then generate a fine FE mesh over
it, by specifying spline interpolations between the discrete points. This procedure, how-
ever, distorts the topography PSD, carefully preserved during the numerical generation
of the topography. In order to maintain a consistent philosophy across the numerical
framework, only points resulting from numerical generation procedure shall be used as
nodes for the FE mesh. The smoothness of the topography and numerical mesh shall be
uniquely guaranteed by the topography features, namely, the cut-off wavelengths λl and
λs , and not forced with numerical interpolation.

5.3.3 Numerical computation of the real contact area

Another fundamental aspect of the present work regards the numerical evaluation of
the real contact area. This quantity is to be computed at each load step from the finite
element results, and can follow either a geometrical or physical argument. From a geo-
metrical perspective, the contact area can be computed simply as the fraction of nodes
with non-zero contact pressure. A more robust scheme considers that when two consec-
utive nodes are active, the area bounded by those active nodes is part of the real contact
area. The foundations of this methodology are arguably stronger, since it computes, in
fact, the discrete contact area of the numerical model. However, points which are almost
entering the active set, and which are not already part of it because the discretization
does not capture the continuous growth of contact clusters, are neglected in the results.
In order to account for these situations, the real contact area can be computed from a
equilibrium-based physical argument. From the definition of the mean contact pressure,
it follows that the real contact area fraction is the ratio between the nominal exterior
pressure (at each load increment) and the arithmetic mean of the Lagrange multipliers,
i.e., the contact pressures.

While the geometric argument is based uniquely on the current active set, the scheme
relying of Lagrange multipliers, which result directly from the dual mortar formulation,
have incorporated information of the neighboring elements. For example, a contact patch
constituted by a single element with 2 active nodes does not include the information that
one node may be compressed more than the other and, therefore, a contribution for the
real contact area may be discarded. However, it should be noted that the Lagrange multi-
pliers are not necessarily vertical, due to the averaged normal vector field used within the
mortar integration scheme. Therefore, in the contact area computed from equilibrium
considerations, one may sum the magnitude of Lagrange multipliers that are not neces-
sarily collinear, which might introduce errors in the numerical approach. This aspect is
better illustrated in Figure 5.10. At a first moment, only one node is active, and by the
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geometrical principle, the contact area is null, while from the equilibrium based alter-
native, the contact area is not zero. Only when the neighbor node becomes active, the
contact spot, as thought from a geometrical perspective, grows, even though the value of
the Lagrange multiplier at that node is very small. The geometrical contact area can be
computed with a finite resolution related with the mesh size, and is not sensible to the
value of the contact normal pressure.

In principle, the equilibrium based approach provides a richer information of the con-
tact status, having in mind the downside related with the non-vertical Lagrange multiplier
vectors. It is not clear what method provides more realistic results. This issue shall be re-
sumed regarding multiscale analysis, where some extra conclusions can be extracted. For
the following analysis, the geometrical argument is adopted.

(a) 1 active node (b) 2 active nodes

Figure 5.10: Illustration of the contact area increments in the numerical model. The
active nodes are represented by the red points, and the inactive set by the black points.
The Lagrange multiplier vector is denoted by the yellow arrows. When only one is active,
the geometrical contact area is null, but in the respective continuum model the contact
area would not be zero. From the geometrical perspective, the contact spot grows only
when the neighbor node becomes active, even though the value of the Lagrange multiplier
is very small.

5.3.4 Numerical framework

The general FE-based approach to rough contact combines all the building blocks de-
scribed previously in a single workflow, see Figure 5.11. Within a Python master script,
a discrete topography is generated with the algorithms discussed in Chapter 3. The co-
ordinates of the randomly generated points are used directly as the finite element mesh
nodes. The full geometry of both the rough and flat block is discretized in finite elements
with Gmsh, via its Python’s API. A *.msh file is produced by Gmsh, which is then parsed
in order to extract the nodal coordinates, table of connectivities and identify the nodes
under different boundary conditions. Before entering the automatic input file generation
routine, the order of the nodes in the table of connectives must be corrected to match
that implemented in LINKS. Following the previous sequence, input files for different
topography features, or even for different realizations of the same topography charac-
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teristics (by varying the seed passed to the random number generator), can be readily
generated. Several RCE are run in parallel, in order to profit from the computational re-
sources at disposal. The contact area fraction and list of nodal contact pressures at each
load increment are given by LINKS. These output files are further post-processed and
used for plotting, again within a Python environment.

Numerical generation
of rough topography

Gmsh: Finite element
mesh generation

Automatic writing
of LINKS input files

LINKS: Numer-
ical simulation

Contact area and nodal
contact pressure at

each load increment

Furter post-processing
and plotting

Python LINKS

Python

Figure 5.11: General framework of numerical tools used to process rough contact.

5.4 Definition of a statistically Representative Contact Element

The periodic boundary conditions intend to restrict the simulation of a large rough sur-
face to a single contacting element. This Representative Contact Element (RCE) shall pro-
vide a statistically representative mechanical response of the system. Even though the
issue of representativeness for rough contact has been investigated in the literature, gen-
eral rules for the definition of a RCE are still not well-established. The best example of this
type of studies can be found in Yastrebov, Anciaux, et al. (2012), who performed numeri-
cal studies on Representative Self-affine Surface Element (RSSE) within a BEM framework.
The analysis has been based on both the height distribution and on the contact area
evolution curves for self-affine rough surface, with different topography parameters. In
the context of the FEM, representativeness studies, namely on the influence of the height
of contacting blocks, were performed in Temizer and Wriggers (2008) and De Lorenzis
and Wriggers (2013), yet on slightly different contexts. Additionally, representativeness
analysis of microscale problems for differer research areas are commonly found, e.g., on
RVE’s for polycrystalline aggregates (Vieira, 2018).

Aiming at establishing the rules for the definition of a 2D RCE for a self-affine topogra-
phy, several parametric investigations have been carried by varying different fundamental
RCE parameters, unknown beforehand. The goal of the ongoing discussion is the determi-
nation of RCE characteristics, such as length and height, which will allow the computation
of a statistically representative contact area response from a rough topography with given
Hurst exponent H and cut-off wavelengths λl and λs . The only fixed topography param-
eter for all cases is the RMS slope, which is set to

p
m2 = 0.2. The material properties
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are fixed, as well (see Section 5.3.1). This value for the RMS slope, guarantees that the
generated rough topographies are fairly smooth, therefore prone to the application of the
FEM, while staying within the range of physically reasonable values. Additionally, due to
the inherent statistical nature of the rough contact, 10 different topography realizations
are considered for each case. The RCE representativeness tests encompass the following
investigations

• Mesh convergence;

• Length of the RCE;

• Height of the RCE;

• Influence of the number of realizations.

5.4.1 Initial estimation of the RCE dimensions

The dimensions of the rough block shall necessarily be estimated before starting any of
the previously mentioned analysis. These must already be closely representative, i.e., in
excess relative to the minimum required—in the representativeness point of view. The
numerical experiments must be carried with such excessive values, in order to assure
that the conclusions extracted for each case will still be valid for an RCE with minimum
requirements. At a certain point during the analysis, these oversized parameters will be
allowed to relax, until divergence from the representative response is observed, leading
to the establishment of a minimum requirement for the RCE.

Three main variables must be estimated at this stage, viz., the rough block length L
(relative to the long cut-off wavelength λl ), the height of the rough substrate (rough block)
Hsub and the height of the refined, high resolution region of the finite element mesh, near
the non-mortar interface, denoted by Href. The starting iteration for the length of the RCE
can be determined based on the results of Yastrebov, Anciaux, et al. (2012, 2015), and also
recalling the tests on the Gaussianity of the artificially generated rough topographies, in
Section 3.3.3. Looking first at latter statistics study carried in this thesis, it was verified that
the Gaussian generator produces normally distributed heights only when the ratio L/λl

is sufficiently high. By visual inspection of Figure 3.8, it can be stated that a minimum of
L/λl = 4 is required in order to obtain reasonably Gaussian topographies. Similar results
are reported in the aforementioned publications, yet these authors consider a smaller
tolerance for the error on the heights distribution, relative to a Gaussian reference, and
claim that the minimum ratio is L/λl = 16. The value L/λl = 4 provides a good trade-
off between accuracy and computational convenience and, thus, will be considered the
starting lower threshold for the RCE length.4

Focusing now on the rough substrate height and the extent of the high resolution mesh,
there are no results available in the literature regarding self-affine rough topography and,
therefore, these shall be determined based on preliminary numerical results. The rough

4If the ratio proposed by Yastrebov, Anciaux, et al. (2012, 2015) was adopted, a large limitation would
be set on the bandwidth (λl /λs ) range considered for the analysis. The size of the finite element problem
increases rapidly with the ratio L/λs , then if L/λl is already large, only small values for λl /λl could be
considered, such that a large number of simulations could be run and analyzed, in the mean time.
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block must be sufficiently high, so that it represents accurately the stiffness of the bulk
of the material. Furthermore, it must give room for the boundary layer of stress, strain
and displacements to develop near the rough boundary, and converge to the bulk field
far from this boundary. In fact, the rough topography shall only influence results in a thin
layer near the contact interface, and at distant points its presence shall not be felt. Away
from the rough boundary, the RCE behaves simply like a block in compression, with
uniformly distributed stresses in the cross sections, and the displacement field varies
linearly with the distance from the contact interface.

As initial estimates for these dimensions, the height of the substrate was set to the
length of the block, and the height of the high resolution mesh was set as 80 times the
RMS height of the profile. The assessment of the validity of these values was made by per-
forming some numerical simulations, and evaluating the results by visual inspection. For
the simulations, the rough block length was set to 5 mm, the cut-off ratios follow L/λl = 4
and L/λs = 32 and H = 0.8. The rough boundary was discretized with 288 elements. A
small ratio for L/λl and a short bandwidth were chosen in order to increase the RMS
height, such that it poses harsh conditions for the estimate values of the heights. The
RCE is loaded up to nearly full contact conditions, where the stress and displacement
gradients are the most considerable.

The numerical results for the Cauchy stress σy y and magnitude of the displacement
vector ‖u‖ are shown in Figure 5.12. Only a region with one fifth of the total height (length
of the block) is shown. It can readily be seen that all stress gradients are inside the high
resolution region, within a fairly large margin. The stress peaks are concentrated very
near the rough boundary, and the stress field quickly merges into a unique stress value.
The same happens with the displacement field, where all relevant variations are captured
by the fine mesh, and a linear evolution can be observed after the transition layers. It
should be remarked that the displacement field at the flat base is zero. For completeness,
the previously discussed fields are shown in full extent in Figure 5.13.

In conclusion, by setting the rough block height equal to its length, and the high res-
olution region to 80 times the RMS height, the large gradients near the boundary are
captured correctly, and the solution for the bulk of the body is approached, both in terms
of the material (stress) and kinematical (displacement) quantities. Until any word in con-
trary, these values shall be assumed for the following numeral tests.

Remark 5.5 on the order of magnitude of contact stresses.
Inspecting Figure 5.12 closely, it can be observed that compressive Cauchy stresses σy y

around 2.6×105 MPa exist neat the contact interface, in full contact conditions. Intu-
itively, at this level of elastic stress, plastic deformation should necessarily be included,
in order to provide an accurate and realistic description of the phenomenon. In the
following, one sticks to the purely elastic material law, independently of the practical
applicability of the results. This issue is no longer commented in the remaining sections,
and the physical validity of the results must be addressed in future works.
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Figure 5.12: Stress and displacement field in a region of rough block, with initially esti-
mated dimensions. A portion of the block with approximately only one fifth of its height
is represented. The opacity of stress values around the mean value are reduced in order to
enhance the visual perception of the extreme values and nearby gradients. The stress field
reduces to a constant value for points sufficiently far from the rough boundary, where the
displacement field is observed to change linearly with the distance to contact interface.
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Figure 5.13: Full field representation of the Cauchy stress σy y and magnitude of the dis-
placement vector, for the RCE with the initially estimated values for the length, substrate
height and high resolution region.

5.4.2 Mesh convergence

Within a FE mesh, distinct frequency contributions are discretized with different levels
of quality. Intuitively, the large wavelengths are smoother than the short wavelengths, for
a given mesh size—there are more elements in each period of the large wavelength har-
monics. Thus, the shortest wavelength in the topography is the most poorly discretized
one. As the mesh step ∆x decreases, i.e., the number of elements in each period increases,
for every frequency, it is conjectured that there is a point where improvements on the
results due to the discretization are residual.

In the present section, the convergence of the contact area evolution curves with pro-
gressively finer meshes is addressed, regarding different topography cases. In order to
measure the quality of the mesh relatively to the topography features, the number of
nodes per asperity is used to provide a quantitative description of the former variable.
The minimum wavelength that can be resolved by a discrete profile is equal to two times
the mesh spacing 2∆x (see Appendix A). In that case, the harmonic is approximated only
by two nodes in each period, resulting in a one node per asperity scheme—λs is equal to
2∆x. The minimum number of nodes in each asperity can then be written as

Minimum number of nodes per asperity ≡ λs

2∆x
. (5.66)

The main goal of the mesh convergence study is to establish the minimum value of
λs/2∆x that guarantees a converged area-load curve. For that purpose, four combinations
of H ∈ [0.40, 0.8] and L/λl ∈ [4, 8] were considered. For each pair, the study comprised
four different values of the ratio L/λs ∈ [32, 64, 128, 256] (the bandwidth can be deter-
mined combining both ratios L/λl and L/λs), and for each ratio, four different levels of
discretization were tested. Meshes with approximately 1, 2, 4 and 8 nodes per asperity
were used in the numerical simulations. The length of the block was set to 5 mm, and
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for each set of topography characteristics, 10 different RCE realizations have been tested.
The final result is determined by averaging the curves of all realizations. In Figure 5.14,
two successive levels of discretization of one of the tested RCEs are shown, namely, re-
garding the cases concerning one and two nodes per asperity. The number of non-mortar
elements used in each case can be found in Table 5.2. Note that the number of nodes
per asperity is prescribed in an approximate fashion, since the number of non-mortar
elements must be a multiple of 3, in order to apply the FE mesh transition layers.

One node per asperity Two nodes per asperity

y
x

Figure 5.14: Two finite element meshes with different resolutions, used in the mesh con-
vergence study.

Table 5.2: Number of non-mortar elements for different ratios L/λs and levels of dis-
cretization, used for the mesh convergence tests.

L/λs

λs/2∆x 32 64 128 256

1 72 135 270 567

2 144 270 540 1134

4 288 540 1080 2268

8 576 1080 2160 4536

The results of the mesh convergence numerical tests are plotted in Figure 5.15. The
horizontal axis refers to the nominal external pressure, normalized by the RMS slope and
the effective Young modulus, and the vertical axis refers to the real contact area fraction.
The markers represent the average of contact areas across all realizations, and the error
bars measure one standard deviation for each side. The inset plot emphasizes the curves
for small yet physically reasonable loads and contact area fractions. Only the results for
H = 8 and L/λl = 8 are presented, since the curves for the three remaining pairs are
similar, and the conclusions extracted from Figure 5.15 are equally valid.
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Figure 5.15: Mesh convergence study on the contact evolution curve, for different band-
width ratios. The Hurst exponent is fixed at 0.8, the RMS slope at 0.2 and L/λl = 8.
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Figure 5.15: Mesh convergence study on the contact evolution curve, for different band-
width ratios. The Hurst exponent is fixed at 0.8, the RMS slope at 0.2 and L/λl = 8 (con-
tinued).
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A striking similarity in the area-load curves for all bandwidths is the deviation of the
results for the one node per asperity scheme (λs/2∆x = 1). In fact, all the curves are
relatively close to each other with the exception of the aforementioned case. This effect
is visible both at small and large loads, and the maximum absolute gap between the
curves occurs between 0.45 and 1.05, in the normalized external pressure axis. Some
landmark works on elastic contact, such as by Hyun, Pei, et al. (2004) and Hyun and
Robbins (2007), preserved the self-affine nature down to the discretization scale—i.e.,
keeping a minimum of one node per asperity. Yastrebov, Anciaux, et al. (2012) mentioned
that such poorly discretized topography could not accurately resolve the mechanics of
the problem. The results presented in this work corroborate such claim, once the curve
for λs/2∆x = 1 predicts different mechanical response relative to the other mesh sizes.

By increasing the number of elements in the topography, the overall convergence of
the curves is observed, for all tested bandwidths. The curve referring to 4 and 8 nodes per
asperity are almost coincident at every point. For the largest ratio L/λs = 256 (bandwidth
λl /λs = 32), however, some small differences between the curves for λs/2∆x = 4 and
λs/2∆x = 8 can be detected, in opposition to the previous cases, where the results were
practically coincident. Nevertheless, the observed gap is very narrow, and convergence
can also be accepted for this case. It should be remarked that the case L/λs = 256 with
8 nodes per asperity was only tested for H = 0.8 and L/λl = 8, due to extremely large
simulation times. Each realization of such cases took, on average, 12 hours to complete.

The increase of the number of elements in the contact interface is followed by a de-
crease of the standard deviation, for every bandwidth—which also contributes to the rep-
resentativeness of the RCE. This is intrinsically associated with the geometrical scheme
used for the numerical evaluation of the contact area (cf. Section 5.3.3). The decrease on
the mesh spacing reduces the minimum increment of contact area and, therefore, also
the relative standard deviation.

Referring some brief qualitative observations, it should be noted that the variation of
real contact area with external pressure is nearly linear up to 25%-30% of the real contact
fraction. From that point onward, the behavior is noticeably nonlinear, and full contact
is reached when the normalized external pressure reaches approximately 1.4.

All in all, it can be stated that the area-load converges with increasingly finer meshes.
When each asperity is discretized by at least 4 nodes it can be assumed that the area
response has converged. Eventually, this conclusion can be questioned for L/λl = 256,
due to slight deviations between the results for 4 and 8 nodes per asperity, and further
investigations shall be designed in order to clarify this issue. All the points observed
before were verified to hold true for the remaining combinations of H and L/λl , and
these are not plotted here for simplicity.

5.4.3 Length of the block

The length of the RCE can be interpreted as the low frequency counterpart of the mesh
size, regarding RCE representativeness. In the mesh convergence test, focus has been
placed on finding the minimum number of elements required to discretize the highest
frequency of the spectrum. For the study on the influence of the RCE length, the mini-
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mum number of periods contained in the RCE which gives a representative mechanical
response is addressed. Undoubtedly, the largest wavelength harmonic λl is the contribu-
tion with less periods per RCE, then it shall be used to parametrize the following investiga-
tion. This issue reports to the numerical tests on the Gaussianity of numerically generated
rough profiles, as mentioned in the beginning this section. It was verified that the length
of the rough block must be at least four times (approximately) the long wavelength cut-
off, such that the heights distribution is seemingly Gaussian. This topic is now assessed
based on the contact area curve for several RCE realizations, with different topography
characteristics.

The long cut-off wavelength was fixed at λl = 5mm, and four combinations of Hurst
exponents H ∈ [0.4, 0.8] and bandwidth ratios λl /λs ∈ [4, 16] were tested, in order to ex-
plore both the influence of the Hurst exponent and roughness spectrum in the results.
For each case, RCEs with four different lengths L/λl ∈ [1, 4, 8, 16] were generated. With
the purpose of minimizing the effect of resolution on the numerical computation of the
contact area associated with different levels of discretization, for the same RCE length
L/λl , both profiles concerning λl /λs = 4 and λl /λs = 16 are meshed with the same num-
ber of elements in the non-mortar boundary. By doing so, it is assured that the same
discrete frequencies exist in all cases. The number of elements at the non-mortar inter-
faces was chosen in order to verify the 4 nodes per asperity criterion established in the
previous section, regarding the topography with λl /wls = 8—the other topography case,
being meshed with the same number of elements, this condition is necessarily verified,
as well. The results from ten RCE with different topography realizations were averaged,
for each unique set of topography parameters.

Figure 5.16 shows four distinct RCE rough boundaries, for the different values of lengths
tested, regarding the case λl /λs = 4 and H = 0.8. It can readily be seen that the block for
L/λl = 1 can intuitively be embedded in any other topography, or in other words, that a
similar pattern to that of L/λl = 1 can be found in longer RCEs. In fact, Figure 5.16 shows
that by increasing the RCE length, a wider variety of geometrical features is added to
the topography, such that the particular effect of each one is averaged out. The problem
consists in establishing what length is enough to introduced a sufficiently wide range of
distinct geometrical features.

The results of the finite element analysis are presented in Figure 5.17, for H = 0.8 (again,
these are similar for H = 0.4). The most eye-catching difference between the two graphs
is the difference between the results between the two spectrum bandwidths. The overall
standard deviation, but specially that associated with L/λl = 1, is noticeably larger for the
shorter spectrum λl /λs = 4. This may precisely owe to the previous discussion around
Figure 5.16. Different rough profiles configurations can verify the input PSD, and by mod-
eling each one individually, the variability of the mechanical response increases. With
increasing RCE length, the standard deviation of the contact area is drastically reduced,
since each realization already contains a wide variety of geometrical features.

Still regarding to the case L/λl = 1, also the average contact area is observed to di-
verge considerably from the rest, both at light and full contact. Thinking on this from
the perspective of topography generation, by restricting the spectrum to a given range,
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L/λl = 1 L/λl = 4 L/λl = 8

L/λl = 16

Figure 5.16: RCEs with different length, yet holding the same topographies characteristics.
The profiles were generated with H = 0.8, λl /λs = 4, λl = 5mm, and RMS slope equal to
0.2. For convenience in the graphical representation, the scale along the RCE length is
half of height scale. Only part of the RCE is represented.

the sum of harmonics is truncated and, thus, the underlaying preposition of the Gaus-
sian generator—the sum of several random variables is normally distributed—is violated.
The distortion of the contact area curve is attenuated with increasing RCE length, first,
because more topography features are considered. Second, with increasing RCE length,
the frequency resolution in the spectrum increases, meaning that the sum of harmonics
includes more frequencies and the underlying hypothesis of the Gaussian roughness gen-
erator is recovered. For the four different lengths evaluated, the curves converge with in-
creasing length, yet with some visible differences—for the bandwidth λl /λs = 4 currently
under discussion. The curve for L/λl = 1 is surely apart from the others, and L/λl = 4
and L/λl = 8 are very similar only at light contact. For L/λl = 8 and L/λl = 16, the results
are very similar throughout the load range, except at small loads, where a small gap can
readily be identified. Despite the apparent convergence, it is not straightforward to state
that the results for L/λl = 16 have completely converged for this bandwidth, since small
differences still exist between the longest lengths.

By extending the roughness bandwidth, for λl /λs = 16 the standard deviation is globally
reduced, in particular for L/λl = 1. With a wider spectrum, more harmonics are summed
to synthesize the surface. This contributes, on the one hand, for the Gaussianity of the
heights distributions, and, on the other, to increase topography variability within a given
period and, thus, reduce the fundamentally possible different geometrical configurations.
In contrast with the previous bandwidth, the convergence of the average contact area
with length can be observed. The curves for L/λl = 8 and L/λl = 16 are almost coincident,
suggesting that extending the RCE length even further will, most likely, not bring any
accuracy improvement.

As has been noted, if the the length of the RCE is at least 8 times the largest wavelength
in the profile, a nearly representative contact area evolution curve can be obtained, for all
the examined bandwidths and Hurst exponents. This value guarantees converged results
with small standard deviation. In comparison with the ratio L/λl = 16, using 8 times λl

for the RCE length proves computational advantageous, since it allows the simulation
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Figure 5.17: Influence of the RCE length in the contact area of 2D self-affine profiles, for
different topography parameters. Two bandwidths L/λl = 4 and L/λl = 16 are plotted for
H = 0.8. The results for H = 0.4 are similar, and are not shown here. The RMS slope is
fixed at 0.2.
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Hsub = L Href/σz = 80

Hsub/σz = 80
Href/σz = 40

Hsub/σz = 40
Href/σz = 20

Hsub/σz = 20
Href/σz = 10

Hsub/σz = 160
Href/σz = 40

Figure 5.18: RCEs with the same topography and varying substrate height. The ratio
between the substrate height and the high resolution region was kept equal to 2, with the
exception of the reference RCE (it was mentioned that Href = 80σz ) and also for the case
Hsub = 160σz , where it was defined as Href = 40σz .

of profiles with wider spectra with smaller meshes, and very small error relative to the
longer lengths. In fact, if needed, the length can even be defined as 4 times λl , once its
error relative to the curves referring to longer lengths is still within an acceptable range—
specially for wide spectra.

5.4.4 Height of the substrate

From Section 5.4.1 up the the current section, the RCE height was set equal to its length,
and the high resolution mesh to 80 times the RMS height, based on the visual interpreta-
tion of the stress and displacement fields. Having established the mesh size and length
required for the RCE, the topic of the RCE height can be resumed. It is paramount to
reduce both the RCE height and high resolution region down to minimum values, in or-
der to reduce the size of the FE mesh and, consequently, the computational resources
required to solve its equilibrium problem.

A set of four values for the substrate height have been tested for that purpose, namely
Hsub/σz ∈ [20, 40, 80, 160]. A constant ratio Hsub/Href = 2 was kept for every case, with
exception of the largest height Hsub = 160σz , where the high resolution region was capped
at Href = 40σz . Figure 5.18 illustrates the size of the substrate height considered for the
different RCEs, in comparison with the initially estimated value. As in previous tests, two
values were assumed for the Hurst exponent H ∈ [0.4, 0.8]. Four combinations of the long
and short cut-off wavelengths were selected, namely L/λl ∈ [4, 16] and L/λs ∈ [32, 64],
with L = 5mm, in order to include the influence of the length and spectrum bandwidth
in the study. Each combination is tested with ten different topography realizations.

The numerical results for the assessment of the RCE height are plotted in Figure 5.19,
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in comparison with the reference solution, computed with the initially estimated block
height. The results for all combinations of cut-off and Hurst exponents are very similar,
and it was chosen only to present those in Figure 5.19. Identically to the RCE length test,
all profiles were discretized with the same number of elements in the contact interface,
dictated by the largest L/λs . It can readily be seen that the results for all RCE height fall
relatively close to each other, and are practically insensitive to the spectrum bandwidth
and length. For Hsub = 20σz , it can be visually identified that the curve is apart from the
rest of the results, which are clustered around the reference solution. With increasing RCE
height, the results converge to the reference solution, approximately at Hsub = 80σz , and
improvements with Hsub = 160σz are barely noticeable.

The height of the RCE can be equally assessed by other arguments than the real con-
tact area curve. Recalling the boundary condition on the exterior boundary ∂Ωext (see
Figure 5.8), the vertical displacement must be equal at all nodes. This condition would
naturally be satisfied if the RCE height was sufficiently large, case where this boundary
would be far from the contact interface and, thus, the boundary would behave as in sim-
ple compression. Due to such boundary conditions, the vertical displacements will invari-
ably be equal at every point in the exterior boundary, even though when this would not
be the natural configuration for the block. This is, if the exterior boundary is not within
a region were the stress state is similar to that of a simple compression case, reaction
forces are required at that boundary in order to keep it horizontal. This can be verified
by computing the magnitude of the resultant reaction at the exterior boundary, plotted
in Figure 5.20 for different substrate heights. The reaction forces for Hsub = 20σz and
Hsub = 40σz are extremely large compared with the other two cases. With increasing RCE
height, this quantity converges to zero. This is also illustrated by the auxiliary plot in Fig-
ure 5.20, where the arrows (nodal reaction forces) are larger for the case Hsub = 20σz , and
the gradients of the Cauchy stress σy y (field variable) extend up to the exterior boundary.

Finally, since in the previous test the height of the finer mesh was reduced from the
initial value 80σz to 40σz , without affecting the contact area results, it proves prudent
to confirm if the field variables are well capture by the discretization, near the contact
interface. To this end, the nodal stress values at each element are plotted in Figure 5.21,
for the high resolution mesh. The nodal values are computed for each element, and no FE
averaging is applied, which results in a discontinuous plot of the variables defined within
the element. As it can be seen from this figure, the nodal values of stress for neighboring
elements near the transition layers are similar, and the respective gradients are small.
Therefore, the stress field is well captured by the numerical mesh, and even half this
value (Href = 40σz ) can be used without any harm.

5.4.5 Influence of the number of realizations

In all previous studies, the average of 10 different realizations of the rough topography
were considered, in order to compute the average contact area evolution curve—which
was assumed to be representative of all simulated realizations. In fact, the simulation
of 10 different topographies was based on a trade-off between representativeness and
computation time, and also on the results of a similar study, yet relative to the statistical
determination of the coefficient of friction (Wagner, 2018). Whilst by considering the
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Figure 5.19: Influence of the RCE height in the contact area of 2D self-affine profiles, for
different topography parameters. The reference solution is obtained by using the profile
length as the block height. The ratio Hsub/Href was set equal to 2 for all values of Hsub,
with the exception of Hsub/σz = 160, where is was chosen Href/σz = 40. These results are
presented for H = 0.8 and RMS slope equal to 0.2.
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Figure 5.20: Magnitude of the sum of reaction forces at the exterior boundary ∂Ωext.
These reactions are responsible for keeping the vertical displacements equal at all nodes
of that boundary. When they are large, it means that the exterior boundary is still within
the region of effect of the contact interface. In the side illustration, the arrows represent
the reaction forces, and the filed variable is the Cauchy stress σy y .

average of more than 10 different realizations the results would be more representative
of the whole ensemble of possible realizations, the total time required to obtain all the
results would be substantially increased.

Nonetheless, the impact of considering more and less realizations must be addressed,
with the purpose of verifying whether the size considered for the sample is sufficient. This
can be accomplished first, by considering a virtually impracticable number of realizations.
Second a number samples with less realization are randomly selected from the ensemble
and the average contact area is computed for each sample. Third, the standard deviation
of the average contact area curves is computed across all samples, and this process is
repeated for different numbers of realizations of these smaller samples. In theory, if the
mechanical response of the RCE is to be representative, the ensemble standard deviation
of the average contact area must go to zero, meaning that the average response is the
same for any random set of realization chosen from the ensemble.

In this study, a total of 200 realization were generated with H = 0.8 and L/λl = 8, for
each of the following high cut-offs L/λs = 32 and L/λs = 64. The height of the RCE was set
to the length of the block, and for the height of the high resolution region it was consid-
ered Href = 40σz —the height of the block was unnecessarily large, but it was simpler at
the time this study was performed. Only two nodes per asperity were generated in the FE
mesh, such that the variability of the contact area is larger, and so the conclusions here
extracted imply a safety factor. The ensemble standard deviation of the average contact
area is computed in 10 sets with the testing number of realizations.
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Figure 5.21: Plot of the element-based nodal Cauchy stresses, before any FE averaging
operation, for the case Hsub = 160σz and Href = 40σz . This figure evidences that the gra-
dients inside the elements are small for this configuration for the RCE height and mesh,
near full contact condition. This proportion established for the high resolution region is
thus adequate and assures mechanical response representativeness.

Figure 5.22 shows the results of this numerical investigation, covering all the relevant
load range. This plot emphasizes that the standard deviation is not uniformly distributed
along all loads—which could already be verified from the previous results. Higher vari-
ance exist for nominal external pressure between 0.2 and 0.6. As expected, by increasing
the number of realizations, the standard deviation reduces significantly. This effect is
much more pronounced for very small numbers of realizations, and with increasing size
of the RCE set, the consequent outcome improvements are very shallow. Additionally,
by simply increasing the number of elements in the profile, even if it concerns a differ-
ent bandwidth, the overall standard deviation decreases. From these results, it can be
concluded that by considering 10 realizations for computing the representative response,
the region of high standard deviation is avoided. From this value further, no significant
improvements occur, yet the computation time increases—there are more simulations to
run. Recall that, if the ensemble averages are normally distributed, there is 99.7% of find-
ing an average curve within an interval of width 6 times the standard deviation, centered
at the ensemble average.

5.4.6 Fitting a contact area evolution curve

So far, the load (external pressure) steps were prescribed, essentially, based on the work
of different authors, such as Yastrebov, Anciaux, et al. (2015), and by numerical experi-
ence, i.e., by manually adjusting the increments until a nicely behaved convergence is
achieved. This strategy is quite unsatisfactory, since it cannot be applied to a general case,
and prohibits the full automation of the framework. One needs to determine a general
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Figure 5.22: Ensemble standard deviation of the average contact area response, com-
puted across 10 different groups of realization, for several number of realizations in each
group.

evolution law for the numerically computed real contact area, such that increments can
be automatically determined. For example, by specifying increments of approximately
constant contact area, one induces similar changes in the deformable body configuration,
hence it is hypothesized that it will stabilize the numerical convergence, as long as the
increments are sufficiently small.

Preceding the fitting procedure, the average contact area curves relative to 10 RCE re-
alizations comprising the combinations of H ∈ [0.2, 0.5, 0.8] and λl /λs ∈ [4, 8, 16], and
verifying L/λl = 8 with 4 nodes per asperity are computed and plotted. For simplicity, the
fitting function is chosen to be a third-order polynomial passing through the origin—so
that for zero load, the real contact area is zero, as well. Note that here a precise numer-
ically derived contact evolution law is not pursued, but a rather rough fit, for practical
applications. For an example of such numerical contact evolution laws, see Yastrebov,
Anciaux, et al. (2012).

The numerical results are plotted in Figure 5.23, together with the fitted function and
the Persson’s model for 2D contact. The result of the numerical fitting writes

{
Ac

A

}

fit
= 2.2565

(
p0

E∗pm2

)
−1.8433

(
p0

E∗pm2

)2

+0.5333

(
p0

E∗pm2

)3

. (5.67)

The numerical fit approximates all curves with small error for all the different topography
characteristics examined. The increments based on the real contact area can be com-
puted by simply inverting Equation (5.67), using a root finding numerical technique. The
analytical solution from Persson’s model is also plotted in this figure, providing an initial
assessment of the quality of the numerical results. It can readily be observed that the
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numerical results fall close to the theoretical curve, and relatively large deviations are
mostly verified for light contact. There is no abundant discussion in the literature on this
topic, and the only source where 2D numerical results were compared with analytical
models, namely, the Persson’s model, is the publication of Carbone, Scaraggi, et al. (2009).
These authors opted to normalize the profile height by the RMS height, and no reference
to the RMS slope is provided, therefore it is not practical to plot such results in Equa-
tion (5.67). However, from a qualitative perspective, the results by these authors seem to
overestimate Persson’s model, almost doubling the analytical result in light contact. In the
results obtained in the present dissertation, the difference is not so significant. Nonethe-
less, such comparison should be carefully interpreted, as different numerical strategies
are employed (FEM in this contribution, and GFMD in Carbone, Scaraggi, et al. (2009)),
which can justify the differences in the results.
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Figure 5.23: Numerical fit of the contact area-pressure curves for different topography
parameters, for the definition of the incrementation rule.

5.5 Rules of thumb for the definition of a 2D RCE

The general conclusions of the numerical investigations regarding the definition of a RCE
for a 2D self-affine profile, discussed in throughout this chapter, can be summarized in
simple rules of thumb. These shall consider some tolerance regarding the required rep-
resentativeness, such as concerning the RCE length, as discussed in Section 5.4.3, such
that the numerical models do not become excessively large and, therefore, limiting. The
following criteria will be required for the numerical multiscale analysis of rough con-
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tact, inasmuch that RCEs at different scales shall be required to model different scales of
roughness, and from the results presented in this chapter, one can readily establish the
dimensions and mesh for the micromechanical problem.

Rules of thumb for the definition of 2D RCE for self-affine rough profiles

Mesh: ∆x ≤λs/8 ; (5.68)

Length: L ≥ 8λl ; (5.69)

Substrate height: Hsub ≥ 160σz ; (5.70)

Fine mesh height: Hsub ≥ 20σz ; (5.71)

Number of realizations ≥ 10 . (5.72)
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Chapter 6

Multiscale finite element modeling
of rough contact by contact homogenization

Roughness features are known to extend throughout several length scales in real rough
surfaces. In order to incorporate large bandwidth roughness spectra in numerical mod-
els, very fine discretizations are required to correctly assemble the smallest scales. At the
same time, the model must be large enough to encompass the largest scales. The danger-
ous combination of large models with fine discretization conveys to an inconveniently
fast growth of the computational cost of numerical models with increasing roughness
bandwidth. Several multiscale approaches have been proposed in the last decades, in
order to circumvent the prohibitively expensive computational resources requirements
from rough contact modeling—the vast majority within the framework of finite element
analysis.

Most multiscale strategies rely on the principle of separation of scales, which assumes
that the characteristic length l of microscopic features is very small compared with the
microscale characteristic length L, viz.

l ¿ L . (6.1)

Figure 6.1 provides an illustration of the scale separation applied to the contact of two
rough bodies. The macroscopic shape of the bodies defines the largest characteristic
length, while a zoom in the contact interface reveals that the apparently smooth bound-
aries are, in fact, rough—leading to the definition of a microscale. The basic idea of mul-
tiscale analysis, relying on the separation of scales, is to establish a Representative Vol-
ume Element (RVE), which is assumed to be statistically representative of the microscale
features (R. Hill, 1963). The results of the equilibrium solution of the RVE are then in-
corporated in the larger scale by an averaging or homogenization step—the larger scale
does need to model the microscopic features, and so can be modeled as homogeneous.
This approach is typically applied to the bulk of the bodies, in order to obtain complex
constitutive laws on the fly. Similar procedures can also be adopted to interfaces and to
mechanical contact, see Stupkiewicz (2007). Thus, the fundamental ideas driving contact
homogenization strategies are the replacement of an highly complex contact interface
with a smoothed or homogenized interface, with averaged properties computed from mi-
croscale analysis.
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L

l

Figure 6.1: Scale separation in the contact of rough bodies. Adapted from Pinto Carvalho
(2018).

Based on the principle of separation of scales, the division between macroscale ge-
ometry and microscale roughness features is a valid preposition, as long as the contact
area is small compared with the roughness characteristic length, as suggested by Fig-
ure 6.1. However, often one wants to investigate the influence of the diverse roughness
length scales, i.e., different ranges of the surface power spectrum, on the contact prop-
erties, rather than isolate the effect of roughness from geometrical shape. Roughness
length scales cover a continuous spectrum, as observed from a typical PSD, cf. Figure 2.17.
This poses a major complication for the multiscale analysis of rough contact, because
it violates Equation (6.1). The smallest length scale at a given PSD range is the largest
scale at the following one—scales are not naturally separated. By excluding intermediate
length scales, scale separation could be artificially incorporated, allowing the applica-
tion of classical hierarchical multiscale homogenization methods. However, intermediate
length scales have been verified to contribute to contact properties and, thus, cannot be
omitted.

Multiscale modeling of rough contact is a growing research field, on which diverse
attempts have been made to cope with the latter difficulties. In the last decade, major
advances have been motivated by the study of the frictional contact of rubber materials
on rough road surfaces, and several works and approaches within the FEM framework
have been proposed.

Recently, a different type of multiscale analysis has been performed, consisting in cou-
pling different numerical methods at different scales. For example, molecular dynamics
can be used to model contact down to the nanoscale, and a concurrent strategy is used
to couple it with a continuum based numerical method, such as the FEM (Anciaux et al.,
2012). Nonetheless, this kind of multiscale analysis falls out of the scope of the present
work, and is referred here for completeness. For a general overview of numerical methods
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applied at modeling rough contact at several scales, and more insights into multiscale
approaches under this topic, the reader is referred to the recent review by Vakis et al.
(2018).

From a physical point of view, the principal caveat of multiscale modeling is the defini-
tion of which scales are important for a certain physical phenomena and, thus, worth of
being modeled. Conversely, from a computational perspective, it is important to under-
stand how the number of scales considered to model rough contact problems translates
into a computational advantage over Direct Numerical Simulations (DNS) counterparts.

6.1 Review of multiscale approaches to rough contact

Multiscale algorithms can be classified, generally, as coupled or information-passing.
In coupled multiscale strategies, also commonly designated by FE2, a micromechani-
cal numerical calculation is started, typically, at every contact integration point at the
macroscale. The microscale results are then incorporated—in a fully integrated fashion—
in the macroscale simulation, from which the loading at the microscale is established in
the next integration step, in the analysis at different scales. This procedure is usually ac-
complished by using standardized geometries at the different scales. Information-passing
algorithms, on the other hand, are based on the simulation of the contact problem at dif-
ferent scales independently, which are then combined to give a multiscale result. Coupled
algorithms are computational expensive, but ensure maximum quality of the information
passed between the scales. In contrast, information-passing algorithms are faster, but
since only simple average quantities are passed between the scales, some information
might be lost in the scale transitions.

Remark 6.1 on the following presentation of the multiscale approaches.
As referred in the beginning of this chapter, most advances in numerical strategies in
modeling rough contact have been made in the context of rubber friction research. Hence,
most of the multiscale algorithms are formulated for frictional contact, which is not
addressed in this work. However, most of these strategies can be readily reformulated
for frictionless contact, regarding the computation of the real contact area, specially
because most of the approaches also account for adhesion and, therefore, the issue of
the real contact area is necessarily addressed. Moreover, all following multiscale methods
are formulated within the FEM framework, hence this shall be tacitly assumed in the
ongoing presentation.

Early application of multiscale approaches based on contact homogenization report
to Tworzydlo et al. (1998). The macroscopic normal and frictional contact response is
computed through statistical homogenization of the results from FE simulations on in-
dividual asperities with different geometries. The method was restricted to the realm of
small deformations.

Temizer and Wriggers (2008) developed a coupled contact homogenization multiscale
strategy, regarding the contact between a flat rubber block and moving particles. In ac-
cordance to the previous introduction on the types of multiscale algorithms, at each
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integration point at the interface a Representative Contact Element (RCE) is analyzed,
which removes the need to model individual particles at the macroscale. This is, the con-
tact properties are computed on-the-fly. Several aspects related to the RCE definition for
the particular case in study were studied, as well. The typically high computational cost
of FE2 approaches is the major drawback of this method.

In Reinelt (2009) and Wriggers and Reinelt (2009), frictional contact between a flat rub-
ber block and a rigid rough surface is approached with a formulation based on the Height
Difference Correlation (HDC) function. This is defined in a similar fashion to the ACF, yet
the correlation of the height difference between two points is regarded. At each scale, the
rough surface is approximated by a sinusoidal function, whose amplitude is selected from
the spectrum of the HDC function. Starting with a frictionless simulation at the smallest
scale, a micromechanical friction law is defined at different values of pressure and veloc-
ity. This law is, then, incorporated in the larger scales by means of a frictional contact
formulation. Since the results from each scale are not coupled, it allows for a reduction
in computation time, compared with the approach by Temizer and Wriggers (2008). In
the work of De Lorenzis and Wriggers (2013), single scale tests were performed to inves-
tigate the influence of several parameters in the quality and convergence of the results,
which revealed to be difficult in some cases. Moreover, the selection of the number and
frequency of the sinusoidal contributions is not well-established in the literature.

A coupled multiscale algorithm was proposed by Nitsche (2011), usually referred as
a projection method. It consists in starting a new micromechanical simulation at new
contact spots, where the geometry and loading are determined from the local macroscale
features at that region. It is noteworthy to emphasize that the geometry of the microscale
problem is defined from a truncated region of the current contact region. The forces
resulting from the microscale equilibrium are then projected in the macroscale prob-
lem. However, difficulties in the convergence of projected quantities and the intricate
information-passing strategy renders the approach difficult to extend to more complex
situations.

The recent work by Wagner (2018), also documented in Wagner, Wriggers, Klapproth,
et al. (2015) and Wagner, Wriggers, Veltmaat, et al. (2017), provides a relatively simple
information-passing framework for the multiscale analysis of rough surfaces. In opposi-
tion to the previous approaches, the surface roughness is modeled directly via its power
spectrum (PSD). Different scales are defined by splitting the power spectrum at different
frequencies, and filtering the unwanted components from the topography. The first for-
mulation of the multiscale strategy, in Wagner, Wriggers, Klapproth, et al. (2015), is an
extension of the work of Reinelt (2009), following a fundamentally distinct approach to
model the rough road surface. Based on the contact pressure and velocity distribution at
the macroscale, a set of discrete values of pressure and velocity are defined as the inputs
for the next scale. With the equilibrium results from the microscale, a micromechanical
friction law can be formulated and inserted at the larger scales. With grounds on the vio-
lation of the principle of separation of scales, Wagner (2018) claimed that the definition
of a constant pressure loading at the smaller scale from a finite set of pressure values, se-
lected from the macroscale distribution, is not reasonable. A non-uniform pressure load-
ing would be physically meaningful, since the smaller scales are larger than the contact
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regions were normal pressure values are computed. Based on this argument, a simplified
version of the multiscale approach was proposed in Wagner, Wriggers, Veltmaat, et al.
(2017), by applying a smoothing operation to the pressure downscaling. Instead of pass-
ing a set of pressure and velocity values chosen from the respective distribution at the
macroscale, the average contact pressure and the input tangential velocity are imposed
on the smaller scale. Then, by downscaling the average contact pressure and upscaling
the friction coefficient and real contact area, the full scale results can be obtained.

Remark 6.2 on the selection of a multiscale approach.
The work of Wagner (2018), in particular, the more recent formulation of the strategy in
Wagner, Wriggers, Veltmaat, et al. (2017), establishes the foundation for the developed
multiscale framework. This selection is motivated on the coherent physical grounds of
the formulation, together with its simplicity and ease of incorporation within the cur-
rently available numerical tools.

6.2 General multiscale framework

Following the fundamental ideas on self-affine rough topography laid in previous chap-
ters, it is verified that the multiscale roughness characteristics are held in the topography
PSD. This function covers a range of frequencies defined between the low cut-off kl and
the high frequency cut-off ks (ignoring the roll-off). Each of these frequencies is intrin-
sically related to the large and short cut-off wavelengths λl and λs , respectively. The
starting point of any multiscale approach is the definition of the several scales involved
in the the problem. A splitting frequency ksplit is introduced in the rough topography
spectrum, which allows its division into the macroscale and microscale spectra, see Fig-
ure 6.2. The macroscale spectrum ranges from kl and the splitting frequency ksplit, while
the microscale spectrum goes from ksplit to ks . The separation in ns scales can easily be
generalized by introducing ns −1 splitting frequencies in the power spectrum.

logkl logksplit logks logk

lo
g
Φ
θ

(k
)

x

z

Complete
Macroscale
Microscale

Figure 6.2: Topography splitting into a microscale and a macroscale component, by the
introduction of a splitting frequency ksplit in the PSD.

Since the reconstruction of the topography from the PSD is additive, i.e., it results
from the superposition of several spatial harmonics, the complete topography can be
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decomposed in several scales by specifying different bandwidths, which acts as bounds
in the harmonics sum—while holding the Hurst exponent H and the continuous PSD
scale factor C0 or C ′

0 unchanged for every scale. This is illustrated for the decomposition
in two scales, in Figure 6.2.

Having specified the different roughness length scales, the contact area evolution curve
at each one can be found by performing a FE simulation, independently of all the other
scales. The curve shall be obtained up to full contact conditions Ac /A → 100%, so that
a complete description of the contact area at all load ranges is provided. From these, a
database of area-pressure pairs can be created, which can then be post-processed accord-
ing to several strategies. The approach proposed by Wagner (2018) consists in passing, at
each load step at the macroscale (scale 1), the mean contact pressure p̄η{1}

i to the scale

below (scale 2).1 Thus, the load increment p{1},i
0 at scale 1 will be directly related with

the load increment p{2},i
0 = p̄η{1}

i at scale 2. By mapping the nominal exterior pressure at
different scales, a list of real contact area fractions at all scales, and for a given macroscale
pressure can be obtained. The multiscale solution for the real contact area, denoted by
the superscripts MS, can be computed in a multiplicative homogenization step, by taking
the product between all contact area fractions of the said list, and repeating it for every
nominal exterior pressure increment at the macroscale, viz.,

{
Ac

A

}MS (
p{1},i

0

)
=

ns∏

j=1

{
Ac

A

(
p̄
η{ j−1}
i

)}{ j}
, with p̄η{0}

i = p{1},i
0 . (6.2)

With respect to the mathematical interpretation of Equation (6.2), it describes the mul-
tiscale solution for the real contact area fraction at the load increment p{1},i

0 —the pressure
applied to the full scales case is applied directly at the macroscale (scale 1). Starting at
scale 1, the real contact area at the pressure increment i is multiplied by the contact area
fraction in scale 2, computed at the mean contact pressure at scale 1. Moving to scale 2,
the product between the contact area in scale 3 at the mean contact pressure at scale
of scale 2 and the previous result is determined. Repeating the sequence of mean pres-
sure calculation, contact area fraction identification and recursive multiplication, as one
moves down to the smallest scale, the multiscale solution is computed progressively.

The physical interpretation of the multiplicative homogenization step comes directly
from the fact that the variable of interest is a fraction of some quantity. Suppose that
at the macroscale the real contact area is A{1}

c , which means that the real contact area
fraction in this case reads A{1}

c /A. Now, when looking at the contact area at scale 2, the
nominal area is no longer A, but the true contact area at scale 1, i.e. for this scale the ratio
is A{2}

c /A{1}
c . The real contact area accounting for the two scales thus comes

A{2}

A
= A{1}

c

A

A{2}
c

A{1}
c

⇔
{

Ac

A

}MS

=
{

Ac

A

}{1} { Ac

A

}{2}

. (6.3)

In sum, the general multiscale framework for predicting the real contact area fraction
consists in, first, splitting the power spectrum in several ranges, by introducing a number

1The notation p{ j },i
0 represents the nominal external pressure at the load increment i in scale j , and

p̄
η{ j }
i stands for the mean contact pressure at the load increment i in scale j .
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of splitting frequencies ksplit. Second, the mean contact pressure is downscaled at each
load increment, starting from the macroscale, whose load is the same as the applied in a
single scale model. Third, the real contact area fraction is upscaled, from the microscale
up to the macroscale, at the downscaled pressure values. Last, all contact area fractions
are homogenized by taking the product of all upscaled ratios (at each load increment),
resulting in the multiscale solution for the contact area ratio. A graphical interpretation
of the multiscale approach is provided in Figure 6.3.

0 0 0
External pressure External pressure

A
c
/A

External pressure
at the complete scale

Macroscale Mesoscale(s) Microscale

Downscale mean
contact pressure

Downscale mean
contact pressure

Complete topography

Macroscale Mesoscale(s) Microscale

PSD splitting

Independent numerical simulations

Upscale contact area fraction
by a multiplicative homogenization step

Figure 6.3: Schematics of the multiscale strategy to predict the real contact area fraction
in rough contact. It consists in performing several independent FE simulations, whose
results can be connected in a post-processing step. First, the surface is decomposed into
several scales, by defining split frequencies of the spectrum. Second, for each scale, the
FE solution is computed for the load range of the original problem. Third, for each value
of pressure at the macroscale, the contact area at the mean contact pressure is listed for
each succession of scales. Last, a point-wise multiplication of the list elements, treated
as a multiplicative homogenization step, gives the multiscale homogenized solution.
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6.2.1 Definition of the splitting frequencies

In the original work of Wagner (2018), the definition of the splitting frequencies is not
explored, and no other sources referring similar issues have been found. It is paramount
to have a criterion for setting the splitting frequencies, in order to simplify the automation
of the multiscale framework, and also for the natural extension of the strategy to more
than two scales. With this in mind, a splitting criterion is proposed here, entirely based
on a computational profit point of view.

From the single scale simulations presented previously, several rules for the RCE are
already established, so that if one wants to analyze a given set of topography character-
istics, namely, the long and short cut-off wavelengths, the RCE length and mesh can be
uniquely determined. Since the ultimate goal of a multiscale approach is the reduction
of computation time relative to the respective DNS, the maximum computational effi-
ciency is achieved when the computational load is evenly distributed by all scales. Hence,

knowing beforehand that for each scale the ratio L{ j}/λ{ j}
l and λ{ j}

s /∆x{ j} is fixed by the
aforementioned rules of thumb for the RCE definition, similar meshes and, thus, uni-
formly distributed computational loads, can be achieved if the bandwidth ζ= λ{ j}

l /λ{ j}
s

is constant across scales. This criterion writes

λl

λ{1}
split

=
λ{1}

split

λ{2}
split

= ... =
λ{ns−1}

split

λs
= ζMS . (6.4)

From Equation (6.4), the optimal scale bandwidth ratio is

ζMS = ns

√
λl

λs
. (6.5)

All splitting frequencies can now readily be obtained from

λ{ j}
split =

λl(
ζMS

) j
, for j = 1, ...,ns −1 . (6.6)

6.2.2 Generation of the microscale topography

The power spectrum splitting is followed by the generation of each scale’s topography.
While for the macroscale this procedure may seem straightforward, following the usual
topography synthesis with a longer short cut-off wavelength, some conceptual compli-
cations arise regarding the generation of the meso and microscales. For example, in Fig-
ure 6.2 the separation of a macro and microscale with the same length can be observed.
These topographies are numerically generated from the single scale characteristics, but
with different, yet consistent, cut-offs. Nevertheless, if the rough profiles represented in
that figure were to be used directly in the multiscale strategy, the overall computational
cost would increase, comparatively with the DNS. Even though a coarse mesh could be
used at the macroscale (since high frequencies are removed), the microscale would still
require a mesh as fine as in the single scale scenario, since its the physical length is the
same—and, thus, notably excessive. Nonetheless, one can cut the length of the microscale
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by employing the minimum RCE length established before, for single scale analyses, with-
out compromising the accuracy and representativeness of the results. In practice, this
means that only part of the microscale profile Figure 6.2 shall be used, thus reducing the
overall computational cost.

One way to produce the rough topography at the microscale is by generating a full
length microscale, as in Figure 6.2, and then truncating the profile, such that only a min-
imum length is preserved. However, such approach is not advisable, because it distorts
the microscale PSD and ruins the topography periodicity—which must be assured by any
other method. Within the current numerical framework, the simplest way of generating
topography at the microscale is by using the random roughness generator directly, which
synthesizes the rough topography with prescribed characteristics and length, accordingly
to the representativeness rules.

The frequency resolution of the power spectrum, i.e., the spacing between the discrete
PSD points in the frequency axis, is inversely proportional to the topography length (see
Appendix A). Conversely, the maximum frequency available in the PSD is inversely pro-
portional to the sampling length. Using the full scale numerical model as a reference,
the macroscale topography can reproduce exactly the discrete PSD points, with the exact
same spacing. Differently, even though the microscale can reproduce all the required
frequency range (equal sampling length), the spacing between the discrete PSD points at
the microscale are considerably different from the reference points, owing to the shorter
microscale length. This can be observed in the plot of all previously discussed discrete
power spectra in Figure 6.4. It is self-evident that the microscale spectrum is consider-
ably less populated than the complete spectrum, for the same frequency range. In the
extreme case, the reduction of the number of discrete frequencies points with increasing
number of splits may lead to the approximation of a complex sum of harmonics by a
purely sinusoidal topography, or even to the complete absence of frequencies in certain
ranges.

In order to assess whether the direct microscale topography generation verifies other
topography features apart from the power spectrum, a very brief test can be performed,
comparing the RMS slope of a generated microscale profile with a full length microscale
profile (as in Figure 6.2) and a truncated profile from the full microscale. The single
scale is defined by H = 0.8, L = 1, λl = L/8, λs = L/128, and Ĉ ′

0 is computed such that
the theoretical single scale RMS slope is 0.2. The largest wavelength in the microscale
is λ{2}

l = L/32. The full scale microscale is generated with 1024 points, and the directly
generated microscale with 256. The results are plotted in Figure 6.5.

At a qualitative level of analysis, by visual inspection of the two profiles, there are not
generally obvious differences and, in fact, the peaks and relative amplitudes of some fea-
tures are similar. For a quantitative analysis of the results, the RMS slope was computed
with a forward finite differences scheme for all cases. The RMS slope of the generated and
full microscale are uniquely determined by the PSD, and share very similar values. As for
the truncated microscale, it is observed that it can assume a wide range of values, and its
probability distribution closely resembles a Gaussian curve, centered around the values
from both the full and directly generated microscale. Note that the RMS of the microscale
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Figure 6.4: Power spectral density of the complete scale topography and the macro and
microscale contributions. It is paramount to note that the micro and macroscale spectra
are plotted on the top of each other for mere convenience. In fact, recall that the discrete
spectrum is scaled by the sampling length, therefore the spectrum at different scales does
not necessarily match the values of the full scales spectrum.

is necessarily smaller than 0.2, since this is the value prescribed for the complete, single
scale topography.

In sum, it can be concluded that, despite the smaller frequency resolution in the power
spectrum, direct generation of the microscale can reproduce other topography character-
istics with reasonable accuracy, and can safely be used within the multiscale framework—
as long as the number of point frequencies in the topography is not dangerously small.2

As a closing comment, it must be mentioned that, since only Gaussian topography is
addressed in the single scale models (see Section 5.3.1), it seems reasonable to gen-
erate Gaussian topographies for the microscale models, as well—actually, even for the
macroscale.

Remark 6.3 on the treatment of the discrete splitting frequencies.
The rough topography at the smaller scales can be generated with the numerical topogra-
phy generator, by specifying combinations between the cut-off wavelengths of the single
scale topography and the splitting wavelengths. While this methodology is established
based on a continuous roughness spectrum, where each single frequency has a null con-
tribution for the topography height, only discrete quantities are concerned within the
numerical framework. In contrast with the continuous case, the discrete frequencies have
a finite contribution to the topography. Then, this raises the question whether to include
the splitting frequency in both macro and microscale (as short and long cut-offs, respec-
tively), or to exclude it in one of the scales. In the following, it was chosen to set the
long cut-off wavelength at each microscale at the next single scale discrete frequency,

2Further investigations shall be done in the future, in order to establish the impact of the number of
frequencies incorporated in the topography to the quality of the generated rough topography at smaller
scales.
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Figure 6.5: Comparison between the profile statistics of a directly generated topography
and a truncated full microscale. The complete topography is characterized by H = 0.8,
L = 1, λl = L/8, λs = L/128, and the RMS slope is set to 0.2. The largest wavelength in
the microscale is wl {2}

l = L/32. 1024 points are used to discretize the full microscale, and
256 for the directly generated microscale. A forward finite differences scheme is used to
compute the RMS slope.

thus avoiding the repetition of the splitting frequencies in two consecutive scales. This
way, the contribution of each frequency is included only once in the analysis, and the
consistency with the complete spectrum is ensured.

6.2.3 Update of the power spectrum scaling factor

For the single scale numerical modeling of rough contact, the PSD scaling factor was com-
puted as a function of the prescribed RMS slope. When the same numerical framework
is embedded in a multiscale strategy, in order to keep the PSD continuous after assem-
bling all scales, the scaling factor C0, or C ′

0, shall remain unchanged across scales. If the
continuous scale factors are fixed, the discrete scaling factor Ĉ0 and Ĉ ′

0 must be adapted
in every scale accordingly to the sampling length. Recalling Equation (2.74), it comes, for
two different scales j and k

C ′
0 = Ĉ ′

0

∣∣{ j} l { j}
s = Ĉ ′

0

∣∣{k}
l {k}

s . (6.7)

Thus, for each scale, the discrete PSD scaling factor shall be updated by

Ĉ ′
0

∣∣{ j} = l {k}
s

l { j}
s

Ĉ ′
0

∣∣{k}
. (6.8)
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An identical expression can be derived for the case of rough surfaces,

Ĉ0
∣∣{ j} =

l {k}
sx

l {k}
sy

l { j}
sx

l { j}
sy

Ĉ0
∣∣{k}

. (6.9)

Summarizing, the single scale discrete spectrum is initially set up to verify a given
RMS slope. At each scale, the current discrete scaling factor needs to be updated via
Equations (6.8) and (6.9), in order to guarantee the continuity of the complete input PSD.
As referred before, the RMS at each scale is necessarily smaller than the relative property
of the complete topography. Additionally, the sum of the RMS slope squared at each scale
must be equal to the single scale RMS slope squared—recall the definition of RMS slope
and its relation with the spectral moments. The aforementioned conditions can be used
to check if the topography at each scale is being generated correctly.

6.3 Multiscale numerical analysis with two scales

Having established the conditions for the definition of a RCE from its topography charac-
teristics in Chapter 5, the numerical application of the multiscale approach can be per-
formed, knowing beforehand how to set up each scale. Initially, the contact homogeniza-
tion procedure is applied to the division of the original topography into only two scales,
following the splitting rule introduced in Section 6.2.1. At this point, focus is placed into
the influence of the topography characteristics λl , λs and H , inasmuch that the length,
mesh and height are implicitly defined from the aforementioned representativeness as-
sessment.

For the following numerical examples, only topographies with H = 0.8 were considered,
since no significant effects of this parameter have been observed in the single scale results.
Also, the single scale RMS slope is, again, fixed at 0.2, and the long cut-off wavelength is
λl = 5mm. For each bandwidth λl /λs ∈ [4, 8, 16, 32, 64], a single scale Direct Numerical
Simulation (DNS) is performed, together with the multiscale (MS) approach for 2 scales.
In Table 6.1, the number of elements in the non-mortar interface required to model the
RCE in the two scenarios is shown. Despite that the bandwidth increases by a factor of 16
from the lowest bandwidth λl /λs = 4 to the widest spectrum λl /λs = 64, the size of the
meshes used in the multiscale approach increases only by a factor of ≈

p
16 = 4. Although,

the multiscale solution comprises two solutions of a finite element problem with these
smaller meshes. Ten realizations were generated for each scale of the multiscale approach
and also for the DNS.

Before presenting and discussing the main results of this section, it is paramount to
resume a previous topic on the numerical determination of the real contact area, first
mentioned in Section 5.3.3. In sum, it has been remarked that the real contact area of
the finite element model can be computed either based on a geometrical argument, on
which only elements whose all nodes belong to the active set would count for the real
contact area, or from the Lagrange multipliers. The latter strategy departed from equi-
librium considerations in the direction of the applied external pressure and from the
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Table 6.1: Number of elements in the non-mortar boundary for the single scale Direct
Numerical Simulations (DNS) and the respective Multiscale (MS) multiscale approach..
For the MS case, the total number of elements is twice the shown in this table, yet they
are considered in two separate simulations.

λl /λs

Case 4 8 16 32 64

DNS 264 528 1032 2064 4104

MS (×2) 144 192 264 360 528

physical interpretation of the Lagrange multipliers as the symmetric of the contact trac-
tion vector at the non-mortar interface—in particular, in frictionless contact, it relates to
the contact normal pressure. The real contact area can then be computed as the product
of the nominal contact area and the ratio between the nominal external pressure and the
arithmetic mean of the Lagrange multipliers.

This issue is even more important in the context of the current multiscale approach.
Not only the way of computing the real contact area at each scale is not unique, but also
the downscaled mean contact pressure can be computed following identically alternative
approaches. In particular, the mean contact pressure can be determined as the arithmetic
mean of all contact pressures (Lagrange multipliers), or by dividing the external pressure
by the real contact area fraction—which in turn can be computed following the already
mentioned approachers. Although all methods are fundamentally equivalent, concerning
a continuous description of contact, the numerical discretization inherently introduces
deviations which remain unknown so far, in this dissertation.

In order to investigate the effect of the methodology for computing the individual scale
results and transition variables on the homogenized solution, the multiscale approach
has been tested, within the set of parameters referred in the begging of this section, in
three distinct situations:

(i) Both the real contact area and the mean contact pressure are computed uniquely
on the basis of the geometric definition of the contact area;

(ii) Both the real contact area and the mean contact pressure and computed uniquely
on the basis of the Lagrange multipliers, i.e, relying on equilibrium considerations;

(iii) The real contact area is computed based on the geometrical argument, but the tran-
sition mean contact pressure is computed from the arithmetic mean of the Lagrange
multipliers.

The DNS and multiscale results for all relevant scenarios are plotted in Figure 6.6,
for the full load range, and with special attention to the light contact region. The case
λl /λs = 16 is not plotted, for simplicity, but without loss of relevant detail. The differences
between all methodologies are evident, even for the single scale DNS results. While this
impacts the quantitative accuracy of the results, as different alternatives predict differ-
ent values for the real contact area at the same external load, the qualitative behavior
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of the curves does not seem to be affected, if some consistency is preserved within the
post-processing calculation. This is, if ether the geometrical contact area or the Lagrange
multipliers are used individually to compute both the contact area and the scale the tran-
sition pressure. Under such conditions, it can be observed that this two pairs of curves
behave nearly in the same fashion—e.g., by observing the response at light contact, the
DNS and MS curves for each method are almost shifted versions of each other. In contrast,
the curve relative to the mixed method, where the area is computed from the geometrical
area and the transition pressure from the Lagrange multipliers, appears quite apart from
the other cases, while converging to the area-based curve.

In Section 5.4, the discussion of the results relied, in fact, on the geometric argument
for the contact area. Without any reference results, such as coming from experimental re-
search, it is not feasible to select one methodology based on true accuracy of the outcome.
Furthermore, the choice shall be between the methodologies solely based on either the
geometrical area or on the contact pressure schemes, as suggested by Figure 6.6. Hence-
forth, the alternative based on Lagrange multipliers is adopted, for future convenience.
In particular, this will prove interesting regarding the incorporation of more information
from the contact pressure distribution in the transition variable—the contact pressures
shall be used directly in such application.

Focusing now on the discussion of the numerical results, considering only the pressure-
based computation, the multiscale results for two scales and the respective single scale
DNS analogous are plotted in Figure 6.7, for several spectrum bandwidth. These curves
are shown for all the contact area fraction range, i.e., from infinitesimal to full contact,
with emphasis on the small load range—as in Figure 6.6. Roughly speaking, and looking
only at the full load range, the multiscale solution curve is practically coincident with the
single scale solution, until around p0 = 2×104 MPa, from where on slight divergence is
observed. The two curves join again at full contact. From this broad point of view, the
spectrum bandwidth does not seem to impact considerably the accuracy of the multiscale
approach, which may be regarded as fairly acceptable, so far.

Restricting the attention to the light contact region, the apparently coincident solution
are, actually, quite distant from each other. In addition, the bandwidth shows a clear
effect on these results. With increasing bandwidth, the multiscale solution is observed to
converge to the single scale DNS solution. This behavior can be interpreted with grounds
on the principle of separation of scales. In profiles with short bandwidths (λl /λs = 4, 8),
the longest length scale of the macroscale is not large compared with the largest length
scale at the microscale. Therefore, the hypothesis of the application of a constant nominal
pressure at the microscale associated with a certain load at the macroscale is not tightly
valid. By increasing the bandwidth of the single scale topography and, consequently, the
bandwidth of each scale, the largest wavelength at the macroscale is progressively more
separated from the largest scale of the microscale. This way, the mechanical coupling
between the extrema of each scale’s spectrum are reduced, allowing the individual results
for each scale to be homogenized in a single one.

The physical interpretation of the convergence of the results to the DNS with increasing
bandwidth can be clarified by considering a rough topography (characterized by some
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Figure 6.6: Comparison between different methods for computing the real contact area
and the mean contact pressure in the scale transition.
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with two scales and the direct numerical simulation, for different spectrum bandwidths.
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cut-offs kl and ks), from which the highest frequency ks has been removed. The filtered
spectrum is defined from the intact low cut-off kl to the frequency k(−)

s , which is slightly
lower than the original cut-off ks . In light contact, the load is mostly supported by the
longest wavelengths around λl , due to their typically high amplitude. The shorter wave-
lengths are rapidly flatten at these initial contact spots. However, even though these short
wavelengths cannot withstand significant loads, they do contribute considerably for the
real contact area, since there are small gaps between the microasperities that are very dif-
ficult to close completely. Thus, if the filtered profile is loaded in the light contact region,
by virtually including the extracted frequency ks , no changes in the supported load are
verified, but the contact area changes accordingly to the contact pressure verified at the
contact spots. Such logic, however, assumes that λs ¿λl , otherwise the load supported
by λs would be comparable with the amount supported by λl . This mechanical coupling,
coming from the similitude in wavelength and, consequently, in the amplitude, is not
accounted in the contact homogenization procedure, and explains, at some extent, why
increasingly more accurate values are predicted for large bandwidths. For larger loads,
towards the full contact, the DNS and multiscale approaches predict different solutions,
possibly because the information passing strategy does not convey sufficient information
of the current state of the contact to the next scales.

The error of the multiscale solution relative to the reference DNS is plotted in Figure 6.8.
The reduction of the relative error with increasing bandwidth at load loads is substanti-
ated by this figure. By approaching the full contact conditions, the large bandwidth is no
longer associated with smaller errors—in fact, the relative errors are of the same order of
magnitude of the lower bandwidths. The relative error decreases to zero with increasing
loads, since the real contact area fraction is capped at 100%, which is naturally satisfied
by both methods. It can be observed that the error goes to zero at a specific load, depen-
dent on the bandwidth, where the MS and DNS curves intersect. However, this does not
seem to be associated with any noteworthy feature.

The main goal of the multiscale approach is to reduce the computational resources
required to solve the problem of rough contact. Thus, it is paramount to measure both the
total simulation time required to complete the analysis, but also the maximum Random
Access Memory (RAM) that needs to be allocated to the simulation. For this purpose,
both quantities have been traced during the simulations, under the same circumstances.
Namely, for every bandwidth, ten analysis have been run in parallel at each scale and
also for the DNS, with the exception of the ratio λl /λs = 64. For this bandwidth, only five
simultaneous parallel jobs have been executed, due to RAM constraints.

Figure 6.9 shows the computational resources required by the DNS and MS analysis,
namely, the total simulation time and the peak RAM usage. The differences between
the multiscale approach and the DNS are striking, regarding both the total simulation
time and the maximum RAM requirements. The multiscale solution proves increasingly
advantageous with increasing roughness bandwidth. Some bars on the RAM plot are not
even visible, since they require less RAM than the minimum value resolved by the tracing
strategy (about 160 MB). While for λl /λs = 4 the total simulation time is identical for both
approaches, when the bandwidth is increased up to λl /λs = 64, the multiscale approach
reduces the total simulation time from roughly 1 day to about 50 minutes. The same
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Figure 6.8: Relative error on the real contact area fraction computed with the multiscale
approach, relative to the respective DNS solution, for different bandwidths.

happens with the RAM requirements, which are reduced from 80 GB to simply 1.5 GB, for
the same bandwidth.

Summarizing, the multiscale approach provides tremendous computational advan-
tages over the classical DNS approaches, specially for the range of applications where
the DNS methodology is the most questionable, i.e., wide roughness spectra. While the
currently discussed multiscale contact homogenization scheme converges to the DNS so-
lution at light contact with increasing bandwidth, an improved multiscale strategy which
assures convergence for the DNS across all load range is to be proposed. Other great ad-
vantage of the general formulation of the multiscale scheme here treated is that it relies
completely on post-processing operations. Hence, one can improve the multiscale algo-
rithm, namely, the information passing scheme, and apply it to the already computed
numerical results, bypassing any repetition of RCE analysis.

6.4 Enhancing the information passing scheme

It has been observed from the previous results that the information passing strategy
adopted initially proves adequate for moderately low bandwidths at each scale level.
Namely, at small, yet physically reasonable values of the contact area fraction, similar
results can be obtained from the multiscale solutions and the respective DNS. The scale
transition was performed following a zeroth-order approximation, where only the average
contact pressure was passed to the inferior scales. In order to improve the multiscale
solution for the contact area evolution, specially at large contact areas, more information
shall be conveyed to the next scales.

In fact, if the contact pressures at each load step were normally distributed, the mean
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Figure 6.9: Comparison of the total simulation time and maximum RAM usage of the
DNS and multiscale approach. In the peak RAM usage plot, the boxes for the multiscale
solution are not visible, because they require less then 160 MB of RAM, which is the
resolution of the methods adopted to trace the RAM consumption.

contact pressure would contain almost all the information on the contact conditions at
each scale. However, it is verified from the single scale results that the contact pressure
distribution is strongly non-Gaussian throughout almost the entire load range. In Fig-
ure 6.10, the contact pressure distribution at each load step is plotted for two different
single scale results with different bandwidths.3 Both topographies are generated with
H = 0.8, λl = 5mm and the RMS slope is set to 0.2. It can readily be seen that the contact
pressure distribution is not symmetric, and thus, as a consequence, it cannot be Gaussian.
The mean contact pressure, computed either from the arithmetic mean or from equilib-
rium considerations, is slightly higher than the mode of the distribution—the spatially

3This figure is obtained by first dividing the contact pressure values in 20 evenly spaced ranges between
0 and the maximum contact normal pressure at each load increment. Then, probability density is computed,
and plotted at the center of the contact pressure bin. This justifies the blank regions at very low and very
high contact pressures.
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most frequent contact pressure. The major impact of the bandwidth is on the overall
noise of the distribution. This comes from the different discretization resolution consid-
ered for the two cases. The larger λl /λs requires a denser mesh and, hence more points
enter the calculation, resulting in a smoothing effect. Note that at the end of the spectrum
range, the contact pressure distribution approaches a Gaussian curve, and the external
pressure is almost equal to the mean contact pressure—the contact area fraction is nearly
100%.

At each load increment, the contact pressure field is generally distributed through dif-
ferent disconnected regions at the contact interface. The microscale setup can be thought
as being loaded by the local pressure distribution, at every region. The previously dis-
cussed information passing strategy, basically, homogenized all possible load distribu-
tions into a single uniform pressure loading case. Yet, from Figure 6.10 it is concluded
that some values of pressure are spatially more prevailing that others—in particular, the
mean contact pressure is not the most frequent value.

In order to include more data in the scale transition, a new information passing strategy
is proposed. It must be emphasized that the following methodology is uniquely based on
post-processing, hence, all numerical results obtained for the application of the former
multiscale approach are still valid—a great advantage over FE2 strategies.

Starting at the macroscale roughness level, the contact area is computed from the FE
models. At each point of the curve, i.e., at each value of the external pressure and real
contact area of scale 1, the distribution of contact pressures is compacted in np equally
spaced bins, between 0 and the maximum contact pressure. Each bin will be represented
by its center value. This step corresponds to a discretization of the contact pressure spec-
trum. At each discrete contact pressure value, the multiscale solution up to scale 2 for the
real contact area is evaluated. The multiscale solution is updated with the results from
scale 1, by performing the multiplicative homogenization step, yet with an additional
weighted average of the contact areas at the smaller scales,

{
Ac

A

}MS,1 (
p{1},i

0

)
=

{
Ac

A

}{1} (
p{1},i

0

)
·
(

np∑
n=1

f {1}
i ,n∆pη{1}

i ,n

{
Ac

A

}MS,2 (
pη{1}

i ,n

))
. (6.10)

The newly introduced notation follows:

•
{

Ac

A

}MS, j Multiscale solution for the real contact area fraction for scales smaller
and including j ;

• f { j}
i ,n

Probability density of the n-th discrete contact pressure value at scale
j and load increment i ;

• ∆p
η{ j}
i ,n

Width of the n-th contact pressure bin at scale j and load i ;

• p
η{ j}
i ,n n-th discrete contact pressure bin at scale j and load i .

The multiscale solution up to scale 2 can be computed by applying Equation (6.10) at
scale 2, which would then be expressed in terms of the multiscale solution up to scale 3.
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Figure 6.10: Contact pressure distribution for several values of the nominal external pres-
sure, and two different bandwidths. The results come from single scale FE simulations
with H = 0.8, λl = 5mm and RMS slope equal to 0.2. For each load increment, the contact
pressure distribution is normalized to verify a maximum unit value. The mean contact
pressure computed both from the arithmetic mean and from equilibrium consideration
are plotted, as well.
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It can be conclude that Equation (6.10) must be applied recursively at all scales, down to
the second smallest scale (ns −1), since the multiscale solution at scale ns is simply the
single scale result. This leads to definition of the following recursive expression for the
multiplicative weighted homogenization scheme:

{
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A

}MS, j (
p{ j},i

0

)
=

{
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A

}{ j} (
p{ j},i

0

)
·
(

np∑
n=1

f { j}
i ,n ∆p

η{ j}
i ,n

{
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}MS, j+1 (
p
η{ j}
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,

for j = 1, ...,ns −1 ,
{
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}MS, j (
p{ j},i

0

)
=

{
Ac

A

} j (
p{ j},i

0

)
, for j = ns .

(6.11)

Figure 6.11 shows the schematics of the enhanced information passing strategy. Only one
transition is displayed, due to its inherent recursive character. Note that the index i refers
to all quantities related with the macroscale load p i

0, and not to the i -th load increment.

Another key point to mention is that the factors f {ns−1}
i ,n ∆pη{ns−1}

i ,n represent the weights of
each contact area fraction value, which must verify

ns∑
n=1

f {ns−1}
i ,n ∆pη{ns−1}

i ,n = 1 . (6.12)

From a practical point of view, and establishing the link with the computer implementa-
tion of this strategy, the procedure starts at the microscale, where the multiscale solution
up the to that scale is known. Moving to the next upper scale, the discrete contact pres-

sure values are identified at each load step, jointly with the weights f {ns−1}
i ,n ∆pη{ns−1}

i ,n . Then
the real contact area fraction at the multiscale solution in the smaller scale is interpolated
at the discrete contact pressure values of the current scale, and the homogenization step
is applied, updating the multiscale solution. This procedure is repeated for all scales until
scale 1, ending with the homogenization step at the macroscale.

6.5 Multiscale numerical analysis with the improved transition
scheme

The assessment of the improved contact homogenization procedure follows the same
the structure adopted in Section 6.2, with an additional degree of freedom in the analy-
sis, namely, the number of discrete values of contact pressure np. The results for all the
examined bandwidths and different levels of discretization of the contact pressure distri-
bution np are compared with the DNS solution and the previous MS result (MS-pressure)
in Figure 6.12.

When only one value is chosen to represent the full pressure spectrum, i.e., np = 1, the
contact area is overestimated, for all cases. In fact, in such scenario, the value which is
being used in the scale transition equals half the maximum contact pressure at each load
step, whose spatial frequency is very low—cf. Figure 6.10. Thus, in the homogenization
step, it is being considered that the microscale is loaded uniquely with an excessively
high nominal pressure, therefore, overpredicting the real contact area fraction.
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Figure 6.11: Improved information passing strategy for the multiscale solution of the real
contact area fraction. At each scale, the contact pressure spectrum is discretized, and
the discrete values are passed to the multiscale solution involving all inferior scales. The
multiplicative homogenization step is performed in a weighted average sense.

It is interesting to note that the homogenized solution converges with increasing num-
ber of points in the pressure spectrum—the curves for np = 10 and np = 20 are practically
indistinguishable. The converged multiscale solution, however, deviates slightly from the
DNS at light contact, but for progressively larger loads, it gives a good approximation of
the single scale solution—at least, with smaller error than the mean pressure-based mul-
tiscale approach. Despite that the converged solution does not provide an exact estimate
for the area evolution at low loads, when the homogenization is performed with np = 3,
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Figure 6.12: Contact area evolution with pressure, computed with the improved contact
homogenization procedure, for different bandwidths and levels of discretization of the
contact pressure distribution np.
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Figure 6.12: Contact area evolution with pressure, computed with the improved contact
homogenization procedure, for different bandwidths and levels of discretization of the
contact pressure distribution np (continued).
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the DNS solution is recovered almost exactly, for the two largest bandwidths λl /λs = 32
and λl /λs = 64. Unfortunately, the same improvements are not verified if the spectrum
is narrow, and, overall, the new transition scheme does not prove to be a better solution
comparatively with the previous multiscale approach.

All in all, the weighted average multiplicative homogenization strategy gives accurate
solutions for the rough contact problem by tuning the discretization of the contact pres-
sure spectrum, as long as the roughness spectrum bandwidth is sufficiently large. The
homogenized results converges with the number of discrete points in the contact pres-
sure distribution, and such solution approximates the DNS curve with high accuracy for
relatively high loads, towards the full contact conditions. The converged area curve does
not capture the single scale results exactly, in the region of light contact, and the mean
pressure-based strategy (Section 6.2) provides more reliable results—for large ratios λl /λs .
Nonetheless, if the contact pressure distribution is represented by 3 bins, i.e., np = 3, the
improved scheme reproduces almost exactly the DNS solution, at the low pressure regime,
for large bandwidths. These conclusions are substantiated by Figure 6.13, where the error
relative to the DNS solution for different multiscale solutions computed with the im-
proved strategy are plotted against the relative error of the mean pressure-based scheme.

As the bandwidth is crucial in assuring the quality of the multiscale solution, for both
scale transition schemes, one can establish the minimum bandwidth required for each
spitted scale, based on the results in Figure 6.12. Since the bandwidth of each individual
scale is constant, according to the splitting rule in Section 6.2.1, and observing that the
accurate results from the homogenization step are obtained starting at a minimum of
λl /λs = 32, it can then be stated:

Minimum bandwidth for each individual scale
Each scale j resulting from the PSD splitting procedure must obey a minimum band-
width of {

λl

λs

}{ j}
≥
p

32 ≈ 5.6 , (6.13)

so that the homogenization step produces accurate values, relative to the numerical
solution of the single scale problem.

6.6 Application to wide spectra and extension to several scales

It has been concluded that the multiscale approach, employed either with the original
or improved information-passing formulation, can provide accurate results for the single
scale solution, if the spectrum at each scale is wide enough. Furthermore, the compu-
tational advantages of the multiscale approach are self-evident (cf. Figure 6.9). All these
conclusions have been extracted from a setup with only two scales. At this stage, having
validated the multiscale approach, one shall aim at, first, applying this technique to more
than two scales, and second, at solving problems out of the range of the typical direct
numerical strategies—such as the BEM.
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Figure 6.13: Error of the improved homogenization scheme relative to the DNS solution,
for different levels of discretization of the contact pressure distribution.

So far in this dissertation, the maximum spectrum width considered was λl /λs = 64,
which is also the cap commonly employed by other authors. Roughly speaking, this in-
dicates that the topography contains roughness features which extend through approxi-
mately two orders of magnitude, say between 1 mm and 10µm. In line with the roughness
description in Chapter 2, roughness details can be as small as the size of atoms, meaning
that real spectrum may cover much more than two orders of magnitude. It should not
be overlooked that the continuum hypothesis, and the idealization of an homogeneous
material cannot be conveyed to all the smaller scales. As soon as the roughness length
scale reaches the size of metal grains, the homogeneous description of matter must be
dropped, and the continuous hypothesis is violated at the atomic scale. The present sec-
tion proceeds without accounting for any of the previous complexities, since it is only
intended to analyze the performance of the multiscale strategies under more severe con-
ditions.

For this purpose, a rough profile with H = 0.8,
p

m2 = 0.2, λ = 5mm and having an
extremely large bandwidth λl /λs = 4096, covering length scales across almost four orders
of magnitude, and containing roughness features from about 1 mm down to 1µm is ex-
amined. The rough topography in question is shown in Figure 6.14, together with the
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successive magnifications of one order of magnitude each, emphasizing its level of detail.
The PSD of this profile can be split into 4 scales, while assuring a minimum bandwidth of
λl /λs = 8 in each one. The multiscale strategy is applied by splitting the topography into
2, 3 and 4 scales, separately, and for each of the previous number of scales ns, the homog-
enized result is computed with both transition schemes. The largest FE sub-problems
used within the current application of the multiscale approach to this problem are, natu-
rally, the ones concerning the splitting into two scales, and hold about 4100 elements in
the non-mortar interface. The number of elements is reduced to approximately 1000 and
500 for the splitting into 3 and 4 scales, respectively. If the single scale solution were to
be found from DNS, it would require a mesh of nearly with 200 000 elements in the non-
mortar boundary, rendering this problem extremely difficult to address. The results for
the multiscale solution following the initial and improved transition schemes are plotted
in Figure 6.14.
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Figure 6.14: Self-affine profile with L = 5mm, H = 0.8,
p

m2 = 0.2 and λl /λs = 4096, at
different magnifications. The numerical model for the RCE of this topography would
require about 200 000 elements at the non-mortar interface. Each subplot shows the
rough profile at the previous (above) shaded region.

Intuitively, as long as the scales are well separated (cf. Equation (6.13)), one could ex-
pect the results to be mostly independent of the number of scales considered for the
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(a) Scale transition with mean pressure
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(b) Improved scale transition

Figure 6.15: Contact pressure evolution with pressure of a wide spectrum topography
(λl /λs = 4096), computed with the mean pressure-based and improved scale transition
strategies, for different numbers of scales ns.
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problem. Starting the discussion with the initial transition scheme, in Figure 6.15a, it can
be visualized that homogenized contact area evolution depends on the number of scales
considered, in particular, for high nominal pressure. In fact, in the region of infinitesi-
mal contact, represented in the inset plot, all the curves are very similar, in particular,
for two and three scales. However, the distance between the curves seems to increase
monotonically with the load, extending until near the full contact.

The improved homogenization is considerably more insensitive to the number of scales,
than the pressure-based alternative. In fact, the curves are almost coincident throughout
all the load range, and for all number of scales examined. Two different levels of dis-
cretization of the pressure distribution were considered, namely ns = 10, which is verified
to represent the converged solution, and also np = 3, based on previous observations that
it represents an optimum value for obtaining accurate solutions. Both results with np = 3
and np = 10 are essentially independent of the number of scales. Comparing these results
with the ones computed with the initial homogenization sequence, it can be noted that by
considering np = 3, the curves at the low pressure region are moved towards the solution
for ns = 2 of the pressure-based transition results, which is arguably the best estimate of
the single scale solution (see Figure 6.12). In addition, it is paramount to observe that the
results for all ns are coincident for np = 3, in the infinitesimal contact regime.

In sum, in this section, interest has been placed on the application of the multiscale ap-
proaches to modeling large problems, practically out of range of DNS strategies. The im-
proved contact homogenization method proves more satisfactory than the initial pressure-
based strategy, inasmuch that it is not sensible to the number of scales considered, and
predicts tightly accurate results, specially when using the optimal value np=3.

6.7 Influence of roughness bandwidth in the real contact area

It has been shown in the previous section that the multiscale strategies can be used to
model rough contact involving wide roughness power spectra. In particular, the improved
scheme seems very convenient to perform such studies, since it has been verified that it
is practically independent of the number of scales involved in multiscale setup, as long
as the bandwidth at each scale is sufficiently large. An interesting topic that can now
be addressed is how the real contact area changes as the width of the power spectrum
increases—or the short cut-off wavelength λs decreases. Note that in this scenario, the
RMS slope is not constant for each topography, since only the high cut-off is increas-
ing, while the rest of the PSD remains unchanged. This is equivalent at measuring the
roughness profile with increasing resolution.

In order to assess numerically the effect of the roughness bandwidth in the real con-
tact area, using the improved multiscale scheme with np = 3, a single topography case
was considered, with H = 0.8, λl = 5mm, and five different bandwidth ratios between
512 and 8192, inclusively. The RMS slope for the largest ratio is fixed at 0.2 and for the
remaining cases it must computed according to the respective ratio and the scale factor
set by the largest bandwidth. Note that for large ratios, e.g., λl /λs = 8192 and λl = 5mm,
it follows that λs ≈ 0.61µm. At this length scale (actually, even for smaller bandwidth
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ratios), the hypothesis of an homogeneous media can naturally be questioned, as the
mesh size would be smaller than the size of microconstituents. Nevertheless, this shall
not be considered here, since simple qualitative results are to be obtained.

Figure 6.16 shows the results for the contact area evolution with nominal pressure for
all examined cases, up to moderately high loads. While it could be hypothesized that the
contact area response would saturate for increasingly wider roughness power spectrum,
following the idea that from a certain short cut-off wavelength on, all smaller wavelengths
would be flattened out. However, this is not verified, and it can be observed in Figure 6.16
that the real contact area decreases monotonically with increasing bandwidth, for the
same applied nominal pressure. In other words, all roughness wavelengths contribute for
real contact area, no matter how short they are.
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Figure 6.16: Evolution of the real contact area with nominal pressure for an increasingly
wide roughness power spectrum.

One can also interpret theses results by plotting the normalized external pressure in
the horizontal axis, as illustrated in Figure 6.17. All results follow a very similar linear
trend, after the introduction of the non-dimensionalization of external pressure. Thus,
even though the RMS slope is different across all cases, since the short cut-off changes,
the non-dimensionalized results are mostly independent of the bandwidth, in the light
contact region (low pressure). The deviations between the results for each bandwidth
may come from inherent errors in the multiscale strategy, and can also be related to the
dependency of the real contact area evolution with the Nayak’s parameter α, as suggested
in Yastrebov, Anciaux, et al. (2017).
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Figure 6.17: Evolution of the real contact area with normalized nominal pressure for an
increasingly wide roughness power spectrum, in the low pressure (light contact) region.

6.8 Three dimensional analysis

From early on in this dissertation, it has been emphasized that rough contact is inherently
a three dimensional problem. Due to their computational attractiveness, a great effort has
been put in performing 2D rough contact simulations, in order to extract general qualita-
tive and quantitative information. In fact, the main downside of the 3D micromechanical
contact models is the high computational complexity, which motivates the application
of multiscale strategies. To complete the numerical framework for modeling rough con-
tact developed during the present work, the aforementioned multiscale techniques are
applied to 3D problems. A key point to mention is that the formulation of the multiscale
approaches does not depend on the number of dimensions of the problem, hence they
can readily be applied to 3D cases. Computational resources scale very rapidly with the
size of 3D problems, thus, they pose serious constraints on the range of topography pa-
rameters which can be tested. In fact, in the following, only multiscale solutions are to be
found, and these are to be assessed via the comparison with reference numerical results,
namely from Yastrebov, Anciaux, et al. (2015).

The contact of a self-affine elastic rough surface characterized by H = 0.8,
p

m02 +m20 =
0.2, λl = 5mm and bandwidth λl /λs = 64 with a rigid flat base is the problem considered
throughout this section. A division into 3 scales is adopted here, each with bandwidth
equal to 4, and the RCE length set to 4 times the low cut-off at each scale. Note that the
two previous specifications violate both the criterion regarding the scale splitting and the
minimum RCE length. On the one hand, it should not be overlooked that those rules have
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been established for 2D contact, and are only means of estimating 3D RCE characteris-
tics. On the other hand, some of the conditions established in the course of this thesis
are conveniently relaxed here, in order to allow the numerical treatment of the problem.

Also the mesh size is required to be much smaller than the ideal. The non-mortar
interface of the macroscale is meshed with 60×60 elements, while the second and third
scales are meshed with 33×33 elements. Observe that as L/λl = 4, and λl /λs = 3

p
64 = 4,

then L/λs = 16. Thus, the macroscale is meshed with a minimum of approximately 4
nodes per asperity (2 in each direction), and the scales 2 and 3 are guaranteed a minimum
of one node per asperity—as in Hyun, Pei, et al. (2004), Pei et al. (2005), and Hyun and
Robbins (2007). Fewer elements are used for scale 2 and 3 since this has been verified
to stabilize the convergence of the algorithm. Owing to such coarse discretization on
the non-mortar boundary, the high resolution region is made up by a single layer of
elements. Only one RCE realization is used for scale 1 (the most nicely behaved), while 3
topography realizations are considered for the scale 2 and 3. The finite element meshes
are illustrated in Figure 6.18. The homogenized results are presented in Figure 6.19, side
by side with several analytical theories and the results from Yastrebov, Anciaux, et al.
(2015). For simplicity, and also based on the physical relevance of this contact area regime,
only the light contact results are presented.

Figure 6.18: Three dimensional finite element meshes for each scale used in the multi-
scale numerical simulations.

Taking into consideration all the restrictions which had to be imposed on the numerical
model, the multiscale results fall fairly near the reference results from Yastrebov, Anciaux,
et al. (2015). The mean pressure transition scheme and the improved strategy with np = 3
predict similar values, which are larger than the results from the converged improved
scheme (np = 10)—has likewise realized for 2D contact. Additionally, recall that poorly
discretized RCEs lead, in general, to the overestimation of the real contact area (cf. Fig-
ure 5.17). From this result, it can be argued that the numerical solutions determined by
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the multiscale strategy could provide a better approximation of the reference values, if
the RCE dimensions were set to the calibrated standards.

The results published in Yastrebov, Anciaux, et al. (2015) are presented following a
philosophy slightly different from the one adopted here, defining an array of low and
high cut-offs wavelength, thus repeating some ratios λl /λs . For this reason, the graph-
ical representation of the their results, in Figure 6.19, corresponds to a shaded region,
which embeds all the points in the original publication. As a word of caution, in the
aforementioned work, the authors introduce the same set of curves twice. In their second
iteration of the plot, the contact area is corrected with some factor. The region plotted in
Figure 6.19 concerns the first, uncorrected, set of contact area curves,

Regarding the analytical model, it can readily be seen that the original BGT and the
GW-SE are clearly not fit to describe the contact area evolution in this case. In fact, for
the considered topography, the spectral breadth is α= 73.7, and for such large values of
this parameters, it has already been discussed that the results diverge significantly from
well-known asymptotic limits (see Chapter 4). Both the asymptotics of the BGT model
and Persson’s theory provide approximate upper and lower bounds, respectively, for the
real contact area curves, and the homogenized results presented in this section fall inside
such region. Actually, the curve for the mean pressure homogenization (MS - Mean) and
for the improved scheme with np = 3 end up almost hiding the the Asymptotic BGT curve,
due to the superposition of numerical and analytical results.

In addition to the contact area evolution curve, it also common to analyze its deriva-
tive, since typically a linear evolution of the contact area with the load is sought for, and
the linearity coefficient is the key parameter for such characterization. In Chapter 4, it
has been shown that the linearity coefficient, or in other words, the normalized deriva-
tive of the contact area curve, is

p
2π for the Asymptotics BGT and

p
8/π for Persson’s

model. These results are plotted in Figure 6.19b, together with the reference values and
the numerical derivatives of the homogenized results, computed with centered finite dif-
ferences. Since few realizations were considered for each scale, the numerical derivatives
of the contact area curves appears with an irregular behavior. Therefore, for the sake of
analyzing and improving the readability of the results, a cubic function with 3 degrees
of freedom is fit to each of the homogenized curves—it is forced that the fitted curve is
zero for zero pressure. The derivative of the fitting function is plotted in Figure 6.19b.
Despite the fact that the reference numerical values (Yastrebov, Anciaux, et al., 2015) of
the derivatives are not quantitatively captured by the homogenized solutions, the overall
qualitative tendency, i.e., decreasing derivative with increasing load, is well predicted.

Before closing this chapter, it is interesting to analyze the distribution of contact forces
and contact spots throughout the loading, in a 3D numerical model. Figures 6.20 and 6.21
provides a graphical representation for both evolutions, regarding the macroscale model.
At light loads, contact starts at several disconnected small sized spots, which grow and
coalesce with neighboring contact regions, with increasing external load. As the full con-
tact condition is approached, the contact forces distribution resembles a scaled copy of
the original rough topography.
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(a) Contact evolution curve for light contact
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(b) Normalized derivative of the contact area curve

Figure 6.19: Results for the real contact area and respective derivative, computed with
the multiscale strategy, and comparison with analytical solutions and results from other
authors.
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(a) p0 = 905MPa (b) p0 = 2581MPa

(c) p0 = 6436MPa
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(d) p0 = 19377MPa

Figure 6.20: Distribution of the contact forces on the non-mortar interface of the
macroscale topography considered for the 3D analysis. The dark dots denote active
nodes.
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Figure 6.21: Active nodes and contact area fraction at different stages of contact.
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Chapter 7

Concluding remarks and future work

In this dissertation, the elastic, non-adhesive and frictionless contact between self-affine
rough topographies and a rigid and flat surface is modeled within a single scale and mul-
tiscale finite element method framework coupled with a dual mortar contact formulation.
The multiscale approach, based on contact homogenization, aims at reducing the com-
putational resources required to model rough contact across a wide range of scales, while
preserving the accuracy of the solution relative to the single scale model. The majority of
the numerical simulations have been carried out for Signorini problems in two dimen-
sions, concerning the contact between an elastic rough profile and a rigid flat base. The
multiscale strategy is then extended to the contact of numerical rough profiles with a
remarkably wide roughness spectrum and also to three dimensional contact of rough
surfaces.

The main conclusions of present dissertation are presented in the following, including
an explicit reference to the original contributions introduced in this work. Finally, an
outlook for future works is provided at the end of this chapter.

7.1 General conclusions

In the numerical modeling of rough contact, the ability to generate discrete rough to-
pographies verifying well defined characteristics is of high practical interest. Thus a thor-
ough review on roughness characterization techniques is presented, focusing on the spec-
tral description via the Power Spectral Density, and its connection with self-affine rough-
ness. Then, the numerical generation of randomly rough topography is addressed. Two
FFT-based generation algorithms have been implemented from scratch, one for the gen-
eration of Gaussian topography (J.-J. Wu, 2000b) and other focused on non-Gaussian
topography (J.-J. Wu, 2004). Both are capable of generating periodic profiles and surfaces
from any given input Power Spectral Density or Autocorrelation Function. Additionally,
the non-Gaussian generator can guarantee, in an approximate sense, prescribed values
for the skewness and kurtosis on the synthesized topography. While the prescribed ACF is
only approximately recovered at the output, with larger deviations for increasingly longer
autocorrelation lengths, the prescribed PSD is preserved throughout the numerical pro-
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cedure, for both algorithms. Furthermore, it has been verified that the heights distribu-
tion of the artificially generated topography, produced with the Gaussian generator, are
normally distributed if the low cut-off wavelength is small, in comparison with the topog-
raphy length (approximately for L > 4λl ). Surfaces and profiles synthesized with the non-
Gaussian algorithm can verify accurately the prescribed skewness and kurtosis. While the
kurtosis does not influence considerably the convergence of the algorithm, skewness is
verified to cause a major impact. In particular, by prescribing large values for the skew-
ness (more than 2, in magnitude), the non-Gaussian algorithm struggles to converge. In
truth, the effect of skewness and kurtosis is combined, since varying the required kurtosis
helps some cases with large skewness to converge. Nonetheless, the influence of skew-
ness is much more striking. These numerical methods have been applied to real cases,
by using experimental measurements on the washer of a roller bearing and on the flank
of a gear tooth, before and after power loss tests. The autocorrelation function, skewness
and kurtosis of the output topographies match closely the input counterparts, and the
spatial distribution of heights is verified to resemble accurately the original topography.

The framework for single scale modeling of rough contact is established by assem-
bling the random topography generator, the mesh generator and the finite element code
(LINKS), within a set of Python scripts. Single scale finite element analyses on 2D self-
affine rough contact have been performed, with the purpose of establishing the condi-
tions under which the micromechanical contact problem is representative—the so called
Representative Contact Element (RCE). This issue has not been addressed frequently in
the literature, in particular, in the context of finite element modeling. The RCE param-
eters which need to be characterized for some topography (described by the long and
short cut-off wavelengths, Hurst roughness exponent and RMS slope) are the mesh size,
rough block length and height. From the mesh convergence test, it has been concluded
that, in order to obtain a representative solution for the contact area-pressure curve, it
must be guaranteed that a minimum of 4 nodes exist in each asperity. This is equiva-
lent to stating that the mesh step must be 8 times smaller than the shortest wavelength
contained within the profile. With regard to the RCE length, the numerical results sug-
gest that it shall be at least 8 times the longest wavelength of the profile, such that the
mechanical response is representative. The RCE height does not impact the contact area
results, as long as it is not excessively small. However, in order to resolve properly the
stress field within a thin region near the rough boundary, the height must be kept at least
at 160 times the RMS height, and the height of the high resolution mesh shall measure at
least 40 times the RMS height. The number of different topography realizations used to
determine the average response of the micromechanical problem is also paramount. By
comparing the standard deviation of the mean contact area response for different sam-
ples with the same number of realizations, it has been concluded that at least 10 different
RCE’s are required to reduce standard deviation of the contact area curve down to some
acceptable tolerance and, thus, assure a representative mechanical response.

The single scale simulations also confirmed how rapidly the computational resources
required to solve the rough contact problem grow with increasing spectrum bandwidth.
Therefore, a multiscale approach for the prediction of the real contact area, based on the
contact homogenization strategy proposed in Wagner (2018), has been implemented in
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the numerical framework. It consists in dividing the topography into several scales, by
introducing several splitting frequencies in the PSD. This multiscale strategy is classified
as an information-passing type, since the simulation of all roughness scales are uncou-
pled, and the multiscale solution is computed via an homogenization procedure, in a
post-processing operation. Several fundamental aspects of the multiscale approach are
discussed for the first time in this dissertation, namely, a systematic rule for the defini-
tion of the splitting frequencies, based on the uniform distribution of computational load
across scales. Additionally, the numerical scheme for the evaluation of the real contact
area and the consistency of topography generation at the microscale are addressed, as
well. By applying the multiscale procedure to roughness profiles with spectra of various
widths (in a two-scales setup) and inspecting the quality of the results and their com-
putational cost, it is verified that the homogenized solution matches the DNS solution
closely at light contact, for ratios λl /λs ≥ 32. For larger contact area fractions, the DNS
and the multiscale solution do not give the same area response. Nonetheless, the differ-
ences in resources usage starts to become very pronounced, specially for wide spectra.
For example, for λl /λs = 64, the single scale results require about 80 GB of RAM, and take
approximately one day to finish, while the multiscale approach with 2 scales completes
within nearly 50 minutes, and requires less than 2 GB of RAM.

In order to improve the quality of the contact area predictions of the multiscale ap-
proach, a new contact homogenization procedure is proposed. The basic idea consists in
incorporating several discrete pressure values, extracted from the pressure distribution
at each scale, in the scale transition. Then, the multiscale solution is computed via a
weighted average multiplicative homogenization step, so that the averaging procedure is
based on the multiplication of the real contact area fraction at some scale, with a weighted
average of the contact areas of the smaller scales, computed at the discrete contact pres-
sure at the larger scale. This introduces a new adjustable parameter, being the number of
pressure values discretized from the contact pressure distribution. Again, for large band-
widths, this strategy can reproduce almost exactly the DNS solution for small loads, even
if only 3 discrete contact pressure values are considered for the homogenization step.
Additionally, the homogenized results are observed to converge for a solution close to
the DNS results, at moderately high loads, with increasing number of discrete pressures.
The initial and improved homogenization strategies have been applied to rough profiles
with considerably wide spectra, λl /λs = 4096, which, to the author’s knowledge, have not
been analyzed in the literature. For such scenario, numerical tests have been carried with
different number of scales. The results computed with the improved homogenization
technique are practically independent of the number of scales considered, as long as the
spectrum width at each scale is sufficiently wide. The initial multiscale approach, how-
ever, shows quite sensitive results to the number of scales considered. By employing the
improved multiscale strategy, a qualitative study on the influence of the roughness power
spectrum bandwidth in the real contact area was performed. It was verified that every
roughness scale contributes significantly for the real contact area, in particular, by increas-
ing the roughness bandwidth, the real contact area decreases in a monotonic fashion, for
the same applied load, and no signs of saturation in the response have been observed.
Nevertheless, the non-dimensionalized results are mostly insensitive to the width of the
power spectrum.
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Finally, the multiscale approach is applied to a 3D problem, which is, in fact, the ulti-
mate goal of such strategies. The homogenized contact area results, for light contact, lie
very close to numerical results obtained by other authors, and also within the acceptable
range, relative to analytical micromechanical contact models.

7.2 Original contributions

In the course of this dissertation, two novel computational aspects were introduced
in the rough contact modeling framework, namely, a modification of the original non-
Gaussian generation algorithm by J.-J. Wu (2004), and an improved contact homogeniza-
tion scheme. While the modification of the non-Gaussian generation ended up having
virtually no influence in the global context of this thesis, and is mentioned here only for
future reference, the proposed contact homogenization strategy is one of the milestones
of the present work.

In the original non-Gaussian generation algorithm, the author refers that the optimiza-
tion procedure incorporated in the global algorithm can be solved by applying "some
numerical method, such as the bisections method". However, by numerical experience, it
has been observed that the convergence of such iterative procedure is highly dependent
on the initial guess. In order to improve the robustness of the generation algorithm, the
iterative procedure is preceded by a brute force trial-and-error strategy, in order to se-
lect the best initial guess for the optimization procedure. With this modified generation
algorithm, the overall precision of the method in the output skewness and kurtosis is
significantly improved.

The multiscale approach for contact area prediction proposed by Wagner (2018), based
on a multiplicative homogenization step, has been verified to provide an accurate solu-
tion for light contact, as long as the spectrum width is sufficiently large. However the
accuracy for moderately to high loads deteriorates, even for such spectra. In order to
enhance the multiscale solution, a new scale transition step consisting in a weighted
average multiplicative homogenization step is proposed. This procedure can predict
accurate solutions for both low and high external pressure, by adjusting the number of
discrete points in the pressure distribution. Additionally, it is also verified to be insensitive
to the number of scales, for wide bandwidths.

7.3 Future work

Throughout this work, some aspects were referred to be amenable for treatment in fu-
ture developments. In fact, multiscale modeling of rough contact by means of the finite
element method is a relatively recent research field, and there is a wide margin for pro-
gression. In addition, several aspects, as those mentioned in the main chapters of this
document, require further clarification. Future developments on the topic may address
the following points.
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• Extension to frictional contact. In truth, the multiscale approach to frictionless
contact is an essential development towards the formulation of a multiscale frame-
work to model frictional contact, as in the original work of Wagner (2018). There-
fore, the extension of the multiscale strategy developed in this dissertation to model
friction is certainly of primary interest, due to the practical and multidisciplinary
importance of friction.

• Implementation of an improved topography generation algorithm. Despite that
only Gaussian topography has been considered for the contact analysis, the numer-
ical tests on the non-Gaussian generator suggest that the range of skewness and
kurtosis on which the algorithm’s accuracy is assured is quite limited. The hybrid
method proposed by Francisco and Brunetière (2016) seems to be less restrictive,
and shall be considered if the limitations of the currently implemented algorithm
become unacceptable.

• Assessment of the microscale topography generation. Within the multiscale frame-
work employed in this contribution, the microscale topography was generated di-
rectly with the required length. As has been remarked, by doing so, the discrete
spectrum of the microscale topography will contain less points than the full scale
analogous. Since the discrete frequencies of the full scale spectrum are not com-
pletely represented at the lower scales, the microscale topography may verify dif-
ferent properties in comparison with respective component at the full scale topog-
raphy. This issue shall be studied thoroughly, in order to determine the minimum
frequency representativeness required at the microscale.

• Incorporation of the global body shape. The present work concerns only microme-
chanical contact. Naturally, these micromechanical models are part of the interface
of a real macroscale contact situation, for example, regarding the contact between
a sphere and a flat base. While only micromechanical variables have been ana-
lyzed, the incorporation of the real body shape as the largest scale in the multiscale
analysis is paramount for predicting interface properties in real applications.

• Definition of a 3D Representative Contact Element. The representativeness as-
sessment for the micromechanical problem concerned only 2D rough contact. Nat-
urally, these investigations shall also be validated more extensively for 3D cases.

• Validation of the numerical contact area evaluation. It has been remarked that
the real contact area, within the dual mortar finite element method, can be com-
puted either following a geometrical argument, or via the Lagrange multipliers. In
the course of the present thesis, one of the two formulations has been adopted,
yet knowing beforehand that they predict different contact area ratios for the same
load. This issue shall be substantiated by experimental evidence, which will, most
likely, favor one of the alternatives as the physically more correct scheme.

• Modeling of more complex cases in frictionless contact. The multiscale approach
can be extended to model more complex situations, such as anisotropic roughness
and the contact of non-Gaussian surfaces. The latter topic is very appealing, since
there is no clear understanding on how classical non-Gaussian parameters, such
as skewness and kurtosis, change within different scales. Additionally, non-linear
material laws, namely, elasto-plasticity, are also prone to investigation.
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Appendix A

Notes on Fourier transforms

While the spatial characterization of random rough surfaces is useful in identifying peri-
odicity of random surfaces and evaluating the correlation between its points, the spectral
characterization in the frequency domain provides powerful ways to describe the sur-
faces, regarding the importance of each frequency in the surface shape. Furthermore, the
fractal behavior of rough surfaces is closely related to their spectral properties, since in-
creasing the magnification of a fractal leads to the revelation of higher frequencies—the
topography is visualized with more details.

The classical approach the the computation of surfaces’ spectral properties is based on
concepts of Fourier Analysis. In particular, the Discrete Fourier Transform (DFT), mostly
known due to the efficient Fast Fourier Transform (FFT) algorithms, is extremely relevant
in the numerical evaluation of Fourier Transforms, since it describes both frequency and
time (space) at discrete points and frequencies.

In the following sections, some basic features of Fourier Analysis are presented, as a ba-
sis for their usage in rough surface description and on the numerical generator of random
rough surfaces. Firstly, the Fourier series and the continuous Fourier Transform are pre-
sented, since they establish the fundamental concepts of Fourier Analysis (even though
they are not explicitly used through the text). Following the basic concepts stated through
the continuous Fourier Transform, its discrete versions, namely, the Discrete-Time Fourier
Transform (DTFT) and the Discrete Fourier Transform are revisited, with special focus
on the DFT, the only one relevant for computer implementation. The next paragraphs
provide a compact but by no means exhaustive introduction to the principal concepts
of Fourier transforms. Nevertheless, for a comprehensive treatment on the topic, the in-
terested reader is referred to Kreyszig (2010), Chaparro (2010), Newland (1984), Orfanidis
(1996), and Rao et al. (2011).

A.1 Fourier series

A function f (x) is called periodic of period λ (wavelength), if λ is the smallest value that
verifies

f (x +nλ) = f (x), ∀n ∈Z , (A.1)
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where Z denote the set of integers. Under these conditions, λ is also commonly termed as
the fundamental period of the function. The Fourier analysis is based on the fundamental
fact that it is possible to represent a periodic function of period λ as the superposition of a
infinite number of sinusoidal functions, whose frequency is a multiple of the fundamental
frequency k f . Note that this frequency is defined as the angular frequency (expressed in
rads−1) in the time domain and as the wavenumber in the spatial domain (expressed in
radm−1). Mathematically, this can be written as

f (x) = a0 +
∞∑

n=1

[
an cos

(
nk f x

)+bn
(
sinnk f x

)]
, where k f =

2π

λ
. (A.2)

The coefficients a0, an and bn are called the Fourier coefficients, and are given by the
following relations:

a0 =
1

λ

∫ λ
2

− λ
2

f (x) dx ; (A.3a)

an = 2

λ

∫ λ
2

− λ
2

f (x)cos
(
nk f x

)
dx ; (A.3b)

bn = 2

λ

∫ λ
2

− λ
2

f (x)sin
(
nk f x

)
dx . (A.3c)

As a brief example, we shall consider a sawtooth-wave function of period 2π,

f (x) = x +π for−π< x ≤π, with f (x +2π) = f (x) . (A.4)

The Fourier coefficients of this function are:

a0 =π ;

an = 0;

bn =− 2

n
cos(nπ) .

(A.5)

A graphical representation is provided in Figure A.1, showing the partial sums of the
Fourier series SN , i.e., the truncated summation until n = N . It can be observed that the
inclusion more harmonics in the summation leads to a more precise result.

Alternatively, the Fourier series in Equation (A.2) can be rewritten using complex expo-
nentials. Denoting by i =

p
−1 the imaginary number, the complex Fourier series can be

stated as

f (x) =
∞∑

n=−∞
cne ink f x . (A.6)

The coefficients cn are to be obtained in a similar fashion as an and bn , namely

cn = 1

λ

∫ λ
2

− λ
2

f (x)e−ink f x dx . (A.7)
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Figure A.1: Partial sums of the Fourier series of a sawtooth-wave.

It should be highlighted that when the Fourier series are written in a complex form rather
than with trigonometric functions, one needs to sum both positive and negative harmon-
ics (waves with negative frequency). This comes as a consequence of writing a real valued
function using complex numbers. The contribution of a real harmonic of frequency nk0

to the function f (x), is thought as the contribution of a real sinusoidal. Thus, using the
mathematical abstraction of complex numbers to represent the real variable, the real si-
nusoidal wave is to be related to the complex number. Using Euler’s formula, it follows
that

e ink f x = cos
(
nk f x

)+ i sin
(
nk f x

)
, (A.8a)

and

e−ink f x = cos
(−nk f

)+ i sin
(−nk f x

)= cos
(
nk f x

)− i sin
(
nk f x

)
. (A.8b)

By taking the difference of these relations, it results

sin
(
nk f x

)= 1

2

(
e ink f x −e−ink f x

)
. (A.9)

This means that in order to know the contribution of a real valued sinusoidal wave with a
specific frequency, one needs to compute the contribution of two complex exponentials
with symmetric frequencies. In fact, one shall expect that the contribution of frequencies
nk f and −nk f are the same. Additionally, for a real valued function, one can write that
f (x) = f ∗(x), where the superscript (·)∗ stands for the complex conjugate, which means
that

cn = 1

λ

∫ λ
2

− λ
2

f (x)e−ink f x dx , (A.10a)

and

c∗n = 1

λ

∫ λ
2

− λ
2

f (x)e ink f x dx . (A.10b)

Inspecting Equations A.10 in more detail, it can be concluded that

cn = c∗−n . (A.11)
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This property is valid not only for Fourier series, but for Fourier transforms as well, when
applied to real valued functions—this is called the conjugate symmetry property, an impor-
tant concept when dealing with discrete functions. In fact, it can be readily interpreted:
since for real valued functions the sum of imaginary parts must be zero, for symmetric
frequencies the real part of each pair of symmetric frequencies (involving the cosine) will
add up, and the imaginary part (involving the sine) will cancel out.

In sum, when using complex exponentials to express the contribution of a real valued
sinusoidal wave, one considers the contribution of two complex exponentials of symmet-
ric frequencies. However, due to the conjugate symmetry property, all the information is
contained in a single complex exponential.

A.2 Fourier transform

While Fourier series are typically used when dealing with periodic functions only, they
can still be applied to non-periodic signals in order to investigate its frequency content.
Such analysis can be carried out by still assuming a periodic function of period λ, such
that its Fourier series can be computed by setting the period tend to infinity and, thus,
setting the function as non-periodic. In doing so, the summation in Equation (A.6) will
yield an integration, because as the smaller the fundamental frequency is, the closer the
harmonics will be between each other. The Fourier Transform of an integrable function
f (x), this is, whose integral in all x-domain is finite, can be stated as

F
{

f (x)
}= F (k) =

∫ ∞

−∞
f (x)e−ikx dx . (A.12)

Its Inverse Fourier Transform follows1

F−1 {F (k)} = f (x) = 1

2π

∫ ∞

−∞
F (k)e ikx dk . (A.13)

The Fourier Transform of f (x), since it is expressed as an integral over the frequency
domain, can be interpreted as the intensity density of sinusoidal waves of frequency k
contained in the function. This is, a specific frequency frequency k has zero contribution
to the function, since f (x) results from the superposition of infinite frequencies around k.
To get the contribution of frequencies around k, one needs to integrate over k, such that
F (k) acts like a measure of intensity per frequency interval. The role of F (k) is basically
the same as cn from the Fourier series: it is a complex number (in general) that contains
the contribution, both in magnitude and phase, of sinusoidal waves of frequency k in the
function f (x)—its frequency content. The conjugate symmetry property can be applied
to the Fourier Transform as well. In doing so, one can conclude that the magnitude of
the Fourier Transform is symmetric along the frequency domain |F (k)| = |F (−k)|, if the
function is real valued..

1The presence of 2π in the denominator of Equation (A.13) is not consistent in the literature. For example,
Kreyszig (2010) uses

p
2π in the denominator of both the Fourier Transform and on the Inverse Fourier

Transform. Here the definitions in Equations (A.12) and (A.13) is employed.
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A.2.1 Convolution theorem

The Fourier Transform encompasses a very useful property, stated by the convolution
theorem. This property is widely used in its DFT (or FFT) version, to compute the convo-
lution of two signals very efficiently. The linear convolution of two continuous functions
f and g is defined as

[
f ∗ g

]
(τ) =

∫ ∞

−∞
f (x)g (τ−x) dx . (A.14)

Inspecting Equation (A.14), a linear convolution operation is performed by taking the
symmetry along the x-axis of one of the functions, and then sliding it along the x-axis,
such that it is displaced relative to the other. These two functions are then multiplied,
and the result is integrated over all domain. The convolution theorem states that

F
{

f ∗ g
}=F

{
f
}
F

{
g
}

. (A.15)

Thus, it is possible to compute the linear convolution of two functions via the product
of their Fourier Transforms, making use of Equation (A.15) and taking its inverse Fourier
Transform.

A.3 Discrete-Time Fourier Transform

In real applications, the possibility to handle with continuous functions or signals is very
uncommon. Instead, one typically has to work with a finite number of points, either sam-
pled from a real measurement or discretized using a computer. While the tools presented
previously are suited to work with continuous functions/signals, they can still be adopted
to deal with discrete-time or discrete-point signals.

First of all, a sampled signal needs to be extracted from a continuous one. If the sam-
pling of the signal is done with a period ls at points x = nls , to get a finite-energy signal, i.e.
to keep the signal integrable and with non-zero integral, the sampling can be described
by the application of several impulse functions at every sampling points. Let δ(x −nls)
be the Dirac Delta function applied at point x = nls . Assuming the summation is done
for n between −∞ and ∞, the sampling function is

δs =
∑
n
δ(x −nls) . (A.16)

Multiplying the sampling function by the original continuous signal, the sampled signal
can be generated by

fs(x) =
∑
n

f (nls)δ(t −nls) . (A.17)

At this stage, the computation of the Fourier transform of the sampled signal, using the
linearity properties of the Fourier Transform, and the transform of the Dirac Delta func-
tion, yields the result

Fs(k) =
∑
n

f (nls)e−ikls n . (A.18)

Notice that the function f is now written with square brackets f [·], denoting a discrete
function. Finally, defining the discrete frequency ω= lsk = 2πk/Ωs , and suppressing the
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sample period ls from the argument of the function, we obtain the Discrete-Time Fourier
Transform of a discrete signal f [n]

Fs(ω) =
∑
n

f [n]e−iωn , for −π<ω<π . (A.19)

The respective inverse transform comes

f [n] = 1

2π

∫ π

−π
F (ω)e iωn dω . (A.20)

Note that, even though the signal is a discrete in the x-domain, its DTFT of is continuous
and periodic of period 2π in the discrete frequency ω. In other words, recovering the
definition of discrete frequency ω, the period of the DTFT is equal to the sampling period
ls in the physical/real frequency. The periodicity can be readily demonstrated as

Fs(ω+2π) =
∑
n

f [n]e−i(ω+2π)n

=
∑
n

f [n]e−iωne−i2πn

=
∑
n

f [n]e−iωn

= Fs(ω) .

(A.21)

Finally, it is important to mention that Equation (A.19) defines the DTFT of f [n] for
every frequency ω. Since it is periodic (with period 2π), one only needs to define F (ω)
within a period, which is taken to be between −π and π. It is noteworthy to refer that in
all the definitions above, f (x) is assumed a continuous function defined for every x, and
that the discrete signal f [n] is sampled from f (x) at a infinite number of points through
all the domain.

A.3.1 Nyquist-Shannon sampling theorem

As already discussed, the DTFT of a discrete signal f [n] is a continuous and periodic
function of the discrete frequency ω. Its period is equal to 2π, which is equivalent to
stating that it is a continuous and periodic function of the spatial frequency k with period
equal to Ts . Alternatively, the DTFT can be rewritten as

Fs(k) = 1

ls

∞∑
r=−∞

F (k − rΩs), with Ωs =
2π

ls
. (A.22)

This means that the Fourier Transform of the sampled signal f [n] can equally be written
as the superposition of the Fourier Transform of the real function f (x), shifted in the
frequency domain by a multiple of the sampling frequency, and scaled by a constant
equal to the inverse of the sampling period. Additionally, the periodicity of the DTFT can
be verified.

In order to analyze the consequences regarding the frequency representation of taking
a infinite sampled signal as a representation of a continuous one, consider a continuous
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real function f (x) whose Fourier Transform is limited by a frequency kmax. Due to the con-
jugate symmetry property, it follows that F (k) is also limited by −kmax (existing symmetry
along the frequency axis). Figure A.3a shows the Fourier Transform of the continuous sig-
nal. In Figures A.3b and A.3c, it is presented the contribution for the DTFT of each shifted
version of the transform, which matches the DTFT in Figure A.3b. The DTFT of the sam-
pled signal corresponding to the contributions in Figure A.3c is shown in Figure A.3d. On
one hand, if the continuous signal is sampled with a sufficiently high frequency, the DTFT
will be composed of several scaled Fourier Transforms of the continuous signal that do
not overlap. On the other hand, if signal is sampled with a low sampling frequency, there
will occur overlapping between the different contributions. Real world signals, or ones
generated in the computer, are sampled signals, not continuous ones. Consequently, the
frequency content of those signals are related to their DTFT. By not choosing a sampling
frequency high enough, the frequency content of those discrete signals will not match
the continuous signal frequency content, due to the overlapping, as shown in Figure A.3c.
This leads to the distortion of the frequency content, cf. Figure A.3d, where the contri-
butions of two overlapping frequencies cannot be distinguished, as only their sum is
known, and, therefore, the continuous original signal cannot be recovered. In order to
avoid the overlapping and to keep the original frequency content intact after sampling,
the sampling frequency must verify the following relation

Ωs ≥ 2kmax . (A.23)

This is know as the Nyquist-Shannon sampling theorem, and kmax is the maximum fre-
quency in the continuous signal (if the signal is band-limited). One can also think the
other way around, saying that the maximum frequency that can be resolved by sampling
with frequency Ωs—(termed as the Nyquist frequency)—is

knyq = Ωs

2
. (A.24)

In the case of overlapping, this is, when Equation (A.23) is not verified, it lead to the
phenomenon of frequency aliasing. Aliasing, as the name suggests, happens when two dif-
ferent frequencies, in a continuous signal, look similar in the discrete one. They acquire
an alias, and its not possible to distinguish between them in the DTFT of the discrete
signal. Figure A.2 provides a geometrical interpretation of the aliasing effect. Two con-
tinuous sinusoidal waves are plotted, one with a frequency k1, smaller than half of the
sampling frequency, and other with a higher frequency, equal to the sum of k1 with the
sampling frequency. Simultaneously, discrete points taken from each one of the waves
at points x = nTs are plotted. It can readily be seen that the discrete points match in
both curves. The DTFT sees these discrete points, not the continuous curves, so, the two
frequencies will look alike, making it impossible to distinguish between them. If the high
frequency is not present in the real signal, there is no problem, since its contribution is
null. Even if the DTFT cannot distinguish the two frequencies, the overlap of both con-
tribution will result in the original contribution of the lower frequency. Yet, if the high
frequency is present in the real signal, the DTFT cannot distinguish between the con-
tributions of the two frequencies, because they look the same, distorting the real DTFT,
like in Figures A.3c and A.3d. Figure A.2 also leads to a geometrical interpretation of the
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Nyquist-Shannon theorem: the maximum frequency that can be detected by the DTFT is
equal to half of the sampling frequency. This is the case when just two points are sampled
per oscillation, one in the top half-wave and other in the bottom half-wave, representing
the minimum condition for detecting a frequency.

Finally, this discussion suggests a reason to define, in Equation (A.19), the DTFT be-
tween −π and π, and not between any other frequency interval. Since it is periodic, one
could write the function in any interval as long as its width would be equal to the period
of the function. The discrete frequencies between −π and π are minimum frequencies
for which the discrete representation directly suggests the frequency of the signals. For
higher frequencies, the discrete representation of the wave would graphically leads to a
wrong perception of the true frequency of the signal, due to frequency aliasing.

0 1 2 3 4 5 6 7 8
n

si
n

k
λ

s
x

k1 <Ωs/2
k1 +Ωs > ks/2

Figure A.2: Frequency aliasing effect. The sampled signal, plotted as circular dots, fit in
both both frequencies, then it is impossible to distinguish between these frequencies
from the sampled signal.

A.4 Discrete Fourier transform

So far, focus has been placed on signals theoretically infinite, whose frequency content,
or spectrum, is continuous. Signals verifying these conditions cannot be analyzed nu-
merically, since they require a continuous integral for the IDTFT and a infinite signal.
Therefore, this hypothesis is relaxed and, even though it may lead to a less accurate rep-
resentation of the spectrum, it enables the application of various numerical procedures.

The infinite discrete signal hypothesis is removed by truncating the signal at a finite
number of points. Naturally, if the truncated signal is non-zero, there is some amount of
lost information and the DTFT of the infinite signal will not be the same as the finite one.
Truncating a signal is done by multiplying the signal by a window function (also called
windowing the signal). The most straightforward strategy being the multiplication by a
window function, which is unitary in the points one wants to keep and zero everywhere
else. This induces a change in the DTFT of the original signal, which can be given by the
convolution of the DTFT’s of both the original signal and the window function. Frequently,
windowing a signal leads to frequency leakage and, thus, high frequency components that
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kmax −kmax k
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(a) Fourier Transform of the continuous function
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|Fs(k)|

(b) DTFT of the sampled function with Ωs > 2kmax
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Ωs
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(c) Contributions for the DTFT of the sampled function with Ωs < 2kmax
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Ωs
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(d) DTFT of the sampled function with Ωs < 2kmax

Figure A.3: Fourier Transform (magnitude) of the continuous signal and discrete signal
for 2 values of the sampling frequency. When the Fourier transform of the continuous
functions is bounded by a maximum frequency kmax, if the sampling frequency is greater
then 2kmax, it remains unchanged after sampling, as shown in Figure A.3b. On the other
hand, if the sampling frequency is less than 2kmax, theres is overlapping between the
original spectrum and the shifted versions (Figure A.3c) which results in distortion of the
real spectrum, depicted in Figure A.3d
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would not exist in the original DTFT will show up due the discontinuity of the windowed
signal on the limits of the window function (Orfanidis, 1996).

Regarding the treatment of the continuous integral in the computation of the IDTFT,
there is a need to convert this integral to a discrete one (or the DTFT to a discrete-
frequency version). The Discrete Fourier Transform (DFT) is obtained from the DTFT
by sampling this function at N equally-spaced, discrete frequencies

Fs[q] =
∞∑

n=−∞
f [n]e−i2πqn/N , q = 0,1, ..., N −1 . (A.25)

Note that

Fs

(
ω= 2π

N
q

)
= Fs

(
k = q

N
Ωs

)
= Fs[q], q = 0,1, ..., N −1 . (A.26)

Here, the subscript s is kept as a reminder that the sampling is done in the DTFT, which is
the Fourier transform of the sampled signal, and might not be the same as the continuous
signal, based on what it was discussed earlier. The sampled spectrum can be rewritten as
follows (Proakis and Manolakis, 2007)

Fs[q] =
N−1∑
n=0

[ ∞∑

l=−∞
f [n − l N ]

]
e−i2πqn/N =

N−1∑
n=0

f̃ [n]e−i2πqn/N , q = 0,1, ..., N −1 . (A.27)

The new signal f̃ [n] is periodic, with period N , and can be tough as a periodic, wrapped
version of the original signal f [n]. It is called wrapped version of the original signal, be-
cause it is built by shifting the original signal by multiples of N points and summing all
together, resulting in a wrapped, compact signal. On the other hand, the wrapped signal
can be rebuilt as (Proakis and Manolakis, 2007)

f̃ [n] = 1

N

N−1∑
q=0

Fs[q]e i2πqn/N , n = 0,1, ..., N −1 . (A.28)

Equations (A.25) and (A.28) hold two very convenient results. First, it is possible to recon-
struct the wrapped version with length N of a signal f [n], using N points from the its
spectrum. Conversely, using a finite N point signal, it is possible to get N equally-spaced
points from the unwrapped signal’s spectrum over a whole period. This correspondence
from a N point signal to a N point spectrum, enables the use of this technique in a digital
computer. Nevertheless, this procedure deals with the wrapped version of the discrete sig-
nal, which is different from the real signal. To work this out, the only variable parameter
is the number of sampling points of the spectrum, N .

Figure A.4 illustrates the difference between the original and wrapped discrete signal
for two different situations: one where the number of sampling points of the signal L
is greater than the number of sampling points of the spectrum N , and other where the
length is less than the number of sampling points. The periodic behavior of f̃ [n] can be
observed very clearly, and it resembles the periodicity of the DTFT, in Figure A.3, where
the Fourier transform was shifted at multiples of Ωs . Now the shift is done in x-domain
instead, and on the original signal. Considering that the signal is of finite length L (like
in Figure A.4a) N is chosen to be greater than L, the size of signal. The wrapped signal
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(a) Original signal of length L
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L−1
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f̃ [n]

(b) Wrapped signal for N ≥ L
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L−1 n

f̃ [n]

(c) Wrapped signal for N < L

Figure A.4: Wrapped signals with different lengths, built by extending the original signal
periodically, and summing all the shifted versions of the original signal within each period.
It is identical to the DTFT in Figure A.3, performed on time domain. When N is greater
than the length of the signal, its wrapped version, in Figure A.4b, contains the original
signal padded with zeros. If N is less than L, it happens time aliasing, and the wrapped
signal, plotted as circular dots in Figure A.4c, is obtained as summing the shifted versions
of the original signal (small square dots).

contains the original within a period N , together with N − L padded zeros, making it
possible to recover the original signal. However, when N is chosen lesser than L, several
shifted versions start overlapping and adding to each other. This phenomenon is similar
to what happens in the frequency domain of the DTFT and is commonly termed as time
aliasing.2 The contribution of the original signal from different x-points add up, making
the wrapped signal look different (distorted) when compared to the original. Since the
difference between those x-points cannot be identified, it is impossible to recover the

2These concepts are typically used in signal processing, where x stands for the time variable.
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original signal from this situation. Note that time aliasing always happens to infinite
signals, since N is a finite integer (all this discussion is about making a discrete and
finite representation of a spectrum). This is not such a problem, since in real applications
signals are always finite.

Based on the previous argument, the meaning of Equations (A.25) and (A.28) can be
restated, replacing the wrapped signal with the original signal. Let f [n] be a finite length
signal of length L. The DFT of the signal is defined as a sampling of its continuous spec-
trum, this is, its DTFT, and N ≥ L equally spaced points in a period (between 0 and 2π),
can be computed as

Fs[q] =
N−1∑
n=0

f [n]e−i2πqn/N , q = 0,1,2, ...., N −1 . (A.29)

Since f [n] is of finite length L, for the interval L < n ≤ N −1 we set f [n] = 0. The signal
f [n], padded with N −L zeros at the end, is recovered from the discrete spectrum Fs[q]
via the Inverse Discrete Fourier Transform (IDFT)

f [n] = 1

N

N−1∑
q=0

Fs[q]e i2πqn/N , n = 0,1,2, ..., N −1 . (A.30)

Both the DFT and the IDFT provide a framework to deal with frequency analysis in a
computational environment, since they work with finite length and discrete signals and
transforms. The sampling of the signal sets the maximum frequency (the bandwidth) of
the spectrum, related to the Nyquist frequency, via its sampling frequency. Together with
the length of the signal, it also sets the computational resolution of the spectrum, this
is, the largest frequency interval that can be resolved. Note that padding the length L
signal with N −L zeros may seem to result in a spectrum with a better resolution, with
increasing values of N . Yet, this is not true, since the maximum frequency resolution is
related with the non-zero length of the signal L: when we consider N ≥ L points for the
frequency resolution we do not get more information, but interpolations in frequency
domain (Rao et al., 2011; Orfanidis, 1996).

A.4.1 Conjugate symmetry property

The conjugate symmetry property in Equation (A.11), proved for Fourier series in Ap-
pendix A.1, is also verified in the discrete frequency domain. Usually, it is written recalling
the periodicity of the DFT as

F [q] = F∗[−q] = F∗[N −q], for q = 1, ..., N /2 . (A.31)

From Equation (A.31), one concludes the discrete spectrum is conjugate symmetric rel-
ative to zero frequency, and relative to the Nyquist frequency (N /2). Thus, in fact, q , −q
and N −q refer to the same frequency. For convenience, the subscript (·)s , adopted ear-
lier to distinguish between the continuous and discrete Fourier transform, has now been
dropped.
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A.4.2 Fast Fourier transform

The Fast Fourier Transform technique is extremely popular within the scientific commu-
nity, due to the highly efficient algorithms available to make the computation of both the
DFT and the IDFT. These algorithms are called Fast Fourier Transform (FFT) and Inverse
Fast Fourier Transform (IFFT). For a comprehensive overview on the topic, the reader is
referred to Rao et al. (2011).

Several of these methods employ a divide and conquer strategy, thus splitting the initial
problem in smaller parts, in order to achieve maximum efficiency. For example, the algo-
rithm Radix-2 is optimized to deal with signals of length 2l , where l in a positive integer,
so it is frequent to find methods that pad enough zeros to get a length verifying the previ-
ous expression (Rao et al., 2011; Hu and Tonder, 1992). The same is true for Radix-3 and
Radix-4 algorithms, for signals of length 3l and 4l . A robust FFT method will most often
split the length of the signal in smaller lengths where it will apply a optimized algorithm
to achieve maximum efficiency, even if the length of the signal is not a power of a specific
number.

A.4.3 Convolution theorem. Fast convolution

Each of the previous Fourier transforms is associated with a specific version of the con-
volution theorem, relating the Fourier transform of the convolution of two functions, or
signals, with the product of the Fourier transform of each one. This has been exempli-
fied in Appendix A.2.1 for the continuous Fourier transform, where the convolution is
linear. This operation is called linear in the sense that the relative displacement of the
two functions is performed without further assumptions, in particular, the assumption
of periodicity. The linear convolution between two finite length discrete signals f and g ,
whose lengths are M and N , respectively, can be written in a similar fashion as

( f ∗ g )[m] =
m∑

n=0
f [n]g [m −n], for m = 0, ..., M +N −1 , (A.32)

with f = 0 for n > N − 1 and n < 0, and g = 0 for m −n > M − 1 and m −n < 0. Note
that the sum in Equation (A.32) is carried out from n = 0 to n = m, and not over all
domain, knowing that both signals have matching points only in this range. This comes
as a consequence of the signal’s finite length. Then, one can still consider the sum over
all domain, by assuming that zeros are padded at the ends of both signals.

Refocusing on the convolution theorem, consider a new length-N signal h. For the
DFT, the convolution theorem is stated as

DFT( f ©∗ h) = DFT( f )DFT(h) , (A.33)

where f ©∗ h denotes the circular convolution between f [n] and h[n]. In turn, the circular
convolution between discrete signals of same length is defined as

( f ©∗ h)[m] =
N−1∑
n=0

f [n]h[m −n], for m = 0, ...N −1 , (A.34)
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with f [N −n] = f [n] and h[N −n] = h[n]. This theorem is very similar to the convolution
theorem presented earlier in Appendix A.2.1, the difference being the type of convolution
involved—for the DFT, a circular convolution operation is used, rather than the linear
convolution. The circular convolution assumes that the two functions being convoluted
are periodic. Unlike the linear convolution operation, when one function is slided over
the other, it must be extended periodically to fill the voids created by the relative dis-
placement. In contrast, the extensions of the signal in a linear convolution operation are
considered to be zero. Under these circumstances, the sum in a circular convolution can
be taken all over the length of the signal, and is not restricted to the matching length. To
clarify, Figure A.5 shows the positioning of two length-N signals being convoluted, for
some value of displacement m. Starting by the linear convolution case in Figure A.5a,
it can be seen that it is possible to compute the convolution of these two signals from
m = 0 to m = N +N −1—case where only one point from each signal match. For greater
values of m, none of the points match, thus the linear convolution between the signals is
zero. When it comes to the circular convolution, in Figure A.5b, the signal being displaced
is periodically extended as it slides. As both signals have length N , their DFT will be of
length N , because Equation (A.33) is a pointwise product. Furthermore, the circular con-
volution will be periodic of period N , differently from the length of the linear convolution
between two length-N signals.

0 1 . . .
m −N +1

. . .
N −1

. . . m

f [n] h[m −n]

n

(a) Linear convolution

0 1 . . .
m −N +1

. . .
N −1

. . . m

f [n] h[m −n]

n

(b) Circular convolution

Figure A.5: Comparison between circular and linear convolution of two signals. The cir-
cular convolution, Figure A.5b, operation considers both signals as periodic, with period
equal to their length, while linear convolution pads both signals with zeros at the ends.

Altogether, the convolution theorem for the DFT involves a circular convolution op-
eration, yielding a different result than a linear convolution, in general. Yet, it suggests
that, with little modification, a result equivalent to the linear convolution can be obtained.



Notes on Fourier transforms 221

Recall that the length of the linear convolution between f and g is equal to N +M −1,
and that padding zeros at the end of signals does not change their frequency content.
When M −1 zeros are padded to the end of f [n] and N −1 zeros to the end of g [n], it
results in two signals of length N +M −1. Now, when g [m −n] is slided over f [n] (like
in Figure A.5b), the periodic extensions will be replaced by zeros, and the result will be
a circular convolution with period equal to N +M −1. Thus, circular convolution will be
equal to the linear convolution, within each period. By using the convolution theorem
from Equation (A.33), it follows the sought-after effect

( f ∗ g )[m] = IDFT
(
DFT( fpad) ·DFT(gpad)

)
, (A.35)

for m = 0, ..., M + N + 1. Here, the signals fpad and gpad are the zero-padded versions
of f and g . The linear convolution of two signals can be computed via DFT and IDFT
using a zero-padding procedure—the fast convolution method. Instead of computing the
convolution explicitly, it uses the highly efficient FFT algorithms to make the calculation,
swapping the computational effort of the convolution to the computation of DFT’s and
IDFT’s. This procedure is very efficient for the convolution of long signals (Orfanidis,
1996).

A.4.4 Correlation theorem

Similar to convolution theorem, the correlation theorem is a very important tool from
the DFT’s kit, specially regarding its application to rough surface analysis. Keeping the
previous convention for the lengths of signals f , g and h, the linear correlation is defined
as

( f ? g )[m] =
N−1∑
n=m

f [n]g [n +m], for m =−M +1, ..., N −1 , (A.36)

while verifying f = 0 for n > N−1 and n < 0, and g = 0 for m−n > M−1 and m−n < 0, like
in linear convolution. In the correlation operation, g is displaced relative to f without
taking the symmetry along x-axis, in contrast to the convolution operation. A circular
correlation operation can also be defined between to signals with same length as

( f ©? h)[m] =
N−1∑
n=m

f [n]h[n +m], for m = 0, ..., N −1 , (A.37)

which also assumes periodicity of both signals: f [N −n] = f [n] and h[N −n] = h[n]. The
correlation theorem follows

DFT( f ©? h) = DFT( f ) ·DFT(h)∗ . (A.38)

The DFT of the correlation between two discrete signals is equal to the product of the
static signal’s DFT ( f ) and the conjugate of the slidding signal’s DFT (g ). A fast correlation
method can also be derived from the fast convolution. Yet, in this case, one needs to pad
M − 1 zeros at the beginning of f and N − 1 zeros at the end of g . Hence, the linear
correlation is equal to a period of the circular correlation, which results in

( f ? g )[m] = IDFT
(
DFT( f−pad) ·DFT(gpad)∗

)
, (A.39)
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for m =−M +1, ..., N −1. The subscript (·)-pad indicates the zeros are padded on the be-
ginning of the signal, not at the end. A particular case arises when one computes the
correlation of a function with itself, allowing some simplifications on its computation.
First, the correlation theorem is reduced to

DFT( f ©? f ) =
∣∣DFT( f )

∣∣2 . (A.40)

Second, the correlation is symmetric relative to m = 0 and thus, in the fast correlation
method, it is possible to pad N −1 zeros at the beginning of both copies of f , compute
the correlation by Equation (A.39) and keep only the result for m = 0 to N −1.

A.5 Two-dimensional transforms

Fourier analysis and, in particular, Fourier transforms can readily be extended to higher
dimensions. Here, the focus will be on the extension to two dimensions, due to its impor-
tance to rough surface analysis and numerical generation of random surfaces. The moti-
vation behind Fourier analysis in one dimension is the decomposition of a single variable
function as the superposition of sinusoidal 1D waves with varying frequency, amplitude
and phase. On the two dimensional case, a function of of two variables, which can be in-
terpreted as a surface in three dimensions, is obtained by a similar procedure. Although,
the extension to two dimension brings an additional feature—the direction on which
waves propagate. Thus, a function of two variables is obtained by summing sinusoidal
waves which have different frequency, amplitude, phase and direction. In mathematical
terms, each wave is characterized by a wave-vector k = (kx ,ky ), where its components
are the frequencies on each direction, i.e., the frequency of the 1D wave generated by
intercepting the 2D wave with the coordinate planes, its magnitude is the real frequency
of the wave, and its direction is the direction on which the 2D wave propagates. More-
over, each wave is characterized by its amplitude and phase, which set the position of
the wave on its mean plane. Figure A.6 shows three 2D waves with different wave-vectors
having different frequency, amplitude and direction. The original function is recovered
by spanning all wave-vector space and summing all waves with correct amplitude and
phase.

The key property used in the extension of the previous concepts for two and higher
dimensions is the separability of Fourier transforms. That is to say that Fourier trans-
forms in higher dimensions are computed as 1D transforms for each direction, over all
dimensions, without any dependence between dimensions. By this logic, the definition
of continuous Fourier transform in two dimension is straightforward, and it comes

F
{

f (x, y)
}= F (kx ,ky ) =

Ï +∞

−∞
f (x, y)e−i(kx x+ky y) dxdy , (A.41)

and the inverse transform writes

f (x, y) =F−1 {
F (kx ,ky )

}= 1

4π2

Ï +∞

−∞
F (kx ,ky )e i(kx x+ky y) dkx dky . (A.42)
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x y

k3

k2
k1

z

Figure A.6: Superposition of 2D waves for Fourier analysis in two dimensions. The build-
ing blocks of two dimensional Fourier analysis are 2D waves defined by some wave-
vector k , which contains information on the frequency and direction of the wave. Each
wave is also characterized by its amplitude and phase. In the present figure, three waves
with varying frequency, direction and magnitude are plotted. A change of phase corre-
sponds to a translation in the wave’s mean plane.

Regarding the DFT, it is considered that the function is sampled at a uniformly spaced
grid in each direction of M ×N points, where M and N is the number of points sampled
in y and x direction, respectively. The sampled points are spaced by λs,x in the x direction
and by λs,y in the y-direction, such that a general point (x, y) is written as (qλs,x , pλs,y ).
Under these circumstances, the DFT is defined as

F [p, q] =
M−1∑
m=0

N−1∑
n=0

f [m,n]e−i2π(pm/M+qn/N ),

{
p = 0,1, ..., M −1

q = 0,1, ..., N −1
, (A.43)

and the IDFT comes

f [m,n] = 1

M N

M−1∑
p=0

N−1∑
q=0

F [p, q]e i2π(pm/M+qn/N ),

{
m = 0,1, ..., M −1

n = 0,1, ..., N −1
. (A.44)

It should be noted that the order of the transform arguments is inverted in the discrete
case. This is, in the continuous transform, the argument order is (kx ,ky ), wherein in the
discrete transform is [p, q], where p directs to the frequency ky and q to frequency kx .
With this convention, the array element [p, q] matches the geometrical position of its
(x, y) points, where x increases from left to right and y increases from top to bottom.

Moreover, it is useful to restate some of the properties of Fourier transforms for the
two dimensional case. Starting with the conjugate symmetry property, Figure A.6 leads to
the geometrical argument that symmetric wave-vectors represent the same wave. Hence,
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the contribution of both wave-vectors to the original function must be the same, and
the imaginary part associated with each one must cancel out when the transform is ap-
plied to a real valued function. Consequently, the conjugate symmetry property in two
dimensions for the continuous transform follows

F (k) = F∗(k) . (A.45)

The formulation of this property for the discrete transform is also straightforward. Simi-
larly to the one dimensional case, it uses the periodicity of the discrete transform in each
direction, i.e.

F [p, q] = F [p +M , q] = F [p, q +N ] = F [p +M , q +N ] , (A.46)

for p = 0, ..., M −1 and q = 0, ..., N −1. The property is then stated as

F [p, q] = F∗[−p,−q] = F∗[M −p, N −q] . (A.47)

In two dimensions, the conjugate symmetry is relative to the origin, both in the contin-
uous and discrete transform, In addition, due to the implicit periodicity of the discrete
transform, it can also be interpreted as the conjugate symmetry relative to the Nyquist
wave-vector (M/2, N /2). The sampling of the original function is performed in two direc-
tions, hence there are two Nyquist frequencies, one for each direction:

knyq,x = ks,x

2
(A.48a)

and

knyq,y =
ks,y

2
. (A.48b)

Consequently, frequency aliasing can occur in each direction on its own, meaning that p,
−p and M −p refer to same frequency in the y direction, whilst q , −q and N −q refer to
the same frequency in the y direction.

Finally, coming to the linear convolution and correlation in two dimensions, consider
two discrete functions f and g , with sizes M ×N and P ×Q, respectively. For two dimen-
sional discrete functions, the linear convolution is then defined as

( f ∗ g )[m,n] =
p∑

m=0

q∑
n=0

f [m,n]g [p −m, q −n], for

{
m = 0,1, ..., M +P −1

n = 0,1, ..., N +Q −1
, (A.49)

and linear correlation as

( f ? g )[m,n] =
M−p∑
m=p

N−q∑
n=q

f [m,n]g [m +p,n +q]. for

{
m = 1−P, ..., M −1

n = 1−Q, ..., N −1
. (A.50)

Fast computation of both operations can still be achieved via FFT in two dimension. Yet,
the zero padding procedure must be performed in both directions.
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Recipe for BGT model computation

The micromechanical contact model from Bush-Gibson-Thomas relies on the integration
of a function defined through implicit relations, coming from Hertz contact theory. In
order to perform the integration, the authors derived an alternative expression for the
integrand function, by carrying a laborious analytical work, which started from a change
of variables. Here, a brief recipe for the computation of real contact area and load is pro-
vided, based on the original work (Bush, Gibson, and Thomas, 1975) and on a remark
made by Carbone and Bottiglione (2008) regarding a misprint in some expressions in the
original publication. The following text aims solely at expressing the algorithmic compu-
tation sequence—the physical and mathematical significance of the results will only be
mentioned for key parameters. For a complete derivation and meaning of the symbols,
the reader is referred to two previously cited works.

By analytical manipulation, it results that the real contact area fraction can be com-
puted from the following expression

A(t )

Ac
= 12α

π

√
3

2α−3
exp

(
− αt 2

2α−3

)∫ π/2

ϕ=0

∫ π/4

Θ=0
cosϕsin3ϕ f (θ,Θ)g (ϕ,θ)

dθ

dΘ
dΘdϕ . (B.1)

Numerical calculation of Equation (B.1) requires the input of the dimensionless separa-
tion t = zs/σz =p

m0 and Nayak’s parameter α. For each value ofΘ in the aforementioned
integration, the computation of the variable θ and its derivative dθ/dΘ starts from deter-
mining the parameter k by

k =
√

1− tan2Θ . (B.2)

Then, the value of complete elliptical integral of first and second kind K and E , respec-
tively, are computed by their definition

K = K (k) =
∫ π/2

0

1√
1−k2 sin2ψ

dψ ; (B.3)

E = E(k) =
∫ π/2

0

√
1−k2 sin2ψ dψ . (B.4)
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Next, the derivative of K in order to k can be found from the following functional rela-
tionship,

K ′ =
dK

dk
= E

k(1−k2)
− K

k
. (B.5)

Finally, θ can be computed from the previous values, and its derivative in order to Θ

follows from the values of θ:

θ = arctan

√
kK − (1−k2)K ′

K ′ ; (B.6)

dθ

dΘ
=− tanΘcos2θ

2tanθcos2Θ

(
3E −2K

E − (1−k2)K
− (1−k2)(K −E)K

(E − (1−k2)K )2

)
. (B.7)

Having computed values of θ and its derivative for each Θ, one shall now be concerned
with the function f (θ,Θ) and g (ϕ,θ). The expression for f (θ,Θ) writes

f (θ,Θ) = cos2θ sin3θcosθ tanΘ

tan2θ+ tan2Θ
. (B.8)

As for g (ϕ,θ), its formulation is rather involved, and is conveniently expressed in a se-
quential manner. For each ϕ and θ, g (ϕ,θ) is computed by the following the next steps:

(i) Get the parameter C :

C = 9

2
(α−1)− 3

2
(2α−3)sin2 2θ . (B.9)

(ii) Compute γ and η from:

γ= 1

2α−3

(
αcos2ϕ−3

p
αcosϕsinϕ+C sin2ϕ

)
; (B.10)

η= t

2α−3

(
3
p
αsinϕ−2αcosϕ

)
. (B.11)

(iii) By using γ and η, find λ as

λ= η√
2γ

. (B.12)

(iv) Next, compute Λ from λ:

Λ=
√
π

2
exp

(
λ2

2

)(
1+erf

(
λp

2

))
. (B.13)

(v) Gathering all previous results, function g (ϕ,θ) comes

g (ϕ,θ) = 1

8γ3

(
8+9λ2 +λ4 + (

15λ+10λ3 +λ5)Λ
)

. (B.14)
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At this point, Equation (B.1) can be recovered, and the real contact area can be computed
with numerical quadrature.

Similarly, the applied load for each dimensionless separation t also comes as a function
of α. Is is determined by

F

AE∗pm2
= 8

p
3α5/4

π
p

2α−3

∫ ∞

t

∫ ∞

0

∫ π/4

0
P (θ,Θ)(z − t )

3/2w
7/2

·exp

(−αz2 +3
p
αzw −C w2

2α−3

) dθ

dΘ
dΘdwdz .

(B.15)

Values for θ, its derivative in order to Θ and C are computed from the same sequence
described for real contact area determination. The function P (θ,Θ) is defined as

P (θ,Θ) = sin3θcos2θcos2θ

K2

p
tan2θ+ tan2Θ

, (B.16)

where K2 is the complete elliptic integral of first kind, computed with k2 =
p

1− tan2Θ,

K2 = K (k2 =
√

1− tan2Θ) =
∫ π/2

0

1√
1−k2

2 sin2ψ
dψ . (B.17)

Equations (B.1) and (B.15) predict real contact and load both as functions of the dimen-
sionless separation t , which allow an indirect relation between area and load to be estab-
lished.
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Appendix C

Determination of RMS parameters from
spectral properties

In the following paragraphs, the analytical expressions describing RMS parameters in
terms of the spectral properties are derived, regarding both 2D and 3D topographies. Pro-
file parameters will follow a direct differentiation of the ACF and, afterwards, the relation
with spectral moments is established. As for rough surfaces, an approach for the compu-
tation of RMS parameters based on surface synthesis through inverse Fourier transform
is adopted.

C.1 Profile RMS parameters from ACF derivatives

The autocorrelation function has been formally defined as

R(τ) = 1

L−τ

∫ L−τ

0
z(x)z(x +τ) dx . (C.1)

The simplest result that can be derived from Equation (C.1) is the RMS height, as demon-
strated previously. It comes directly from the definition of RMS height that

R(0) = z2
rms,x . (C.2)

Thus, the derivative of zeroth order of the ACF, computed at the origin, equals the square
of the profile RMS height. Similar results can be written for RMS slope and curvature,
from a more elaborate algebraic set up. For the proceeding analysis, it will be assumed
that the sampling length is infinite, such that the dependency of the denominator and
integration limits on τ, in Equation (C.1), can be removed, i.e.

R(τ) = lim
L→∞

1

L

∫ + L
2

− L
2

z(x)z(x +τ) dx . (C.3)

First, the ACF is differentiated in order to the shift τ. Since the integration limits do not
depend on the τ, the derivative operation can be passed to the integrand function. This
procedure repeats for the second derivative, as well. From the linearity properties of the
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derivative operator, the derivative in order to τ can be replaced by the derivative relative
to x. Hence, the second derivative of the ACF rewrites

d2R(τ)

dτ2 = lim
L→∞

1

L

∫ + L
2

− L
2

z(x)
d2z(x +τ)

dx2 dx . (C.4)

At this stage, it is possible to integrate Equation (C.4) by parts and, dropping the limit to
infinity for clarity, it comes

d2R(τ)

dτ2 = 1

L
z(x)

dz(x +τ)

dτ

∣∣∣∣∣
∂L

− 1

L

∫

L

dz(x)

dx

dz(x +τ)

dx
dx , (C.5)

where ∂L denotes the boundary of the integration domain—in this case, it corresponds
to the first and last x point in the integration line. The first term in the second member
in Equation (C.5) is null (because L is infinite) while surface height and slope are always
finite valued. Thus, it comes that the second derivative of the ACF at the origin is equal
to the symmetric of RMS slope squared,

d2R(τ)

dτ2

∣∣∣∣∣
τ=0

=−(
z ′

rms,x

)2 . (C.6)

This procedure can be repeated for all derivatives of even order. In particular, regarding
the fourth order derivative of the ACF, it starts from the expression

d2R(τ)

dτ2 =− 1

L

∫

L

dz(x)

dx

dz(x +τ)

dx
dx , (C.7)

and by the analogy with Equation (C.1), one can compute its second derivative relative
to τ by taking the previous analytical steps, which will yield the square of RMS curvature

d4R(τ)

dτ4

∣∣∣∣∣
τ=0

= (
z ′′

rms,x

)2 . (C.8)

C.2 Profile RMS parameters from spectral moments

An alternative definition of the autocorrelation function follows from the inverse Fourier
transform of the profile PSD,

R(τ) =F−1 {Φθ(k)} = 1

2π

∫ +∞

−∞
Φθ(k)e ikτ dk . (C.9)

Additionally, recall the definition of profile spectral moment mθn as

mθp = 1

2π

∫ +∞

−∞
kpΦθ(k) dk . (C.10)
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In order to establish the relation between the quantities computed in the former section
and the profile PSD, Equation (C.9) is differentiated in order to τ two and four times,
followed by the computation of their value at the origin

d2R(τ)

dτ2

∣∣∣∣∣
τ=0

=−(
z ′

rms,x

)2 =− 1

2π

∫ +∞

−∞
k2Φθ(k) dk ; (C.11)

d4R(τ)

dτ4

∣∣∣∣∣
τ=0

= (
z ′′

rms,x

)2 = 1

2π

∫ +∞

−∞
k4Φθ(k)dk . (C.12)

Lastly, introducing the definition of profile spectral moments in Equations (C.9), (C.11)
and (C.12), it allows to write the relations between profile RMS parameters and the re-
spective profile spectral moments

zrms,x =p
mθ0 ; (C.13a)

z ′
rms,x =p

mθ2 ; (C.13b)

z ′′
rms,x =p

mθ4 . (C.13c)

C.3 Surface RMS parameters from spectral moments

The computation of surface RMS parameters from direct derivation of the ACF is consid-
erably tougher. This is mainly due to the complexity inherent to integration by parts in
two dimensions, which makes the analytical tasks laborious, and rendering this approach
unattractive. An alternative methodology relies on the topography synthesis via inverse
Fourier transform,

z(x, y) = 1

4π2

Ï +∞

−∞

√
Φ(kx ,ky )Lx Ly e i(kx x+ky y+φ(kx ,ky )) dkx dky , (C.14)

and on the autocorrelation theorem for Fourier transforms,

F
{

f (x, y)? g (x, y)
}=F

{
f (x, y)

}
F

{
g (x, y)

}∗ . (C.15)

The correlation operation defined as

( f ? g )(τx ,τy ) = lim
Lx ,Ly→∞

∫ + Ly
2

− Ly
2

∫ + Lx
2

− Lx
2

f (x, y)g (x +τx , y +τy ) dxdy . (C.16)

Building on these results, one can write the correlation of surface height with itself (auto-
correlation) as

(z? z)(τx ,τy ) = 1

4π2

Ï +∞

−∞
Φ(kx ,ky )Lx Ly e−i(kxτx+kyτy ) dkx dky . (C.17)

Dividing Equation (C.17) by the domain area Lx Ly , computing the value of this new
quantity at the origin τx = τy = 0, and recalling the definition of surface spectral moment,

mpq = 1

4π2

Ï +∞

−∞
kp

x kq
yΦ(k)dkx dky , (C.18)
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the surface RMS height comes
zrms,x y =

p
m00 . (C.19)

Focusing now on the RMS slope, start by computing the gradient of surface height, in
Equation (C.14), which yields

∇z(x, y) = 1

4π2

Ï +∞

−∞
ik

√
Φ(kx ,ky )Lx Ly e i(kx x+ky y+φ(kx ,ky )) dkx dky . (C.20)

Identically to RMS height calculation, one proceeds to compute the element-wise auto-
correlation of the surface gradient, i.e., the correlation of each vector component with
itself, and sum the results from both x and y directions. Again, dividing the result by the
domain’s area, and taking the value at the origin, it comes

1

Lx Ly
‖∇z(x, y)‖2 = 1

Lx Ly

1

4π2

Ï +∞

−∞
‖k‖2Φ(kx ,ky ) dkx dky , (C.21)

which rewrites
z ′

rms,x y =
p

m20 +m02 . (C.22)

At last, in order to compute the RMS mean surface curvature, and by following the
sequence of increasing derivative order from one parameter to the other, consider the
Laplacian of surface height

∇2z(x, y) =− 1

4π2

Ï +∞

−∞

(
k2

x +k2
y

)√
Φ(kx ,ky )Lx Ly e i(kx x+ky y+φ(kx ,ky )) dkx dky . (C.23)

Next, the the same analytical steps performed in former derivations are repeated, i.e.,
finding the autocorrelation of the surface height Laplacian, followed by spatial averaging
and extracting the value at the origin. Additionally, the result is divided by 4, in order to
obtain the average curvature between both directions. The surface RMS then reads

1

4Lx Ly

(∇2z(x, y)
)2 = 1

4Lx Ly

1

4π2

Ï +∞

−∞

(
k2

x +k2
y

)2
Φ(kx ,ky ) dkx dky , (C.24)

and introducing the surface spectral moments

z ′′
rms,x y =

√
m40 +2m22 +m04

4
. (C.25)

C.4 Summary

Autocorrelation function - Profile RMS parameters

R(0) = (
zrms,x

)2 ; (C.26)

d2R(τ)

dτ2

∣∣∣∣∣
τ=0

=−(
z ′

rms,x

)2 ; (C.27)

d4R(τ)

dτ4

∣∣∣∣∣
τ=0

= (
z ′′

rms,x

)2 . (C.28)
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Profile RMS parameters - Spectral moments

zrms,x =p
mθ0 ; (C.29)

z ′
rms,x =p

mθ2 ; (C.30)

z ′′
rms,x =p

mθ4 . (C.31)

Surface RMS parameters - Spectral moments

zrms,x y =
p

m00 ; (C.32)

z ′
rms,x y =

p
m20 +m02 ; (C.33)

z ′′
rms,x y =

√
m40 +2m22 +m04

4
. (C.34)
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