21 research outputs found

    Control systems with network delay

    Get PDF
    In this paper motion control systems with delay in measurement and control channels are discussed and a new structure of the observer-predictor is proposed. The feature of the proposed system is enforcement of the convergence in both the estimation and the prediction of the plant output in the presence of the variable, unknown delay in both measurement and in the control channels. The estimation is based on the available data – undelayed control input, the delayed measurement of position or velocity and the nominal parameters of the plant and it does not require apriori knowledge of the delay. The stability and convergence is proven and selection of observer and the controller parameters is discussed. Experimental results are shown to illustrate the theoretical prediction

    Development of a Portable IP-Based Remote Controlled System for Mobile Robot

    Get PDF
    The use of Mobile Robots to interact with objects in remote locations has proved to be useful in areas not easily accessible or too dangerous for humans. Various means have been used to remotely operate or control Mobile Robots. These range from wired connection to Wireless connection like radio frequency signal and more recently internet controlled Mobile Robot using the TCP/IP protocol stack. However, the problem of remote control dependence on the Mobile Robot Platform or configuration has made it difficult to switch controllers between Mobile Robots. In this work, a portable IPbased remote control system has been designed and implemented to remove the constraint imposed by the Mobile Robot's platform in choosing the control interface. The system developed was built on three loosely coupled components working together to ensure a high degree of Control interface portability. The Mobile Robot Gateway component was used to receive and send data from the Mobile Robo

    Stability Analysis of Teleoperation System by State Convergence with Variable Time Delay

    Get PDF
    We propose a novel control scheme for bilateral teleoperation of n degree-of-freedom (DOF) nonlinear robotic systems with time-varying communication delay. A major contribution from this work lies in the demonstration that the structure of a state convergence algorithm can be also applied to nth-order nonlinear teleoperation systems. By choosing a Lyapunov Krasovskii functional, we show that the local-remote teleoperation system is asymptotically stable. The time delay of communication channel is assumed to be unknown and randomly time varying, but the upper bounds of the delay interval and the derivative of the delay are assumed to be known

    Wave Prediction and Delay Modeling for Teleoperation via Internet

    Get PDF
    This paper propose a novel approach for modeling the end-to-end time delay dynamics of the internet using system identification, and use it for controlling real-time internet-based telerobotic operations. When a single model is used, it needs to adapt to the operating conditions before an appropriate control mechanism can be applied. Slow adaptation may result in large transient errors. As an alternative, we propose to use an adaptive multiple model framework, and determine the best model for the current operating conditions to activate the corresponding controller. We employ multivariable wave prediction method to achieve this objective

    Design of a networked control system with random transmission delay and uncertain process parameters

    Get PDF
    This paper discusses the compensation of the transmission delay in a networked control system (NCS) with a state feedback, which possesses a randomly varying transmission delay and uncertain process parameters. The compensation is implemented by using a buffer in the actuator node and a state estimator in the controller node. A Linear Matrix Inequality (LMI) based sufficient condition for the stability of the NCS under the designed compensation is proposed. The simulation results illustrate the efficiency of the compensation method

    Bilateral Teleoperation of Mobile Robot over Delayed Communication Network: Implementation

    Get PDF
    In a previous paper we proposed a bilateral teleoperation framework of a wheeled mobile robot over communication channel with constant time delay. In this paper we present experimental results. Our goal is to illustrate and validate the properties of the proposed scheme as well as to present practical implementation issues and the adopted solutions. In particular, the bilaterally teleoperated system is passive and the system is stable in the presence of time delay. Internet has been used as the communication channel and a buffer has been implemented to maintain a constant time delay and to handle packet order

    A Wave Variable Approach with Multiple Channel Architecture for Teleoperated System

    Get PDF
    © 2013 IEEE. Performance of teleoperation can be greatly influenced by time delay in the process of tele-manipulation with respect to accuracy and transparency. Wave variable is an effective algorithm to achieve a good stable capability. However, some traditional wave variable methods may decrease the performance of transparency and suffer the impacts of wave reflection. To deal with the problem of stability and transparency in teleoperation, in this paper, a novel wave variable method with four channel is presented to achieve stable tracking in position and force. In addition, the proposed method can achieve the distortion compensation and reduce the impacts of wave reflection. The simulation experimental results verified the tracking performance of the proposed method

    Neural-Learning-Based Telerobot Control with Guaranteed Performance

    Get PDF
    © 2013 IEEE. In this paper, a neural networks (NNs) enhanced telerobot control system is designed and tested on a Baxter robot. Guaranteed performance of the telerobot control system is achieved at both kinematic and dynamic levels. At kinematic level, automatic collision avoidance is achieved by the control design at the kinematic level exploiting the joint space redundancy, thus the human operator would be able to only concentrate on motion of robot's end-effector without concern on possible collision. A posture restoration scheme is also integrated based on a simulated parallel system to enable the manipulator restore back to the natural posture in the absence of obstacles. At dynamic level, adaptive control using radial basis function NNs is developed to compensate for the effect caused by the internal and external uncertainties, e.g., unknown payload. Both the steady state and the transient performance are guaranteed to satisfy a prescribed performance requirement. Comparative experiments have been performed to test the effectiveness and to demonstrate the guaranteed performance of the proposed methods

    Wave Prediction and Delay Modeling for Teleoperation via Internet

    Get PDF
    This paper propose a novel approach for modeling the end-to-end time delay dynamics of the internet using system identification, and use it for controlling real-time internet-based telerobotic operations. When a single model is used, it needs to adapt to the operating conditions before an appropriate control mechanism can be applied. Slow adaptation may result in large transient errors. As an alternative, we propose to use an adaptive multiple model framework, and determine the best model for the current operating conditions to activate the corresponding controller. We employ multivariable wave prediction method to achieve this objective
    corecore