366 research outputs found

    A 12GHz 30mW 130nm CMOS Rotary Travelling Wave Voltage Controlled Oscillator

    Get PDF
    This paper reports a 12GHz Rotary Travelling Wave (RTW) Voltage Controlled Oscillator designed in a 130nm CMOS technology. The phase noise and power consumption performances were compared with the literature and with telecommunication standards for broadcast satellite applications. The RTW VCO exhibits a -106dBc/Hz@1MHz and a 30mW power consumption with a sensibility of 400 MHz/V. Finally, requirements are given for a PLL implementation of the RTW VCO and simulated results are presented

    Energy-efficient wireline transceivers

    Get PDF
    Power-efficient wireline transceivers are highly demanded by many applications in high performance computation and communication systems. Apart from transferring a wide range of data rates to satisfy the interconnect bandwidth requirement, the transceivers have very tight power budget and are expected to be fully integrated. This thesis explores enabling techniques to implement such transceivers in both circuit and system levels. Specifically, three prototypes will be presented: (1) a 5Gb/s reference-less clock and data recovery circuit (CDR) using phase-rotating phase-locked loop (PRPLL) to conduct phase control so as to break several fundamental trade-offs in conventional receivers; (2) a 4-10.5Gb/s continuous-rate CDR with novel frequency acquisition scheme based on bang-bang phase detector (BBPD) and a ring oscillator-based fractional-N PLL as the low noise wide range DCO in the CDR loop; (3) a source-synchronous energy-proportional link with dynamic voltage and frequency scaling (DVFS) and rapid on/off (ROO) techniques to cut the link power wastage at system level. The receiver/transceiver architectures are highly digital and address the requirements of new receiver architecture development, wide operating range, and low power/area consumption while being fully integrated. Experimental results obtained from the prototypes attest the effectiveness of the proposed techniques

    Doctor of Philosophy

    Get PDF
    dissertationSince the late 1950s, scientists have been working toward realizing implantable devices that would directly monitor or even control the human body's internal activities. Sophisticated microsystems are used to improve our understanding of internal biological processes in animals and humans. The diversity of biomedical research dictates that microsystems must be developed and customized specifically for each new application. For advanced long-term experiments, a custom designed system-on-chip (SoC) is usually necessary to meet desired specifications. Custom SoCs, however, are often prohibitively expensive, preventing many new ideas from being explored. In this work, we have identified a set of sensors that are frequently used in biomedical research and developed a single-chip integrated microsystem that offers the most commonly used sensor interfaces, high computational power, and which requires minimum external components to operate. Included peripherals can also drive chemical reactions by setting the appropriate voltages or currents across electrodes. The SoC is highly modular and well suited for prototyping in and ex vivo experimental devices. The system runs from a primary or secondary battery that can be recharged via two inductively coupled coils. The SoC includes a 16-bit microprocessor with 32 kB of on chip SRAM. The digital core consumes 350 μW at 10 MHz and is capable of running at frequencies up to 200 MHz. The integrated microsystem has been fabricated in a 65 nm CMOS technology and the silicon has been fully tested. Integrated peripherals include two sigma-delta analog-to-digital converters, two 10-bit digital-to-analog converters, and a sleep mode timer. The system also includes a wireless ultra-wideband (UWB) transmitter. The fullydigital transmitter implementation occupies 68 x 68 μm2 of silicon area, consumes 0.72 μW static power, and achieves an energy efficiency of 19 pJ/pulse at 200 MHz pulse repetition frequency. An investigation of the suitability of the UWB technology for neural recording systems is also presented. Experimental data capturing the UWB signal transmission through an animal head are presented and a statistical model for large-scale signal fading is developed

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Automotive Inductive Position Sensor

    Get PDF
    Inductive angular position sensors (IAPS) are widely used for high accuracy and low cost angular position sensing in harsh automotive environments, such as suspension height sensor and throttle body position sensor. These sensors ensure high resolution and long lifetime due to their contactless sensing mode and their simple structure. Furthermore, they are suitable for wider application areas. For instance, they can be miniaturized to fit into a compact packaging space, or be adopted to measure the relative angle of multiple rotating targets for the purposes of torque sensing. In this work, a detailed SIMULINK model of an IAPS is first proposed in order to study and characterize the sensor performance. The model is validated by finite element analysis and circuit simulation, which provides a powerful design tool for sensor performance analysis. The sensor error introduced by geometry imperfection is thoroughly investigated for two-phase and three-phase configurations, and a corresponding correction method to improve the accuracy is proposed. A design optimization method based on the response surface methodology is also developed and used in the sensor development. Three types of sensors are developed to demonstrate the inductive sensor technology. The first type is the miniaturized inductive sensor. To compensate for the weak signal strength and the reduced quality (Q) factor due to the scaling down effect, a resonant rotor is developed for this type of sensor. This sensor is fabricated by using the electrodeposition technique. The prototype shows an 8mm diameter sensor can function well at 1.5mm air gap. The second type is a steering torque sensor, which is designed to detect the relative torsional angle of a rotating torsional shaft. It demonstrates the mutual coupling of multiple inductive sensors. By selecting a proper layout and compensation algorithm, the torque sensor can achieve 0.1 degree accuracy. The third type is a passive inductive sensor, which is designed to reduce power consumption and electromagnetic emissions. The realization and excellent performance of these three types of sensors have shown the robustness of the inductive sensor technology and its potential applications. The research conducted in this dissertation is expected to improve understanding of the performance analysis of IAPS and provide useful guidelines for the design and performance optimization of inductive sensors

    Ku band rotary traveling-wave voltage controlled oscillator

    Get PDF
    Voltage-controlled oscillator (VCO) plays a key role in determination of the link budget of wireless communication, and consequently the performance of the transceiver. Lowering the noise contribution from the VCO to the entire system is always challenging and remains the active research area. Motivated by high demands for the low-phase noise, low-power consumption VCO in the application of 5G, radar-sensing system, implantable device, to name a few, this research focused on the design of a rotary travelling-wave oscillator (RTWO). A power conscious RTWO with reliable direction control of the wave propagation was investigated. The phase noise was analyzed based on the proposed RTWO. The phase noise reduction technique was introduced by using tail current source filtering technique in which a figure-8 inductors were employed. Three RTWO were implemented based on GF 130 nm standard CMOS process and TSMC 130 nm standard CMOS process. The first design was achieving 16-GHz frequency with power consumption of 5.8-mW with 190.3 dBc/Hz FoM at 1 MHz offset. The second and third design were operating at 14-GHz with a power consumption range of 13-18.4mW and 14.6-20.5mW, respectively. The one with filtering technique achieved FoM of 184.8 dBc/Hz at 1 MHz whereas the one without inudctor filtering obtained FoM of 180.8 dBc/Hz at 1 MHz offset based on simulation
    • …
    corecore