3,363 research outputs found

    Ramsey-type theorems for lines in 3-space

    Full text link
    We prove geometric Ramsey-type statements on collections of lines in 3-space. These statements give guarantees on the size of a clique or an independent set in (hyper)graphs induced by incidence relations between lines, points, and reguli in 3-space. Among other things, we prove that: (1) The intersection graph of n lines in R^3 has a clique or independent set of size Omega(n^{1/3}). (2) Every set of n lines in R^3 has a subset of n^{1/2} lines that are all stabbed by one line, or a subset of Omega((n/log n)^{1/5}) such that no 6-subset is stabbed by one line. (3) Every set of n lines in general position in R^3 has a subset of Omega(n^{2/3}) lines that all lie on a regulus, or a subset of Omega(n^{1/3}) lines such that no 4-subset is contained in a regulus. The proofs of these statements all follow from geometric incidence bounds -- such as the Guth-Katz bound on point-line incidences in R^3 -- combined with Tur\'an-type results on independent sets in sparse graphs and hypergraphs. Although similar Ramsey-type statements can be proved using existing generic algebraic frameworks, the lower bounds we get are much larger than what can be obtained with these methods. The proofs directly yield polynomial-time algorithms for finding subsets of the claimed size.Comment: 18 pages including appendi

    On the general position subset selection problem

    Full text link
    Let f(n,)f(n,\ell) be the maximum integer such that every set of nn points in the plane with at most \ell collinear contains a subset of f(n,)f(n,\ell) points with no three collinear. First we prove that if O(n)\ell \leq O(\sqrt{n}) then f(n,)Ω(nln)f(n,\ell)\geq \Omega(\sqrt{\frac{n}{\ln \ell}}). Second we prove that if O(n(1ϵ)/2)\ell \leq O(n^{(1-\epsilon)/2}) then f(n,)Ω(nlogn)f(n,\ell) \geq \Omega(\sqrt{n\log_\ell n}), which implies all previously known lower bounds on f(n,)f(n,\ell) and improves them when \ell is not fixed. A more general problem is to consider subsets with at most kk collinear points in a point set with at most \ell collinear. We also prove analogous results in this setting

    Density theorems for bipartite graphs and related Ramsey-type results

    Full text link
    In this paper, we present several density-type theorems which show how to find a copy of a sparse bipartite graph in a graph of positive density. Our results imply several new bounds for classical problems in graph Ramsey theory and improve and generalize earlier results of various researchers. The proofs combine probabilistic arguments with some combinatorial ideas. In addition, these techniques can be used to study properties of graphs with a forbidden induced subgraph, edge intersection patterns in topological graphs, and to obtain several other Ramsey-type statements

    Banach spaces and Ramsey Theory: some open problems

    Full text link
    We discuss some open problems in the Geometry of Banach spaces having Ramsey-theoretic flavor. The problems are exposed together with well known results related to them.Comment: 17 pages, no figures; RACSAM, to appea

    Density version of the Ramsey problem and the directed Ramsey problem

    Get PDF
    We discuss a variant of the Ramsey and the directed Ramsey problem. First, consider a complete graph on nn vertices and a two-coloring of the edges such that every edge is colored with at least one color and the number of bicolored edges ERB|E_{RB}| is given. The aim is to find the maximal size ff of a monochromatic clique which is guaranteed by such a coloring. Analogously, in the second problem we consider semicomplete digraph on nn vertices such that the number of bi-oriented edges Ebi|E_{bi}| is given. The aim is to bound the size FF of the maximal transitive subtournament that is guaranteed by such a digraph. Applying probabilistic and analytic tools and constructive methods we show that if ERB=Ebi=p(n2)|E_{RB}|=|E_{bi}| = p{n\choose 2}, (p[0,1)p\in [0,1)), then f,F<Cplog(n)f, F < C_p\log(n) where CpC_p only depend on pp, while if m=(n2)ERB<n3/2m={n \choose 2} - |E_{RB}| <n^{3/2} then f=Θ(n2m+n)f= \Theta (\frac{n^2}{m+n}). The latter case is strongly connected to Tur\'an-type extremal graph theory.Comment: 17 pages. Further lower bound added in case $|E_{RB}|=|E_{bi}| = p{n\choose 2}

    Approximate Euclidean Ramsey theorems

    Full text link
    According to a classical result of Szemer\'{e}di, every dense subset of 1,2,...,N1,2,...,N contains an arbitrary long arithmetic progression, if NN is large enough. Its analogue in higher dimensions due to F\"urstenberg and Katznelson says that every dense subset of {1,2,...,N}d\{1,2,...,N\}^d contains an arbitrary large grid, if NN is large enough. Here we generalize these results for separated point sets on the line and respectively in the Euclidean space: (i) every dense separated set of points in some interval [0,L][0,L] on the line contains an arbitrary long approximate arithmetic progression, if LL is large enough. (ii) every dense separated set of points in the dd-dimensional cube [0,L]d[0,L]^d in \RR^d contains an arbitrary large approximate grid, if LL is large enough. A further generalization for any finite pattern in \RR^d is also established. The separation condition is shown to be necessary for such results to hold. In the end we show that every sufficiently large point set in \RR^d contains an arbitrarily large subset of almost collinear points. No separation condition is needed in this case.Comment: 11 pages, 1 figure

    On metric Ramsey-type phenomena

    Full text link
    The main question studied in this article may be viewed as a nonlinear analogue of Dvoretzky's theorem in Banach space theory or as part of Ramsey theory in combinatorics. Given a finite metric space on n points, we seek its subspace of largest cardinality which can be embedded with a given distortion in Hilbert space. We provide nearly tight upper and lower bounds on the cardinality of this subspace in terms of n and the desired distortion. Our main theorem states that for any epsilon>0, every n point metric space contains a subset of size at least n^{1-\epsilon} which is embeddable in Hilbert space with O(\frac{\log(1/\epsilon)}{\epsilon}) distortion. The bound on the distortion is tight up to the log(1/\epsilon) factor. We further include a comprehensive study of various other aspects of this problem.Comment: 67 pages, published versio

    A variant of the Hales-Jewett Theorem

    Full text link
    It was shown by V. Bergelson that any set B with positive upper multiplicative density contains nicely intertwined arithmetic and geometric progressions: For each positive integer k there exist integers a,b,d such that {b(a+id)^j:i,j \in\nhat k}\subset B. In particular one cell of each finite partition of the positive integers contains such configurations. We prove a Hales-Jewett type extension of this partition theorem

    Semi-algebraic colorings of complete graphs

    Get PDF
    We consider mm-colorings of the edges of a complete graph, where each color class is defined semi-algebraically with bounded complexity. The case m=2m = 2 was first studied by Alon et al., who applied this framework to obtain surprisingly strong Ramsey-type results for intersection graphs of geometric objects and for other graphs arising in computational geometry. Considering larger values of mm is relevant, e.g., to problems concerning the number of distinct distances determined by a point set. For p3p\ge 3 and m2m\ge 2, the classical Ramsey number R(p;m)R(p;m) is the smallest positive integer nn such that any mm-coloring of the edges of KnK_n, the complete graph on nn vertices, contains a monochromatic KpK_p. It is a longstanding open problem that goes back to Schur (1916) to decide whether R(p;m)=2O(m)R(p;m)=2^{O(m)}, for a fixed pp. We prove that this is true if each color class is defined semi-algebraically with bounded complexity. The order of magnitude of this bound is tight. Our proof is based on the Cutting Lemma of Chazelle {\em et al.}, and on a Szemer\'edi-type regularity lemma for multicolored semi-algebraic graphs, which is of independent interest. The same technique is used to address the semi-algebraic variant of a more general Ramsey-type problem of Erd\H{o}s and Shelah
    corecore