
P a g e | 54 Vol. 10 Issue 4 Ver. 1.0 June 2010 Global Journal of Computer Science and Technology

GJCST Classification
D.4.6, C.2.2, K.6.5

High Throughput Hardware/Software Co-Design

Approach for SHA-256 Hashing Cryptographic

Module In IPSec/IPv6
 H. E. Michail1 G. S. Athanasiou2 A. A. Gregoriades3

 Ch. L. Panagiotou2 C.E. Goutis2

Abstract- Nowadays, more than ever, security is considered to

be critical issue for all electronic transactions. This is the

reason why security services like those described in IPSec are

mandatory to IPV6 which will be adopted as the new IP

standard the next years. In fact E.U. has set the target of

moving to IPv6 for about 25% of European e-infrastructures

in 2010. However the need for security services in every data

packet that is transmitted via IPv6, illustrates the need for

designing security products able to achieve higher throughput

rates for the incorporated security schemes. In this paper a

top-down methodology is presented which manages to increase

throughput of SHA-256 hash function hardware design. The

higher degree of throughput with limited area penalty and cost

is achieved through appropriate Software/Hardware

partitioning and design.

Keywords- Hash-Functions, Hardware design, VLSI, High-

Throughput, IPSec, SHA-256.

I. INTRODUCTION

ecurity is now considered as a must-have service for

almost all kind of e-applications. This is the reason why

in IPv6 which is bound to be adopted worldwide, IPSec [1]

is a mandatory protocol. IPSec (Internet Protocol Security)

is a protocol suite for securing Internet Protocol (IP)

communications by authenticating and encrypting each IP

packet of a data stream. IPSec also includes protocols for

establishing mutual authentication between agents at the

beginning of the session and negotiation of cryptographic

keys to be used during the session. IPSec can be used to

protect data flows between a pair of hosts (e.g. computer

users or servers), between a pair of security gateways (e.g.

routers or firewalls), or between a security gateway and a

host. In IPSec and in other applications like keyed-hash

message authentication codes (HMACs) [2], the Secure

Electronic Transactions (SET), and the 802.16 standard for

About1-H. E. Michail is with: a) Department of Electrical and Computer

Engineering and b) Department of Computer Engineering and Informatics,

University of Patras, Rio Campus, Patras, Greece, c) Department of

Mechanical Engineering, Technological and Educational Institute of

Patras, Patras, Greece(telephone:302610997321,

(email: michail@ece.upatras.gr)

About2- G. S. Athanasiou, Ch. L. Panagiotou and C. E. Goutis are with the

Department of Electrical and Computer Engineering, University of Patras,

Rio Campus, Patras, GR-26500, Greece

(email: gathanas, chpanag, goutis @ece.upatras.gr)

About3-A. A. Gregoriades is with the Department of Computer Science and

Engineering, European University of Cyprus, Nicosia, Cyprus,

(email: A.Gregoriades@euc.ac.cy)

Local and Metropolitan Area Networks incorporate

authenticating services, an authenticating module that

includes a hash function is nested in the implementation of

the application. Moreover, digital signature algorithms are

used for authenticating services in electronic mail,

electronic funds transfer, electronic data interchange,

software distribution, data storage etc are based on using a

critical cryptographic primitive like hash functions.

Hashes are used also in SSL [3], which is a Web protocol

for establishing authenticated and encrypted sessions

between Web servers and Web clients.

However, in these specific applications there is an urgent

need to increase their throughput, especially of the

corresponding server of these applications and this is why,

as time goes by, many leading companies improve their

implementations of hash functions. This is also true for

IPv6/IPSec since corresponding designs and

implementations should be able to achieve such a high

throughput so as to be able to provide cryptographic services

to all data packet that are transmitted via internet.

Although software encryption is becoming more prevalent

today, hardware is the embodiment of choice for military

and many commercial applications [4]. The NSA, for

example, authorizes only encryption in hardware. This is

because hardware designs are much faster than the

corresponding software implementations [5], and because

hardware implementations offer a higher level of security

since they also provide physical protection [6].

The security scheme of these throughput-demanding

applications like HMAC in IPSEC and SSL\TLS incorporate

encryption and authenticating modules. Lately many

implementations of the AES encryption module have been

designed that exceed or approach 20 Gbps of throughput [7],

so it is crucial to design hash functions that also achieve

high throughput, and increase throughput of the whole IPSec

and SSL\TLS security scheme.

The latter mentioned facts were strong motivation to

propose a novel methodology for hardware design and

implementation applicable to SHA-256 hash function [8]

which will dominate in the near future. However, with

minor modifications, the proposed methodology can also be

applied to other hash functions leading also to much higher

throughput designs with small area penalty.

As a case study, the efficient design and mapping of IPSec

components in a reconfigurable platform is illustrated. This

way, in abstract level, the generic formulation of a platform

S

Global Journal of Computer Science and Technology Vol. 10 Issue 4 Ver. 1.0 June 2010 P a g e | 55

aiming to boost performance of IPSec with low cost is

illustrated. Only the critical kernels/components of IPSec

are mapped for execution on the (expensive) reconfigurable

logic.

II. HASHING AND RELATED WORK

Hash functions are iterative algorithms and their operation

block (in fact the ―hashing machine‖ of the algorithm), is

responsible to process the message schedule. Usually it

consists of simple functions like additions, rotations and/or

Boolean logic functions. In SHA-256 the operation block is

repeated 64 times, feeding its output as input to the

consecutive operation block and then the final hash value is

ready.

The need for high throughput is widely recognized and thus

various design approaches have been proposed in order to

introduce to the market high-speed and small-sized hashing

cores such as loop unrolling, pipeline, re-use resource and

usage of newer and faster FPGAs [9].

Nevertheless the performance of all hardware

implementations is degraded because not much effort has

been paid on optimizing the inner logic of the

transformation rounds. In our work we propose a

methodology to optimize the inner logic of SHA-256 hash

function so as to reach the highest level of throughput, with

minor area penalty which in turn will lead to achieving a

higher throughput for the whole security scheme (i.e. in

IPSec).

III. HARDWARE/SOFTWARE CO-DESIGN

In Fig.1, an overview of the reconfigurable system-on-chip

(SoC) architecture considered in this work is shown. The

platform is composed by a Reconfigurable Functional Unit

(RFU) like an FPGA and an embedded CPU.

On-chip

SRAMs/Caches

RFUCPU

To off-chip RAM

Fig.1. Reconfigurable SoC Architecture.

The RFU is a Coarse-grained Reconfigurable Array (CRA).

On-chip memories (SRAMs, caches or combination of

them) store program code, CRA configurations and data.

Local data and instruction (configuration) memories are

located in both the CPU and in the CRA. The CRA acts as a

coprocessor to the CPU and accelerates computational

intensive software parts of the application. The embedded

CPU, typically a RISC like an ARM or MIPS, executes

control-dominant sequential parts.

The programming (execution) model of the reconfigurable

platform considers that the data communication between the

CRA and the CPU uses shared-memory mechanism. The

shared memory is comprised of the system‘s on-chip data

RAM and coprocessor data registers inside the RFU. The

communication process used by the CPU and the CRA

preserves data coherency by requiring their execution to

be mutually exclusive. The mutual exclusive execution

simplifies the programming since complicated analysis and

synchronization procedures are not required.

If we consider the design of IPSec, as we have already

mentioned the nested hash function is the limiting factor of

its performance. So, the design and implementation of this

hash function must be selected to be mapped on the RFU so

as to be speeded-up, whereas the rest components can be

executed on the CPU illustrated in Fig.1. Moreover certain

blocks of SHA-256 hash function, pictured in Fig.2, like

padding unit, control unit, message digest extraction etc. can

also be assigned for execution on the CPU and not on the

FPGA (CRA).

As long as the other basic component of IPSec is concerned

(that is AES), from [7], it is derived that AES designs

implementations present higher throughputs but also higher

operating frequencies. Thus from all points of view SHA-

256 is the limiting factor of the performance of the design

and implementation of IPSec/IPv6 in reconfigurable

Hardware.

Obviously the blocks assigned for execution on the CRA,

thus the FPGA, is those which determine the critical path of

the incorporated hash function. The critical path of the

illustrated architecture is located between the pipeline stages

and they are going to be mapped on the FPGA. However in

order to boost performance of IPSec, we focus on reducing

the critical path of the design mapped on the FPGA, so as to

increase performance of the whole system. The optimization

of the critical path is solely focused on the operation block,

in order to reduce the delay and thus increase the operating

frequency.

IV. PROPOSED METHODOLOGY

The generic architecture of a hash function is shown in Fig.

2. Due to the blocks‘ logic variation from round to round

numerous implementations [10, 11, 12], are based on four

pipeline stages of single operation blocks. Also from a

heuristic survey [11] to hash functions it is clear enough that

the best compromise is to apply four pipeline stages so as to

quadruple throughput and keep the hash core small as well.

This selection was made in the presented methodology as it

is shown in Fig.2.

Exploring the generic architecture of Fig. 2 it is easily

extracted that the critical path is located between the

pipeline stages. The other units, MS RAM and the array of

constants, do not contribute due to their nature (memory and

hardwired logic respectively), while control unit is a block

containing very small counters which also don‘t contribute

to the overall maximum delay. Thus, optimization of the

critical path should be solely focused on the operation block.

P a g e | 56 Vol. 10 Issue 4 Ver. 1.0 June 2010 Global Journal of Computer Science and Technology

Fig.2. SHA-256 hash core architecture with 4 pipeline

stages.

Fig.3. SHA-256 operational block

The operation block of SHA-256 is shown in Fig.3. The

critical path (darker line) is located on the computation of at

and et values that requires four addition stages and a

multiplexer for feeding back the output data.

At the first step of our methodology, a number of operations

are partially unrolled. That number is determined by a

separate analysis on SHA-256 hash function. This analysis

compares variations of partially unrolled operations, their

corresponding throughput, the required area and then

calculating the proper ratio (cost function). In Fig. 4, the

results of a cost function analysis for SHA-256 algorithm,

performed in Virtex-II FPGA family, are illustrated. As it is

shown, selecting to partially unroll two operations results in

the best achieved Throughput/Area ratio (ratio > 2).

Fig.4. Effect of unrolling the operation blocks of SHA-256

In Fig. 5, the consecutive SHA-256 operation blocks of

Fig. 3, have been modified so as to exploit parallel

calculations. The gray marked areas on Fig. 5 indicate the

parts of the proposed SHA-256 operation block that operate

in parallel.

Fig.5. Two unrolled SHA-256 operation blocks.

It is noticed that two single addition levels have been

introduced to the critical path that now consists of six

addition stages needed for the computation of at and et

values. Although, this reduces the maximum operation

frequency, the throughput is increased significantly since the

message digest is now computed in only 32 clock cycles

(instead of 64). The area requirements are increased since

more adders have been used in order to achieve the partial

unrolling.

Global Journal of Computer Science and Technology Vol. 10 Issue 4 Ver. 1.0 June 2010 P a g e | 57

The next step of the proposed methodology has to do with

the spatial pre-computation technique. Taking into

consideration the fact that some outputs are derived directly

from some inputs values respectively we can assume that it

is possible during one operation to pre-calculate some

intermediate values that will be used in the next operation.

These pre-calculations are related only with those output

values that derive directly from the latter mentioned input

values. This pre-computation technique is applied on the

partially unrolled operation block in Fig. 5 and the new

modified operation block is shown in Fig. 6.

Fig.6. Partially unrolled operation block with pre-computed values.

Observing Fig. 6 it is noticed that the critical path is now

located on the computation of the peripheral value p1 that is

introduced in Fig. 6. The critical path has been reduced from

six addition stages and a multiplexer to four addition stages,

two non-linear functions (noted as Maj and Ch in Fig. 6) and

a multiplexer. Comparing to the conventional

implementation of the single operation block shown in Fig.

3, theoretically throughput has been in-creased by 80%-

90%.

This has been achieved by pre-calculating some

intermediate values and moving the pipeline registers to an

appropriate intermediate point to store them. The new

operation block now consists of two units, the ―Pre-

Computation‖ unit which is responsible for the pre-

computation of the values that are needed in the next

operation and the ―Post-Computation‖ unit which is

responsible for the final computations of each operation.

The third step of the proposed technique is to apply the

system-level pre-computation so as to achieve data pre-

fetching. It was noticed that all Wt values can be computed

and be available for adequate time before they are really

needed in each operation t since they are computed through

some XOR bitwise operations. Also the values of the

constants Kt are known a priori. These two facts give us the

potential of pre-computing the sum Wt + Kt outside of the

operation block. The sum is then saved into a register that

feeds the operation block and thus the externally (regarding

the operational block) pre-computed sum Wt + Kt is

available at the beginning of each operation. So at the

operational block, from now on it will be assumed that this

sum available at the beginning of each operation and its

computational time is excluded from the critical path. The

new operational block is illustrated in Fig. 7.

Inspecting Fig. 7, we observe that the critical path is located

on the computation of the peripheral value p1, and consists

of four addition stages and two non-linear functions.

However we notice that at the beginning of this path there is

the value p4 that is pending to be added to a sum that at the

same time is being calculated.

So for this case, a CSA can be used in order to add the three

values in advance compared to the necessary time in case

we used two adders as in Fig.7. The Carry Save Adder is

applied on the ―Post-Computation‖ unit as it is depicted in

Fig.8 where we have also used a Carry Save Adder in the

―Pre-Computation‖ unit. This way the critical path inside the

operation block has been reduced to one Addition stage, two

Non-linear functions and two Carry Save Adders that are

required in order to compute the value p1.

The final proposed operation block for SHA-256 is

illustrated in Fig. 8. It processes two operations in a single

clock cycle, and the critical path is shorter than that of the

conventional implementation, resulting in an increase of

through-put of more than 110% (theoretical). The

introduced area penalty is 3 adders, 4 Carry Save Adders,

two 32-bit registers and 2 non-linear functions. The

introduced area penalty is about 35% for the whole SHA-

256 core compared to the conventional pipelined

implementation. This corresponds to an area penalty of

about 9% for the whole security scheme. This area penalty

is worth paying for about 110% increase of throughput.

P a g e | 58 Vol. 10 Issue 4 Ver. 1.0 June 2010 Global Journal of Computer Science and Technology

Fig.7. Partially unrolled operation block with pre-computed

values for SHA-256 with pre-fetching of W+K values.

Fig.8. Proposed SHA-256 operation block.

V. RESULTS AND COMPARISONS

In order to evaluate the proposed methodology, SHA-

256 hash function was captured in VHDL and was fully

simulated and verified.

Table 1: Performance Characteristics and comparisons

SHA-256

Implementation

Op.

Freq.

(MHz)

Throughput

(Mbps)

Post-

synthesis

Post

Place &

Route

Area

CLBs

[13] a 42.9 77 - 1004

[14] a 88.0 87 - 1261

[11] a 83 326 - 1060

[15] a 82 646 - 653

[16] a 77 308 - 1480

[17] a 53 848 - 2530

Proposed
a 35.1 2210 2077 1534

[15] b 150 1184 - 797

[18] b 133 1009 - 1373

[19] b 81 1296 - 1938

Proposed
b 52.1 3334 3100 1708

[20 c 64 2052 - 1528

Proposed
c 36.4 2330 2190 1655

[21] d(Commercial IP) 96 - 756 945

[22] e(Commercial IP) - - 1900
1614

(LUTs)

[23](Commercial IP) 133 - 971 asic

a Virtex FPGA family c Virtex-E FPGA family
b Virtex II FPGA family d Virtex 4 FPGA family

 e Virtex 5 FPGA family

The XILINX FPGA technologies were selected as the

targeted technologies, synthesizing the designs for the

Virtex FPGA family.

To exhibit the benefits of applying the proposed design

methodology, SHA-256 hash function was implemented

following the steps of the proposed methodology and is

compared with other existing implementations proposed

either by academia or industry.

The results from the latter implementations are shown in

Table 1, for a variety of FPGA families. There are reported

both post-synthesis and post-place & route results. The

reported operating frequencies for the proposed

implementations are related to the corresponding post-

synthesis results.

As it can be easily seen, the increase observed for SHA-256,

is about 110% gain in throughput and 30% area penalty

compared to a non-optimized implementation with four

pipeline stages (implemented in the same technology).

This way the improvement that arises from the proposed

methodology is confirmed and evaluated fairly, verifying

the theoretical analysis in the previous section. Furthermore,

comparing the implementations of other researchers to those

that were resulted from the proposed methodology, it can be

observed that all of them fall short in throughput, in a range

that varies from 0.75 – 26.4 times less than the proposed

implementation.

VI. CONCLUSIONS

In this paper a new methodology was proposed for

achieving high throughputs for SHA-256 and other hash

functions with a small area penalty. The presented

methodology is generic and can be used to a wide range of

existing hash functions that are currently used or will be

deployed in the future and call for high throughputs.

The methodology led to significant increase of throughput

(about 110% for SHA-256), compared to corresponding

conventional implementations, with a small area penalty.

The results derived from their implementation in FPGA

technologies confirm the theoretical results of the proposed

implementation.

VII. ACKNOWLEDGEMENTS

This work was supported by action “Young Researchers

from Abroad” which is funded by the Cypriot state-

Research Promotion Foundation (RPF/IPE).

VIII. REFERENCES

1) SP800-77, “Guide to IPSec VPN’s”, NIST, US Dept of

Commerce, 2005.

2) FIPS 198-1, “The Keyed-Hash Message

Authentication Code (HMAC)”, FIPS Publication 180-

1, NIST, US Dept of Commerce, 2007.

3) Thomas, S. (2000). “SSL & TLS Essentials: Securing

the Web”, John Wiley and sons Publications.

Global Journal of Computer Science and Technology Vol. 10 Issue 4 Ver. 1.0 June 2010 P a g e | 59

4) Schneier, B. (1996). ―Applied Cryptography –

Protocols, Algorithms and Source Code in C‖ , Second

Edition, John Wiley and Sons.

5) Nakajima and M.Matsui, M. (2002). ―Performance

Analysis and Parallel Implementation of Dedicated

Hash Functions‖, in LNCS, vol. 2332, pp. 165–180,

Springer.

6) Oorschot van, P.C. and Somayaji, A. and Wurster, G.

(2005). ―Hardware-Assisted Circumvention of Self-

Hashing Software Tamper Resistance‖, IEEE

Transactions on Dependable and Secure Computing,

vol. 02, no. 2, pp. 82-92 April-June.

7) Hodjat, A. and Verbauwhede, I. (2004) ―A 21.54

Gbits/s Fully Pipelined AES Processor on FPGA IEEE

Symposium on Field-Programmable Custom

Computing Machines Systems‖, (FCCM '04) pp. 308-

309.

8) FIPS 180-2, (2002) ―Secure Hash Standard‖, FIPS

Publication 180-1, NIST, US Dept of Commerce.

9) Hoare, R., Menon, P. and Ramos, M. (2002) ―427

Mbits/sec Hardware Implementation of the SHA-1

Algorithm in an FPGA‖, IASTED International

Conference on Communications and Computer

Networks, pp.188 – 193.

10) Diez, J.M. and Bojanic, S. and Carreras, C. and Nieto-

Taladriz, O. (2002) ―Hash Algorithms for

Cryptographic Protocols: FPGA Implementations‖,

TELEFOR.

11) Sklavos, N. and Koufopavlou, O. (2005)

―Implementation of the SHA-2 Hash Family Standard

Using FPGAs‖, Journal of Supercomputing, Kluwer

Academic Publishers, vol. 31, pp. 227-248.

12) Lee, Y. K., Chan, H. and Verbauwhede, I.. (2006)

―Throughput Optimized SHA-1 Architecture Using

Unfolding Transformation‖, In Proceedings of the

IEEE 17th international Conference on Application-

Specific Systems, Architectures and Processors

(ASAP), IEEE Computer Society, Washington, DC,

354-359., September 11 – 13.

13) Dominikus, S. (2002) ―A Hardware Implementation of

MD4-Family Hash Algorithms‖, IEEE International

Conference on Electronics Circuits and Systems (ICECS'02),

pp.1143-1146.

14) Ting, K. K. and Yuen, S. C. L. and Lee, K.-H. and Leong, P.

H. W. (2002)―An FPGA based SHA-256 processor‖, Lecture

Notes in Computer Science (LNCS), vol. 2438, pp. 577–585.

Springer.

15) Chaves, R. and Kuzmanov, G.K. and Sousa, L. A. and

Vassiliadis, S. (2006). ―Improving SHA-2 Hardware

Implementations‖, Workshop on Cryptographic

Hardware and Embedded Systems (CHES 2006), pp.

298-310.

16) Glabb, R. And Imbertb, L. and Julliena, G. and

Tisserandb, A. and Charvillon, N.V. (2007) ―Multi-

mode operator for SHA-2 hash functions‖, Journal of

Systems Architecture, Elsevier Publishing, vol. 53, is.

2-3B, pp. 127–138.

17) Zeghid, M. and Bouallegue, B. and Bagagne, A.

Machhoot, M. and Tourki, R. (2007) ―A

Reconfigurable Implementation of the new Hash

Algorithm‖, Availability, Reliavility and Security,

(ARES 2007), pp.281-285.

18) McEvoy, R.P. and Crowe, F.M. and Murphy, C.C. and

William, P. (2006) ―Optimisation of the SHA-2

Family of Hash Functions on FPGAs‖, Emerging VLSI

Technologies and Architectures (ISVLSI‘06), pp.317-

322.

19) Zeghid, M. and Bouallegue, B. and Machhoot, M. and

Bagagne, A. and Tourki, R. (2008) ―Architectural

Design Features of a Programmable Hgh Throughput

Reconfigurable SHA-256 Processor‖, Journal of

Information Assurance and Security, pp.147-158.

20) Michail, H. and Milidonis, A. and Kakarountas, A.P.

and Goutis, C.E. (2005) ―Novel High Throughput

Implementation of SHA-256 Hash Function Through

Pre-Computation Technique‖, IEEE International

Conference on Electronics, Circuits and Systems

(ICECS‘05).

21) CAST Inc., Web page, available at http://www.cast-

inc.com/cores.

22) Helion Technology Ltd, Data Security Products, Web

page, available at http://www.heliontech.com/auth.htm.

23) Cadence, ―Hashing Algorithm Generator SHA-256:

Technical Data Sheet‖, Web page available at

http://www.cadence.com/datasheets/SHA256_Datashe

et.pdf.

	High Throughput Hardware/Software Co-Design Approach SHA-256 Hashing Cryptographic Module In Ipsec/Ipv6
	Author
	Abstract
	Keywords
	I. INTRODUCTION
	II. HASHING AND RELATED WORK
	III. HARDWARE/SOFTWARE CO-DESIGN
	IV. PROPOSED METHODOLOGY
	V. RESULTS AND COMPARISONS
	VI. CONCLUSIONS
	VII. ACKNOWLEDGEMENTS
	VIII. REFERENCES

