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I.INTRODUCTION  
Teleoperation is a process where the operator has 
some task done at the remote and/or hazardous 
environments through coordinated control of two 
robotic arms and has been an active research topic 
since Geortz and Thompson’s demonstration of their 
first “local-remote” remote control in 1954 [1], 
teleoperation systems have been used for a number of 
different tasks, for example, material handling toxic or 
harmful, operation in remote environments such as 
submarine or space and perform tasks that require 
extreme precision and continue to play an increasingly 
important role for this type of applications in the future 
[2].  
 
Stability is an important aspect to build a teleoperation 
system with a high level of telepresence. Certainly, if a 
system exhibits unstable or closely unstable behavior, 
the illusion of the operator to be virtually present at 
the remote end can be destroyed, in addition to 
possibly make the task difficult or impossible to 
execute.  
 
The use of the Internet and other networks of packages 
switching, such as Internet 2, impose variable time 
delays, making already established control schemes to 
develop solutions to deal with instabilities caused by 
these varying time delays.  
 
At the same time, instability induced by the time delay, 
requires that the system be controlled in "open loop", 
reducing the operator to the technique of "wait and 
see", [3], [4], [5]. For these situations, the general 
architecture of teleoperation not applies more. In the 
control design, this latency imposes a tradeoff between 
the conflicting requirements of stability and 
performance with the potential for instability 
increasing by the level of the performance. Hence, the 
stability problem for time-delayed systems has received 
considerable attention in recent years. 

 
The first work dealing with the problem of the delay was 
published in [6], where the system was operated in 
open loop, therefore not be observed problems of 
instability [7]. They conclude from several experiments 
that most operators took the strategy "move and wait" 
to correct the effects of the significant delay. In 1966 
and later will determine that a time equal to or less than 
50 ms delay can destabilize bilateral controllers [7], [8], 
[9].  
 
The problem is due to the power generation in the 
communication channel that makes this component of 
the system is not passive [7]. One way to solve this 
problem is the addition of damping to the master and 
the slave to absorb the energy generated in the system. 
However, this technique does not guarantee stability 
and cause a poor performance [10], [11]. As an 
alternative, the bilateral control can be modified so that 
the communication channel acts as a line without loss of 
transmission [7].  
 
In [12] the problem of bilateral teleoperation where the 
model of the operator is not passive is considered. 
Through the use of a PD control strategy without 
considering the delay shows that of nonlinear 
teleoperation system is asymptotically stable.  When the 
delay of the communication channel is considered, for a 
range of coupling proportional gains, the positions 
converge asymptotically to a non-zero equilibrium 
point.  
 
In [13] the feedback interconnection of non-linear 
systems with finite gain L2 is analyzed. In the case of 
constant delay shows classic small gain conditions to 
allow stable closed-loop connection which is delay-
independent. In the case of variable delay, to ensure the 
independence of the stability with the delay, they 
proposed a small modified gain condition which 
depends of maximum rate of change of the delay.  
 
In [14] proved that it is possible to achieve a stable 
behavior of teleoperation system with similar schemes 
to simple PD algorithms, even without the delayed 
action of the 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148672735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  

derivative, under the classic assumption of the passivity of the 
operator. 

On the state convergence control technique [15], presents 
a state space formulation for a linear system of n order, 
through a control algorithm based on the feedback of position 
and speed of the manipulators signals, allow the remote 
manipulator to follow to the local handler through the state 
convergence even when there is a delay in the communication 
channel. 

The method has been validated experimentally in 
teleoperator systems with a one degree of freedom [16] and 
two degrees of freedom [17]. They have carried out studies on 
adaptive control strategies based on this control scheme [18], 
designs considering delays in transmission [15], bilateral 
control by state convergence in teleoperated systems where 
the structure of the robot master differs from the slave [17]. 

In [19], we propose a novel control scheme based on state 
convergence for bilateral teleoperation of n degree-of-
freedom (DOF) nonlinear robotic systems with constant time 
delay. In this paper we improved the control scheme [19], 
analyzing the case of time-varying communication delay. 

This new proposal improves the position signal with 
respect to [15] where signal drift problems arise. The main 
reason for this improvement is that control strategies are 
independent of parameter uncertainties in robot models, the 
human operator and the remote environment.  

We demonstrate that the state convergence control scheme 
can be extended to a non-linear teleoperation system. In 
addition the strategy can be applied directly to a broad class 
of common control architectures of teleoperation. 

The structure of the paper is, as follows: The mathematical 
model of the teleoperator system is described in section II. 
The control scheme and stability analysis is showed in section 
III. Computer simulations of the proposed control scheme are 
presented in section IV, while the conclusions are given in 
section V. 

II. NONLINEAR MODEL OF n DOF TELEOPERATION SYSTEM 

Let us consider a teleoperator system where both the local 
and remote are n-DOF manipulators described by Euler-
Lagrange equations of the form 

     
      ercrrrrrrrrr

oplclllllllll

Fτqgqq,qCqqM

Fτqgqq,qCqqM







      (1) 

Where n
iii Rq,q,q   

represent the acceleration, velocity 

and position of the joint i = {l, r} where l and r sub-index 
represent the local and remote manipulator respectively.    

  nn
ii

RqM Stands for generalized inertia matrix, 

  nn
iii

Rq,qC  the Coriolis and centrifugal forces matrix, 

  n
ii Rqg   the Gravitational vector, n

ic Rτ    is the control 

torques signal, nRF h
 represents the human operator 

interaction force and, finally, nRF e
 is the environment 

interaction force.  

In the block diagram of the teleoperator system, Fig. 1, the 
dynamics of the local and remote manipulator are given by 
(1).  

Assumption 1: It is supposed that the interaction of the 
human operator with the local handle is a constant force in 
the following way [12]: 

oph FF   

Assumption 2: The interaction of the environment with 
the remote manipulator is considered passive:  

reree qBqKF   , where Ke, Be are definite positive matrix 
nnR . 

Assumption 3: It is supposed that Tl(t) and Tr(t) are 
continuously differentiable functions, which have an upper 
bound know Ti

+ defined by: 
    rlitTTtT iii ,     ,1     ,0     

In addition, the bound of round-trip delay communication 
channel is also known   rllr TTT . 

We proposed the control law (2) as shown in Fig. 1, this 
control law compensates for gravitational forces [20], so that 
the control torques ic are given by: 
 

   rrrrcllllc qgτ     τ,qgττ   (2) 

 
Replacing (2) in (1) yields: 
 
    opllllllll Fτqq,qCqqM    

    errrrrrrr Fτqq,qCqqM               (3) 

III. STATE CONVERGENCE ALGORITHM WITH VARIABLE 

TIME DELAY 

Consider a new version of the state convergence algorithm 
taking in count the time variable delay for nonlinear systems 
as show in Fig 1. The local and remote manipulator (1) is 
connected via a communication channel with a variable time 
delay, Ti(t), i = {l, r}.  

Consider the control algorithm for state convergence for 
the non-linear case, the coupling torque for the local and 
remote manipulator is given by: 

     tTttTt rr  rl2rl1ll2ll1l qRqRqKqKτ   
        tTtGtTttTt lll  oplr2lr1rr2rr1r FqRqRqKqKτ    

 (4) 
Where: Kl1, Kl2, Rl1, Rl2, Kr1, Kr2, Rr1 and Rr2 are order 

nxn constants matrices. G is a constant.  

From assumption 1, and 2, and (3) and (4), one knows that 
the equilibrium points of the position of local and remote 
manipulator defined as nRq l

 and nRq r
, satisfy (5). 

   reoplr1rr1

oprl1ll1

qKFqRqK0

FqRqK0





tTtG l

        (5) 

In order to simplify the mathematical demonstration, it is 
convenient to settle the origin point, that is   nR0  , like the 
equilibrium of the system. Applying a coordinate 
transformation like this:  
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Where  A  specifies the smallest eigenvalue of A, and 
the notation 

2
   specifies 2L  norm of a signal in the 

interval  ft,0  . 

Because Be, Kld and Krd are definite positive matrix, from 

(20),  
ft

dtV
0

0  if the relations in (21) are satisfied: 

0
22

     ,0
22 1

2
1

2

1
1

22

 KKKKKK





 rl TT       (21) 

Considering 


 
0

0lim dtV
ft

 , we conclude that the 

signals    Lrlrrl
~,~~,~,~ qqqqq   and   2q~q~rl rl

,,~,~ Leeqq  .  

 
Rewritten (8) as: 

      tTttTt rrl  
rl2ll2rl1ll1ll

1
l

~~~~~~ qRqKqRqKqCMq     

      rerelr2rr2lr1rr1rr
1

r
~~~~~~~~ qBqKqRqKqRqKqCMq    tTttTt llr

                      (22) 

Rewritten   tTt r rl
~~ qq as: 

     tTttTt rr  rrrlrl
~~~~~~ qqqqqq       (23) 

It is known that  Lrl
~~ qq , therefore will look 

at   tTt r rr
~~ qq . 

Using the Schwartz’s inequality, we have the fact that  

    
 

  LTdttTt r

tT

r
2

r

0

rrr
~~~~ 21

qqqq       (24) 

Using (24) and 
 Lrl

~~ qq in (23) we conclude 
that     LtTt rrl

~~ qq . In the same manner we can prove 
that     LtTt llr

~~ qq . 

From (22), taking into account the basic properties of the 
dynamic model for robots [20], the fact 
that         LtTttTt rl rllrrlrl

~~,~~,~~,~,~ qqqqqqqq  , ensure 

that    Lrl
~,~ qq    are uniformly continuous [24]. Also as 

  2rl
~,~ Lqq  , using Barbalat’s Lemma [25], it can be concluded 

that: 

0eeqq   rl q~q~rl limlim~lim~lim 
tttt  

The signal continuity implies that the integral exists and 
this bounded by: 

     0~~~
ii

0

i qqq  


 d  

Evaluating the limit as t  and using the fact that 

0~
i q  yields 
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i

0

i qq  

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This is bounded.  

As shown above 0qq   rl
~lim~lim 

tt
. Using 

Barbalat’s Lemma [26] we prove that 
0~lim~lim rl   qq 

tt
 

The fact that zero convergence of velocities and 
acceleration, as a result for the dynamics of the system (8) 
with KRKRKKKK  r1l1r1l1       ,      ,     , we have that 
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Taking into account  
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it yields: 

         ttttt
ttt
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1

rllr
~lim~~lim  ,     ~~lim qKKqq0qq
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The above equations imply 

that     0qq   tt tt rl
~lim~lim .  

Therefore the origin of the system  rlrl
~,~,~,~ qqqq   is 

asymptotically stable and     rrll lim,lim qqqq   tt tt . 

This guarantees the stability of the teleoperation system.  

IV. SIMULATION 

The dynamics of the teleoperation system have been 
simulated using Simulink®. For a local manipulator, we will 
use a PHANTOM Omni® haptic device.  For a remote 
manipulator we employed a planar serial arm with three 
degrees of freedom, actuated by DC motors, [19], [27]: 

       
        ercrrrrrrrrrrr

oplclllllllllll
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






 

  nRqf   is a static model of joints friction, defined by 
[20]: 

The controller is designed when the upper bound of the 
first derivative of the delay is known. 

Assume the time delay in both directions is 

equal sec45.0 
lr TT . Fig. 2 shows the time delay used in 

simulation. Many authors [28], [29] shown how measure 
these upper bounds on the time-varying delay magnitude Ti

+ 

and its variation  tTi
  over real Internet conditions. 
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Figure 2.  The variable time delay ranges from 0 to 40 sec. 

The force (torque) applied by the human operator to the 
joints of the local manipulator to move the remote 
manipulator is show in Fig. 3. 
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Figure 3.   Force, [Nm] applied by the human operator. 
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Figure 4.  Angular position of local and remote manipulator: a) Joint 1; b) 

Joint 2. 

Letting   lr TT 21 , and   8.0  max  TtTi
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K and K1 are calculated using relation (11) as: 
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Then, the controller’s gains values parameters  Kl1, Kl2, 
Kr1, Kr2, Rl1, Rl2, Rr1, Rr2, Kld and Krd are determined by (9) 
and (10), in addition G = 1. 

Simulations have been carried out considering two cases: 
the remote manipulator does not interact with the 
environment and the remote manipulator interacts with the 
environment. Their objective is to show that the original 
controllers proposed on this work do provide position 
tracking. 
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Figure 5.   Angular position of local and remote manipulator: a) Joint 1; b) 

Joint 2; c) Joint 3. 

A. Case A: Without Environment Interaction 
As seen from the simulation waveforms in Fig. 4 for the 

case when the remote manipulator does not interact with the 
environment, i.e. interaction force is zero; better tracking 
performance can be obtained by using the proposed control 
scheme. The joint angles of the remote manipulator (dashed 
line) accurately track those of the local manipulator (solid 
line). When the operator force is zero, at t = 15 sec, the 
position coordination error      ttt rl

~ qqq   tends to zero 

and the equilibrium points of the position of local and remote 
manipulator 

lq  and
rq are identical. The stability of 



  

teleoperator in closed loop with the controllers of this 
scheme (4) has been established in Theorem 2.1. The 
controller guarantees a stable behavior under time delays, 
and also ensures position tracking. 

B. Case B: Environment Interaction 
In order to assess the stability of the contact in 

simulations, we considered a soft environment modeled by 
means of a spring -damper system, with gains as: 
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Fig. 5 shows the joints positions of the local and remote 
manipulator. When the remote manipulator does not contact 
with the environment (0 - 4s and 10-40 s) position 
coordination of the local and remote manipulator position is 
achieved. Simulations cannot replicate the quality of the 
human perception, but they provide useful indications about 
performance of the controller. 

V. CONCLUSION 

In this paper, we propose a novel control scheme that 
guarantees the stability of the overall teleoperation system, 
taking into account time-varying communication delay. 

The Lyapunov Krasovskii functional is used to analyze 
delay-dependent stability and derive the stability criteria. The 
stability is guaranteed by choosing suitable control gains 
such that specific stability conditions are satisfied.  

The proposed scheme also guarantees that the remote 
manipulator tracks the delayed local manipulator trajectory. 

Finally, the simulation is presented to show the 
effectiveness of the main results. 

Local-remote experimental test bed is currently under way 
and will be reported in the near future. 
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