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Abstract:  

This paper discusses the compensation of the transmission delay in a networked control system (NCS) with a 

state feedback, which possesses a randomly varying transmission delay and uncertain process parameters.  The 

compensation is implemented by using a buffer in the actuator node and a state estimator in the controller node. 

A Linear Matrix Inequality (LMI) based sufficient condition for the stability of the NCS under the designed 

compensation is proposed. The simulation results illustrate the efficiency of the compensation method.  
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1. INTRODUCTION 

 

As the development of network technologies, more and more communication networks are used in industrial 

control. Applications of NCS include internet-based process control [1, 2, 3], internet-based robotics [4], field-

bus based NCS and Ethernet based NCS [5] etc. The advantages of NCS are reducing cost of cabling, ease 

system diagnosis and maintenance, increasing modularity and flexibility in system design.  

 

However, the network transmission delays degrade the system dynamic performance and affect the stability of 

NCS. The network transmission delay is time varying and stochastic. There are two ways to overcome the 

transmission delay [2]. One is to improve the quality of network transmission by optimising communication 

protocols and adopting hardware devices with high performance so that the network-induced delays can be 

ignored. The other is to counteract the effect of network-induced delays on the system by using control theory 

approaches such as time-delay compensation, stochastic optimal control, predictive control, and robust control 

etc. 

 

Rich literatures have been published on the NCSs. Zhang et al. [6] analysed the stability of NCSs, and achieved 

some important results based on the assumption that transmission delay is less than a sampling period and the 

data are transmitted in a single packet. Walsh et al. [7] considered a NCS in which the network is inserted 

between continuous plant and continuous controller, and introduced the notion of Maximal Allowable Transfer 

Interval (MATI), which is the maximum time interval between transfers of data from sensors to a controller. 

Their goal is to find the MATI that guarantees the stability of NCSs. Montestruque and Antsaklis [8] focused on 

reducing the network usage by using the knowledge of the plant dynamics. Necessary and sufficient conditions 

for stability of NCSs with a state feedback and an output feedback were derived respectively. Luck and Ray [9] 

modelled the network-induced delays as a constant by building buffers in the controller node and the actuator 

node respectively. The disadvantage of this method is prolonging the network-induced delay. Model Predictive 

Control (MPC) has been used in NCS to deal with random delay [2, 10, 11]. Gang et al. [10] considered MPC 

based NCS with stochastic time delay. Srinivasagupta et al. [11] used the global time stamps to determine the 

current and previous delays in NCS. Yang et al. [2] implemented a Dynamic Matrix Control (DMC) based time 

delay compensator over the Internet in a real laboratory rig. Liu et al. [12] introduced a hardware 

implementation for their MPC based NCS. Random communication delays, varying sensor delays and missing 

measurements have been also considered in the NCS research [13, 14]. 
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Distinguish from the existing works this paper considers both stochastic transmission time delays in feedback 

and feed-forward channels and uncertain process parameters in NCS. A buffer is setup in the actuator node for 

saving the latest available corresponding control actions. The current time delay is calculated by comparing the 

current time with the time stamp received from the sensor node. If no time delay occurs in feedback channel, 

updated control actions for multi-step forward instants are generated in terms of the prediction of the states in 

the future instants. Otherwise, the control actions are generated based on the available measured states received 

from the sensor node for delayed instants. In both cases the control actions are generated in the control node and 

sent to the buffer in the actuator node. The actuator node applies only the control action for the current instant 

saved in the buffer to the plant. A sufficient stability condition is achieved for this particular model predictive 

control system with time delay compensation. These results may be useful in many practical situations.  

 

This paper is organized as follows. In Section 2, a model of NCSs is given with a few of assumptions. A 

transmission delay compensation method is proposed in Section 3. The stability analysis for NCSs is addressed 

in Section 4. Section 5 illustrates the simulation results, which demonstrate the accuracy of the proposed 

method. Section 6 is the conclusions. The appendix gives the detailed proof of the stability theorem.  

 

 

2. MODELLING OF THE NCS 

 

Consider a class of ordinary NCS as shown in Fig. 1. It consists of a plant described in an uncertain discrete 

linear model. 
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and a discrete controller  

L,2,1,0),()()( =−−−= krkKXrkhkU k
ca
k ,                                                                (2) 

where 1nRX ∈  is the state vector; 2nRU ∈  is the control input vector; 11 nnRA ×∈  and 21 nnRB ×∈  are known 

constant real matrices; BandA ΔΔ  are matrix-valued functions of appropriate dimension representing time-

varying parameter uncertainties in the plant model. 12 nnRK ×∈  is the feedback control matrix. kr  is the total 

transmission delay at instant k which equals the sum of the sensor-to-controller delay, denoted as sc
kr , and the 

controller-to-actuator delay, denoted as ca
kr .  All the time delays kr , sc

kr and ca
kr are rounded to an integer 

multiple of the sampling interval by including the various waiting times at the controller node and the actuator 

node into them respectively. The set-point h(k) is normally set as zero without losing generalities.  
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As usual, the parameter uncertainties considered are assumed to be norm bounded and satisfy 

])[(][ 21 EEkDFBA =ΔΔ                                                                          (3) 

where 21,, EED  are known real matrixes of appropriate dimension that represent the structure of uncertainties, 

and 21)( ssRkF ×∈ is unknown matrix function and satisfies 

IkFkF T ≤)()(                                                                                        (4) 

in which I  is the identity matrix with an appropriate dimension. 

 

The following assumption is made for the NCS: The total transmission delay kr  is bounded and stochastically 

varying, i.e. mrk ≤≤0 , where m is an integer, which can be estimated according to the maximum time delay 

under the normal network condition. In case the network temperately collapses, the time delay will be greater 

than m, and the latest available control action will keep being used until the network recoveries. 

 

Based on the above assumptions the actuators may receive zero, one, or more than one (up to m) control action 

packets from the controller during a single sampling interval. If the actuators receive no control action packets 

during any sampling interval ),[ 1+kk tt , ku  in the last received control action packet will continue to act on 

the plant during the next sampling interval ),[ 21 ++ kk tt . If the actuators receive more than one control action 

packets during any sampling interval ),[ 1+kk tt , only the most recent received control action packet is kept and 

the actuators will discard the others.  

 

Concerning the random transmission time delay, the state feedback controller shown in Equation (2) can be re-

presented as follows: 
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kr  represents the NCS random network transmission delay rounded to an integer, { }mrk ,,1,0 L=℘∈ . 

 

In spirit being similar to ones made by Nilsson [15], but easier to implement time delay compensation, a further 

rational assumption is made as follows: 
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Let }0,{ >krk  be a Markov chain with the state space { }m,,1,0 L=℘ and the transition probabilities 

are 

{ } [ ]mjiPirjrP r
ijkk

r L,1,0,,|1 ∈∀===+                                                        (6) 
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3. COMPENSATION OF TRANSMISSION DELAY AT FEEDBACK AND 

FEEDFORWARD CHANNELS 

 

For the sake of simplicity, a two-step design strategy is used in this study. A state feedback controller is firstly 

designed without considering the effect of NCS, and then a controller node and an actuator node are designed to 

compensate the effect of the sensor-to-controller delay and the controller-to-actuator delay. Fig. 2 illustrates the 

principle of the compensation of the transmission delay for NCS. A process model is located in the controller 

node in order to predict the future performance of the plant based on the latest available measured states. A 

buffer is located in the actuator node in order to compensate the effect of the transmission time delay. 

 

3.1 Compensation of the transmission delay at the sensor-to-controller channel 

Suppose the latest plant state received by the controller node is )(kX . The controller will predict the next m  

plant states based on this measured plant state )(kX : )1(ˆ +kX , )2(ˆ +kX , to )(ˆ mkX + , calculate the current 

and future m control actions: )(),1(),( mkUkUkU ++ L  and then transmit them to the actuator node together 

with the time stamp received from the sensor node. The current control action )(kU , the prediction of the plant 

states and the future control actions at instants mkkk +++ L,2,1 based on the measured plant state 

)(kX  are as follows:  
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where kikX |
ˆ

+ and kikU |+   are denoted as the prediction of the plant state and the future control action at instant 

ik +  based on the measured state ).(kX  
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In general, if the latest available plant state received by the controller node is [ ]mjjkX ,,1,0),( L∈− , 

the prediction of the plant states and the future control actions based on them at instant ik + , 

],,2,1[ mi L∈ can be represented as follows: 
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where jkikX −+ |
ˆ and jkikU −+ |  are denoted as the prediction of the plant state and the future control action at 

instant ik +  based on the measured state ).( jkX −  

 

3.2 Compensation of the transmission delay at the controller-to-actuator channel 

Once a new measured plant state [ ]mjjkX ,,1,0),( L∈−  is received by the controller node, the sensor-

to-controller time delay sc
kr will be calculated by comparing the current time with the time stamp received from 

the sensor node, and then rounded to an integer multiple of the sampling interval by adding a waiting time at the 

controller node into the delay, i.e. .sc
krj =  Based on the latest available plant state )( sc

krkX − the control 

actions )(,),1(),( mkUkUkU ++ L are calculated according to Equation (8) and then sent to the actuator 

node. Once the control action packet is received by the actuator node the controller-to-actuator time delay ca
kr  

will be calculated by comparing the current time with the time stamp received from the controller node and then 

rounded to an integer multiple of the sampling interval by adding a waiting time at the actuator node into the 

delay.  The control actions available for the plant are )(,),1(),( ca
k

ca
k

ca
k rmkUrkUrkU −+−+− L , which 

are saved in the buffer at the actuator node. The actuator node will choose )(kU  from the above list as the 

current control action acting on the plant. At instant k+1, i.e. the next sampling instant, if no any new control 

action packet is received from the controller node, )1( +kU  found from the control action packet 

)(,),1(),( ca
k

ca
k

ca
k rmkUrkUrkU −+−+− L will be used for the plant. If more than one control action 

packets are received only the packet with the latest time stamp will be saved in the buffer. This is used to deal 

with the situations of package disorder and package loss. 

 

3.3 Unified form of the state feedback controller 

Being similar with the uncompensated control action shown in Equation (5) the compensated control action 

obtained in the controller node and saved in the actuator node at instant k can be formulised as follows: 
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If the network temperately collapses kr may be greater than m. The latest available )( ca
krmkU −+  from the 

buffer will keep being used as the control action on the plant until the network recoveries and a new control 

action packet is received.  Equation (9) has involved the compensation of the total transmission delay kr since it 

compensates the controller-to-actuator transmission delay ca
kr  in the actuator node and the sensor-to-controller 

transmission delay sc
kr  in the controller node when predicting the current state. 

 

 

4. STABILITY ANALYSIS 

 

Define ikkkikk XXe −− −= ||
ˆ  as the state error between the real state of the plant and the state estimation at 

instant k generated based the measured state of the plant at instant ik − . The method of the stability analysis 

used here is first to establish an extension model for the current state X(k) and the predicted state errors e(k), 

obtained by using the latest measured states at instant k with various time delays { }mrk ,,1,0 L=℘∈ , and 

then to find a stability condition for the extended model. Therefore, if the extended model is stable under this 

stability condition the predicted state errors e(k) will approach to zero and the compensated networked control 

system will be stable under this condition.  

The extended state vector, denoted as )(kZ , is given in Equation (10).  
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                                                                             (10) 

Because of the random time delay { }mrk ,,1,0 L=℘∈ the latest available plant state used by the 

controller node for the control action calculation and saved at the actuator node at instant k  will be one of 

,),1(),( L−kXkX  and )( mkX − , depending on the actual total transmission delay kr . Equations (11) and 

(12) give the control actions and the estimations of the state at the same instant 1+k , but are based on the 

available measured states at instants 1,,1, +−− mkkk L  respectively. 
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Combining Equations (1), (9), (11) and (12) the state errors at instant k+1 based on the real measured states at 

instants 1,,1, +−− mkkk L  can be given as follows: 
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Therefore, by using the notation shown in Equation (10) the extended model of the networked control system 

with the time-delay compensation can be described by 
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With the assumption shown in Equations (3) and (4), ΔΛ and ΔΓ(rk) can be expressed as: 
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The following sufficient stability condition is achieved for the NCS with the predictive compensation shown in 

Fig. 2. 
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Theorem: The NCS shown in Equation (1) with the time-delay compensation described by Equations (7), (8), 

and (9) is robust stochastically stable if there exist miPi ,,1,0 L=> , a matrix L described by Equation (15) and a 

scalar mii ,,1,0 L=>ε  satisfying the following m  linear matrix inequalities: 
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},{ 1 mPPdiagQ L=  

 

),,1( mjP r
ij L=  is the corresponding element of the state transition matrix of the Markov process kr , as shown 

in Equation (6). The feedback control matrix K in Equations (7), (8), and (9) is deterministic and designed 

without considering the presence of the network in the feedback loop, which assures that Equation (18) is a set 

of strict linear matrix inequalities and easy to be solved out [16]. The proof of the theorem is given in the 

appendix. 

 

 

5. SIMULATION RESULTS 

 

Consider a simple discrete plant described in Equations (1), (3) and (4) with the sampling interval 

5.0=T second and the following parameters. 
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The network transmission delay kr is a Markov chain with the state space }3,2,1,0{=℘∈kr , and the 

state transition probabilities matrix is  
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The total transmission delay τ is bounded and stochastically varying within ,0 m≤≤ τ  m=3. The state feedback 

controller )()( kKXkU −= , where [ ]38.33.10=K , was designed in advance without considering the 

presence of the network. The controller and the stability condition shown in Equations (7) to (18) can be 

simplified by setting m=3. For example, Equations (11) and (12) are re-written as 
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Using the LMI toolbox in the MatLab three positive-definite symmetric matrices P1, P2, P3 and three scalars ε1, 

ε2, ε3 are obtained as follows, which satisfy the linear matrix inequalities shown in Equation (18): 
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0.4703-0.0630-0.01900.0633-0.0419-0.0419-2.05450.5849-
0.0430- 0.10550.0302-0.03290.0062-0.0224 0.5849-0.2243 

1P
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

186.033575.5287-7.5407- 2.28170.0253 0.0070-0.3028-0.0433 
75.5287-  31.16043.2230 0.9838-0.0130-0.0038  0.1427- 0.0776 
7.5407- 3.2230226.296277.1005-0.4252-0.0490-0.6874- 0.0862

2.2817 0.9838-77.1005-26.47230.12380.04950.1084- 0.0892 
0.0253 0.0130- 0.4252-0.1238664.229268.8290-0.0205-0.0157-
0.0070-0.0038 0.0490-0.049568.8290-564.51350.0900- 0.0415 
0.3028-0.1427-0.6874-0.1084-0.0205- 0.0900- 2.35020.6782-
0.0433 0.07760.08620.08920.0157-0.04150.6782-0.2622

2P
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

186.2531  75.6111-1.3909- 0.2738- 0.0039-0.1682-0.2743- 0.0464
75.6111-31.19640.5386 0.13690.0090-0.0441 0.1425-0.0763
1.3909- 0.5386391.3059147.1264-0.1722-0.1216-0.6535- 0.1865
0.2738-0.1369147.1264-56.13160.2390- 0.1226 0.1016-  0.0450 
0.0039- 0.0090-0.1722-0.2390-592.7718 193.1824-1.2078- 0.2996 
0.1682- 0.0441 0.1216- 0.1226193.1824-63.33090.0076- 0.0248 
0.2743-   0.1425-0.6535-0.1016- 1.2078-0.0076-2.3970 0.6824- 

0.04640.07630.1865 0.04500.29960.0248 0.6824-0.2634 

3P
 

0.0973,1 =ε 0.0776,2 =ε 0.07493 =ε  

Therefore, according to the stability theorem in Section 4, the NCS with the time-delay compensation is stable 

for the state feedback controller )()( kKXkU −= , where [ ]38.33.10=K . 

 

The responses of the states x1, x2, and the output Y under the square wave setpoint change are shown in Figs. 3, 

4, and 5 respectively. The system was initially at a steady state, i.e. .0)0(;0)0(;0)0( 21 === Yxx  The 

setpoint shown in Fig. 5 is changed from 0 to 1.0 at instant 0=k , and then back from 1.0 to 0 at instant 

100=k . In Figs. 3 and 4 the solid and dash lines represent the responses of the two state variables without and 

with the transmission delay compensation respectively. It is obvious that the responses with the transmission 

delay compensation are quicker in approaching to the new steady states and have much less overshoot. Fig. 5 

illustrates the same conclusion achieved in the output response. The square wave setpoint is shown in Fig. 5 as a 

reference. The output with the transmission delay compensation has much less overshoot and approaches to the 

setpoint much quicker than the one without the compensation. The comparison concludes that the transmission 

delay compensation method introduced in this paper can improve the system performance. 

 

6. CONCLUSIONS 

This paper discusses the NCS with a stochastic transmission delay and uncertain process parameters. The 

stochastic transmission delay is assumed to be a Markov chain and be integer times of the sampling interval. 

The uncertain parameters are assumed to be norm bounded. A binary variable is introduced to represent the 

control action with a random transmission delay. A state feedback controller is firstly designed without 

considering the involvement of the network transmission delay. A buffer is then located in the actuator node to 
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save the future control actions sent from the controller node. The control action actually applied to the plant at 

instant k+1 is chosen from the buffer in terms of the total transmission delay. The current time stamp is 

compared with the time stamp received from the sensor node to compute the current time delay.  The buffer is 

designed to compensate the influence of the transmission delay.  An LMI-based sufficient condition for the 

stability of the NCS with the above compensation is derived in this paper. The simulation results also illustrate 

the potential of the transmission delay compensation method. 

 

There are still a number of problems to be addressed. Firstly, the stability theorem proposed here is only a 

sufficient condition. A necessary condition is required in order to identify if there exist a set of parameters 

satisfying the LMI condition. The state feedback controller is used in this paper for the NCS. If the plant states 

are un-measurable an output feedback controller for the NCS should be investigated.  
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APPENDIX 

Lemma (see [17]): Let EtFDZ ),(,,  be matrices with appropriate dimensions. Suppose Z  is symmetric and 

ItFtF T ≤)()( , then 

0)()( <++ TTT DtFEEtDFZ  

if and only if there exists scalar 0>ε  satisfying 
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01
<++ EEDDZ TT

ε
ε                                                                       (A.1) 

Proof of the stability theorem in Section 4:  

Combining Equations (14) and (16) the dynamics of the NCS with the time-delay compensation can be 

represented as follows: 

⎩
⎨
⎧

++Γ+Λ=Π
Π=+

))(ˆˆ)((ˆˆ)()(
)()()1(

21 LrEEkFDLrr
kZrkZ

kkk

k                                                      (A.2) 

If irk = , the matrices )( krΠ , )( krΓ , )(ˆ
2 krE  are denoted as iΠ , iΓ , )(ˆ

2 iE  respectively. 

 

Take the piecewise quadratic stochastic Lyapunov function: 

( ) kk
T
k ZrSZV )(=•                                                                        (A.3) 

Where, .,0)( iTrwhenSrS kik =>=  

Let ∑=
=

m

j
j

r
iji SPS

1
, },,{ 1 mSSdiagG L= and ,,1],[ 1 miIPIPW r

im
r

ii LL == where r
ijP  is the corresponding 

element of the state transition matrix of the Markov process kr . Thus, we have T
iii GWWS = . 

The mean square stable theory of stochastic systems gives [18]: 

( ){ } ( )iTrZViTrZrZVE kkkkkkkk =−=+++ ,,|, 111  

    kiii
T
i

T
k ZSSZ )( −ΠΠ=  

 kii
T

ii
T
i

T
k ZSGWWZ )( −ΠΠ=                                                                (A.4) 

Obviously, if (A.4) <0, the discrete uncertain system is robust stochastically stable. Using the Schur 

complement the inequality (A.4) <0 can be represented as follows: 

0
* 1 <

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
Π−

−G
WS i

T
ii                                                                  (A.5) 

Note that 

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
Γ+Λ−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
Π−

−− 11 *
)(

* G
WLS

G
WS i

T
iii

T
ii

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
0*

)))(ˆˆ)((ˆˆ(0 21 i
T WLiEEkFD  

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
Γ+Λ−

= −1*
)(

G
WLS i

T
ii [ ]++⎥

⎦

⎤
⎢
⎣

⎡
0)(ˆˆ)(ˆ

ˆ
0

21 LiEEkF
DW T

i
[ ] 0ˆ

0
)(ˆ0)(ˆˆ

21 <⎥
⎦

⎤
⎢
⎣

⎡
+

T

T
i

TT

DW
kFLiEE   

According to the Lemma (A.1) and the assumption (17) the inequality (A.5) is true, if and only if there exits a 

scalar 0>iε  such that 

+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
Γ+Λ−

−

T

T
i

T
i

i
i

T
ii

DWDWG
WLS 00

*
)(
1 ε [ ] [ ] 00)(ˆˆ0)(ˆˆ1

2121 <++ LiEELiEE
T

iε
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which is equivalent to  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+−

+Γ+Λ−
−

I
WDDWG

LiEEWLS

i

i
TT

ii

T
i

T
ii

ε
ε

**
0ˆˆ*

))(ˆˆ()(
1

21

<0                                     (A.6) 

Let 1−= ii SP , and },{ 1 mPPdiagQ L= , thus 1−= GQ . Pre- and post-multiplying the both sides of the inequality 

(A.6) by ],,[ IIPdiag i  leads to the theorem (18). The theorem is proved. 
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Fig. 1. Networked control system 
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Fig. 2. Transmission delay compensation in the NCS 
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Fig. 3. State 1x  response 
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Fig. 4. State 2x response 
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Fig. 5. Output response 

 

 


