396 research outputs found

    Optimising and evaluating designs for reconfigurable hardware

    No full text
    Growing demand for computational performance, and the rising cost for chip design and manufacturing make reconfigurable hardware increasingly attractive for digital system implementation. Reconfigurable hardware, such as field-programmable gate arrays (FPGAs), can deliver performance through parallelism while also providing flexibility to enable application builders to reconfigure them. However, reconfigurable systems, particularly those involving run-time reconfiguration, are often developed in an ad-hoc manner. Such an approach usually results in low designer productivity and can lead to inefficient designs. This thesis covers three main achievements that address this situation. The first achievement is a model that captures design parameters of reconfigurable hardware and performance parameters of a given application domain. This model supports optimisations for several design metrics such as performance, area, and power consumption. The second achievement is a technique that enhances the relocatability of bitstreams for reconfigurable devices, taking into account heterogeneous resources. This method increases the flexibility of modules represented by these bitstreams while reducing configuration storage size and design compilation time. The third achievement is a technique to characterise the power consumption of FPGAs in different activity modes. This technique includes the evaluation of standby power and dedicated low-power modes, which are crucial in meeting the requirements for battery-based mobile devices

    Models for Co-Design of Heterogeneous Dynamically Reconfigurable SoCs

    Get PDF
    International audienceThe design of Systems-on-Chip is becoming an increasing difficult challenge due to the continuous exponential evolution of the targeted complex architectures and applications. Thus, seamless methodologies and tools are required to resolve the SoC design issues. This chapter presents a high level component based approach for expressing system reconfigurability in SoC co-design. A generic model of reactive control is presented for Gaspard2, a SoC co-design framework. Control integration in different levels of the framework is explored along with a comparison of their advantages and disadvantages. Afterwards, control integration at another high abstraction level is investigated which proves to be more beneficial then the other alternatives. This integration allows to integrate reconfigurability features in modern SoCs. Finally a case study is presented for validation purposes. The presented works are based on Model-Driven Engineering (MDE) and UML MARTE profile for modeling and analysis of real-time embedded systems

    Reconfiguration Viewer

    Get PDF
    Grassi PR, Pohl C, Porrmann M. Reconfiguration Viewer. In: Design Automation and Test in Europe, DATE University Booth. Nice, France; 2009.The proposed approach allows debugging of partial dynamic reconfiguration. It shows where and when FPGA areas are reconfigured at runtime

    A Dynamically Reconfigurable Parallel Processing Framework with Application to High-Performance Video Processing

    Get PDF
    Digital video processing demands have and will continue to grow at unprecedented rates. Growth comes from ever increasing volume of data, demand for higher resolution, higher frame rates, and the need for high capacity communications. Moreover, economic realities force continued reductions in size, weight and power requirements. The ever-changing needs and complexities associated with effective video processing systems leads to the consideration of dynamically reconfigurable systems. The goal of this dissertation research was to develop and demonstrate the viability of integrated parallel processing system that effectively and efficiently apply pre-optimized hardware cores for processing video streamed data. Digital video is decomposed into packets which are then distributed over a group of parallel video processing cores. Real time processing requires an effective task scheduler that distributes video packets efficiently to any of the reconfigurable distributed processing nodes across the framework, with the nodes running on FPGA reconfigurable logic in an inherently Virtual\u27 mode. The developed framework, coupled with the use of hardware techniques for dynamic processing optimization achieves an optimal cost/power/performance realization for video processing applications. The system is evaluated by testing processor utilization relative to I/O bandwidth and algorithm latency using a separable 2-D FIR filtering system, and a dynamic pixel processor. For these applications, the system can achieve performance of hundreds of 640x480 video frames per second across an eight lane Gen I PCIe bus. Overall, optimal performance is achieved in the sense that video data is processed at the maximum possible rate that can be streamed through the processing cores. This performance, coupled with inherent ability to dynamically add new algorithms to the described dynamically reconfigurable distributed processing framework, creates new opportunities for realizable and economic hardware virtualization.\u2

    Securing Critical Infrastructures

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen677. INGEGNERIA INFORMATInoopenCarelli, Albert

    New Design Techniques for Dynamic Reconfigurable Architectures

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A Field Programmable Gate Array Architecture for Two-Dimensional Partial Reconfiguration

    Get PDF
    Reconfigurable machines can accelerate many applications by adapting to their needs through hardware reconfiguration. Partial reconfiguration allows the reconfiguration of a portion of a chip while the rest of the chip is busy working on tasks. Operating system models have been proposed for partially reconfigurable machines to handle the scheduling and placement of tasks. They are called OS4RC in this dissertation. The main goal of this research is to address some problems that come from the gap between OS4RC and existing chip architectures and the gap between OS4RC models and practical applications. Some existing OS4RC models are based on an impractical assumption that there is no data exchange channel between IP (Intellectual Property) circuits residing on a Field Programmable Gate Array (FPGA) chip and between an IP circuit and FPGA I/O pins. For models that do not have such an assumption, their inter-IP communication channels have severe drawbacks. Those channels do not work well with 2-D partial reconfiguration. They are not suitable for intensive data stream processing. And frequently they are very complicated to design and very expensive. To address these problems, a new chip architecture that can better support inter-IP and IP-I/O communication is proposed and a corresponding OS4RC kernel is then specified. The proposed FPGA architecture is based on an array of clusters of configurable logic blocks, with each cluster serving as a partial reconfiguration unit, and a mesh of segmented buses that provides inter-IP and IP-I/O communication channels. The proposed OS4RC kernel takes care of the scheduling, placement, and routing of circuits under the constraints of the proposed architecture. Features of the new architecture in turns reduce the kernel execution times and enable the runtime scheduling, placement and routing. The area cost and the configuration memory size of the new chip architecture are calculated and analyzed. And the efficiency of the OS4RC kernel is evaluated via simulation using three different task models

    Design methodology addressing static/reconfigurable partitioning optimizing software defined radio (SDR) implementation through FPGA dynamic partial reconfiguration and rapid prototyping tools

    Get PDF
    The characteristics people request for communication devices become more and more demanding every day. And not only in those aspects dealing with communication speed, but also in such different characteristics as different communication standards compatibility, battery life, device size or price. Moreover, when this communication need is addressed by the industrial world, new characteristics such as reliability, robustness or time-to-market appear. In this context, Software Defined Radios (SDR) and evolutions such as Cognitive Radios or Intelligent Radios seem to be the technological answer that will satisfy all these requirements in a short and mid-term. Consequently, this PhD dissertation deals with the implementation of this type of communication system. Taking into account that there is no limitation neither in the implementation architecture nor in the target device, a novel framework for SDR implementation is proposed. This framework is made up of FPGAs, using dynamic partial reconfiguration, as target device and rapid prototyping tools as designing tool. Despite the benefits that this framework generates, there are also certain drawbacks that need to be analyzed and minimized to the extent possible. On this purpose, a SDR design methodology has been designed and tested. This methodology addresses the static/reconfigurable partitioning of the SDRs in order to optimize their implementation in the aforementioned framework. In order to verify the feasibility of both the design framework and the design methodology, several implementations have been carried out making use of them. A multi-standard modulator implementing WiFi, WiMAX and UMTS, a small-form-factor cognitive video transmission system and the implementation of several data coding functions over R3TOS, a hardware operating system developed by the University of Edinburgh, are these implementations.Las características que la gente exige a los dispositivos de comunicaciones son cada día más exigentes. Y no solo en los aspectos relacionados con la velocidad de comunicación, sino que también en diferentes características como la compatibilidad con diferentes estándares de comunicación, autonomía, tamaño o precio. Es más, cuando esta necesidad de comunicación se traslada al mundo industrial, aparecen nuevas características como fiabilidad, robustez o plazo de comercialización que también es necesario cubrir. En este contexto, las Radios Definidas por Software (SDR) y evoluciones como las Radios Cognitivas o Radios Inteligentes parecen la respuesta tecnológica que va a satisfacer estas necesidades a corto y medio plazo. Por ello, esta tesis doctoral aborda la implementación de este tipo de sistemas de comunicaciones. Teniendo en cuenta que no existe una limitación, ni en la arquitectura de implementación, ni en el tipo de dispositivo a usar, se propone un nuevo entrono de diseño formado por las FPGAs, haciendo uso de la reconfiguración parcial dinámica, y por las herramientas de prototipado rápido. A pesar de que este entorno de diseño ofrece varios beneficios, también genera algunos inconvenientes que es necesario analizar y minimizar en la medida de lo posible. Con este objetivo, se ha diseñado y verificado una metodología de diseño de SDRs. Esta metodología se encarga del particionado estático/reconfigurable de las SDRs para optimizar su implementación sobre el entrono de diseño antes comentado. Para verificar la viabilidad tanto del entorno, como de la metodología de diseño propuesta, se han realizado varias implementaciones que hacen uso de ambas cosas. Estas implementaciones son: un modulador multi-estándar que implementa WiFi, WiMAX y UMTS, un sistema cognitivo y compacto de transmisión de video y la implementación de varias funciones de codificación de datos sobre R3TOS, un sistema operativo hardware desarrollado por la Universidad de Edimburgo
    • …
    corecore