209 research outputs found

    Enhanced Position Verification for VANETs using Subjective Logic

    Full text link
    The integrity of messages in vehicular ad-hoc networks has been extensively studied by the research community, resulting in the IEEE~1609.2 standard, which provides typical integrity guarantees. However, the correctness of message contents is still one of the main challenges of applying dependable and secure vehicular ad-hoc networks. One important use case is the validity of position information contained in messages: position verification mechanisms have been proposed in the literature to provide this functionality. A more general approach to validate such information is by applying misbehavior detection mechanisms. In this paper, we consider misbehavior detection by enhancing two position verification mechanisms and fusing their results in a generalized framework using subjective logic. We conduct extensive simulations using VEINS to study the impact of traffic density, as well as several types of attackers and fractions of attackers on our mechanisms. The obtained results show the proposed framework can validate position information as effectively as existing approaches in the literature, without tailoring the framework specifically for this use case.Comment: 7 pages, 18 figures, corrected version of a paper submitted to 2016 IEEE 84th Vehicular Technology Conference (VTC2016-Fall): revised the way an opinion is created with eART, and re-did the experiments (uploaded here as correction in agreement with TPC Chairs

    Managed information gathering and fusion for transient transport problems

    Get PDF
    This paper deals with vehicular traffic management by communication technologies from Traffic Control Center point of view in road networks. The global goal is to manage the urban traffic by road traffic operations, controlling and interventional possibilities in order to minimize the traffic delays and stops and to improve traffic safety on the roads. This paper focuses on transient transport, when the controlling management is crucial. The aim was to detect the beginning time of the transient traffic on the roads, to gather the most appropriate data and to get reliable information for interventional suggestions. More reliable information can be created by information fusion, several fusion techniques are expounded in this paper. A half-automatic solution with Decision Support System has been developed to help with engineers in suggestions of interventions based on real time traffic data. The information fusion has benefits for Decision Support System: the complementary sensors may fill the gaps of one another, the system is able to detect the changing of the percentage of different vehicle types in traffic. An example of detection and interventional suggestion about transient traffic on transport networks of a little town is presented at the end of the paper. The novelty of this paper is the gathering of information - triggered by the state changing from stationer to transient - from ad hoc channels and combining them with information from developed regular channels. --information gathering,information fusion,Kalman filter,transient traffic,Decision Support System

    Identification of Biometric-Based Continuous user Authentication and Intrusion Detection System for Cluster Based Manet

    Get PDF
    Mobile ad hoc is an infrastructure less dynamic network used in many applications; it has been targets of various attacks and makes security problems. This work aims to provide an enhanced level of security by using the prevention based and detection based approaches such as authentication and intrusion detection. The multi-model biometric technology is used for continuous authentication and intrusion detection in high security cluster based MANET. In this paper, an attempt has been made to combine continuous authentication and intrusion detection. In this proposed scheme, Dempster-Shafer theory is used for data fusion because more than one device needs to be chosen and their observation can be used to increase observation accuracy

    Machine Learning-driven Optimization for Intrusion Detection in Smart Vehicular Networks

    Get PDF
    An essential element in the smart city vision is providing safe and secure journeys via intelligent vehicles and smart roads. Vehicular ad hoc networks (VANETs) have played a significant role in enhancing road safety where vehicles can share road information conditions. However, VANETs share the same security concerns of legacy ad hoc networks. Unlike exiting works, we consider, in this paper, detection a common attack where nodes modify safety message or drop them. Unfortunately, detecting such a type of intrusion is a challenging problem since some packets may be lost or dropped in normal VANET due to congestion without malicious action. To mitigate these concerns, this paper presents a novel scheme for minimizing the invalidity ratio of VANET packets transmissions. In order to detect unusual traffic, the proposed scheme combines evidences from current as well as past behaviour to evaluate the trustworthiness of both data and nodes. A new intrusion detection scheme is accomplished through a four phases, namely, rule-based security filter, Dempster–Shafer adder, node’s history database, and Bayesian learner. The suspicion level of each incoming data is determined based on the extent of its deviation from data reported from trustworthy nodes. Dempster–Shafer’s theory is used to combine multiple evidences and Bayesian learner is adopted to classify each event in VANET into well-behaved or misbehaving event. The proposed solution is validated through extensive simulations. The results confirm that the fusion of different evidences has a significant positive impact on the performance of the security scheme compared to other counterparts

    Biometric Based Intrusion Detection System using Dempster-Shafer Theory for Mobile Ad hoc Network Security

    Get PDF
    In wireless mobile ad hoc network, mainly, two approaches are followed to protect the security such as prevention-based approaches and detection-based approaches. A Mobile Ad hoc Network (MANET) is a collection of autonomous wireless mobile nodes forming temporary network to interchange data (data packets) without using any fixed topology or centralized administration. In this dynamic network, each node changes its geographical position and acts as a router for forwarding packets to the other node. Current MANETs are basically vulnerable to different types of attacks. The multimodal biometric technology gives possible resolves for continuous user authentication and vulnerability in high security mobile ad hoc networks (MANETs). Dempster’s rule for combination gives a numerical method for combining multiple pieces of data from unreliable observers. This paper studies biometric authentication and intrusion detection system with data fusion using Dempster–Shafer theory in such MANETs. Multimodal biometric technologies are arrayed to work with intrusion detection to improve the limitations of unimodal biometric technique

    Secure Message Dissemination with QoS Guaranteed Routing in Internet of Vehicles

    Get PDF
    Internet of Vehicles (IoV) is a variant of vehicular adhoc network (VANET) where vehicles can communicate with other vehicles, infrastructure devices, parking lots and even pedestrians.  Communication to other entities is facilitates through various services like DSRC, C2C-CC. Fake messages can be propagated by attackers for various selfish needs. Complex authentication procedures can affect the propagation of emergency messages. Thus a light weight mechanism to ensure the trust of messages without affecting the delivery deadlines for emergency messages. Addressing this problem, this work proposes a clustering based network topology for IoV where routing is optimized for message dissemination of various classes using hybrid meta-heuristics.  In addition, two stage message authentication technique combining collaborative authentication with Bayesian filtering is proposed to verify the authenticity of message. Through simulation analysis, the proposed solution is found to detect fake messages with an accuracy of 96% with 10% lower processing delay compared to existing works

    Malicious vehicle detection based on beta reputation and trust management for secure communication in smart automotive cars network

    Get PDF
    High reliance on wireless network connectivity makes the vehicular ad hoc network (VANET) vulnerable to several kinds of cyber security threats. Malicious vehicles accessing the network can lead to hazardous situation by disseminating misleading information or data in the network or by performing cyber-attacks. It is a requirement that the information must be originated from the authentic and authorized vehicle and confidentiality must be maintained. In these circumstances, to protect the network from malicious vehicles, reputation system based on beta probability distribution with trust management model has been proposed to differentiate trustworthy vehicles from malicious vehicles. The trust model is based on adaptive neuro fuzzy inference system (ANFIS) which takes trust metrics as input to evaluate the trustworthiness of the vehicles. The simulation platform for the model is in MATLAB. Simulation results show that the vehicles need at least 80% trustworthiness to be considered as a trusted vehicle in the network
    • …
    corecore