4,391 research outputs found

    Monitoring land use changes using geo-information : possibilities, methods and adapted techniques

    Get PDF
    Monitoring land use with geographical databases is widely used in decision-making. This report presents the possibilities, methods and adapted techniques using geo-information in monitoring land use changes. The municipality of Soest was chosen as study area and three national land use databases, viz. Top10Vector, CBS land use statistics and LGN, were used. The restrictions of geo-information for monitoring land use changes are indicated. New methods and adapted techniques improve the monitoring result considerably. Providers of geo-information, however, should coordinate on update frequencies, semantic content and spatial resolution to allow better possibilities of monitoring land use by combining data sets

    DWSI: AN APPROACH TO SOLVING THE POLYGON INTERSECTION-SPREADING PROBLEM WITH A PARALLEL UNION ALGORITHM AT THE FEATURE LAYER LEVEL

    Get PDF
    A dual-way seeds indexing (DWSI) method based on R-tree and the OpenGeospatial Consortium (OGC) simple feature model was proposed to solve the polygon intersection-spreading problem. The parallel polygon union algorithm based on the improved DWSI and the OpenMP parallel programming model was developed to validate the usability of the data partition method. The experimental results reveal that the improved DWSI method can implement a robust parallel task partition by overcoming the polygon intersection-spreading problem. The parallel union algorithm applied DWSI not only scaled up the data processing but alsospeeded up the computation compared with the serial proposal, and it showed ahigher computational efficiency with higher speedup benchmarks in the treatment of larger-scale dataset. Therefore, the improved DWSI can be a potential approach to parallelizing the vector data overlay algorithms based on the OGC simple data model at the feature layer level

    DWSI: AN APPROACH TO SOLVING THE POLYGON INTERSECTION-SPREADING PROBLEM WITH A PARALLEL UNION ALGORITHM AT THE FEATURE LAYER LEVEL

    Get PDF
    A dual-way seeds indexing (DWSI) method based on R-tree and the OpenGeospatial Consortium (OGC) simple feature model was proposed to solve the polygon intersection-spreading problem. The parallel polygon union algorithm based on the improved DWSI and the OpenMP parallel programming model was developed to validate the usability of the data partition method. The experimental results reveal that the improved DWSI method can implement a robust parallel task partition by overcoming the polygon intersection-spreading problem. The parallel union algorithm applied DWSI not only scaled up the data processing but alsospeeded up the computation compared with the serial proposal, and it showed ahigher computational efficiency with higher speedup benchmarks in the treatment of larger-scale dataset. Therefore, the improved DWSI can be a potential approach to parallelizing the vector data overlay algorithms based on the OGC simple data model at the feature layer level

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    From buildings to cities: techniques for the multi-scale analysis of urban form and function

    Get PDF
    The built environment is a significant factor in many urban processes, yet direct measures of built form are seldom used in geographical studies. Representation and analysis of urban form and function could provide new insights and improve the evidence base for research. So far progress has been slow due to limited data availability, computational demands, and a lack of methods to integrate built environment data with aggregate geographical analysis. Spatial data and computational improvements are overcoming some of these problems, but there remains a need for techniques to process and aggregate urban form data. Here we develop a Built Environment Model of urban function and dwelling type classifications for Greater London, based on detailed topographic and address-based data (sourced from Ordnance Survey MasterMap). The multi-scale approach allows the Built Environment Model to be viewed at fine-scales for local planning contexts, and at city-wide scales for aggregate geographical analysis, allowing an improved understanding of urban processes. This flexibility is illustrated in the two examples, that of urban function and residential type analysis, where both local-scale urban clustering and city-wide trends in density and agglomeration are shown. While we demonstrate the multi-scale Built Environment Model to be a viable approach, a number of accuracy issues are identified, including the limitations of 2D data, inaccuracies in commercial function data and problems with temporal attribution. These limitations currently restrict the more advanced applications of the Built Environment Model

    OPTIMIZATION APPROACHES TO MPI AND AREA MERGING-BASED PARALLEL BUFFER ALGORITHM

    Get PDF
    On buffer zone construction, the rasterization-based dilation method inevitablyintroduces errors, and the double-sided parallel line method involves a series ofcomplex operations. In this paper, we proposed a parallel buffer algorithm based onarea merging and MPI (Message Passing Interface) to improve the performances ofbuffer analyses on processing large datasets. Experimental results reveal that thereare three major performance bottlenecks which significantly impact the serial andparallel buffer construction efficiencies, including the area merging strategy, thetask load balance method and the MPI inter-process results merging strategy.Corresponding optimization approaches involving tree-like area merging strategy, the vertex number oriented parallel task partition method and the inter-processresults merging strategy were suggested to overcome these bottlenecks. Experimentswere carried out to examine the performance efficiency of the optimized parallelalgorithm. The estimation results suggested that the optimization approaches couldprovide high performance and processing ability for buffer construction in a clusterparallel environment. Our method could provide insights into the parallelization ofspatial analysis algorithm

    Investigation of techniques for inventorying forested regions. Volume 2: Forestry information system requirements and joint use of remotely sensed and ancillary data

    Get PDF
    The author has identified the following significant results. Effects of terrain topography in mountainous forested regions on LANDSAT signals and classifier training were found to be significant. The aspect of sloping terrain relative to the sun's azimuth was the major cause of variability. A relative insolation factor could be defined which, in a single variable, represents the joint effects of slope and aspect and solar geometry on irradiance. Forest canopy reflectances were bound, both through simulation, and empirically, to have nondiffuse reflectance characteristics. Training procedures could be improved by stratifying in the space of ancillary variables and training in each stratum. Application of the Tasselled-Cap transformation for LANDSAT data acquired over forested terrain could provide a viable technique for data compression and convenient physical interpretations

    Collaborative Mapping of London Using Google Maps: The LondonProfiler

    Get PDF
    This paper begins by reviewing the ways in which the innovation of Google Maps has transformed our ability to reference and view geographically referenced data. We describe the ways in which the GMap Creator tool developed under the ESRC National Centre for E Social Science programme enables users to ‘mashup’ thematic choropleth maps using the Google API. We illustrate the application of GMap Creator using the example of www.londonprofiler.org, which makes it possible to view a range of health, education and other socioeconomic datasets against a backcloth of Google Maps data. Our conclusions address the ways in which Google Map mashups developed using GMap Creator facilitate online exploratory cartographic visualisation in a range of areas of policy concern
    • …
    corecore