340 research outputs found

    A Discrete and Improved Bat Algorithm for solving a medical goods distribution problem with pharmacological waste collection

    Get PDF
    The work presented in this paper is focused on the resolution of a real-world drugs distribution problem with pharmacological waste collection. With the aim of properly meeting all the real-world restrictions that comprise this complex problem, we have modeled it as a multi-attribute or rich vehicle routing problem (RVRP). The problem has been modeled as a Clustered Vehicle Routing Problem with Pickups and Deliveries, Asymmetric Variable Costs, Forbidden Roads and Cost Constraints. To the best of authors knowledge, this is the first time that such a RVRP problem is tackled in the literature. For this reason, a benchmark composed of 24 datasets, from 60 to 1000 customers, has also been designed. For the developing of this benchmark, we have used real geographical positions located in Bizkaia, Spain. Furthermore, for the proper dealing of the proposed RVRP, we have developed a Discrete and Improved Bat Algorithm (DaIBA). The main feature of this adaptation is the use of the well-known Hamming Distance to calculate the differences between the bats. An effective improvement has been also contemplated for the proposed DaIBA, which consists on the existence of two different neighborhood structures, which are explored depending on the bat's distance regarding the best individual of the swarm. For the experimentation, we have compared the performance of our presented DaIBA with three additional approaches: an evolutionary algorithm, an evolutionary simulated annealing and a firefly algorithm. Additionally, with the intention of obtaining rigorous conclusions, two different statistical tests have been conducted: the Friedman's non-parametric test and the Holm's post-hoc test. Furthermore, an additional experimentation has been performed in terms of convergence. Finally, the obtained outcomes conclude that the proposed DaIBA is a promising technique for addressing the designed problem

    Survey on Ten Years of Multi-Depot Vehicle Routing Problems: Mathematical Models, Solution Methods and Real-Life Applications

    Get PDF
    A crucial practical issue encountered in logistics management is the circulation of final products from depots to end-user customers. When routing and scheduling systems are improved, they will not only improve customer satisfaction but also increase the capacity to serve a large number of customers minimizing time. On the assumption that there is only one depot, the key issue of distribution is generally identified and formulated as VRP standing for Vehicle Routing Problem. In case, a company having more than one depot, the suggested VRP is most unlikely to work out. In view of resolving this limitation and proposing alternatives, VRP with multiple depots and multi-depot MDVRP have been a focus of this paper. Carrying out a comprehensive analytical literature survey of past ten years on cost-effective Multi-Depot Vehicle Routing is the main aim of this research. Therefore, the current status of the MDVRP along with its future developments is reviewed at length in the paper

    Benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths

    Get PDF
    In this paper, the benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths is presented (AC-VRP-SPDVCFP). This problem is a specific multi-attribute variant of the well-known Vehicle Routing Problem, and it has been originally built for modelling and solving a real-world newspaper distribution problem with recycling policies. The whole benchmark is composed by 15 instances comprised by 50–100 nodes. For the design of this dataset, real geographical positions have been used, located in the province of Bizkaia, Spain. A deep description of the benchmark is provided in this paper, aiming at extending the details and experimentation given in the paper A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy (Osaba et al.) [1]. The dataset is publicly available for its use and modification.Eneko Osaba would like to thank the Basque Government for its funding support through the EMAITEK and ELKARTEK

    Nature-inspired optimization algorithms: challenges and open problems

    Get PDF
    Many problems in science and engineering can be formulated as optimization problems, subject to complex nonlinear constraints. The solutions of highly nonlinear problems usually require sophisticated optimization algorithms, and traditional algorithms may struggle to deal with such problems. A current trend is to use nature-inspired algorithms due to their flexibility and effectiveness. However, there are some key issues concerning nature-inspired computation and swarm intelligence. This paper provides an in-depth review of some recent nature-inspired algorithms with the emphasis on their search mechanisms and mathematical foundations. Some challenging issues are identified and five open problems are highlighted, concerning the analysis of algorithmic convergence and stability, parameter tuning, mathematical framework, role of benchmarking and scalability. These problems are discussed with the directions for future research

    Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

    Get PDF
    Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems

    Performance Improvement of Low-Cost Iterative Learning-Based Fuzzy Control Systems for Tower Crane Systems

    Get PDF
    This paper is dedicated to the memory of Prof. Ioan Dzitac, one of the fathers of this journal and its founding Editor-in-Chief till 2021. The paper addresses the performance improvement of three Single Input-Single Output (SISO) fuzzy control systems that control separately the positions of interest of tower crane systems, namely the cart position, the arm angular position and the payload position. Three separate low-cost SISO fuzzy controllers are employed in terms of first order discrete-time intelligent Proportional-Integral (PI) controllers with Takagi-Sugeno-Kang Proportional-Derivative (PD) fuzzy terms. Iterative Learning Control (ILC) system structures with PD learning functions are involved in the current iteration SISO ILC structures. Optimization problems are defined in order to tune the parameters of the learning functions. The objective functions are defined as the sums of squared control errors, and they are solved in the iteration domain using the recent metaheuristic Slime Mould Algorithm (SMA). The experimental results prove the performance improvement of the SISO control systems after ten iterations of SMA

    A novel discrete bat algorithm for heterogeneous redundancy allocation of multi-state systems subject to probabilistic common-cause failure

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This paper focuses on a heterogeneous redundancy allocation problem (RAP) for multi-state series-parallel systems subject to probabilistic common-cause failure and proposes a novel discrete bat algorithm to solve it. Although abundant research studies have been published for solving multi-state RAPs, few of them have studied probabilistic common cause failure, which motivates this paper. Due to the insufficient data of components, an interval-valued universal generating function is utilized to evaluate the availability of components and the whole system. The challenge of solving this kind of RAPs lies in not only the reliability estimation, but also the solution method. This paper presents a novel discrete bat algorithm (BA) for effectively dealing with the proposed RAP and alleviating the premature convergence of BA. Two main features of the adaptation are Hamming distance-based bat movement (HDBM) and Q learning-based local search (QLLS). HDBM transfers the Hamming distance between the current bat and the best bat in the swarm to the movement rate. Then, QLLS utilizes Q-learning to adjust the local search strategies dynamically during the iterations. The computational results from extensive experiments demonstrate that the proposed algorithm is powerful, which is more efficient than other state-of-the-arts on this sort of problems

    Data-Driven Model-Free Sliding Mode and Fuzzy Control with Experimental Validation

    Get PDF
    The paper presents the combination of the model-free control technique with two popular nonlinear control techniques, sliding mode control and fuzzy control. Two data-driven model-free sliding mode control structures and one data-driven model-free fuzzy control structure are given. The data-driven model-free sliding mode control structures are built upon a model-free intelligent Proportional-Integral (iPI) control system structure, where an augmented control signal is inserted in the iPI control law to deal with the error dynamics in terms of sliding mode control. The data-driven model-free fuzzy control structure is developed by fuzzifying the PI component of the continuous-time iPI control law. The design approaches of the data-driven model-free control algorithms are offered. The data-driven model-free control algorithms are validated as controllers by real-time experiments conducted on 3D crane system laboratory equipment

    Multi-Objective and Multi-Attribute Optimisation for Sustainable Development Decision Aiding

    Get PDF
    Optimization is considered as a decision-making process for getting the most out of available resources for the best attainable results. Many real-world problems are multi-objective or multi-attribute problems that naturally involve several competing objectives that need to be optimized simultaneously, while respecting some constraints or involving selection among feasible discrete alternatives. In this Reprint of the Special Issue, 19 research papers co-authored by 88 researchers from 14 different countries explore aspects of multi-objective or multi-attribute modeling and optimization in crisp or uncertain environments by suggesting multiple-attribute decision-making (MADM) and multi-objective decision-making (MODM) approaches. The papers elaborate upon the approaches of state-of-the-art case studies in selected areas of applications related to sustainable development decision aiding in engineering and management, including construction, transportation, infrastructure development, production, and organization management
    • …
    corecore