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Abstract- Nowadays, more than ever, security is considered to 

be critical issue for all electronic transactions. This is the 

reason why security services like those described in IPSec are 

mandatory to IPV6 which will be adopted as the new IP 

standard the next years. In fact E.U. has set the target of 

moving to IPv6 for about 25% of European e-infrastructures 

in 2010. However the need for security services in every data 

packet that is transmitted via IPv6, illustrates the need for 

designing security products able to achieve higher throughput 

rates for the incorporated security schemes. In this paper a 

top-down methodology is presented which manages to increase 

throughput of SHA-256 hash function hardware design. The 

higher degree of throughput with limited area penalty and cost 

is achieved through appropriate Software/Hardware 

partitioning and design. 

Keywords- Hash-Functions, Hardware design, VLSI, High-

Throughput, IPSec, SHA-256. 

I. INTRODUCTION 

ecurity is now considered as a must-have service for 

almost all kind of e-applications. This is the reason why 

in IPv6 which is bound to be adopted worldwide, IPSec [1] 

is a mandatory protocol. IPSec (Internet Protocol Security) 

is a protocol suite for securing Internet Protocol (IP) 

communications by authenticating and encrypting each IP 

packet of a data stream. IPSec also includes protocols for 

establishing mutual authentication between agents at the 

beginning of the session and negotiation of cryptographic 

keys to be used during the session. IPSec can be used to 

protect data flows between a pair of hosts (e.g. computer 

users or servers), between a pair of security gateways (e.g. 

routers or firewalls), or between a security gateway and a 

host. In IPSec and in other applications like keyed-hash 

message authentication codes (HMACs) [2], the Secure 

Electronic Transactions (SET), and the 802.16 standard for 
_______________________________ 

About1-H. E. Michail is with: a) Department of Electrical and Computer 

Engineering and b) Department of Computer Engineering and Informatics, 

University of Patras, Rio Campus, Patras, Greece, c) Department of 

Mechanical Engineering, Technological and Educational Institute of 

Patras, Patras, Greece(telephone:302610997321,  

(email: michail@ece.upatras.gr)  

About2- G. S. Athanasiou, Ch. L. Panagiotou and C. E. Goutis are with the 

Department of Electrical and Computer Engineering, University of Patras, 

Rio Campus, Patras, GR-26500, Greece 

(email: gathanas, chpanag, goutis @ece.upatras.gr)  

About3-A. A. Gregoriades is with the Department of Computer Science and 

Engineering, European University of Cyprus, Nicosia, Cyprus,  

( email: A.Gregoriades@euc.ac.cy)  

 

Local and Metropolitan Area Networks incorporate 

authenticating services, an authenticating module that 

includes a hash function is nested in the implementation of 

the application. Moreover, digital   signature algorithms are 

used  for  authenticating services  in  electronic mail, 

electronic funds transfer, electronic data interchange, 

software distribution, data storage etc are based on using a 

critical cryptographic primitive like hash functions. 

Hashes are used also in SSL [3], which is a Web protocol 

for establishing authenticated and encrypted sessions 

between Web servers and Web clients. 

However, in these specific applications there is an urgent 

need to increase their throughput, especially of the 

corresponding server of these applications and this is why, 

as time goes by, many leading companies improve their 

implementations of hash functions. This is also true for 

IPv6/IPSec since corresponding designs and 

implementations should be able to achieve such a high 

throughput so as to be able to provide cryptographic services 

to all data packet that are transmitted via internet. 

Although software encryption is becoming more prevalent 

today, hardware is the embodiment of choice for military 

and many commercial applications [4]. The NSA, for 

example, authorizes only encryption in hardware. This is 

because hardware designs are much faster than the 

corresponding software implementations [5], and because 

hardware implementations offer a higher level of security 

since they also provide physical protection [6]. 

The security scheme of these throughput-demanding 

applications like HMAC in IPSEC and SSL\TLS incorporate 

encryption and authenticating modules. Lately many 

implementations of the AES encryption module have been 

designed that exceed or approach 20 Gbps of throughput [7], 

so it is crucial to design hash functions that also achieve 

high throughput, and increase throughput of the whole IPSec 

and SSL\TLS security scheme. 

The latter mentioned facts were strong motivation to 

propose a novel methodology for hardware design and 

implementation applicable to SHA-256 hash function [8] 

which will dominate in the near future. However, with 

minor modifications, the proposed methodology can also be 

applied to other hash functions leading also to much higher 

throughput designs with small area penalty. 

As a case study, the efficient design and mapping of IPSec 

components in a reconfigurable platform is illustrated. This 

way, in abstract level, the generic formulation of a platform 

S 



Global Journal of Computer Science and Technology Vol. 10 Issue 4 Ver.  1.0  June  2010   P a g e | 55 

 
aiming to boost performance of IPSec with low cost is 

illustrated. Only the critical kernels/components of IPSec 

are mapped for execution on the (expensive) reconfigurable 

logic. 

II. HASHING AND RELATED WORK 

Hash functions are iterative algorithms and their operation 

block (in fact the ―hashing machine‖ of the algorithm), is 

responsible to process the message schedule. Usually it 

consists of simple functions like additions, rotations and/or 

Boolean logic functions. In SHA-256 the operation block is 

repeated 64 times, feeding its output as input to the 

consecutive operation block and then the final hash value is 

ready. 

The need for high throughput is widely recognized and thus 

various design approaches have been proposed in order to 

introduce to the market high-speed and small-sized hashing 

cores such as loop unrolling, pipeline, re-use resource and 

usage of newer and faster FPGAs [9]. 

Nevertheless the performance of all hardware 

implementations is degraded because not much effort has 

been paid on optimizing the inner logic of the 

transformation rounds. In our work we propose a 

methodology to optimize the inner logic of SHA-256 hash 

function so as to reach the highest level of throughput, with 

minor area penalty which in turn will lead to achieving a 

higher throughput for the whole security scheme (i.e. in 

IPSec). 

III. HARDWARE/SOFTWARE CO-DESIGN 

In Fig.1, an overview of the reconfigurable system-on-chip 

(SoC) architecture considered in this work is shown. The 

platform is composed by a Reconfigurable Functional Unit 

(RFU) like an FPGA and an embedded CPU. 

On-chip

SRAMs/Caches

RFUCPU

To off-chip RAM
 

Fig.1. Reconfigurable SoC Architecture. 

The RFU is a Coarse-grained Reconfigurable Array (CRA). 

On-chip memories (SRAMs, caches or combination of 

them) store program code, CRA configurations and data. 

Local data and instruction (configuration) memories are 

located in both the CPU and in the CRA. The CRA acts as a 

coprocessor to the CPU and accelerates computational 

intensive software parts of the application. The embedded 

CPU, typically a RISC like an ARM or MIPS, executes 

control-dominant sequential parts. 

The programming (execution) model of the reconfigurable 

platform considers that the data communication between the 

CRA and the CPU uses shared-memory mechanism. The 

shared memory is comprised of the system‘s on-chip data 

RAM and coprocessor data registers inside the RFU. The 

communication process used by the CPU and the CRA 

preserves data coherency by requiring their   execution   to   

be   mutually   exclusive.   The   mutual exclusive execution 

simplifies the programming since complicated analysis and 

synchronization procedures are not required. 

If we consider the design of IPSec, as we have already 

mentioned the nested hash function is the limiting factor of 

its performance. So, the design and implementation of this 

hash function must be selected to be mapped on the RFU so 

as to be speeded-up, whereas the rest components can be 

executed on the CPU illustrated in Fig.1. Moreover certain 

blocks of SHA-256 hash function, pictured in Fig.2, like 

padding unit, control unit, message digest extraction etc. can 

also be assigned for execution on the CPU and not on the 

FPGA (CRA). 

As long as the other basic component of IPSec is concerned 

(that is AES), from [7], it is derived that AES designs 

implementations present higher throughputs but also higher 

operating frequencies. Thus from all points of view SHA-

256 is the limiting factor of the performance of the design 

and implementation of IPSec/IPv6 in reconfigurable 

Hardware. 

Obviously the blocks assigned for execution on the CRA, 

thus the FPGA, is those which determine the critical path of 

the incorporated hash function. The critical path of the 

illustrated architecture is located between the pipeline stages 

and they are going to be mapped on the FPGA. However in 

order to boost performance of IPSec, we focus on reducing 

the critical path of the design mapped on the FPGA, so as to 

increase performance of the whole system. The optimization 

of the critical path is solely focused on the operation block, 

in order to reduce the delay and thus increase the operating 

frequency. 

IV. PROPOSED METHODOLOGY 

The generic architecture of a hash function is shown in Fig. 

2. Due to the blocks‘ logic variation from round to round 

numerous implementations [10, 11, 12], are based on four 

pipeline stages of single operation blocks. Also from a 

heuristic survey [11] to hash functions it is clear enough that 

the best compromise is to apply four pipeline stages so as to 

quadruple throughput and keep the hash core small as well. 

This selection was made in the presented methodology as it 

is shown in Fig.2. 

Exploring the generic architecture of Fig. 2 it is easily 

extracted that the critical path is located between the 

pipeline stages. The other units, MS RAM and the array of 

constants, do not contribute due to their nature (memory and 

hardwired logic respectively), while control unit is a block 

containing very small counters which also don‘t contribute 

to the overall maximum delay. Thus, optimization of the 

critical path should be solely focused on the operation block. 
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Fig.2. SHA-256 hash core architecture with 4 pipeline 

stages. 

 

 

 

 

Fig.3. SHA-256 operational block 

 

The operation block of SHA-256 is shown in Fig.3. The 

critical path (darker line) is located on the computation of at 

and et values that requires four addition stages and a 

multiplexer for feeding back the output data. 

At the first step of our methodology, a number of operations 

are partially unrolled. That number is determined by a 

separate analysis on SHA-256 hash function. This analysis 

compares variations of partially unrolled operations, their 

corresponding throughput, the required area and then 

calculating the proper ratio (cost function). In Fig. 4, the 

results of a cost function analysis for SHA-256 algorithm, 

performed in Virtex-II FPGA family, are illustrated. As it is 

shown, selecting to partially unroll two operations results in 

the best achieved Throughput/Area ratio (ratio > 2). 

 

 

Fig.4. Effect of unrolling the operation blocks of SHA-256 

 

In Fig. 5, the consecutive SHA-256 operation blocks of 

Fig. 3, have been modified so as to exploit parallel 

calculations. The gray marked areas on Fig. 5 indicate the 

parts of the proposed SHA-256 operation block that operate 

in parallel. 

 

 

Fig.5. Two unrolled SHA-256 operation blocks. 
 

It is noticed that two single addition levels have been 

introduced to the critical path that now consists of six 

addition stages needed for the computation of at and et 

values. Although, this reduces the maximum operation 

frequency, the throughput is increased significantly since the 

message digest is now computed in only 32 clock cycles 

(instead of 64). The area requirements are increased since 

more adders have been used in order to achieve the partial 

unrolling. 
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The next step of the proposed methodology has to do with 

the spatial pre-computation technique. Taking into 

consideration the fact that some outputs are derived directly 

from some inputs values respectively we can assume that it 

is possible during one operation to pre-calculate some 

intermediate values that will be used in the next operation. 

These pre-calculations are related only with those output 

values that derive directly from the latter mentioned input 

values. This pre-computation technique is applied on the 

partially unrolled operation block in Fig. 5 and the new 

modified operation block is shown in Fig. 6. 

 

 

Fig.6. Partially unrolled operation block with pre-computed values. 
 

Observing Fig. 6 it is noticed that the critical path is now 

located on the computation of the peripheral value p1 that is 

introduced in Fig. 6. The critical path has been reduced from 

six addition stages and a multiplexer to four addition stages, 

two non-linear functions (noted as Maj and Ch in Fig. 6) and 

a multiplexer. Comparing to the conventional 

implementation of the single operation block shown in Fig. 

3, theoretically throughput has been in-creased by 80%-

90%. 

This has been achieved by pre-calculating some 

intermediate values and moving the pipeline registers to an 

appropriate intermediate point to store them. The new 

operation block now consists of two units, the ―Pre-

Computation‖ unit which is responsible for the pre-

computation of the values that are needed in the next 

operation and the ―Post-Computation‖ unit which is 

responsible for the final computations of each operation. 

The third step of the proposed technique is to apply the 

system-level pre-computation so as to achieve data pre-

fetching. It was noticed that all Wt values can be computed 

and be available for adequate time before they are really 

needed in each operation t since they are computed through 

some XOR bitwise operations. Also the values of the 

constants Kt are known a priori. These two facts give us the 

potential of pre-computing the sum Wt + Kt outside of the 

operation block. The sum is then saved into a register that 

feeds the operation block and thus the externally (regarding 

the operational block) pre-computed sum Wt + Kt is 

available at the beginning of each operation. So at the 

operational block, from now on it will be assumed that this 

sum available at the beginning of each operation and its 

computational time is excluded from the critical path. The 

new operational block is illustrated in Fig. 7. 

Inspecting Fig. 7, we observe that the critical path is located 

on the computation of the peripheral value p1, and consists 

of four addition stages and two non-linear functions. 

However we notice that at the beginning of this path there is 

the value p4 that is pending to be added to a sum that at the 

same time is being calculated. 

So for this case, a CSA can be used in order to add the three 

values in advance compared to the necessary time in case 

we used two adders as in Fig.7. The Carry Save Adder is 

applied on the ―Post-Computation‖ unit as it is depicted in 

Fig.8 where we have also used a Carry Save Adder in the 

―Pre-Computation‖ unit. This way the critical path inside the 

operation block has been reduced to one Addition stage, two 

Non-linear functions and two Carry Save Adders that are 

required in order to compute the value p1. 

The final proposed operation block for SHA-256 is 

illustrated in Fig. 8. It processes two operations in a single 

clock cycle, and the critical path is shorter than that of the 

conventional implementation, resulting in an increase of 

through-put of more than 110% (theoretical). The 

introduced area penalty is 3 adders, 4 Carry Save Adders, 

two 32-bit registers and 2 non-linear functions. The 

introduced area penalty is about 35% for the whole SHA-

256 core compared to the conventional pipelined 

implementation. This corresponds to an area penalty of 

about 9% for the whole security scheme.  This area penalty 

is worth paying for about 110% increase of throughput. 
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Fig.7. Partially unrolled operation block with pre-computed 

values for SHA-256 with pre-fetching of W+K values. 

 

 

Fig.8. Proposed SHA-256 operation block. 

V. RESULTS AND COMPARISONS 

In order to evaluate the proposed methodology, SHA-

256 hash function was captured in VHDL and was fully 

simulated and verified.  

Table 1: Performance Characteristics and comparisons 

SHA-256 

Implementation 

Op. 

Freq. 

(MHz) 

Throughput 

(Mbps) 
 

Post-

synthesis 

Post 

Place & 

Route 

Area 

CLBs 

[13] a 42.9 77 - 1004 

[14] a 88.0 87 - 1261 

[11] a 83 326 - 1060 

[15] a 82 646 - 653 

[16] a 77 308 - 1480 

[17] a 53 848 - 2530 

Proposed 
a 35.1 2210 2077 1534 

[15] b 150 1184 - 797 

[18] b 133 1009 - 1373 

[19] b 81 1296 - 1938 

Proposed 
b 52.1 3334 3100 1708 

[20 c 64 2052 - 1528 

Proposed 
c 36.4 2330 2190 1655 

[21] d(Commercial IP) 96 - 756 945 

[22] e(Commercial IP) - - 1900 
1614 

(LUTs) 

[23](Commercial IP) 133 - 971 asic 
 

a Virtex FPGA family            c Virtex-E FPGA family 
b Virtex II FPGA family        d Virtex 4 FPGA family 

                                              e Virtex 5 FPGA family 

The XILINX FPGA technologies were selected as the 

targeted technologies, synthesizing the designs for the 

Virtex FPGA family.  

To exhibit the benefits of applying the proposed design 

methodology, SHA-256 hash function was implemented 

following the steps of the proposed methodology and is 

compared with other existing implementations proposed 

either by academia or industry. 

The results from the latter implementations are shown in 

Table 1, for a variety of FPGA families. There are reported 

both post-synthesis and post-place & route results. The 

reported operating frequencies for the proposed 

implementations are related to the corresponding post-

synthesis results. 

As it can be easily seen, the increase observed for SHA-256, 

is about 110% gain in throughput and 30% area penalty 

compared to a non-optimized implementation with four 

pipeline stages (implemented in the same technology). 

This way the improvement that arises from the proposed 

methodology is confirmed and evaluated fairly, verifying 

the theoretical analysis in the previous section. Furthermore, 

comparing the implementations of other researchers to those 

that were resulted from the proposed methodology, it can be 

observed that all of them fall short in throughput, in a range 

that varies from 0.75 – 26.4 times less than the proposed 

implementation. 

VI. CONCLUSIONS 

In this paper a new methodology was proposed for 

achieving high throughputs for SHA-256 and other hash 

functions with a small area penalty. The presented 

methodology is generic and can be used to a wide range of 

existing hash functions that are currently used or will be 

deployed in the future and call for high throughputs.  

The methodology led to significant increase of throughput 

(about 110% for SHA-256), compared to corresponding 

conventional implementations, with a small area penalty. 

The results derived from their implementation in FPGA 

technologies confirm the theoretical results of the proposed 

implementation. 
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