2,518 research outputs found

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Spatial Keyword Querying: Ranking Evaluation and Efficient Query Processing

    Get PDF

    Big Data Computing for Geospatial Applications

    Get PDF
    The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms

    The Transmission and Processing of Sensor-rich Videos in Mobile Environment

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    THREE TEMPORAL PERSPECTIVES ON DECENTRALIZED LOCATION-AWARE COMPUTING: PAST, PRESENT, FUTURE

    Get PDF
    Durant les quatre dernières décennies, la miniaturisation a permis la diffusion à large échelle des ordinateurs, les rendant omniprésents. Aujourd’hui, le nombre d’objets connectés à Internet ne cesse de croitre et cette tendance n’a pas l’air de ralentir. Ces objets, qui peuvent être des téléphones mobiles, des véhicules ou des senseurs, génèrent de très grands volumes de données qui sont presque toujours associés à un contexte spatiotemporel. Le volume de ces données est souvent si grand que leur traitement requiert la création de système distribués qui impliquent la coopération de plusieurs ordinateurs. La capacité de traiter ces données revêt une importance sociétale. Par exemple: les données collectées lors de trajets en voiture permettent aujourd’hui d’éviter les em-bouteillages ou de partager son véhicule. Un autre exemple: dans un avenir proche, les données collectées à l’aide de gyroscopes capables de détecter les trous dans la chaussée permettront de mieux planifier les interventions de maintenance à effectuer sur le réseau routier. Les domaines d’applications sont par conséquent nombreux, de même que les problèmes qui y sont associés. Les articles qui composent cette thèse traitent de systèmes qui partagent deux caractéristiques clés: un contexte spatiotemporel et une architecture décentralisée. De plus, les systèmes décrits dans ces articles s’articulent autours de trois axes temporels: le présent, le passé, et le futur. Les systèmes axés sur le présent permettent à un très grand nombre d’objets connectés de communiquer en fonction d’un contexte spatial avec des temps de réponses proche du temps réel. Nos contributions dans ce domaine permettent à ce type de système décentralisé de s’adapter au volume de donnée à traiter en s’étendant sur du matériel bon marché. Les systèmes axés sur le passé ont pour but de faciliter l’accès a de très grands volumes données spatiotemporelles collectées par des objets connectés. En d’autres termes, il s’agit d’indexer des trajectoires et d’exploiter ces indexes. Nos contributions dans ce domaine permettent de traiter des jeux de trajectoires particulièrement denses, ce qui n’avait pas été fait auparavant. Enfin, les systèmes axés sur le futur utilisent les trajectoires passées pour prédire les trajectoires que des objets connectés suivront dans l’avenir. Nos contributions permettent de prédire les trajectoires suivies par des objets connectés avec une granularité jusque là inégalée. Bien qu’impliquant des domaines différents, ces contributions s’articulent autour de dénominateurs communs des systèmes sous-jacents, ouvrant la possibilité de pouvoir traiter ces problèmes avec plus de généricité dans un avenir proche. -- During the past four decades, due to miniaturization computing devices have become ubiquitous and pervasive. Today, the number of objects connected to the Internet is in- creasing at a rapid pace and this trend does not seem to be slowing down. These objects, which can be smartphones, vehicles, or any kind of sensors, generate large amounts of data that are almost always associated with a spatio-temporal context. The amount of this data is often so large that their processing requires the creation of a distributed system, which involves the cooperation of several computers. The ability to process these data is important for society. For example: the data collected during car journeys already makes it possible to avoid traffic jams or to know about the need to organize a carpool. Another example: in the near future, the maintenance interventions to be carried out on the road network will be planned with data collected using gyroscopes that detect potholes. The application domains are therefore numerous, as are the prob- lems associated with them. The articles that make up this thesis deal with systems that share two key characteristics: a spatio-temporal context and a decentralized architec- ture. In addition, the systems described in these articles revolve around three temporal perspectives: the present, the past, and the future. Systems associated with the present perspective enable a very large number of connected objects to communicate in near real-time, according to a spatial context. Our contributions in this area enable this type of decentralized system to be scaled-out on commodity hardware, i.e., to adapt as the volume of data that arrives in the system increases. Systems associated with the past perspective, often referred to as trajectory indexes, are intended for the access to the large volume of spatio-temporal data collected by connected objects. Our contributions in this area makes it possible to handle particularly dense trajectory datasets, a problem that has not been addressed previously. Finally, systems associated with the future per- spective rely on past trajectories to predict the trajectories that the connected objects will follow. Our contributions predict the trajectories followed by connected objects with a previously unmet granularity. Although involving different domains, these con- tributions are structured around the common denominators of the underlying systems, which opens the possibility of being able to deal with these problems more generically in the near future

    Real-time detection of moving crowds using spatio-temporal data streams

    Get PDF
    Over the last decade we have seen a tremendous change in Location Based Services. From primitive reactive applications, explicitly invoked by users, they have evolved into modern complex proactive systems, that are able to automatically provide information based on context and user location. This was caused by the rapid development of outdoor and indoor positioning technologies. GPS modules, which are now included almost into every device, together with indoor technologies, based on WiFi fingerprinting or Bluetooth beacons, allow to determine the user location almost everywhere and at any time. This also led to an enormous growth of spatio-temporal data. Being very efficient using user-centric approach for a single target current Location Based Services remain quite primitive in the area of a multitarget knowledge extraction. This is rather surprising, taking into consideration the data availability and current processing technologies. Discovering useful information from the location of multiple objects is from one side limited by legal issues related to privacy and data ownership. From the other side, mining group location data over time is not a trivial task and require special algorithms and technologies in order to be effective. Recent development in data processing area has led to a huge shift from batch processing offline engines, like MapReduce, to real-time distributed streaming frameworks, like Apache Flink or Apache Spark, which are able to process huge amounts of data, including spatio-temporal datastreams. This thesis presents a system for detecting and analyzing crowds in a continuous spatio-temporal data stream. The aim of the system is to provide relevant knowledge in terms of proactive LBS. The motivation comes from the fact of constant spatio-temporal data growth and recent rapid technological development to process such data

    Geographic Information Systems and Science

    Get PDF
    Geographic information science (GISc) has established itself as a collaborative information-processing scheme that is increasing in popularity. Yet, this interdisciplinary and/or transdisciplinary system is still somewhat misunderstood. This book talks about some of the GISc domains encompassing students, researchers, and common users. Chapters focus on important aspects of GISc, keeping in mind the processing capability of GIS along with the mathematics and formulae involved in getting each solution. The book has one introductory and eight main chapters divided into five sections. The first section is more general and focuses on what GISc is and its relation to GIS and Geography, the second is about location analytics and modeling, the third on remote sensing data analysis, the fourth on big data and augmented reality, and, finally, the fifth looks over volunteered geographic information.info:eu-repo/semantics/publishedVersio

    A Location Analytics Method for the Utilisation of Geotagged Photos in Travel Marketing Decision-Making

    Get PDF
    Location analytics offers statistical analysis of any geo- or spatial data concerning user location. Such analytics can produce useful insights into the attractions of interest to travellers or visitation patterns of a demographic group. Based on these insights, strategic decision-making by travel marketing agents, such as travel package design, may be improved. In this paper, we develop and evaluate an original method of location analytics to analyse travellers' social media data for improving managerial decision support. The method proposes an architectural framework that combines emerging pattern data mining techniques with image processing to identify and process appropriate data content. The design artefact is evaluated through a focus group and a detailed case study of Australian outbound travellers. The proposed method is generic, and can be applied to other specific locations or demographics to provide analytical outcomes useful for strategic decision support
    corecore