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Abstract

Due to the widespread adoption of mobile devices with positioning capa-
bilities, notably smartphones, users increasingly search for geographically
nearby information on search engines. Further, an analysis of user behavior
finds that users not only search for local content, but also take action with
respect to search results. In step with these developments, the research com-
munity has proposed various kinds of spatial keyword queries that return
ranked lists of relevant points of interest. These proposals generally come
with advanced query processing techniques, the goal being to make it pos-
sible for users to find relevant information quickly. Most of the proposals
employ a simple ranking function that takes only textual relevance and spa-
tial proximity into account. While these proposals study the query processing
efficiency, they are generally weak when it comes to evaluation of the result
rankings. We believe that ranking evaluation for spatial keyword queries is
important since it is directly related to the user satisfaction.

The thesis addresses several challenges related to ranking evaluation for
spatial keyword queries. The first challenge we address is forming ground-
truth rankings for spatial keyword queries that reflect user preferences. The
main idea is that the more similar an output ranking is to the ground-truth
ranking, the better the output ranking is. The thesis proposes methods based
on crowdsourcing and vehicle trajectories to address this challenge. These
methods make it possible for researchers to propose novel ranking functions
and to assess the performance of these functions. As such, the thesis makes a
step towards more advanced and complex ranking functions that correspond
better to user preferences. The contributions of the thesis can also be used to
evaluate hypotheses regarding different keywords and geographical regions.
Along these lines, it might be possible to employ different ranking functions
for different queries in the same system. The thesis also addresses the prob-
lem of detecting the visited points of interest in a GPS dataset and proposes
algorithms to tackle this problem. These visits offer insight into which points
of interest are of interest to drivers and offer a means of ranking for points of
interest.

More specifically, the thesis first proposes a technique based on crowd-
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sourcing to obtain partial rankings corresponding to user preferences. The
method employs pairwise relevance questions and uses a gain function to
decrease the number of questions that need to be processed to form a rank-
ing, thus reducing the cost of crowdsourcing. The resulting partial rankings
can be used to assess the quality of ranking functions.

Next, the thesis proposes a system, CrowdRankEval, to evaluate ranking
functions for a given set of queries and corresponding query results obtained
using various ranking functions. The system utilizes the aforementioned
crowdsourcing-based method to form ground-truth rankings for queries. The
system provides an easy-to-use interface that allows users to visualize the
rankings obtained from crowdsourcing and to view the evaluation results.

Further, the thesis proposes a crowdsourcing-based approach to evaluate
two ranking functions on a set of spatial keyword queries. The approach
takes budget constraints into account and utilizes a learn-to-rank method and
an entropy definition to determine the most important questions to compare
two ranking functions for a given query.

The thesis also proposes a method that uses GPS data to extract ground-
truth rankings for spatial keyword queries. The idea is to use historical trips
to points of interest to determine the relative popularity of points of interest.
The experimental findings suggest that the proposed method is capable of
capturing user preferences.

Finally, the thesis formalizes a so-called k-TMSTC query that targets users
looking for groups of points of interest instead of single points of interest.
Two algorithms based on density-based clustering are proposed to process
this query. Experiments show that the proposed methods support interactive
search.



Resumé

Udbredelsen af mobile enheder, i særdeleshed smartphones med indbygget
GPS, har medført at brugere i stigende grad søger efter information om det
område de befinder sig i. Derudover viser analyse af brugeradfærd at brugere
ikke alene søger efter information om deres omgivelser, men også agerer på
den. Som følge deraf har forskere foreslået en række forskellige spatiale sø-
geordsforespørgsler der tager både brugerens søgeord og lokation i betragt-
ning og returnerer en rangeret list af interessepunkter. Disse forslag kommer
med typisk med avancerede teknikker til processering af forespørgsler med
henblik på hurtigt at give brugere svar på deres forespørgsler. De fleste af
forslagene bruger en simpel rangeringsfunktion, der kun tager tekst og spa-
tial relevans i betragtning og processerer forespørgsler hurtigt, men overvejer
ikke kvaliteten af svaret på forespørgslen. Vi mener at evalueringen af spa-
tiale søgeordsforespørgslers resultater er vigtig da kvaliteten af resultaterne
er direkte relateret til brugertilfredshed.

Denne afhandling adresserer adskillige udfordringer i forbindelse med
evalueringen af spatiale søgeordsforespørgsler. Den første udfordring vi
adresserer er at etablere sande rangeringer af forespørgselsresultater baseret
på brugerpræferencer. Jo tættere et forespørgselsresultat er på den sande
rangering jo bedre er den. Afhandlingen foreslår metoder til at disse at
adressere denne udfordring baseret på crowdsourcing og bilers færden i ve-
jnet. Disse metoder tillader forskere at foreslå og evaluere nye rangerings-
funktioner. Derfor bringer denne afhandling os tættere på mere avancerede
og komplekse rangeringsfunktioner der stemmer bedre overens med bruger-
præferencer. Afhandlingens bidrag kan endvidere bruges til at evaluere
hypoteser vedrørende forskellige søgeord og geografiske lokationer. Det
kan måske også lade sig gøre at bruge forskellige rangeringsfunktioner til
forskellige typer af forespørgsler. Afhandlingen foreslår også algoritmer til at
adressere problemet med detektering af besøgte punkter fra GPS-data. Besø-
gene giver indsigt i hvilke punkter er interessante for bilister og en måde at
rangere interessepunkterne.

Mere specifikt foreslår afhandlingen først en teknik baseret på crowd-
sourcing til at opnå delvise rangeringer svarende til brugerpræferencer. Tek-
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nikken stiller en række spørgsmål til crowdsourcingarbejdere og bruger en
funktion til at afgøre hvilket spørgsmål der skal stilles næste gang for at
få mest mulig indsigt i brugerpræferencer og reducerer derfor omkostnin-
gen ved crowdsourcing. De resulterende delvis rangeringer kan bruges til at
evaluere kvaliteten af rangeringsfunktioner.

Dernæst foreslår afhandlingen et system, CrowdRankEval, til at evaluere
rangeringsfunktioner for et givet sæt af forespørgsler med tilhørende ran-
gerede resultater. Systemet benytter den tidligere nævnte crowdsourceme-
tode til at danne sande rangeringer til at evaluere rangeringsfunktionerne.

Endvidere præsenterer afhandlingen en crowdsourcingbaseret metode til
at evaluere to rangeringsfunktioner på et sæt af spatiale søgeordsforespørgsler.
Metoden tager omkostningsbegræsninger i betragtning og bruger en maskin-
lært rangeringsfunktion samt en definition af entropi til at afgøre hvilke
spørgsmål er mest væsentlige når to rangeringsfunktioner sammenlignes.

Afhandlingen foreslår også en metode der benytter sig af GPS-data til at
finde sande rangeringer af spatiale søgeordsforespørgsler. Metoder bruger
historiske ture til interessepunkter til at afgøre interessepunkternes relative
popularitet. Eksperimenter viser at den foreslåede metode er i stand til at
finde brugerpræferencer.

Endelig formaliserer afhandlingen den såkaldte k-TMSTC forespørgsel
som er målrettet brugere der leder efter grupper af interessepunkter frem-
for enkelte interessepunkter. Afhandlingen foreslår to algoritmer baseret på
densitetsbaseret klyngedannelse til processering af denne type forespørgsel.
Eksperimenter viser at de foreslåede metoder understøtter interaktiv søgn-
ing.
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Thesis Summary

1 Introduction

1.1 Background and Motivation

Commercial search engines process billions of queries on a daily basis. A re-
cent document published about usage statistics of Google1 [1] reports that the
search engine processed more than 9 billion queries per day in 2016. Further,
the number of people who access the web from geo-positioned devices such
as smartphones and tablets increases day by day. In addition, the amount
of geo-tagged web content, i.e., content on the web that is mapped to a spa-
tial location also increases. As a result of this, the percentage of queries that
have local intent on commercial search engines is substantial. An analysis
on the users’ local search behavior [19] states that 80% of the users look for
geographically relevant information on the search engines. Another finding
of the same analysis is that half of the users with local intent who access the
search engines using tablets visit one of the stores on the same day. This
usage statistics demonstrates the significance of the location-based web ser-
vices.

The research community has proposed many different spatial keyword
query types in order to address the needs of the users with local intent.
The aim of spatial keyword queries is to find nearby points of interest that
are relevant to user-provided keywords. A point of interest (PoI) in this
context is generally defined with an identifier, a location and a document
containing the textual information regarding the PoI. It might also have other
attributes such as opening hours information, rating and expensiveness level.
In this thesis, we focus on top-k spatial keyword queries. A top-k spatial
keyword query q = 〈λ, ψ, k〉 takes three arguments: a query location λ, a
set of query keywords ψ, and the requested number of PoIs k [9]. It outputs
a ranked list of k PoIs. The PoIs are ranked according to a score produced
by a ranking function that takes the relevance of the PoI to the query into

1https://www.google.com
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account. A ranking function may consider various attributes regarding the
PoIs, the query region, and the neighborhood of the PoI. However, most of
the proposals in the literature utilize a simple ranking function, namely a
weighted linear combination of the textual relevance of the PoI document
to the query keywords and the spatial proximity of the PoI location to the
query location. An example top-k spatial keyword query corresponding to
a tourist’s search for restaurants to have a dinner in Aalborg is shown in
Figure 1. The black marker denotes the location of the tourist, i.e., the query
location, the keyword is “restaurant”, and k is set to 20 in this example. The
red markers denote the output PoIs, and the number on the markers denote
the rank of the PoI in the output ranking.

Fig. 1: An Example Top-k Spatial Keyword Query (Map data c©2018 Google)

Existing studies [11, 15, 27, 35] regarding top-k spatial keyword queries
focus on efficient processing of the queries and cover query performance
evaluation of the proposed methods. However, evaluation of the quality of
the ranking functions is not included in these studies. We believe that such
evaluation is quite important since it is directly related to the user satisfaction
with the location-based web services. If users can find what they look for
among the highest ranked PoIs, they will be more satisfied with the output.
Thus, a good ranking function should produce rankings that correspond to
the user preferences which are often implicit.

One approach to evaluate a ranking function is to compare its output to a
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1. Introduction

ground-truth ranking that corresponds to the users’ choices. The main idea
is that the closer the output ranking produced by a ranking function is to the
ground-truth ranking, the better the ranking function is. The main challenge
is computing such a ground-truth ranking.

This thesis considers two methods to build ground-truth rankings for spa-
tial keyword queries: crowdsourcing and extracting from vehicle trajectory
data. Note that, the ground-truth ranking building proposed in this thesis
cannot be used as a substitute for query processing since it takes too much
time in both cases. In addition to that, ground-truth rankings can be built
only for queries in limited geographical areas by the proposed methods. For
the case of crowdsourcing, the area is limited to the geographical regions
that have enough workers to provide meaningful conclusions. For the vehi-
cle trajectory data, the area is limited to the geographical coverage of the GPS
records. We expect that user-data driven evaluations of ranking functions in
well-chosen test areas can lead to conclusions and insights that apply more
generally.

Fig. 2: An Example Groups Query (Map data c©OpenStreetMap contributors)

Another shortcoming of the spatial keyword query proposals in the lit-
erature is that most of these proposals return a list of individual objects as
output. However, a user might be interested in finding a group of objects
in some cases. For instance, a user who wants to buy a pair of shoes might
want to check different options in a couple of shops before deciding what to
buy. Another use case would be a tourist who wants to do some sightseeing
around the city. It would be much easier for this tourist to visit a group of
attractions close to each other instead of visiting attractions that are located
far away from each other. An example query for a user who is looking for
fashion stores in Edinburgh that corresponds to the first use case is given
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in Figure 2. The blue diamond denotes the location of the user. The green
squares denote the 3 closest PoIs and the circles denote the top-3 groups of
relevant PoIs. This example illustrates a case where it would be much more
convenient for the user to visit the group of PoIs instead of the closest PoIs.
The user might also find a larger number of options if he visits the group of
PoIs. In order to address these use cases, this thesis considers a new spatial
keyword query type to retrieve groups of relevant objects.

1.2 Crowdsourcing-based Ranking Evaluation

Crowdsourcing [22] has been used extensively in the recent years to accom-
plish tasks that are difficult for computers but easy for human beings. Exam-
ples of such tasks include collecting relevance assessments for information
retrieval systems [2, 7], and answering database queries using human knowl-
edge [18, 31, 34]. There are many crowdsourcing platforms such as Amazon
Mechanical Turk2 and Crowdflower3 that provide interfaces for publishing
tasks, assigning tasks to selected workers out of the platform’s worker pool,
and paying fees to the workers for completed tasks. A task can be very sim-
ple such as answering a question and tagging an image or complex such as
summarizing a text and translating a text. In this thesis, we employ crowd-
sourcing to form ground-truth rankings and to evaluate ranking functions
for top-k spatial keyword queries.

Paper A considers using crowdsourcing to form ground-truth rankings
for top-k spatial keyword queries. It proposes an algorithm to obtain partial
rankings of the given PoIs for a given query. It also provides a simulation-
based evaluation of the algorithm and shows that the algorithm performs
well in various settings. Paper B demonstrates a complete framework to
evaluate the performance of ranking functions for spatial keyword queries
on top of the crowdsourcing platform Crowdflower. Paper C addresses a
slightly different problem. Instead of forming the ground-truth ranking of
all relevant PoIs, it considers the case of having two ranking functions to
compare and having a budget constraint on the number of tasks performed
by crowdsourcing workers. So, the problem is to find out which ranking
function performs better for the given queries without exceeding the given
budget.

1.3 GPS-based Ranking Evaluation

GPS trajectories provide information regarding location history and move-
ment patterns of users. GPS trajectory data is utilized to identify the visits

2https://www.mturk.com/
3https://www.crowdflower.com/
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1. Introduction

to PoIs [20, 32], to recommend locations to the users based on their trajec-
tories [29, 42, 43], and to understand the significant places within the re-
gion [4, 6, 10, 44]. The source of GPS data can be either the mobile devices
or the vehicles. The difference is that the former includes the GPS recordings
corresponding to walking as well as driving.

In this thesis, we utilize vehicle-based GPS trajectories obtained from 354
drivers for a period of 9 months with 1 hz frequency. The complete dataset
contains around 0.4 billion records mostly located in or around Aalborg, Den-
mark. Paper D addresses the problem of constructing rankings for spatial
keyword queries using GPS data. Paper E tackles the problem of discovering
visits to PoIs from vehicle trajectory data. This information is needed to rank
the PoIs.

1.4 Spatial Keyword Querying for PoI Clusters

Most of the spatial keyword query types has a single-PoI granularity which
means that they return an output consisting of individual PoIs. The users
might request groups instead of single PoIs in some use cases. Collective
spatial keyword queries [12, 30] are proposed for the users whose needs can-
not be fulfilled by a single PoI but a group of PoIs. An example would be a
person who wants to visit a book store and have a drink afterwards. So, this
person needs a set consisting of at least a book store and a cafe/bar located
close to each other. Another use case is when the person needs a group of
similar PoIs so as to check different options and prices.

Top-k groups spatial keyword query [37] and top-k spatial textual cluster query
(k-STC) [39] types are proposed for the latter kind of user behavior. Both
queries return top-k groups of relevant PoIs according to a cost function. The
first query type considers any grouping of the objects, and the second query
type only considers the density-based clusters [16]. However, both of these
proposals have some drawbacks. The cost function utilized by top-k groups
query does not consider in-group distances in a suitable way since it only
considers the diameter of the group. A group might have PoIs far away from
each other even though it has the same diameter with another group that has
PoIs closer to each other. The first drawback of top-k clusters query is that
the user needs to provide density-based clustering parameters as the query
parameters. This is not realistic since the user might not know the region
that well. The second drawback is that the cost function of k-STC query does
not consider the transportation-mode of the user. In other words, the cost of
a cluster is not affected by the users’ transportation modes to the cluster and
in the cluster.

Paper F formalizes top-k transportation-mode aware spatial textual cluster
(k-TMSTC) queries and proposes methods to process them in order to address
the drawbacks of k-STC queries.
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1.5 Organization

The rest of this summary is organized as follows. Section 2 summarizes
Paper A and describes a new algorithm named PointRank to obtain partial
rankings for spatial keyword queries using crowdsourcing. Section 3 sum-
marizes Paper B and describes a framework to evaluate ranking functions for
spatial keyword queries. The framework utilizes the PointRank algorithm to
form ground-truth rankings of queries. Section 4 summarizes Paper C and
describes a method to assess which ranking function performs better given
two ranking functions and a set of queries. The method aims to complete
the assessment efficiently and accurately within a given budget. Section 5
summarizes Paper D and explores the idea of using GPS records instead of
crowdsourcing to form rankings for spatial keyword queries. The proposed
method contains a new stop assignment algorithm to find the visited PoI
for a given stop. It also contains a smoothing method based on PageRank
algorithm to extend the spatial coverage of the method. Section 6 summa-
rizes Paper E and focuses on the problem of stop assignment to PoIs and
describes a new algorithm based on a Bayesian network. Section 7 summa-
rizes Paper F and introduces k-TMSTC queries and outlines two algorithms to
process these queries. Finally, Section 8 gives a summary of the contributions
in the thesis, and Section 9 concludes the thesis summary.

2 Crowdsourcing-based Ranking Synthesis

This section gives an overview of Paper A [25].

2.1 Problem Motivation and Statement

Ranking synthesis for top-k spatial keyword queries is the first step towards
the ranking function evaluation since the synthesized ranking can be used as
ground-truth ranking for evaluation purposes. In order to synthesize rank-
ings, we need a way to obtain user feedback about the relevant PoIs for a
specific query. We choose to use crowdsourcing since it provides easy access
to human knowledge and it has been used to obtain rankings of objects in the
literature [14, 38, 41]. Stoyanovich et al. [38] utilizes listwise relevance ques-
tions to obtain rankings from each crowdsourcing worker. In other words,
each worker is supposed to provide a complete ranking for a given list of
objects. In the context of spatial keyword queries, it would be pretty tough
for a worker to provide a complete ranking for a list of PoIs that are located
around the city. For this reason, we utilize pairwise relevance questions. A
pairwise relevance question asks which of the two PoIs are more relevant
to the provided query. The other studies [14, 41] assume that there exists a
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2. Crowdsourcing-based Ranking Synthesis

total ranking amongst the objects. This assumption forces workers to pro-
vide a ranking even when they think the objects might be equally relevant or
very difficult to compare. For instance, if a Chinese restaurant and an Italian
restaurant are in the same neighborhood and have the same price range, then
the choice would depend directly on personal preferences. In this situation,
ranking one or the other higher should not make a difference. Therefore, a
method to synthesize PoI rankings should not have the assumption of total
ranking.

We consider a setting where q is a top-k spatial keyword query and D is
the set of PoIs relevant to q. We assume that there exists a pairwise relevance
relation ≺ on D. x ≺ y means that y is more relevant to the given query than
x. This relation is irreflexive, asymmetric and transitive. Paper A addresses
the problem of forming a pairwise relevance relation given a query q and a
set of PoIs D by means of crowdsourcing.

2.2 PointRank Algorithm

We propose PointRank algorithm to build rankings for top-k spatial keyword
queries. The algorithm uses answers to pairwise relevance questions from
crowdsourcing workers. A pairwise relevance question is defined with a pair
of PoIs and a query, and asks the workers to provide the PoI that is more
relevant to the query. The algorithm iterates until whole partial ranking for
the PoIs included in D is uncovered. In each iteration, it first determines the
question to be processed and then processes the question.

Determining the Next Question

Normally, for n PoIs, we have C(n, 2) pairwise relevance questions. In order
to decrease the number of questions to be asked to crowdsourcing workers,
we employ a gain definition that takes transitivity of the pairwise relation
into account. Given a pairwise question, the gain is defined as the number
of questions that we can infer the answers for by asking the question. Let us
assume that (pi, pj) is the pairwise relevance question under consideration.
If the answer is that they are incomparable, we cannot use it to infer new
pairwise relevances using transitivity. If the answer is pi ≺ pj, we can infer
three new pairwise relevances depending on what we already know about
the pairwise relevances:

• pk ≺ pj can be inferred if we already know pk ≺ pi

• pi ≺ pk can be inferred if we already know pj ≺ pk

• pk ≺ pl can be inferred if we already know both pk ≺ pi and pj ≺ pl

9



The other possible answer pj ≺ pi can also lead to some inferences of
additional pairwise relations. The gain is then defined as the average of the
number of possible inferences for these two possible answers. This gain def-
inition is used to determine the next question to be processed. We compute
the gain for all possible pairwise relevance questions and choose the question
with maximum gain as the next question.

Example 2.1 (Computing Gain)
Let D = {p1, p2, p3, p4, p5} be the set of PoIs and R = {p1 ≺ p2, p1 ≺
p5, p4 ≺ p2, p4 ≺ p5} be the set of pairwise relevances the algorithm has
formed up to now. Further, the pairwise relevance question (p2, p3) is also
processed and this pair is decided to be incomparable. Let (p3, p5) be the
pair of PoIs that we want to compute the gain for. There are two possible
answers to the pairwise relevance question regarding this pair that might
lead to new inferences:

1. p3 ≺ p5: This answer does not lead to any new pairwise relevance
inferences since we do not have any pairwise relevances in the form
of pi ≺ p3 or p5 ≺ pj.

2. p5 ≺ p3: This answer leads to 2 new inferences. The algorithm can
infer p1 ≺ p3 and p4 ≺ p3 since we have p1 ≺ p5 and p4 ≺ p5.

Since gain is defined as the average, the gain of (p3, p5) is 1.

Processing a Question

To process a question, the PointRank algorithm follows an iterative approach.
In each iteration, the pairwise relevance question is assigned to a number of
crowdsourcing workers. After all the answers are collected, these answers
are compared with the previous iterations’ answers using the Chi-square (χ2)
test [36]. This test is a way of assessing whether the change in the answers
to the question might be just due to chance. The PointRank algorithm has
a p-value threshold parameter (pvalue) and a probability threshold param-
eter (pt). If the p-value corresponding to the χ2 value exceeds pvalue, the
algorithm concludes that the change is due to chance. In other words, the
algorithm concludes that the workers have a consensus about the question’s
answer. In this case, the probability for each answer is computed. If the an-
swer with the maximum probability has the required probability threshold
then it is finalized as the answer to the question. Otherwise, the algorithm is
not capable of determining the answer for this question.

PointRank proceeds with another iteration when there is no consensus
between the workers. PointRank has a parameter that determines the initial
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2. Crowdsourcing-based Ranking Synthesis

number of assignments (ina). Since we need at least two iterations to check
for consensus, we assign the question to ina workers in both iterations. In
the following iterations, the number of assignments is set to the total number
of assignments in the previous iterations. This makes it possible to have a
meaningful result from the χ2 test. PointRank also has two parameters to
control the number of iterations for each question: a minimum number of
iterations parameter (minni) and a maximum number of iterations parameter
(maxni). If the answer to the question is not determined after maxni iterations,
the algorithm concludes that the workers do not agree about the pairwise
relevance.

Table 1: Processing of the question (p3, p5)

p3 ≺ p5 p5 ≺ p3 Incomparable p-value
1st Iteration 5 1 4
2nd Iteration 2 7 1 0.022531
3rd Iteration 4 14 2 0.154104
Total 11 22 7
Probability 0.275 0.55 0.175

Example 2.2 (Processing of the Question (p3, p5))
Continuing from Example 2.1, we process the question (p3, p5). Let us
assume that PointRank has the following parameters: ina = 10, minni = 2,
maxni = 5, pvalue = 0.10 and pt = 0.5. The answers from workers for each
iteration, p-values corresponding to the χ2 test, total number of workers
for each possible answer, and final probability values for each possible
answers are shown in Table 1. The question is assigned to 10 workers in
the first two iterations since ina is set to 10. The distribution in the first
iteration is (5, 1, 4) and the distribution in the second iteration is (2, 7, 1).
Since the p-value corresponding to χ2 test (0.022531) is less than the pvalue
parameter, the algorithm concludes that there is no consensus between the
workers and continues with the third iteration. In the third iteration, the
question is assigned to 20 workers and the distribution of the answers is
(4, 14, 2). The p-value between third iteration and the previous iterations
is 0.154104. Since it is greater than the pvalue parameter, the algorithm
concludes that there is an agreement between the workers regarding the
question. Then, the probability values for each answer is computed. The
answer with maximum probability is p5 ≺ p3 and its probability (0.55)
is greater than the pt parameter. For this reason, p5 ≺ p3 is chosen as
the answer to the question. The algorithm infers two pairwise relevances
p1 ≺ p3 and p4 ≺ p3 as a result of this answer.
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2.3 Discussion

In order to evaluate the proposed algorithm, an experimental analysis on a
simulated environment is conducted. We choose a simulation-based evalua-
tion since it might require a large budget to do the experimental evaluation
on a real crowdsourcing platform. Simulated workers are modeled with a re-
liability value and answer the questions according to pre-generated ground
truth rankings. Reliability value is defined as the probability that the worker
provides the correct answer. We compare PointRank algorithm with a base-
line algorithm. The baseline algorithm assigns each question to a fixed num-
ber of workers (n) and the answer is decided using majority voting. We in-
clude baseline algorithms with n = 40, n = 70 and n = 100 in the experimen-
tal evaluation. We present a comparison between the pre-generated ground
truth rankings and the output ranking from the algorithms. We use Kendall
tau distance [17] to compute how close two rankings are. The Kendall tau
distance is basically defined as the ratio of the number of pairs of PoIs that
the rankings do not agree on to the total number of pairs of PoIs. So, it be-
comes 0 if the rankings agree on each pair and 1 if the rankings disagree on
each pair. We also report the number of assignments needed by the algo-
rithm since it is directly related to the cost of a crowdsourcing algorithm as
it is required to pay a fee for each assignment completed by a crowdsourcing
worker.
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Fig. 3: Kendall Tau Distance vs Number of PoIs [25]

Figures 3 and 4 show the effect of the number of PoIs on the Kendall-
tau distance and the number of assignments. The number of assignments
increases as the number of PoIs increases as expected for all algorithms. The
figures suggest that PointRank algorithm constructs better rankings than the
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baseline algorithm with n = 40 even though both algorithms require almost
identical number of assignments. Our experimental evaluation also shows
that PointRank algorithm produces better rankings than the baseline algo-
rithm when the worker reliability is quite low. This is very important for a
crowdsourcing algorithm since it is not possible to assume that all the work-
ers are reliable in crowdsourcing platforms.

3 CrowdRankEval Framework

This section gives an overview of Paper B [24].

3.1 Problem Motivation and Statement

We propose the PointRank algorithm which addresses ranking synthesis via
crowdsourcing in Paper A. The main motivation behind this algorithm is
to use the rankings generated by it in ranking function evaluation for top-k
spatial keyword queries. The underlying idea is that a ranking function that
produces rankings close to the ground-truth rankings can be considered a
good ranking function.

Paper B addresses building a system that makes it possible for researchers
to perform this evaluation. There are three important requirements for such
a system:

• Evaluation of ranking functions requires a set of queries that the re-
searchers want to evaluate the ranking functions on and a set of rank-
ings obtained by applying the ranking functions on the input queries.
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For this reason, such a system should have interfaces to make it possible
for the users to provide these inputs.

• In order to construct the ground-truth rankings, such a system should
provide an implementation of the PointRank algorithm on top of a
crowdsourcing platform. So, it is required to communicate with the
crowdsourcing platform to be able to publish tasks and get answers
from the workers.

• The users should be able to visualize the output rankings and the eval-
uation results.

3.2 Use Case and Workflow

We demonstrate the CrowdRankEval framework as a complete ranking func-
tion evaluation framework for top-k spatial keyword queries. It is intended
to address two use cases. The first use case consists of determining the
best parameter configuration for an existing ranking function and finding
out whether a new ranking function performs better than the existing ones
for a set of queries. The second use case is checking various hypotheses to
understand the relationship between ranking functions and keywords or re-
gions. For instance, one hypothesis may be "The expensiveness level of the
PoI is more important than the spatial proximity of the PoI to the query loca-
tion if the keyword is related to expensive items such as furniture and mobile
phones. On the other hand, the expensiveness level is less important than the
spatial proximity if the keyword refers to a daily food product such as burger
and pizza.".

User

I want to 

evaluate the 

ranking 

functions for a 

set of queries.

I want to test my 

hypothesis regarding the 

relation of ranking 

functions with locations 

and keywords.

Create An Experiment

Name

Payment per Question

Maximum Cost

PointRank Parameters

Upload Queries and 

Ranking Function Names

Q1 RF1

Q2 RF2

... RF3

...

Upload Query Results

Q1      RF1      PoI1      1

Q1      RF1      PoI2      2

Q1      RF1      PoI3      3

Q1      RF2      PoI3      1

Q1      RF2      PoI1      2

…

Execute Experiment

Which is more relevant 

to Q1?

 PoI1

 PoI2

 Incomparable worker

Show Evaluation Results

Show Synthesized 

Rankings

PoI1

PoI3

PoI2

0

0,5

1

Q1 Q2

RF1

RF2

Fig. 5: Workflow of CrowdRankEval [24]

14



3. CrowdRankEval Framework

The core unit of CrowdRankEval is termed an experiment. An experi-
ment consists of a set of queries, output rankings for these queries by the
ranking functions to be evaluated, an experiment name, crowdsourcing pa-
rameters such as payment per question and maximum cost, and PointRank
parameters. The workflow of the framework is displayed in Figure 5. The
user is expected to create an experiment with the required parameters. Then,
queries and ranking functions should be uploaded to the framework. Then,
query results obtained by applying the input ranking functions for the input
queries should be uploaded. The next step is executing the experiment. This
basically means building rankings for the input queries via crowdsourcing
using the PointRank algorithm. After the rankings are built, the user can
display the output rankings and display the evaluation results of the input
ranking functions.

3.3 Framework

The CrowdRankEval framework consists of four modules to address the
aforementioned requirements. User interface module handles the graphical
user interface of the framework. This includes providing interfaces for the
users to upload data, to display the status of their experiments and to illus-
trate the output rankings and evaluation results for their experiments. Data
preparation module takes care of necessary checks to make sure that the up-
loaded data is correct and does not have any missing information. It also
forms the set of PoIs for each query from the query results uploaded. Point-
Rank module contains an implementation of the PointRank algorithm on
top of CrowdFlower. This module takes care of the communication between
CrowdRankEval and CrowdFlower. Finally, evaluation module performs the
evaluation of the ranking functions by comparing the input rankings for each
query to the ground-truth ranking obtained from the PointRank module for
the query. We utilize Kendall tau distance for ranking comparison. It presents
the evaluation results on different levels to make it possible for the users to
understand which ranking function performs better for each query, for each
location, for each keyword, and in general.

Example 3.1 (Evaluation on CrowdRankEval)
Figures 6 and 7 show an example evaluation of an experiment conducted
on CrowdRankEval. This experiment consists of 2 queries with keywords
“bar” and “bibliotek” (means library in Danish). Both queries have a lo-
cation in the central part of Aalborg. Figure 6 illustrates the ranking ob-
tained for the query with “bar” keyword. The ranking is shown as a graph
consisting of the PoIs and a directed edge (pi, pj) denotes that pj is more
relevant to the input query than pi. Incomparable PoIs are shown with a
dashed undirected edge between them. If the PointRank algorithm is not
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Fig. 6: Visualization of Synthesized Ranking on CrowdRankEval [24]
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able to find the answer for a pair of PoIs, then there is no edge between
them. In this example, we have no such pairs. Figure 7 illustrates the eval-
uation results. This figure illustrates the Kendall tau distance between the
input rankings and the synthesized ranking. It can be seen that the ranking
function that performs best for the keyword “bar” performs worst for the
keyword “bibliotek”.
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3.4 Discussion

Paper B provides a demonstration of a new ranking function evaluation
framework. We consider top-k spatial keyword queries in the framework,
but it is also applicable for other top-k query types. The drawback of the
framework is that it does not test the knowledge of the crowdsourcing work-
ers prior to task assignment. This can be addressed as a future work since
most of the platforms allow task requester to place some tests for workers
before they are eligible for the tasks. Another future work direction would
be to integrate ways of handling unreliable and/or malicious workers to the
PointRank algorithm in order to get better results.

4 Crowdsourcing-based Evaluation of Ranking Ap-
proaches

This section gives an overview of Paper C [13].

4.1 Problem Motivation and Statement

Paper A proposes the PointRank algorithm to synthesize ground-truth rank-
ings for a given set of PoIs and Paper B demonstrates a complete framework
for ranking function evaluation. However, if there are only a limited num-
ber of ranking functions to evaluate, constructing a ground-truth ranking
might not be necessary. For instance, if we want to evaluate two ranking
functions for a query and a PoI is not contained in both of the rankings pro-
duced by these functions, it is not needed to know what the exact position
of this object is in the ground-truth ranking. Moreover, there is no need to
ask about two PoIs, if both rankings agree about the ranking of these PoIs.
Another shortcoming of PointRank is that it does not take the budget con-
straint into account. To synthesize rankings for M queries, PointRank creates
M · C(n, 2) · 2maxni−1 · ina assignments in the worst case assuming a set of n
PoIs is provided for each query. It might require a large budget to complete
these assignments for large values of M and n. Therefore, a framework that
considers budget constraints for ranking evaluation of top-k spatial keyword
queries is needed.

Paper C tackles the problem of evaluation of ranking approaches for spa-
tial keyword querying on a given set of PoIs under a budget constraint. More
specifically, Paper C focuses on having two input ranking functions. How-
ever, the proposed methodology can be applied when there are more ranking
functions under consideration.
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4.2 Solution Overview

The proposed framework takes two ranking functions f1 and f2, a set of PoIs,
and a set of M queries and finds out which of the ranking functions produces
better rankings for the given set of queries. Our framework employs pairwise
relevance questions as in PointRank algorithm. The complete framework
is shown in Figure 8. Our framework is composed of M local evaluations
each of which corresponds to an input query and a global evaluation that
decides on the better ranking function with respect to the results of the local
evaluations.

A local evaluation consists of three elements. The first element is the rank-
ing process. It simply computes top-k rankings l1 and l2 for the input query
from the input set of PoIs by applying the functions f1 and f2, respectively.

The second element is the matrix based question model. The main task of
this element is to decrease the number of pairwise relevance questions and to
determine the most important questions in order to comply with the budget
constraint. We employ a learn-to-rank method to form a top-k ranking l12 to
cover the important features of both rankings. This element requires a set of
training queries. We first form two rankings corresponding to f1 and f2 for
each training query. Then, a score for each object included in these lists is
computed with respect to its rank in both lists. Objects together with their
scores form the training data. After training a ranking function, we use the
ranking function to generate scores for the PoIs included in l1 ∪ l2 and the
first k elements of this set constitute l12. Before generating the questions,
the matrix based question model eliminates the questions that both l1 and l2
agree on the answer. We utilize an entropy definition to decide whether we
should ask the question to the crowdsourcing workers. Entropy of an object
is defined with respect to the representativeness of the keywords contained in
its documents. If the entropy difference between a pair of objects is less than
a threshold, a question regarding this pair is added to the set of generated
questions. The algorithm to generate questions stops when the size of this
set reaches to the given budget constraint. The algorithm first checks the
pairs of objects included in l12. If we still have remaining budget, lc = l1 ∩ l2
is considered. If there is still space for more questions, then we check the
remaining objects in the set lr = l1 ∪ l2 \ lc.

Crowdsourcing based evaluation is the third element of the local evalu-
ation. This element first collects answers for the generated questions. We
utilize three different methods to determine the answer for a pairwise rele-
vance question. The first method is majority voting. The answer given by the
majority of the workers is selected as the answer to the question. The second
method is voting based on constant confidence. The confidence value for a
worker is the same for all questions in this method. The third method is vot-
ing based on dynamic confidence. A worker can specify a confidence value
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4. Crowdsourcing-based Evaluation of Ranking Approaches
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for a specific question in this method. We store the answers in a n× n matrix
where n is the number of objects. However, we have a partial matrix after
collecting the answers from crowdsourcing platform due to the budget con-
straints. Then, we apply non-negative matrix factorization to fill the missing
values of the matrix. The last step of this element is forming the final ranking
for the input query. We utilize Borda-count [5] to form the ranking.

Example 4.1 (Ranking with Borda-Counts)
Let O = {p1, p2, p3, p4, p5} and we have pairwise relevances {p1 ≺ p2,
p1 ≺ p3, p1 ≺ p4, p1 ≺ p5, p2 ≺ p4, p3 ≺ p2, p3 ≺ p4, p3 ≺ p5, p5 ≺ p2,
p5 ≺ p4}. The Borda counts for the PoIs are as follows: g(p1) = 0, g(p2) =
3, g(p3) = 1, g(p4) = 4, g(p5) = 2. So the final ranking is 〈p4, p2, p5, p3, p1〉.

Global evaluation takes the rankings produced by ranking functions f1
and f2 (l1 and l2) and the final ranking (l f ) for each query qi. Then, global
evaluation component compares l1 and l2 with l f using Kendall tau distance
[17] for qi. If l1 has a lower Kendall tau distance than l2, it is considered as
a vote for f1. Otherwise, it is a vote for f2. The global evaluation component
concludes that the ranking function with the majority of the votes is a better
ranking function.

4.3 Discussion

In order to evaluate the proposed framework, we focus on two ranking func-
tions. These functions ( f1 and f2) are obtained by changing the weighting
parameter in a ranking function widely used in the literature for spatial key-
word querying. Then, we obtain a vector containing the number of votes for
f1 for a set of queries using the maximum budget. Then, we compare the
number of votes for f1 obtained by our framework for different parameter
settings with the vector obtained with the maximum budget using Cosine
similarity.

Figures 9a and 9b show how our framework is affected by the budget
constraint and the matrix factorization. Figure 9a illustrates that our algo-
rithm is sensitive to the budget constraint. In other words, it is clear that
the framework provides better results when the available budget increases.
Figure 9b shows the effect of matrix factorization on our framework. The re-
sults provide clear evidence that we obtain better results by utilizing matrix
factorization. The experimental evaluation also suggests that voting based on
dynamic confidence performs better than majority voting and voting based
on constant confidence. This is expected since workers might not provide
the same confidence for every question they answer. For instance, a worker
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5. GPS-based Ranking Synthesis
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Fig. 9: Effects of Budget and Matrix Factorization [13]

might be more confident about answering about a pair of PoIs that he regu-
larly visits than a pair of PoIs he has only heard of.

5 GPS-based Ranking Synthesis

This section gives an overview of Paper D [23].

5.1 Problem Motivation and Statement

Paper A and Paper C focus on constructing rankings for spatial keyword
queries by means of crowdsourcing. However, crowdsourcing-based meth-
ods have some drawbacks. First, they are quite costly since one has to pay
for each task completed by a crowdsourcing worker. Second, it requires ex-
tremely long time since one has to wait until all of the tasks are completed
by crowdsourcing workers. Third, to answer the pairwise questions gener-
ated by the algorithms we propose, workers need to be knowledgeable about
the geographical region that the questions cover since we focus on spatial
relevance. Moreover, even though they are familiar with the region, they
might not have information about the PoIs included in a question. For these
reasons, Paper D focuses on utilizing GPS data instead of crowdsourcing.

Paper D utilizes GPS records collected from vehicles. The following defi-
nition is reproduced from [23].

Definition 0.1. A GPS record G is a four-tuple 〈u, t, loc, im〉, where u is the ID
of a user, t is a timestamp, loc is a pair of Euclidean coordinates representing the
location, and im is the vehicle ignition mode.
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Paper D addresses the problem of synthesizing a ranking for a given top-k
spatial keyword query using a set of GPS records SG and a set of PoIs SP.

5.2 Method Overview

The main assumption behind the proposed method is that users first search
for PoIs and then decide on which PoI to visit. The underlying spatial region
is modeled as a regular grid. Each trip to a PoI is considered as a vote for the
PoI for the grid cell containing the source location of the trip.

Our method has two phases: model-building and ranking-building. The
output of model-building phase is a regular grid that contains two values
for each cell and for each PoI regarding the trips starting from the cell to
the PoI. The first value is the number of the trips and the second value is
the number of users making these trips. In order to build the model, it
first extracts the set of trips to PoIs from SG. Then, it sets these two values
with respect to the set of trips. A cell might have missing values for some
PoIs due to the lack of trips from the cell to these PoIs. In order to address
this problem, model-building phase includes a smoothing method based on
PageRank algorithm [33]. Model-building phase is explained in detail in
Section 5.3.

Ranking-building phase constructs a top-k ranking for a given top-k spa-
tial keyword query from the output model. First, the grid cell is identified by
the query location. Then, the PoIs relevant to the query keywords are ranked
according to a score computed by a weighted sum of the number of trips and
the number of users values with respect to a weighting parameter (β).

5.3 Model-Building Phase

The model-building phase utilizes historical trips. In order to extract trips to
PoIs, we first need to find users’ stops. This is quite straightforward since we
have the ignition mode attribute. If the engine of the vehicle is off for more
than a threshold parameter, we consider that the driver has made a stop to
visit a PoI. Then, we need to eliminate the visits to home and work locations,
since they do not provide any value to capture users’ preferences for PoIs.
People generally spend a considerably long time at their home and work
locations. They also visit these locations more frequently than any other PoIs.
Based on these observations, we utilize a density-based clustering approach
in order to detect the stops corresponding to these locations. We basically
cluster a user’s stops and check the frequency of stops and the average time
the user spends in each cluster. If both of these values in a cluster are above
the threshold parameters, we conclude that the cluster corresponds to the
user’s home or work location.

The model-building phase proceeds with the assignment of stops to PoIs
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5. GPS-based Ranking Synthesis

after excluding stops for home and work locations. An assignment of a stop
s to a PoI p means that the user made the stop s to visit p. Two methods
are proposed for the stop assignment problem: Distance based assignment
(DBA) and temporal pattern enhanced assignment (TPEA). DBA assigns the
stop to the closest PoI if there are less than a number of PoIs within a distance
threshold from the stop. However, DBA cannot assign stops that have too
many or no PoIs around them. For these stops, we propose TPEA method
that is built on density based clustering. It uses the information provided
by the user’s assigned stops in the output of DBA. The TPEA method first
clusters the user’s stops. For each cluster, the user’s temporal visit patterns
are extracted from the assigned stops within the cluster. These patterns are
employed to identify the PoI a user visited as a result of an unassigned stop.
The core idea is that if a user has only visited pi on a specific time period and
if the user has an unassigned stop sj that is near pi during the same time of
day, it is highly probable that sj also corresponds to pi. An example temporal
pattern would be visiting a kindergarten to pick up kids around 16:00 on
weekdays. The set of trips to PoIs is formed with respect to the assigned
stops.

p1

p2

t1 – u1
t2 – u1

t4 – u3

t6 – u4

t5 – u3

t3 – u2 p1, 0, 0
p2, 0, 0

p1, 4, 3
p2, 2, 1

Fig. 10: Example Initialization of Grid Cells

Using the set of trips, the number of trips and the number of unique users
are computed for each grid cell. An example is illustrated in Figure 10. There
are 2 grid cells and 2 PoIs in this example. A trip is denoted by a pair (ti, uj)
where ti is the identifier of the trip and uj is the identifier of the user. The set
of trips contains 6 trips completed by 4 users. The initialized grid is shown
on the right.

As can be seen in Figure 10, some cells might have missing values since
they do not have any trips starting within the cell. This might be due to the
lack of users from this cell in the GPS dataset. It might also be due to not
being able to identify the visited PoIs for some stops due to high PoI density
around them. This is an issue for the model since it limits the geographical
coverage. If the input query corresponds to a cell with missing values, our
model is not able to provide a ranking. To address this issue, we propose
a personalized PageRank-based algorithm to smooth the grid values. The
main intuition is that PoIs visited by the users starting from nearby cells
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may be possible targets for the users located in the cell with missing values.
PageRank algorithm [8] is proposed for ranking web pages for search engine
queries. It takes incoming links to a web page and outgoing links from a
web page into account to determine a score for a web page. If a web page is
linked from important web pages, it is considered important, so it should be
ranked higher. The algorithm is basically a random walk over the graph of
web pages. It starts with a random vertex and it follows either an outgoing
edge or continues with another randomly selected vertex. The probability for
a vertex to be randomly chosen is the same for all vertices in the PageRank
algorithm. Personalized PageRank algorithm [33] determines this probability
with respect to the personal preferences.

In order to apply personalized PageRank algorithm for smoothing, we
first build a directed graph from the underlying grid. We introduce an edge
between each pair of neighbor cells with a weight inversely proportional to
the distance between them. The personalization parameter is set according
to the initial cell values. PageRank algorithm outputs a page rank value
for each vertex. The page rank value of a vertex is the probability that the
random walker will visit the vertex. After obtaining the page rank values,
the total number of users and the total number of trips are distributed with
respect to these values. For instance, let us assume that we are smoothing
the number of users and the total number of users is 50. The number of
users value for a grid cell with an output page rank value 0.3 is set to 15 after
smoothing.

5.4 Discussion

To evaluate our proposed method, we utilize a GPS dataset consisting of
around 0.4 billion GPS records collected from 354 vehicles traveling around
Nordjylland, Denmark for a period of 9 months in 2014. The PoI dataset is
collected from Google Places API and it has 10, 000 PoIs in or around Aalborg.
There are 88 PoI categories in the dataset.

We first build a set of ground-truth assignments using home/work stops
identified in the GPS dataset so as to evaluate our stop assignment meth-
ods. For each home/work cluster, the center of the cluster is added to the
PoI dataset as a home/work PoI. The ground-truth data then consists of
the home/work stops assigned to the corresponding home/work PoIs. We
use closest assignment (CA) method as a baseline. It simply assigns each
stop to the closest PoI. We present precision and recall values for CA, DBA
and TPEA methods. We consider home/works stops assigned to the correct
home/work PoIs as true positives. We consider stops that are not identified
as home/work stops and are assigned to home/work PoIs as false positives.
Unassigned home/work stops and home/work stops that are assigned to
incorrect PoIs are considered as false negatives.
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5. GPS-based Ranking Synthesis
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Fig. 11: Precision and Recall [23]

Figure 11 illustrates precision and recall values obtained by CA, DBA and
TPEA methods. Figure 11a shows that both DBA and TPEA methods have
higher precision than the CA method. TPEA has a slightly lower precision
than DBA due to the false positive assignments obtained by using temporal
visit patterns. Figure 11b shows that CA has higher recall than the DBA
and TPEA methods. This is due to the fact that we consider unassigned
home/work stops as false negatives.

We also conduct experiments in order to assess the effect of smoothing on
the proposed method. As aforementioned, the proposed method utilizes a
personalized Page-Rank based smoothing method and this might introduce
some distortion in the initial values of the grid cells. To check the extent of
the distortion, we build top-10 rankings for the grid cells with enough data
before and after smoothing. We utilize Kendall tau distance [17] to determine
the similarity of these rankings and we present the distribution of the Kendall
tau distance values between them.

Figure 12 shows the box plot of Kendall-tau distance values between top-
10 rankings extracted before and after smoothing for different weighting pa-
rameter (β) values. Green lines denote the means and red lines denote the
medians of the distance values. The average Kendall tau distance between
the rankings is around 0.15. This means that 85% of the existing pairwise re-
lations between PoIs are preserved after smoothing. It is also possible to see
that Kendall tau distance does not exceed 0.1 for 50% of the grid cells. The
experimental evaluation results suggest that the proposed smoothing method
preserves the characteristics of original data while enlarging the geographical
area covered.

In addition to the experiments mentioned, we conduct a set of exper-
iments to evaluate the effect of weighting parameter on the output rank-
ing. The results show that the proposed method is largely insensitive to the
weighting parameter.
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Fig. 12: Kendall Tau Distance Distribution [23]

6 Extracting Visits to PoIs from GPS data

This section gives an overview of Paper E [26].

6.1 Problem Motivation and Statement

Paper D proposes a method to construct rankings for spatial keyword queries
using GPS data obtained from vehicles. An important step in this method is
the stop assignment to PoIs due to the fact that these assignments form a
foundation for the grid-based model to rank the PoIs. Both DBA and TPEA
methods are not able to assign any stops to a PoI if it is surrounded by other
PoIs. TPEA utilizes temporal visit patterns of the users to improve on DBA.
However, since it first utilizes DBA to find these patterns, a PoI that does not
have any stops assigned to will not have any patterns associated with it. It
is important to be able to detect the visits to PoIs in highly dense areas since
it will make it possible to form rankings that reflect the users’ preferences
better.

Given a set of GPS records, Paper E addresses the problem of finding
users’ visits to PoIs. This problem statement covers two problems: Detecting
the stops in the set, and stop assignment to PoIs. Paper E utilizes the stop
extraction method used in Paper D and focuses on the stop assignment to
PoIs.
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6. Extracting Visits to PoIs from GPS data

6.2 Solution Overview

We propose a method to assign stops to PoIs. The proposed method utilizes
a Bayesian network together with distance based filtering to assign a stop.
The Bayesian Network models the relation between the temporal features
of a stop and a PoI category. Distance based filtering is used to find the
set of candidate PoIs just like DBA. To assign a stop, the method first finds
the candidate PoI categories within a distance threshold (adth) of the stop.
Then, the probability of visiting a PoI of this category is computed using the
Bayesian network for each category. If we have a single candidate PoI of the
category with maximum probability, the stop is assigned to this PoI.

Time Index

Category

Day Index

Stay Duration

Fig. 13: Structure of the Bayesian Network [26]

Figure 13 shows the structure of the Bayesian network. Day index, time
index and stay duration are the attributes of a stop and we are interested
in finding the probability of visiting a category for given values of these
attributes. This structure simply means that PoI category depends on the day
index and the time index, and that stay duration depends on the category.
We divide the time into equal intervals and time index is the identifier for
the time period that the stop happened. To illustrate, if the time period is 2
hours and the stop time is 17:23, the time index becomes 8.

The structure of the Bayesian network is decided after preliminary anal-
ysis of a labeled dataset constructed with DBA with a conservative setting.
We only assign a stop to a PoI if there is only one PoI within 100 meters
of the stop. Our preliminary analysis shows that people have a tendency to
visit some categories on specific days and on specific time intervals. For in-
stance, our preliminary analysis on the labeled data suggests that people visit
bakeries in the morning and pubs at night. For this reason, we have edges
from day index and time index nodes to PoI category node in the Bayesian
network. Figure 14 shows the stay duration distributions for some PoI cat-
egories. These distributions provide evidence on the effect of PoI category
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Fig. 14: Stay Duration Distribution for Different Categories [26]

on the stay duration. For instance, it is clear that people spend more time in
restaurants than grocery stores. Hence, we have an edge from PoI category
node to stay duration node.

In order to learn the Bayesian network, we use the same labeled dataset.
Learning a Bayesian network corresponds to building the conditional proba-
bility tables for each node.

6.3 Discussion

We use the same GPS dataset and PoI dataset as used in Paper D to evaluate
the proposed method. The cardinality of the labeled dataset obtained with
the distance threshold of 100 meters is 36, 691. We employ 10-fold cross val-
idation to determine training and test sets. To make it certain that we have
more than one PoI option for a test stop, we introduce two parameters: a
distance factor parameter df , and a minimum PoI count parameter mpc. If a
stop does not have at least mpc PoIs within adth · df meters, it is not added
to the test set. The default values for df and mpc are 2 and 3, respectively.
We also change our algorithm to return a list of possible categories ordered
with respect to their joint probability computed by the Bayesian network. We
report precision at position n (p@n), mean reciprocal rank (mrr) and number
of possible categories (npc). p@n corresponds to the ratio of the stops that
have their correct PoI category in first n positions in the output list. mrr is
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7. Querying Point of Interest Clusters

the average position of the correct category in the output list and npc is the
average number of candidate PoI categories.
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Fig. 15: Effect of adth [26]

Figures 15a and 15b show the effect of distance threshold on the proposed
method. Figure 15a demonstrates that precision decreases as adth increases.
This is expected since the set of candidate categories also gets larger as adth
increases as illustrated in Figure 15b. The figures also show that the pro-
posed method is capable of capturing temporal characteristics of the visits to
PoIs with different categories since it achieves a p@3 value around 0.8 and
an mrr value of 2 out of 6 possible categories. Finally, it is also possible to
see that distance based filtering improves the proposed method significantly.
Figure 15b demonstrates that when we do not use distance based filtering,
the method has an mrr value of 10–12 out of 88 possible categories. This
result suggests that some PoI categories have similar temporal characteris-
tics and distance based filtering helps us to filter out categories with similar
characteristics.

7 Querying Point of Interest Clusters

This section gives an overview of Paper F.

7.1 Problem Motivation and Statement

Spatial keyword query proposals in the literature mostly target individual
PoIs. However, users may be interested in a group of similar and nearby
PoIs instead of a single PoI in some cases. To illustrate, a user who wants
to purchase a laptop might visit many electronic stores to find the best op-
tion. There are two query proposals for such users: Top-k groups query [37]
and top-k spatial textual cluster (k-STC) query [39]. Both of these queries
identify the best k groups with respect to a cost definition. Top-k groups
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query considers all possible groups of relevant PoIs while k-STC query only
considers density-based clusters [16] of relevant PoIs. The cost definitions of
these query types do not take the user’s transportation mode into account.
We believe that a user’s transportation mode affects their preferences. For
instance, a user with a car would be willing to travel more than a user who
wants to walk to reach to a PoI. Another drawback of k-STC queries is that
users are expected to provide density-based clustering parameters. It may
be challenging for a user to provide meaningful parameters since this re-
quires knowledge about the query region. Paper F extends the k-STC query
by removing the density-based clustering parameters and adding parameters
regarding transportation modes of a user, and formalizes the k-TMSTC query
as follows:

Definition 0.2. A top-k transportation-mode aware spatial textual clusters
(k-TMSTC) query is defined as q = 〈λ, ψ, k, tmc, tmi〉, where λ is a point location,
ψ is a set of keywords, k is the number of result clusters, and tmc and tmi are trans-
portation modes for traveling to the cluster and traveling in the cluster, respectively.
A cluster is defined as a subset of the set of relevant PoIs and a k-TMSTC query
identifies the k best maximal density-based clusters with respect to a cost function.
The transportation mode can be one of the following: driving, cycling, walking, and
public transportation.

A density-based cluster on a set of objects is defined with respect to two
parameters: ε and minpts. Before defining a density-based cluster, we need to
provide relevant definitions from density-based clustering. A core object is
an object that has at least minpts objects within its ε-neighborhood. In other
words, for a core object, there should be at least minpts objects whose distance
to the object is less than ε. An object oi is said to be directly reachable from
oj if oj is a core object and oi is in oj’s ε-neighborhood. If there is a chain
of objects o1,...,ok, where o1 = oi, ok = oj and om is directly reachable from
om+1 for 1 ≤ m < k, we say that oi is reachable from oj. A maximal density-
based cluster is formed by a core object and all reachable objects from the
core object. k-TMSTC query identifies top-k density-based clusters on the set
of relevant PoIs with respect to a cost function.

There are two cost functions that can be utilized for k-TMSTC queries: a
spatial cost function and a spatio-textual cost function. Both cost functions
consider the travel duration which is the total duration that the user needs
to travel to visit all PoIs in the cluster. The spatial cost function is defined as
the ratio of this duration to the cardinality of the cluster. The spatio-textual
cost function is defined as the ratio of this duration to the average textual
relevance of the PoIs in the cluster.

Paper F addresses the problem of developing an efficient algorithm to pro-
cess k-TMSTC queries with a response time that supports interactive search.
Since, ε and minpts parameters are required to define a density-based cluster,
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7. Querying Point of Interest Clusters

an algorithm to process k-TMSTC queries should also include a method to
determine these parameters.

7.2 DBSCAN-based Algorithm

We propose an algorithm based on DBSCAN to process k-TMSTC queries.
The algorithm assumes that upper bounds for the ε parameter (εub) and the
distance between the query location and a PoI (∆ub) are available. It also
assumes that a lower bound and an upper bound for minpts parameter are
available. The main idea behind the algorithm is to reuse the existing pro-
posals for k-STC queries [39] while processing k-TMSTC queries. In order to
achieve that, we need to determine the density based parameters and form
k-STC queries corresponding to these parameters. The algorithm first obtains
the set of relevant PoIs Dψ by issuing a range query centered at the query
location with a range of ∆ub. This range query also considers the textual
relevance of the PoIs to the query keywords. In other words, if a PoI is not
relevant to the query keywords, it is not included in the output set. Then,
the algorithm determines possible ε values for each minpts value in parallel.
The algorithm employs an approach used in VDBSCAN algorithm [28]. This
approach first finds the distances between objects and their kth nearest neigh-
bors where k is set to minpts. The distance values are then sorted to find out
different density levels. The minpts value together with the ε values corre-
sponding to these density levels are selected as the density-based clustering
parameters.

After determining pairs of density-based clustering parameters, a k-STC
query is formed for each pair. Then, the algorithm processes these k-STC
queries in parallel. To process a k-STC query, the algorithm iterates over
the set of relevant PoIs Dψ. In each iteration, the algorithm issues a range
query centered at the current object’s location with a range of ε value and
determines whether the current object is a core object. If so, the cluster cor-
responding to the current object is formed and is added to the output. The
output clusters obtained by processing all k-STC queries are then ordered
with respect to their cost and k clusters with the lowest cost values constitute
the output of the given k-TMSTC query.

DBSCAN-based algorithm has two versions. The first version uses an IR-
tree to find kth nearest neighbor distances and to process range queries. IR-
tree is a hybrid index structure based on R-tree [21] and inverted files [45].
An inverted file has two elements. The first element is a vocabulary con-
sisting of distinct words in the textual descriptions of the indexed dataset.
The second element is a posting list for each word. An item in the posting
list contains an object identifier and the weight of the word in the object.
IR-tree extends R-tree with inverted files to make it possible to check for tex-
tual relevance. The second version uses a grid-based index structure named
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SGPL [39] to process range queries. It first creates an n × n grid on the
dataset, and the grid cells are indexed by a space filling curve. Then, an
SGPL is formed for each word w. The SGPL of w is a sorted list of entries
of the form 〈c, Sw,c〉, where c is the index value of a cell and Sw,c is a set of
objects that contain w in their textual definition and are located in cell c.

We also propose an algorithm named FastKDist to find the list of kth

nearest neighbor distances in a given set of objects using SGPL. The idea is
borrowed from by Wu and Tan [40], who propose an algorithm to process
k-nearest neighbor queries on a grid-based index. They build a visit order
for the grid cells to efficiently process these queries. This ensures a minimal
number of visited cells. We use the same method on SGPL to be able to find
kth nearest neighbor distances taking also the textual relevance into account.

7.3 OPTICS-based Algorithm

Given n different minpts values and an average of m ε values for each minpts
value, DBSCAN-based algorithm has to process n×m k-STC queries in par-
allel. OPTICS-based algorithm reduces the number of queries that need to
be processed to n by utilizing the OPTICS algorithm [3]. OPTICS algorithm
takes a minpts value and a generating ε (εg) value as parameters and outputs
a density-based cluster order. A cluster order is an ordered list of objects
together with their core and reachability distance values. The core distance
of an object is the minimum ε value that makes the object a core object. In
other words, it is the distance of the kth nearest neighbor to the object when
k is set to minpts. Reachability distance of an object is the maximum ε value
that makes the object directly reachable from one of the core objects with re-
spect to εg. The cluster order is then used to extract clusters for any ε value
that is less than εg. The algorithm iterates over the cluster order and checks
the reachability distance and core distance values of the current object. If its
reachability distance does not exceed ε, this means that the current object is
reachable from the current cluster. So, it is added to the cluster. Otherwise,
the algorithm checks its core distance. If it does not exceed ε, a new cluster
is initialized with the current object.

Another advantage of OPTICS-based algorithm is that it is possible to
determine density-based clustering parameters while constructing the cluster
order. So, we do not need a separate phase to determine these parameters
unlike the DBSCAN-based algorithm.

OPTICS-based algorithm starts with obtaining the set of relevant PoIs.
Then, the algorithm processes the k-TMSTC query for each possible minpts
value in parallel. To do that it utilizes an updated version of OPTICS that
returns ε values together with the cluster order. Normally, OPTICS algorithm
issues a range query to find εg-neighborhood of each object. The updated
version issues a range query together with kth nearest neighbor query with
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7. Querying Point of Interest Clusters

k = minpts and returns the distance value together with the εg neighborhood.
These distance values obtained after processing all objects are used just like
in the DBSCAN-based algorithm to determine the ε values. Then, the clusters
corresponding to these ε values are extracted from the cluster order. These
output clusters are merged after parallel execution. The clusters are then
ordered with respect to their cost and k clusters with the lowest cost values
form the output of the k-TMSTC query. The OPTICS-based algorithm also
has two versions: one based on IR-tree and one based on SGPL.

7.4 Discussion

To evaluate the proposed algorithms, we use a real dataset from Yelp that
contains around 157, 000 PoIs. We use 10 randomly chosen keywords from
the top-50 PoI categories in the dataset. Query locations are chosen from the
center regions of the 10 cities with the highest PoI density. The set of queries
consist of k-TMSTC queries created for each location and for each keyword
with k = 6. So, the cardinality of this set is 100. We use a fixed k value since
it does not affect the query processing performance of the algorithms. We
evaluate the performance of four versions of the algorithms: the DBSCAN-
based algorithm on an IR-tree (v1), the DBSCAN-based algorithm on SGPL
(v2), the OPTICS-based algorithm on an IR-tree (v3), and the OPTICS-based
algorithm on SGPL (v4).

1 2 3 4
Parameter |q. ψ|

0

5

10

15

20

El
ap

se
d 

Ti
m

e 
(s

ec
on

ds
) v2

v3
v4

(a)

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
Parameter εub (km)

0

2

4

6

8

10

El
ap

se
d 

Ti
m

e 
(s

ec
on

ds
) v2

v3
v4

(b)

Fig. 16: Effects of Parameters |q.ψ| and εub

Figure 16a shows the effect of the number of query keywords on the per-
formance of the algorithms. We do not report the elapsed time for v1 since
it performs significantly worse than its competitors. The performance de-
creases as the number of query keywords increases, as expected. The number
of relevant objects increases when the number of query keywords increases.
This results in an increase in the number of range queries issued; thus, the
query performance decreases. Figure 16b illustrates the effect of the upper
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bound for ε (εub) on the performance of the algorithms. The performance of
the algorithms becomes worse as εub increases. The reason for the decrease
in the performance is that a larger εub value means more k-STC queries for
the DBSCAN-based algorithm, and a larger area for range queries for the
OPTICS-based algorithm.

Overall, the experimental evaluation suggests that the OPTICS-based al-
gorithm on the SGPL (v4) outperforms the other algorithms. The evaluation
also shows that our proposed algorithms are able to provide a response time
that supports interactive search.

8 Summary of Contributions

The thesis provides methods of ranking function evaluation for spatial key-
word queries using crowdsourcing and historical trajectory data. The thesis
also introduces a spatial keyword query type targeting PoI clusters. To sum
up, the papers in the thesis make the following contributions.

• Paper A [25] proposes the PointRank algorithm to form partial rankings
of PoIs for a given top-k spatial keyword query. The algorithm is based
on the knowledge of crowdsourcing workers regarding the query and
the PoIs. Moreover, it also provides a gain definition to reduce the num-
ber of questions needed by the algorithm. The paper also introduces
a new evaluation methodology based on simulation of crowdsourcing
workers. The experimental evaluation suggests that the algorithm is
able to provide better results than a baseline algorithm with the same
cost.

• Paper B [24] demonstrates a complete system based on the PointRank
algorithm to evaluate the ranking functions employed by spatial key-
word queries. The system is capable of building rankings on an actual
crowdsourcing platform, presenting the output to the users, and per-
forming evaluation of the input ranking functions on a set of queries.

• Paper C [13] proposes a framework to address the problem of ranking
evaluation under budget constraints. The framework includes a multi-
step process to decrease the number of questions to be processed. It
also provides an entropy definition to understand the significance of a
pairwise relevance question. The experimental evaluation findings sug-
gest that the proposed framework is efficient and effective in assessing
the quality of the ranking functions for spatial keyword queries.

• Paper D [23] investigates utilizing historical trips to build ground-truth
rankings for spatial keyword queries. A method is proposed to extract
these rankings from a set of GPS records obtained from vehicles. The
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9. Conclusion

paper also proposes a new algorithm to identify the PoI visited as a
result of a stop. Finally, it proposes a smoothing method to address
the problem of data sparsity due to lack of users from specific spatial
regions in the input set. An experimental evaluation is presented using
a real GPS dataset consisting of GPS records obtained from 354 drivers
for 9 months. The experimental evaluation suggests that the proposed
stop assignment algorithm performs better than a method based on
distance. Moreover, the evaluation findings provide clear evidence that
the proposed smoothing algorithm is able to solve the data sparsity
problem without distorting the original data.

• Paper E [26] proposes a stop assignment method for GPS data based
on the intuition that visits to PoIs of different categories have different
characteristics. The method proposed in the paper uses stay duration,
day and time of the visit to determine the PoI category visited. The
experimental evaluation suggests that the proposed method offers a
high precision for regions with high PoI density.

• Paper F introduces k-TMSTC query that is a new spatial keyword query
type that targets PoI clusters by taking the transportation mode into
account. A DBSCAN-based algorithm and an OPTICS-based algorithm
are proposed to process k-TMSTC queries. The experimental evaluation
suggests that the proposed algorithms are able to offer a processing
time that can support interactive search of the PoI clusters.

9 Conclusion

The thesis addresses the lack of ranking function evaluation for spatial key-
word queries. The first three papers (Paper A, Paper B, and Paper C) focus
on utilizing crowdsourcing for ranking function evaluation. Paper A pro-
poses the PointRank algorithm to obtain ground-truth rankings for spatial
keyword queries. The algorithm does not assume a total ranking on the PoIs
and utilizes pairwise relevance questions. A simulation-based experimental
evaluation suggests that the algorithm performs better than a baseline algo-
rithm even when the reliability of the crowdsourcing workers is low. Paper B
proposes a system called CrowdRankEval that is built on top of the Point-
Rank algorithm. It is a complete framework to evaluate ranking functions for
a given set of PoIs, a given set of queries, and a given set of query results.
This system is a step towards more advanced and complex ranking func-
tions for location-based services since it enables ranking function evaluations
that were not possible before. Paper C proposes a method for ranking func-
tion evaluation without obtaining ground-truth rankings for spatial keyword
queries. The method uses pairwise relevance questions just like PointRank.
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Further, it utilizes a learn-to-rank method in order to capture the characteris-
tics of the input rankings. This is used to determine the most important pair-
wise relevance questions that should be asked to the crowdsourcing workers.
The method posts these questions to the crowdsourcing platform until the
budget is exhausted. In order to determine the pairwise relevances that are
not decided due to budget constraints, it uses a matrix factorization method.
If a ground-truth ranking is needed for a query, the PointRank algorithm can
be employed. However, if the aim is to evaluate a number of ranking func-
tions, the method proposed in Paper C can be employed. It might be needed
to evaluate another ranking function for the same query set after some time,
and this might require another execution of the method in Paper C. This
happens when a new output ranking for a query contains different PoIs than
the PoIs included in the previous rankings and when the output ranking has
pairs that are not concordant with the previous rankings.

Although the experimental evaluation shows that the crowdsourcing-based
methods are capable of capturing user preferences, they have drawbacks that
make it difficult to use them for a large scale evaluation. First, they are expen-
sive and time-consuming since one has to pay a fee for each crowdsourcing
task and it might take some time until workers answer all questions. Second,
it is difficult to recruit workers who know about the spatial region that the
query is issued in or know about the PoIs included in the output rankings.
For this reason, Paper D proposes a model based on GPS-data. The proposed
model uses historical trips to PoIs as a foundation for building ground-truth
rankings. The paper also proposes a stop assignment method that takes into
account users’ temporal behavior patterns and uses a smoothing method to
increase the spatial extent of the model. An experimental evaluation using a
real GPS data suggests that the proposed model is able to capture user pref-
erences while building ground-truth rankings. The stop assignment method
proposed in Paper D is unable to assign stops to PoIs when the PoI density
is high around the stop. To be able to identify the visited PoI in a region
with high PoI density, Paper E proposes a method based on a Bayesian net-
work that takes temporal attributes of stops into account. Empirical studies
demonstrate that the Bayesian network structure is able to model the rela-
tionship between temporal attributes of stops and PoI categories.

The thesis also proposes a new query type to address browsing user
behavior. Paper F formalizes the top-k transportation-mode aware spatio-
textual clusters query and proposes two methods to process this query type
efficiently.

The contributions of the thesis can be employed to increase the user sat-
isfaction from location-based services. Future generations of location-based
services can utilize the methods proposed to assess different hypotheses re-
garding query keywords, query locations, and different types of users. For
instance, a ranking function that gives best results in a rural area might not
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be the best ranking function in a city center. Another example would be
that a ranking function that performs best for users with a car will probably
perform poorly for users who plan to walk. Our proposals to evaluate rank-
ing functions will make it possible to understand such relationships between
queries and ranking functions. So, it might be possible for a system to employ
different ranking functions for different scenarios due to the contributions of
the thesis. The k-TMSTC query type can be used to extend the services pro-
vided by location-based services for the users who want to explore different
options.

It is important to note that the proposals of the thesis to build ground-
truth rankings should not be used as a replacement for query processing
methods for spatial keyword queries. One reason is that the proposals are
only applicable to limited geographical regions, namely the regions that
the crowdsourcing workers are knowledgeable about for the crowdsourcing-
based proposals and the regions covered by GPS records for the GPS-based
proposal. Another reason is that the crowdsourcing-based proposals are not
capable of building ground-truth rankings in interactive time since it requires
assigning the questions to crowdsourcing workers and collecting answers
from them. A key limitation of the GPS-based proposal is that it requires
identifying the visited PoIs correctly. The thesis proposes two methods for
this purpose. However, the proposed TPEA method cannot assign stops to
PoIs in regions with high PoI density. The Bayesian network method pro-
posed in Paper E solves this problem to some extent. However, it still fails
when there are too many PoIs of the same category around a stop. This limi-
tation can be addressed by employing GPS data collected from mobile phones
instead of GPS data collected from vehicles and by using a PoI database that
contains polygon information for each PoI. Use of walking GPS data and
polygon information for PoIs may allow us to detect the exact PoI visited.
So, it would be possible to identify visited PoIs even in the regions with high
PoI density.
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Abstract

The web is increasingly being accessed from mobile devices, and studies suggest that
a large fraction of keyword-based search engine queries have local intent, meaning
that users are interested in local content and that the underlying ranking function
should take into account both relevance to the query keywords and the query location.
A key challenge in being able to make progress on the design of ranking functions
is to be able to assess the quality of the results returned by ranking functions. We
propose a model that synthesizes a ranking of points of interest from answers to
crowdsourced pairwise relevance questions. To evaluate the model, we propose an
innovative methodology that enables evaluation of the quality of synthesized rank-
ings in a simulated setting. We report on an experimental evaluation based on the
methodology that shows that the proposed model produces promising results in per-
tinent settings and that it is capable of outperforming an approach based on majority
voting.

c© 2015 ACM. Reprinted, with permission, from Ilkcan Keles, Simonas Šalte-
nis, and Christian S. Jensen, Synthesis of Partial Rankings of Points of Interest
Using Crowdsourcing, Proceedings of the 9th Workshop on Geographic In-
formation Retrieval (GIR ’15), 2015.
The layout has been revised.



1. Introduction

1 Introduction

Many web users view the web in terms of the results returned by search en-
gines such as Google and Bing, as well as numerous vertical search engines.
One source [1] reports that the Google search engine processes some 5–6 bil-
lion queries on a daily basis. At the same time, the web is rapidly becoming
increasingly mobile. Specifically, while the web was accessed mostly from
desktop computers in the past, it is now being accessed predominantly by
mobile smartphone and tablet users [2]. Further, a recent study [3] reports
that some 50% of all mobile Bing queries have what is termed local intent,
meaning that the users are querying for web content that relates to geograph-
ically nearby points of interest (PoI).

This state of affairs calls for the integration of location into keyword based
web querying, and the research community has proposed a range of spatial-
keyword functionality that aims to find relevant nearby PoIs [4]. For example,
some proposals identify top-k PoIs according to a scoring function that takes
into account the relevance of the PoIs to user-provided query terms and an
automatically supplied user location.

Existing proposals generally come with advanced indexing and query
processing techniques that aim to provide computationally efficient support
for the proposed functionality, and these techniques are generally subjected
to detailed empirical studies of their computational efficiency. In contrast,
studies of the quality of the ranked results that are computed by the proposed
techniques are often entirely missing or are relatively small scale. While the
results of k nearest neighbor queries are given by a mathematical definition,
there is no mathematical definition of the best result to a keyword or spatial-
keyword query. Rather, the best result is the result that users prefer. This is
why search engines integrate user feedback into their algorithms. This also
renders the evaluation of the quality of a ranking function very challenging.
At the same time, the ability to be able to reliably assess the quality of rank-
ing functions is essential to make progress on the design of more advanced
and better ranking functions.

This paper proposes a model that uses crowdsourcing [5] for the assess-
ment of the quality of rankings of sets of PoIs that are returned in response
to spatial-keyword queries. Specifically, the model assigns pairwise relevance
questions to workers, asking them to determine which of a pair of PoIs is the
most relevant to a query given by query keywords and a location. Based
on the answers received, the model synthesizes a partial ranking of the PoIs.
It is then possible to compare the rankings produced by different ranking
functions with the rankings achieved by the model, the idea being that the
ranking function that returns results that are most similar to the synthesized
ranking is preferable.
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A model such as the one proposed here should deliver a synthesized rank-
ing that is as good as possible while asking as few questions of the workers
as possible. It is straightforward to count the number of questions asked, so
the key challenge lies in determining how good a synthesized ranking is. The
problem is that, in practice, no ground truth rankings are available that the
synthesized rankings can be compared with. Thus, the question is how to
determine the quality of a synthesized ranking.

To address this issue, we adopt a quality assessment methodology where
we first construct a ground-truth ranking of PoIs. Then we simulate workers
that answer pairwise relevance questions about the PoIs. More specifically,
we vary the probability that a worker gives a correct answer (according to
the constructed ground-truth ranking). The model then chooses questions
to ask and synthesizes a ranking based on the, sometimes incorrect, answers
received. The quality of the synthesized ranking can be quantified according
to how close it is to the ground-truth ranking. This way, it is possible to study
the trade-off between numbers of questions asked and ranking quality, and it
is possible to compare different models and to choose the models that offers
the best trade-off. The underlying assumption is that the model that performs
the best in the simulated setting also performs the best in real-world settings
where there is no ground truth to compare with.

A few studies exist [6–9] that address rank aggregation via crowdsourcing.
Stoyanovich et al. [6] propose a method that uses listwise relevance questions
for rank aggregation. In contrast, we have opted to use simple pairwise rele-
vance questions that we believe are preferable in our setting where workers
may not be sufficiently familiar with many PoIs to provide reliable answers.
Two other studies [7, 8] assume that there is a total ranking between the ob-
jects being compared. We believe that this assumption is too strong in our
setting, and we assume only a partial ranking of PoIs and allow workers to
answer that a pair of PoIs are incomparable. These existing studies use major-
ity voting when synthesizing a ranking from answers received from workers.
Instead of asking each question to a fixed number of workers, we propose an
iterative approach that determines the number of times to ask each question.
Urbano et al. [9] propose a divide and conquer algorithm to obtain rankings
using crowdsourcing, but they also do not consider the case of incomparable
objects.

To summarize, we present a model for the synthesis of partial rankings
of PoIs in response to spatial keyword queries based on answers to crowd-
sourced pairwise relevance questions. The main contributions are:

• We propose a model for synthesizing rankings of PoIs. The proposed
model (i) exploits crowdsourced answers to simple pairwise relevance
questions, (ii) supports incomparability of PoIs, (iii) supports partial
rankings, and (iv) includes an iterative approach to determining the
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numbers of questions to be asked as opposed to using simple majority
voting.

• We propose a new evaluation methodology that enables evaluation of
the quality of rankings in a simulated setting.

• We present findings of an experimental study of the proposed model
that includes a comparison with a majority voting approach; the find-
ings suggest that the proposed model represents an improvement over
the state-of-the-art.

The remainder of the paper is organized as follows. Section 2 covers
related work and defines the problem addressed. The details of the proposed
model are covered in Section 3. This is followed by an evaluation of the
model in Section 4. Section 5 concludes and offers research directions.

2 Preliminaries

2.1 Problem Definition

We consider a setting where D denotes the set of PoIs returned in response
to a spatial keyword query. A spatial keyword query takes keywords and a
location as arguments and returns a ranked list of PoIs that are relevant to
the query keywords and close to the query location. The relevance of a PoI
to a query is defined in terms of its proximity to the query location and its
textual relevance to the query keywords.

We assume a pairwise relevance relation ≺ on D that captures the notion
of one PoI being more relevant to the result than another. The relation is
a partial order and is irreflexive (∀pi ∈ D (pi ⊀ pi)), transitive (∀pi, pj, pk ∈
D (pi ≺ pj ∧ pj ≺ pk ⇒ pi ≺ pk)), and asymmetric (∀pi, pj ∈ D (pi ≺ pj ⇒
pj ⊀ pi)). If, for each pair (pi, pj), pi ≺ pj or pj ≺ pi the order is total.
An ordered pair (pi, pj) that is an element of a pairwise relevance relation
(pi ≺ pj) is called a pairwise relevance.

In this setting, the problem is to design a model that is able to construct a
pairwise relevance relation ≺ on D using crowdsourcing, by generating and
crowdsourcing pairwise relevance questions and by aggregating the answers
received, while achieving the following:

1. The synthesized relation ≺ should be of high quality, i.e., it should be
similar to a ground-truth relation.

2. The relation should be synthesized in an efficient manner, i.e., the num-
ber of questions and answers needed should be low.
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2.2 Related Work

A number of recent studies consider the use of crowdsourcing in order to
apply human wisdom to computational tasks. These works include relational
database systems (e.g., [10–12]) and information search and retrieval systems
(e.g., [13, 14]). Some studies consider the use of crowdsourcing for specific
database operations (sorts and ranking [15], filtering [16], maximum [17], and
top-k and group by operations [18]).

Crowdsourcing is also used to perform relevance assesments in informa-
tion retrieval. Normally, to evaluate relevance in information retrieval, rele-
vance assesments are obtained from a group of experts. In order to reduce
the cost and effort of relevance assesments, studies consider the use of crowd-
sourcing [19–21]. However, these studies only consider the use of graded
relevance questions for assessing relevance. Specifically, workers are pre-
sented with a query and one result object, and they are then asked to choose
one of several relevance levels for the relevance of the object to the query.
This kind of question is difficult to apply in our setting where no predefined
relevance levels for spatial keyword queries exist. Further, we believe that
offering means of comparing the relevances of objects improves the quality
of the workers’ answers.

Some studies propose different methods to obtain rankings using crowd-
sourcing. Stoyanovich et al. [6] propose a method where workers are asked to
rank a set of objects. Then, the results of these questions are aggregated into
a global ranking. Yi et al. [7] propose a matrix completion approach to obtain
a complete ranking with the use of pairwise comparisons in crowdsourcing
tasks. They assume that the complete ranking function is a combination of
a number of intrinsic ranking functions, which is called the low rank as-
sumption. They also do not consider incomparable pairs, meaning that they
assume every set of objects has a total ranking. Chen et al. [8] propose a
model and an active learning scheme to infer the rankings of objects. They
extend the Bradley Terry model [22] to incorporate worker reliability. They
do not consider the case of objects being incomparable. Urbano et al. [9] pro-
pose an algorithm similar to Quicksort to compute the rankings for music
documents. This algorithm cannot be used in our settings since its divide
and conquer methodology fails when there are incomparable objects.

3 Proposed Method

In the following, we propose an algorithm called PointRank. Section 3.2 gives
an overview of the algorithm, and Sections 3.3 and 3.4 detail how questions
to the crowd are chosen and processed.
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3.1 Preliminaries

A pairwise relevance question concerns a pair of PoIs and asks the crowd which
of the two PoIs is more relevant to a query. An assignment is the assignment of
a pairwise relevance question to a worker. The worker can give three different
answers: the first PoI is more relevant, the second PoI is more relevant, and
the PoIs are incomparable. A worker is expected to use the last option when
the PoIs are very different and difficult to compare or if the worker feels that
the comparison is up to personal preferences.

For each pairwise relevance question, the algorithm runs a number of
iterations. In each iteration, the pairwise relevance question is assigned to
a number of workers. To see whether there is a significant change between
the answers of different iterations, the Chi-square(χ2) test [23] is applied. We
say that there is consensus regarding a pairwise relevance question when the
change in the answers of the assignments between consecutive iterations is
not significant.

The formula for the Chi-square test is χ2 = ∑n
k=1

(ok−ek)
2

ek
, where ok refers

to the observed value and ek refers to the expected value. Knowing the value
of the chi-square, the chi-square distribution table gives the corresponding
p-value. The p-value is the probability that the difference between the expected
and the observed values is due to chance.

3.2 PointRank Overview

We represent the input to the algorithm—the answers of workers to pairwise
relevance questions—using an edge-weighted directed graph G = (V, E, NW, NA),
where V is the set of vertices that represent PoIs, E is a set of directed edges,
each given by a pair of vertices, and NW and NA are edge weights, specifi-
cally, functions from V × V to the natural numbers. Here, NA(pi, pj) is the
number of assignments regarding the pairwise relevance question about PoIs
pi and pj, and NW(pi, pj) is the number of workers who prefer pi over pj.
Ratio NW(pi, pj)/NA(pi, pj) then defines the probability of edge (pi, pj).

To understand how the edges of the graph are created and updated, con-
sider a pair of PoIs pi and pj. If some assignments regarding this pair have
been processed, the graph will contain two edges: (pi, pj) and (pj, pi). Fur-
ther, NA(pi, pj) and NA(pj, pi) will have the same value, the total number of
assignments for this pair. Note that NW(pi, pj) + NW(pj, pi) ≤ NA(pi, pj).
The sum is not always equal to the total number of assignments, since it
is possible for a worker to answer that pi and pj are incomparable. This is
recorded by incrementing the NA values on both of the edges without chang-
ing the NW values.

To record the output of the algorithm—the pairwise relevance relation—
we maintain a two-dimensional matrix called the Pairwise Relevance Matrix
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(PRM). PRM encodes all the pairwise relevances discovered by the algorithm
from the answers of the crowd, including the pairwise relevances obtained
directly from the answers as well as the pairwise relevances inferred using
the transitivity property of the pairwise relevance relation. It is an n × n
matrix, where n is the number of PoIs in the query answer. Each row and
column of the matrix represents a PoI. The value of a cell records the pairwise
relevance between two PoIs. Let us assume that we have a PRM M that is
defined on the set of PoIs D = {p1, .., pn}. A cell M[i, j] can have one of the
five possible values:

• M[i, j] = 1 encodes that pj is more relevant than pi.

• M[i, j] = 0 encodes that pi and pj are incomparable. Since an object is
not comparable with itself, the diagonal cells have 0’s.

• M[i, j] = −1 encodes that pi is more relevant than pj. Since the pairwise
relevance relation is asymmetric, if M[i, j] = −1 then M[j, i] = 1.

• M[i, j] = 2 encodes that the pair (pi, pj) has not yet been processed. In
the beginning of the algorithm, all of the cells except the diagonal cells
have this value. If M[i, j] = 2 then M[j, i] = 2.

• M[i, j] = 3 encodes that the pair (pi, pj) has been processed but that the
algorithm cannot conclusively decide about the relation between pi and
pj. If M[i, j] = 3 then M[j, i] = 3.

A PRM M has the following properties:

• Transitivity: This property is used to infer pairwise relevances. If M[i, k] =
1 and M[k, j] = 1 then M[i, j] = 1. This is not the case if, when the in-
ference is made, M[i, j] is already −1 or 0 due to previous answers of
the crowd (as described next).

• Possibility of Inconsistencies: M can contain inconsistencies as workers
may give contradicting answers. We say that there is an inconsistency
regarding a pair of PoIs (pi, pj) if it is possible to infer M[i, j] = 1 using
the transitivity property from the cells M[i, k] = 1 and M[k, j] = 1, but
M[i, j] 6= 1.

The general flow of the algorithm is shown in Figure A.1. After initializa-
tion of the PRM, in each iteration, the algorithm goes through two different
phases: determining the next question and processing the question. If the
relevance of every pair is computed (there are no 2s in the pairwise relevance
matrix), it returns the PRM.

The flow chart of determining the next question is presented in Figure A.2.
The algorithm takes the PRM as input and determines the possible pairwise
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Fig. A.1: General Flow of PointRank
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Fig. A.2: Flow of the Determine-Next-Question Phase

relevance questions to be asked next. If the set of questions is empty, it stops.
Otherwise, it computes the gain for each of the questions and returns the
question with the maximum gain.

The flow chart of processing the question phase is shown in Figure A.3.
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Fig. A.3: Flow of the Process-Question Phase

It takes the graph, the PRM, and the next question as input. It uses several
parameters that are explained shortly. In this phase, the algorithm employs
an iterative approach. In each iteration, it first determines the number of
assignments for the question. Then it assigns the question to workers, gets
the answers back, and updates the graph. Finally, it checks whether con-
sensus on the question is reached and updates the pairwise relevance matrix
accordingly.

PointRank uses six parameters: pois, ina, minni,pvalue, maxni, pt. Parame-
ter pois is the list of PoIs to be ranked. Parameter ina is the initial number of
assignments for each pairwise relevance question. As shown in Figure A.3,
this parameter is used to determine the number of assignments for the ques-
tion in the current iteration. If the iteration count is 1 or 2, the number of
assignments is set to ina. Otherwise, it is computed with respect to ina and
the iteration count. The algorithm makes at least two iterations in order to be
able to apply significance testing to the answers of the workers. Parameter
minni is the minimum number of iterations to stop creating new assignments
for a pairwise relevance question. As shown in Figure A.3, the algorithm
completes minni iterations before checking for consensus regarding a ques-
tion. Parameter pvalue is the maximum p-value in the chi-square test needed
to consider the changes in the answers to assignments in consecutive itera-
tions as significant. As shown in Figure A.3, in each iteration, the algorithm
applies the significance test to the accumulated answers for the question and
the answers from this iteration. If the p-value of the test does not exceed
pvalue, it continues to the next iteration. Parameter maxni is the maximum
number of iterations for a pairwise relevance question. As shown in Figure
A.3, if the question does not have a consensus after maxni iterations, the al-
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gorithm cannot make a decision regarding this pair. In other words, if there
is no consensus after maxni iterations, the algorithm stops and sets the value
of the corresponding cells to 3 in the PRM. Parameter pt is the probability
threshold needed to determine the answer for the pairwise relevance ques-
tion. In other words, in order to conclude that PoI pi is preferred over PoI pj,
the probability of the (pi, pj) edge should exceed pt as shown in Figure A.3.

Algorithm A.1 PointRank Algorithm
Input: pois, ina, pt, minni, maxni, pvalue
Output: prm

1: n← pois.length
2: Initialize prm and graph
3: nq← DetermineNextQuestion(prm, n)
4: while nq 6= null do
5: graph, prm ← ProcessTheQuestion(graph, prm, nq, ina, pt, minni,

maxni, pvalue)
6: nq← DetermineNextQuestion(prm, n)
7: end while
8: return prm

The complete algorithm is presented in Algorithm A.1. To build the graph
and to incorporate the answers of the workers into the model, we employ
an iterative approach. First, the algorithm initializes the pairwise relevance
matrix and the graph of answers as shown in line 2. In the initial step, the
algorithm checks whether there is a valid next question as shown in lines 3–
4. If so, the algorithm processes the pairwise relevance question and gets
the next question as shown in lines 5–6. If the algorithm does not need
any further questions to complete the procedure, it returns the constructed
pairwise relevance matrix as shown in line 8.

3.3 Determining the Next Question

To reduce the number of questions to ask to the crowd, we define a procedure
to determine the next question. The next question is determined with respect
to the current status of the pairwise relevance matrix and the gain criteria.

The algorithm checks the possible pairwise relevance questions and com-
putes their gains. Then it returns the question with the maximum gain. If
more than one question have the same maximum gain, it selects one of them
randomly.

The complete algorithm to determine the next question is presented in
Algorithm A.2. The algorithm first finds the set of unordered pairs that have
not yet been processed as shown in line 1. If the set is empty, all pairs have
been processed, and the algorithm returns null as shown in line 13. Then,
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Algorithm A.2 DetermineNextQuestion Algorithm
Input: prm, n
Output: nextQuestion

1: pairs← {(i, j) | prm[i, j] = 2∧ i < j}
2: if pairs.length 6= 0 then
3: Initialize gain array gains
4: for k← 0 to pairs.length do
5: (i, j)← pairs[k]
6: gain1 ← ComputeGain(prm, i, j)
7: gain2 ← ComputeGain(prm, j, i)
8: gains[k]← Avg(gain1, gain2)
9: end for

10: nextQuestion← GetPairWithMaximumGain(gains)
11: return nextQuestion
12: else
13: return null
14: end if

for all the chosen pairs, the algorithm computes the gain. Since there are
two possible outcomes for a question that may be used to infer new pair-
wise relevances (the two outcomes excluding “incomparable”), the algorithm
computes the gain for both of them as shown in lines 6–7. Then, the aver-
age of these two values is taken as the gain of asking the question regarding
this pair as shown in line 8. Finally, the algorithm returns the pair with the
maximum gain value.

To define the gain, transitivity of the pairwise relevance relation is used.
The gain of asking a question about a pair of PoIs is defined as the number
of questions that may be eliminated by the answer to this question.

The complete algorithm to compute the gain with respect to an input of a
matrix prm, row index ri, and column index ci is given in Algorithm A.3. The
algorithm checks all of the pairs to determine which new pairwise relevances
can be inferred.

More specifically, the algorithm checks the pairs that have not been pro-
cessed or not determined yet and are different from the input pair (ri, ci) as
shown in lines 5–6. The algorithm excludes inconsistent inferences as shown
in line 7. The pairwise relevance pri ≺ pci can be used in three ways to infer
new pairwise relevances:

• Transitivity can be used to infer pri ≺ pj if it is known that pci ≺ pj.
This type of gain is computed in lines 9–10.

• Transitivity can be used to infer pi ≺ pci if it is known that pi ≺ pri.
This type of gain is computed in lines 11–12.
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Algorithm A.3 ComputeGain Algorithm
Input: prm, ri, ci
Output: gain

1: gain← 0
2: n← prm.length
3: for i← 0 to n do
4: for j← 0 to n do
5: if i = ri ∧ j = ci then
6: continue
7: else if prm[i, j] 6= 2∧ prm[i, j] 6= 3 then
8: continue
9: else if i = ri ∧ prm[ci, j] = 1 then

10: gain← gain + 1
11: else if j = ci ∧ prm[i, ri] = 1 then
12: gain← gain + 1
13: else if prm[i, ri] = 1∧ prm[ci, j] = 1 then
14: gain← gain + 1
15: end if
16: end for
17: end for
18: return gain

• Transitivity can also be used to infer pi ≺ pj if it is known that pi ≺ pri
and pci ≺ pj. This type of gain is computed in lines 13–14.

Example. Let D = {p1, p2, p3, p4, p5} be the PoIs to be ranked. Let ina,
minni, maxni, pvalue, and pt be 5, 3, 5, 0.25, and 0.6, respectively. The current
state of the graph and pairwise relevance table are given in Figure A.4 and
Table A.1, respectively.

p1 p2 p3 p4 p5
p1 0 1 2 0 1
p2 -1 0 3 -1 2
p3 2 3 0 2 2
p4 0 1 2 0 1
p5 -1 2 2 -1 0

Table A.1: Current State of the PRM

To determine the next question, the algorithm initializes the set of possible
pairwise questions as P = {(p1, p3), (p2, p5), (p3, p4), (p3, p5)}. Then, it
computes the gain for each question.

55



Paper A.

p1 p2 p3

p4p5

18,20

2,20 6,20

13,20 6,20

2,20

2,20 4,20 16,20

14,20

5,20

5,20

Fig. A.4: Current State of the Graph

For example, to compute the gain of (p3, p4), the algorithm checks two
possible answers:

• p3 ≺ p4. From this answer, the algorithm may infer p3 ≺ p2 and p3 ≺ p5
since p4 ≺ p2 and p4 ≺ p5 are in the PRM as shown in Table A.1. The
gain of this answer is 2.

• p4 ≺ p3. From this answer, the algorithm can not infer any pairwise
relevances. It could infer a new pairwise relevance if ∃pi ∈ D(pi ≺
p4 ∨ p3 ≺ pi). Since no such pi exists, the gain of this answer is 0.

Since the gain is defined as the average of the gains of possible answers,
the gain of (p3, p4) is 1. This question is one of the questions with the maxi-
mum gain, so it is selected as the next question.

3.4 Processing the Question

After the question is determined, the algorithm processes the question in
a number of iterations. As shown in Algorithm A.4, in each iteration, the
algorithm determines the number of assignments for the question, gets the
answers from the workers, and updates the graph accordingly. The algorithm
updates the PRM after it completes all the iterations for the question.

In the first iteration, the algorithm creates ina assignments for the ques-
tion. In the upcoming iterations, the number of assignments is determined
based on the total number of assignments in the previous iterations for the
question. Specifically, if the algorithm is in the (n+ 1)st iteration and the pre-
vious iterations had k assignments in total, the algorithm creates k additional
assignments in this iteration. This ensures that the new iteration can have a
significant effect for this pair of PoIs, which is tested using a significance test.
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Algorithm A.4 ProcessTheQuestion Algorithm
Input: graph, prm, nextQ, ina, pt, minni, maxni, pvalue
Output: graph, prm

1: ni← 0
2: (i, j)← the indexes of PoIs in nextQ
3: while true do
4: Get edges from graph corresponding to nextQ as currentEdges
5: Determine the number of assignments in this iteration
6: Get answers for the assignments regarding nextQ
7: Update graph with the answers
8: if ni < minni then
9: ni← ni + 1

10: continue
11: end if
12: Get edges from graph corresponding to nextQ as updatedEdges
13: edgePvalue ← p-value corresponding to χ2 value between currentEdges

and updatedEdges
14: if edgePvalue ≥ pvalue then . stopping criteria is reached
15: prb1 ← NW/NA of the edge for the answer 1
16: prb−1 ← NW/NA of the edge for the answer −1
17: prb0 ← 1− prb1 − prb−1
18: edgeProbability← max(prb1, prb−1, prb0)
19: answer← the answer with the maximum probability
20: if edgeProbability > pt∧ answer = 0 then
21: Set prm[i, j] and prm[j, i] to 0
22: else if edgeProbability > pt then
23: Set prm[i, j] to 1 and prm[j, i] to −1 or vice versa with respect to

the answer.
24: UpdateMatrix(prm)
25: else
26: Set prm[i, j] and prm[j, i] to 3
27: end if
28: break
29: else if ni = maxni then . maximum number of iterations are finished

but the question still has no consensus.
30: Set prm[i, j] and prm[j, i] to 3
31: break
32: end if
33: end while
34: return graph, prm
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When the answers from the workers are received, the graph is updated ac-
cordingly. If the graph does not have any edge between the PoIs, two edges
are added to the graph. Otherwise, the NA and NW weights of the corre-
sponding edges are updated. It should be noted that if a worker’s answer
is that the PoIs are incomparable, only the NA weight is incremented on the
two edges; the NW weights are not changed.

When the graph is updated, the algorithm computes a p-value with respect
to the previous iteration as shown in line 13. Here, the sets that we compare
in the χ2 test are the NW(pi, pj) and NW(pj, pi) values in the previous itera-
tion and in the current iteration. So in this test, the degree of freedom is 1.
Then, the algorithm checks whether it has reached the stopping conditions
as shown in lines 14–32. There are two types of stopping conditions:

• The edge has consensus. The test for this case is shown in line 14. When
this is the case, the algorithm computes the probability values of the
possible answers and gets the answer with the maximum probability as
shown in lines 15–19. It then updates the cells in the pairwise relevance
matrix as shown in lines 20–24. If no answer has a probability value
that exceeds the probability threshold pt, the algorithm sets the cells of
the pairwise relevance matrix to 3 as shown in line 26.

• The maximum number of iterations is reached, but there is no consen-
sus. The test for this case is shown in line 29. When this occurs, the
corresponding cells of the pairwise relevance matrix are set to 3. .

The algorithm for updating the PRM in line 24 is the same as the Com-
puteGain algorithm (Algorithm A.3). However, instead of incrementing the
gain in lines 10,12, and 14 of Algorithm A.3, the matrix is updated with the
inferred value. Note that we do not change the value of a cell to an inferred
value if it is already 1, −1, or 0 (line 8 in Algorithm A.3). In other words,
we choose to value the direct opinion of the crowd over inferred information,
even if this involves inconsistencies. To illustrate, if question (pi, pj) is asked
to the workers, their consensus answer is pi ≺ pj, and the current PRM M
contains both M[j, k] = 1 (encoding pj ≺ pk) and M[i, k] = 0, the updated
PRM will have M[i, k] = 0 instead of the inferred M[i, k] = 1.

Example. Continuing from the example in Section 3.3, we describe the
processing of the question (p3, p4).

Three iterations have to be finished before looking for consensus, since
minni parameter is set to 3. We assign this question to 5, 5, and 10 workers in
the first, second, and third iterations, respectively, since ina = 5. At the end
of the third iteration, we have a total of 20 assignments. Let us assume that
there is consensus after the third iteration and that 15 workers stated that
p3 ≺ p4, 3 workers stated the opposite, and 2 workers stated that the PoIs are
incomparable. The algorithm updates the graph with the answers from the
workers, and the updated graph is shown in Figure A.5.
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Fig. A.5: Updated Graph

To update the pairwise relevance matrix, we check the probability of the
answers. Since the answer with the maximum probability is 1 and its prob-
ability is 0.75, which exceeds the pt parameter (0.6), we set the answer to 1.
Then, the pairwise relevance matrix is updated with respect to this answer.
This answer leads to inferring p3 ≺ p2 and p3 ≺ p5 since the matrix contains
the pairwise relevances p4 ≺ p2 and p4 ≺ p5. The updated PRM is shown in
Table A.2, with the changed values in bold.

p1 p2 p3 p4 p5
p1 0 1 2 0 1
p2 -1 0 -1 -1 2
p3 2 1 0 1 1
p4 0 1 -1 0 1
p5 -1 2 -1 -1 0

Table A.2: Updated PRM

3.5 Worst Case Complexity

PointRank generates C(n, 2) (Θ(n2)) questions in the worst case if it cannot
eliminate any questions by using previous answers of workers. The number
of assignments is affected by the algorithm parameters. In the worst case, the
algorithm does not reach consensus before maxni iterations for each pairwise
relevance question. As a result, the number of assignments per question is
2maxni · ina and the total number of assignments is C(n, 2) · 2maxni · ina.
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4 Experimental Evaluation

We proceed to evaluate the proposed algorithm. First, we present the exper-
imental setup. Then we present experimental results exploring the effect of
the parameters of the algorithm. Finally, we present an experimental com-
parison with the baseline algorithm.

4.1 Experimental Setup

We use simulation for the experimental evaluation. First, we generate the
assumed ground-truth ranking on a given number of PoIs. Both total and
partial rankings are generated in order to study different ranking types. A
total ranking is created as a random permutation of the set of PoIs. To gen-
erate partial rankings, a total ranking is created first. Then, we iteratively
introduce incomparable pairs. In each iteration, a random pair is selected.
If changing this pair to incomparable does not lead to an inconsistency, it
is changed. Otherwise, another random pair is selected. In this way, the
generated ground-truth ranking does not contain any inconsistencies.

To simulate worker behavior, we assign a reliability value to each worker.
The reliability is the probability of giving the correct answer to a pairwise
relevance question. The correct answer is the answer that corresponds to
the assumed ground truth. If a simulated worker has a reliability of 0.8, the
worker will produce the correct answer with probability 0.8. Each of the two
wrong answers will be produced with probability 0.1.

Each point in the performance graphs corresponds to the average results
of 10 executions of the algorithms.

Kendall Tau Distance. To evaluate the quality of a produced pairwise
relevance relation, we compute the Kendall tau distance [24] between the result
of using our model and the ground-truth ranking. As shown in Equations
A.1 and A.2, the Kendall tau distance is the relative number of pairs of objects
for which there is a disagreement between the two rankings. Here prm1 and
prm2 refer to the two pairwise relevance matrices encoding the rankings, and
P refers to the set of the pairs of objects.

K(prm1, prm2) =

∑
(i,j)∈P

K̄i,j(prm1, prm2)

| P | (A.1)

The penalty K̄i,j is given in Equation A.2.

K̄i,j(prm1, prm2) =

{
0 if prm1[i, j] = prm2[i, j]
1 if prm1[i, j] 6= prm2[i, j]

(A.2)

Average Number of Assignments. The main performance measure of
a crowdsourcing algorithm is the number of assignments performed by the
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algorithm. The results of crowdsourcing are cheaper if they can be achieved
with fewer assignments.

Average Number of Inconsistencies. Let a,b, and c be the PoIs to be
ranked. As defined in Section 3.2, if in the pairwise relevance matrix, the
values of the cells [a, b] and [b, c] are 1 and the value of the cell [a, c] is 0
or −1, there is an inconsistency since we can infer a ≺ c using transitivity.
Naturally, the goal is to reduce the number of inconsistencies in the result
matrix.

Baseline Algorithm. We compare our method with an algorithm that
uses majority-voting and uses a fixed number of assignments for each ques-
tion. As in PointRank, for each question, three answer options are available
including “incomparable”. The algorithm assigns each question to a fixed
number of workers, and if at least 50% of the workers give the same an-
swer, the answer is selected as the correct answer. Otherwise, the algorithm
updates the pairwise relevance matrix with value 3 to show that it is not pos-
sible to decide on this question. We choose this baseline algorithm because
no other algorithms exist that contend with incomparable PoIs.

4.2 Exploring the Parameters

In this section, we study the effect of the parameters of PointRank presented
in Section 3.2. We generated a total of 200 rankings: 100 total rankings and
100 partial rankings (where half of the pairs are incomparable). For each
parameter that we vary, we fix the other parameters to their default values.
For this set of experiments, the default values of ina, pt, pvalue, minni, and
maxni are 5, 0.6, 0.2, 2, and 15, respectively. Worker reliability is set to 0.7.

Initial Number of Assignments

In this set of experiments, we analyze the effect of changing ina, the initial
number of assignments.

As can be seen from Figure A.6, the Kendall tau distance decreases when
the number of initial assignments increases. This is due to the fact that when
the algorithm creates fewer assignments in the initial iterations, the chances
of having an early consensus is quite high. In addition, there is a difference
between the distance values for total and partial rankings. Our method uses
the transitivity rule to infer new pairwise relevances using the questions al-
ready asked and this effects the performance for partial rankings. Because of
the early consensus described above and the transitivity rule, the algorithm
may decide that two objects are comparable even though they are incompara-
ble. As the figure shows, the gap between partial and total rankings decreases
when the initial number of assignments increases.
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Fig. A.6: Effect of Initial Number of Assignments

As expected, Figure A.6 shows that the total number of assignments in-
creases when the initial number of assignments increases. There is a gap
between the assignment counts of total rankings and partial rankings since
when the ground truth is a total ranking, the algorithm uses transitivity to
decrease the number of questions, which in turn results in fewer assignments.
Figure A.6 also demonstrates that our algorithm produces a pairwise rele-
vance relation that is close to the ground truth with a reasonable number of
assignments for both total and partial rankings. To illustrate, for ina = 25,
the total number of assignments is between 2000 and 3000, which is 45 to 65
assignments for each pairwise relevance question.

The experiments also show that unless the initial number of assignments
is set to a very low value, the algorithm does not produce any inconsistencies
(not shown in the figure). Even for the lowest value of this parameter, the
average number of inconsistencies per execution is below 0.2.

Probability Threshold

In this set of experiments, we analyze the effect of changing pt, the probability
threshold.

Figure A.7 shows that the Kendall tau distance increases as the probability
threshold increases since the algorithm cannot decide on the relevances if the
probability threshold is too high.

Figure A.7 also shows that the probability threshold parameter does not
significantly influence the total number of assignments. This is as expected
since the algorithm stops creating new assignments for a pairwise relevance
question when consensus is reached, and the probability threshold is not
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Fig. A.7: Effect of Probability Threshold

used in this stopping criterion. Nevertheless, the number of assignments
for total rankings slightly increases when the probability threshold increases.
This is because the transitivity property can be used less effectively when,
due to high probability threshold, fewer relevances are set based on the an-
swers from the crowd.

If the probability threshold is greater than or equal to 0.6, the algorithm
does not produce any inconsistencies (not shown in the figure).

P-value

In this set of experiments, we analyze the effect of changing the pvalue pa-
rameter.

Figure A.8 shows that the p-value has little effect on the Kendall tau dis-
tance. However, there is a slight decrease in distance when the p-value in-
creases since increasing the p-value decreases the chance of having an early
consensus which slightly increases the quality of the result. For the same
reason, when the p-value increases, the total number of assignments also in-
creases. For high p-values, the algorithm has to create a large number of
assignments to achieve consensus. The graphs also show that the difference
between the number of assignments for total rankings and partial rankings
is negligible.

Finally, the results of experiments show that the P-value selection does
not have a noticeable influence on the number of inconsistencies.
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Fig. A.8: Effect of P-value

Minimum Number of Iterations

In this set of experiments, we analyze the effect of changing minni: the mini-
mum number of iterations.
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Fig. A.9: Effect of Minimum Number of Iterations

Figure A.9 shows that when the minimum number of iterations increases,
the Kendall tau distance decreases. This is because a high minimum num-
ber of iterations avoids incorrectly deciding on relevances due to premature
consensuses. Also, as expected, when the minimum number of iterations
increases, the total number of assignments increases as well.
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The experiments also show that if the minimum number of iterations is set
to 3 or more, there are no inconsistencies, as the algorithm effectively avoids
early consensuses leading to incorrect relevances and, thus, inconsistencies.

Maximum Number of Iterations

Our experiments show that changing the maximum number of iterations
does not have a significant effect on the Kendal tau distance, the total number
of assignments, and the number of inconsistencies. As the worker reliability
is set to a relatively high value of 0.7, the algorithm usually reaches a consen-
sus before reaching the maximum number of iterations.

4.3 Comparison with the Baseline Algorithm

In this section, we present the results of a comparison of PointRank and
the baseline algorithm. We generated 50 total and 50 partial rankings (with
half of the pairs incomparable). Based on the results of the experiments in
Section 4.2, we set ina, minni, maxni, pt, and pvalue to 5, 4, 15, 0.5, and 0.2,
respectively. The main parameter of the baseline algorithms is n, the number
of assignments generated for each pairwise relevance question. We show the
results for n = 40, 70, and 100.

Two main factors may affect the performance of the algorithms: the num-
ber of PoIs and the worker reliability. We vary these two parameters and
report the Kendall tau distance, the average number of assignments, and the
average number of inconsistencies for both algorithms.

Number of Places

Figures A.10 and A.11 show the performance of the algorithms when the
number of PoIs is changed. PointRank produces a lower Kendall tau dis-
tance than the baseline algorithm with 40 assignments with nearly the same
number of assignments. Figure A.10 also shows that our method has the
same performance regardless of the number of PoIs. Figure A.12 shows that
the baseline algorithm with 40 assignments causes more inconsistencies than
PointRank.

Worker Reliability

In this section, the performance of PointRank and the baseline algorithm are
reported for different worker reliability settings. The ability to get the rank-
ing correctly even with less reliable workers is crucial for a crowdsourcing
method since one cannot always be sure about the reliability of crowd work-
ers.
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Fig. A.10: Kendall Tau Distance vs Number of PoIs

0

5000

10000

15000

20000

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r 

o
f 

A
ss

ig
n

m
e

n
ts

Number of PoIs

PointRank Baseline (n=40) Baseline (n=70) Baseline (n=100)

Fig. A.11: Number of Assignments vs Number of PoIs

Figures A.13 and A.14 show that PointRank produces better rankings than
the baseline algorithm with 40 assignments, with the same number of as-
signments. It can be also seen that the Kendall tau distance of PointRank
decreases when the worker reliability increases. Figure A.14 also shows that
the number of assignments in our algorithm decreases when the worker re-
liability increases. In other words, our algorithm can tune the number of
assignments according to the worker reliability. This is an expected outcome
since we use a statistical significance test to check for consensus. When the
workers are highly reliable, the algorithm stops assigning questions early.
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Fig. A.13: Kendall Tau Distance vs Worker Reliability

Figure A.15 shows that PointRank does not cause any inconsistencies even
for the lower worker reliability values.

5 Conclusion

A spatial keyword query takes keywords and a user location as arguments
and returns nearby points of interest that are relevant to the query keywords.
Such queries rely fundamentally on ranking functions. We propose the Point-
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Fig. A.15: Number of Inconsistencies vs Worker Reliability

Rank model that enables evaluation of the quality of such ranking functions.
PointRank synthesizes answers to crowdsourced pairwise relevance ques-
tions to rank a set of points of interest. The resulting rankings can then
be used to assess the rankings produced by ranking functions. Using an in-
novative evaluation methodology, we evaluate the quality of the synthesized
rankings achieved by PointRank, showing that PointRank is capable of pro-
ducing better rankings than an approach based on majority voting.

The proposed algorithm represents a step towards the evaluation of rank-
ing functions for the spatial keyword queries. As future work, it is of inter-
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est to use the proposed model to study hypotheses about spatial keyword
queries. For example, by making use of the model, it is possible to study
the effect of the types of keywords in a query. A user querying for "furni-
ture" may be willing to travel longer than a user querying for "burger", which
means that the weight assigned to the distance should be different for differ-
ent keywords. It is also possible to study more advanced ranking functions.
For instance, to accommodate ranking functions that take into account user
context such as gender and age, it is of interest to ensure that workers who
evaluate answers satisfy the context assumed in the answers.
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Abstract

We demonstrate CrowdRankEval, a novel framework for the evaluation of ranking
functions for top-k spatial keyword queries. The framework enables researchers to
study hypotheses regarding ranking functions. CrowdRankEval uses crowdsourcing
for synthesizing results to top-k queries and is able to visualize the results and to
compare them to the results obtained from ranking functions, thus offering insight
into the ranking functions.
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1. Introduction

1 Introduction

Location-based services are gaining in importance with the increase in the
use of mobile, geo-positioned devices and the amount of geo-tagged web
content. One core function of location-based services is top-k spatial key-
word querying. Such top-k queries take a user location, keywords, and k
as the arguments and return a ranked list of k points of interest (PoI) ac-
cording to a ranking function [1]. Most ranking functions are a linear com-
bination of the textual relevance of the PoIs to the query keywords and
the spatial proximity of the PoIs to the query location, i.e., of the form
rank(o, q) = α · sp(q.loc, o.loc) + (1− α) · tr(q.keywords, o.doc), where α, o, and
q are the weighting parameter, the PoI, and the query, respectively; and sp
and tr are the spatial proximity function and textual relevance function, re-
spectively. However, existing studies provide no or little empirical evidence
of the quality of the ranking functions. We believe that the lack of means
of evaluating ranking functions is a major obstacle to the goal of developing
high quality and advanced ranking functions.

The evaluation of ranking functions requires user feedback since there
is no mathematical formulation of the best results of top-k spatial keyword
queries. In fact, the best result is the one that users prefer. In this setting,
the evaluation of a ranking function refers to the comparison of the ranking
function with user preferences. The evaluation results show which ranking
function performs better according to the user feedback. To be able to obtain
feedback on the ranking functions, we use crowdsourcing [2].

We demonstrate a ranking function evaluation framework called Crowd-
RankEval for top-k spatial keyword queries. The workflow of the framework
is presented in Figure B.1. The framework is designed to enable researchers
to evaluate the ranking functions used for spatial top-k queries. The user
must choose a small set of queries on which the ranking functions are eval-
uated. The user must also supply a query result for each query and ranking
function. Given this input, the framework synthesizes a ranking of the PoIs
contained in supplied query results for each query by asking pairwise rele-
vance questions to the crowdsourcing workers. A pairwise relevance ques-
tion contains a query and a pair of PoIs and it asks a worker which of the two
PoIs is more relevant to the query. Upon completion of the crowdsourcing,
the framework synthesizes and displays a ranking as well as a comparison
between the synthesized ranking and the rankings produced by the ranking
functions. Thereby, the framework offers insight into how well the ranking
functions perform.

The framework has four modules: the user interface module, the data
preparation module, the PointRank module, and the evaluation module. The
user interface module is the entry point of a user to the framework. The data
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Fig. B.1: Workflow of CrowdRankEval

preparation module allows a user to upload data. It also preprocesses the
data to be able to perform the evaluation. The PointRank module simply
provides an implementation of the PointRank algorithm that synthesizes the
rankings for the queries using crowdsourcing [3]. Our framework is built
to use CrowdFlower1 as the crowdsourcing platform. Finally, the evaluation
module is responsible for performing the evaluation of the ranking functions
and for visualizing the synthesized rankings and the results of the evaluation.

In summary, the framework to be demonstrated contributes in these as-
pects:

• The framework is able to evaluate ranking functions for top-k spatial
keyword queries, and to visualize the results.

• The framework provides an implementation of the PointRank algorithm
to synthesize rankings using crowdsourcing.

• The framework is built to connect with CrowdFlower to publish crowd-
sourcing tasks.

The rest of the paper is arranged as follows: Section 2 presents the frame-
work and gives detailed information regarding the modules, and Section 3
presents the workflow and the demonstration details. Section 4 concludes
the paper.

1http://www.crowdflower.com/
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2 The CrowdRankEval Framework

The building block of the framework is that of an experiment. An experiment
is defined by a set of queries and ranking functions. To create an experiment,
the user must also specify parameters used by the PointRank algorithm. To
enable PointRank to evaluate the ranking functions, the user should also
upload the corresponding query results. After uploading the results for all
queries, the user is able to start the evaluation task. As an example use case,
the framework can be used to determine the best weighting parameter (α) for
the ranking function given in Section 1 for a specific set of query keywords.
To do so, the researcher must upload the queries and their results when using
the ranking function with different weighting parameters. According to the
evaluation results, the researcher can decide on the best weighting parameter.

The framework is developed using Javascript, HTML, CSS, and PHP. We
also used vis.js2 and Highcharts3 for visualization purposes.

2.1 User Interface Module

The user interface module is the module that enables interaction with the
users. This module is responsible for receiving input and for displaying
the experiment details, query details, and evaluation results. It uses HTML
elements as well as visualization libraries to handle graphical elements.

2.2 Data Preparation Module

The data preparation module handles the data upload of queries, ranking
function names, and the query results. For the upload of queries and rank-
ing function names, it checks whether the uploaded data has the required
attributes. For the upload of the query results, it checks whether the cor-
responding query and ranking function name are uploaded in the current
experiment. This module is also responsible for the preprocessing of the
data. It creates the merged result set for each query. The merged set is the
union of the results of all ranking functions for the corresponding query.

2.3 PointRank Module

This module executes PointRank on the merged result set for each query.
First, it checks whether the experiment is ready to execute. In other words,
it checks whether each query has results for each ranking function. Then
it executes PointRank to synthesize the ranking for each query. To publish

2http://visjs.org/
3http://www.highcharts.com/
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crowdsourcing tasks for the execution of PointRank, the module is designed
to use the CrowdFlower platform.

PointRank Algorithm

PointRank synthesizes rankings for top-k spatial keyword queries using crowd-
sourcing. The general flow of the algorithm is given in Figure B.2.

Parameters: 
{ina, minni, pt, 

p-value, 
maxni}

pois

Start

Initialize 
Pairwise 

Relevance 
Matrix

Call Determine 
Next Question

Is there a valid 
pairwise question?

Yes

Call Process 
the Question

No

Return 
Pairwise 

Relevance 
Matrix

Fig. B.2: General Flow of PointRank

PointRank makes use of pairwise relevance questions that are defined by
pairs of PoIs and asks workers which one of the two PoIs in a pair is more
relevant to the specified query. The worker can give three different answers:
the first PoI is more relevant, the second PoI is more relevant, and the PoIs
are incomparable.

Parameter pois is the list of PoIs to be ranked. In our framework, it is the
merged result set which is created by the data preparation module.

As shown in Figure B.2, the algorithm has two phases: determine the
next question and process the question. If each pairwise relevance question
is processed, it returns the synthesized partial ranking. To determine the
next pairwise relevance question, the algorithm uses a gain function that de-
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termines how many further questions can be eliminated with the result of
the question. The pairwise relevance question with the maximum gain is
chosen as the next question. In the processing phase, the algorithm employs
an iterative approach. In each iteration, it assigns the question to the work-
ers. The algorithm uses the initial number of assignments parameter ina to
determine the number of assignments. It iterates until the iteration number
reaches the minimum number of iterations parameter minni. Then it checks
whether there is a consensus between two iterations. To check for consensus,
PointRank uses the Chi-square(χ2) test [4]. The parameter pvalue is used as
a threshold value for p-value in the Chi-square test. If there is a consensus,
the probability values of each possible answer is computed. The probability
value for an answer is the ratio of the number of workers who gave this an-
swer to the number of all workers who answered the question. The algorithm
checks whether the answer with maximum probability exceeds the probabil-
ity threshold parameter pt. If so, it is chosen as the answer to the pairwise
relevance question. If there is no consensus, the algorithm continues until
there is consensus or the number of iterations reaches the maximum number
of iterations parameter maxni.

2.4 Evaluation Module

This module handles the evaluation of ranking functions with respect to the
synthesized rankings. To evaluate the ranking functions, we compute Kendall
tau distance [5] between the input rankings and the synthesized ranking. The
Kendall tau distance is defined as the proportion of the number of pairs on
which two rankings disagree over the total number of pairs. First, for each
query and ranking function, the Kendall tau distance is computed between
the input ranking and the synthesized ranking. Then, the evaluation module
presents Kendall tau distance for four different levels: experiment, query,
keyword, and location. At the experiment level, the average Kendall tau
distance of a ranking function over all queries is presented. At the query
level, the Kendall tau distance for each query is presented. At the keyword
and location levels, the average distance of a ranking function is presented
for each keyword and each location, respectively. We decided to have these
levels since we want the users be able to test hypotheses regarding different
queries, keywords, and locations.

3 Workflow and Demonstration Details

3.1 Workflow

As shown in Figure B.1, the workflow of the framework consists of six steps.
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Step 1: Creating an Experiment. First, the user must provide the amount
to be paid to workers per pairwise relevance question they answer, the max-
imum total amount available for payments, the parameters of PointRank, as
shown in Figure B.3.

Fig. B.3: New Experiment

Step 2: Uploading the Queries and Ranking Function Names. Having
created an experiment, the user uploads queries and ranking function names
using the form shown in Figure B.4. The input files should be CSV files
with required attributes. The attributes of a query are query ID, keywords,
latitude and longitude. The attributes of a ranking function name are ranking
function ID and name.

Step 3: Uploading the Query Results. In this step, the user is expected
to upload the results of applying each query and ranking function to an
underlying data set of PoIs. The query result file should also be a CSV file
with the following attributes: Query ID, Ranking function ID, Rank, PoI ID,
PoI name, PoI latitude, PoI longitude, and PoI description. The framework
checks whether the experiment contains the corresponding query and the
ranking function. The rank attribute shows the rank of the PoI with respect
to the ranking function.

Step 4: Executing the Experiment. After uploading the data, the user can
start the experiment execution. During this step, the framework is designed
to execute PointRank on CrowdFlower to synthesize the ranking for each
query.

Step 5: Showing Synthesized Rankings. When the results are ready, the
user can show synthesized rankings for each query. The synthesized ranking
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Fig. B.4: Upload Form

is presented as a directed graph as shown in Figure B.5 since the output of
PointRank is a partial ranking. A directed edge from one PoI to another
means that the first is less relevant to the query than the second. A dashed
edge means that the PoIs are incomparable. If there is no edge between a
pair of PoIs, the algorithm cannot come to a conclusion about the pairwise
relevance of the PoIs.

Fig. B.5: View Synthesized Ranking

Step 6: Showing the Evaluation Results. After the execution is finished,
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the user can also see results of the ranking function evaluation. The evalua-
tion result is shown as a column graph as displayed in Figure B.6. Each col-
umn corresponds to a ranking function, and the value shown is the Kendall
tau distance between the ranking function and the synthesized ranking. The
user is able to view the evaluation result at four different levels: experiment,
query, keyword, and location. To change the results shown, the user should
select the corresponding result type.

Fig. B.6: Ranking Evaluation

3.2 Demonstration Details

We will demonstrate scenarios where we study a hypothesis regarding key-
words. The hypothesis is “In queries with keywords targeting places for
eating and drinking, spatial proximity should be weighted higher than tex-
tual similarity. In contrast, for queries with keywords targeting specific types
of PoIs like churches or libraries, textual similarity should be weighed higher
than spatial proximity.”

First, we create an experiment by providing the required parameters.
Then we will upload 4 queries with 2 different locations and 2 different key-
words and 5 ranking function names. One of the locations is in the city center
of Aalborg, Denmark, and the other is at the Aalborg University campus. We
choose to have different locations to minimize the effect of the location on the
evaluation results. The ranking functions are linear combinations of textual
relevance and spatial proximity with different weight values. After upload-
ing the data, we upload the query results for each query. Then, we execute
the experiment. In the demonstration, since publishing tasks and getting
results by means of crowdsourcing takes time, we execute a simulation of
PointRank to be able to synthesize rankings. The simulation will get the an-
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swers from simulated workers instead of from real crowdsourcing workers.
The simulated workers will answer pairwise relevance question according
to a generated ground truth ranking and a reliability value. Lastly, we will
demonstrate the synthesized rankings and the evaluation results produced
by the framework.

4 Conclusion

We demonstrate a novel ranking function evaluation framework for top-k spa-
tial keyword queries. The framework is particularly useful for top-k spatial
keyword queries since it considers incomparability of the points of interest,
but it can also be used for general top-k queries. The framework includes an
implementation of PointRank that synthesizes rankings of points of interest
using crowdsourcing. It also provides visualization for the synthesized rank-
ings and comparisons between the synthesized ranking and those obtained
from ranking functions. As future work, the framework can be extended
to include preprocessing and post-processing techniques for crowdsourcing
tasks. For example, a qualification test may be introduced to determine
whether workers are qualified to complete the tasks, and post-processing
may be used to exclude malicious workers after getting the answers.
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Abstract

Spatial keyword querying has attracted considerable research efforts in the past few
years. A prototypical query takes a location and keywords as arguments and returns
the k objects that score the highest according to a ranking function. While different
scoring functions have been used, how to compare different ranking functions for
spatial keyword querying still remains an open question with little investigation. We
propose a crowdsourcing-based approach to evaluate and compare ranking functions
for spatial keyword search. Given two ranking functions f1 and f2, we use a matrix
to model all possible binary questions regarding the different results produced by f1
and f2. We propose a multi-step process to reduce the number of binary questions,
identifying the most important questions to ask. Further, we design a crowdsourcing
model that obtains the answers to those important binary questions from crowd work-
ers. We also devise a global evaluation process that is able to quantitatively compare
f1 and f2 based on a multitude of answers received. According to the results of em-
pirical studies using real data, the proposed approach is efficient and able to draw
reliable conclusions in comparing ranking functions for spatial keyword search.

c© 2017 IEEE. Reprinted, with permission, from Jinpeng Chen, Hua Lu, Ilkcan
Keles, and Christian S. Jensen, Crowdsourcing Based Evaluation of Ranking
Functions for Spatial Keyword Querying, 18th IEEE International Conference
on Mobile Data Management (MDM 2017), 2017.
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1. Introduction

1 Introduction

With the rapid adoption of geo-enabled devices (e.g., smartphones) and the
use of location-based social networks (LBSNs, e.g., Foursquare and Facebook
Places), users can post geo-tagged information anytime and anywhere, and
we are witnessing a proliferation of geo-tagged web content. For instance
in 2014, 164 million active users access Twitter from mobile devices each
month, while 425 million mobile users access Facebook [1]. While these de-
velopments bring convenience to users, they also make it increasingly hard
for users to find relevant content. Motivated by this development, research
on spatial keyword search has expanded markedly in the past few years. Spa-
tial keyword search is effective in helping users find interesting and relevant
content in a range of settings [2–5].

Many different spatial keyword queries [6–8] have been proposed and
studied, but most studies focus on query processing for the different types of
queries. Most queries considered are distance-sensitive [1], i.e., they concern
both the spatial distance and the textual relevance between a query and the
set of objects of interest. Typical functionality involves returning the top-k
spatial objects that are most relevant to a query containing both a location
and a set of query keywords. Many different ranking functions can be used
to find the top-k spatial objects in such queries.

A very natural question to ask is, which ranking function gives the better
results for a spatial keyword query? In this study, we aim to provide means of
answering this question. The availability of such means is important since a
better ranking function increases user satisfaction for location based services.
However, providing such means is not straightforward since it is not possible
to understand which ranking function performs better without information
regarding user preferences for a specific query. We do not consider non-
crowdsourced methods because such methods are more likely to fail to find
local knowledge compared with crowdsourcing that involves many workers,
because such methods are more likely to be biased, and because such meth-
ods may require tedious offline surveys or expensive specialized systems. In
contrast, Foursquare, TripAdvisor, and Google Places make use of the wis-
dom of the crowd to associate a rating with a point of interest (POI). However,
such ratings cannot be used to decide whether one POI is better than another
for a specific spatial keyword query because the rating is in general unrelated
to the location in the query. In other words, a POI with a better rating would
not be a good option for a query if the POI is distant from the query location.

Thus, we propose a crowdsourcing-based approach. Crowdsourcing can
provide solutions for complex tasks that are impossible or too hard to model
by means of computer programs, but are relatively easy to accomplish using
collective human intelligence. The problem of evaluating ranking functions
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falls into this category. For example, it is very difficult for an algorithm to
tell whether restaurant A is better than restaurant B for a search request like
“find the best pizza shop closest to my current position in Aalborg.” It is
much easier to draw a conclusion if we ask the question of sufficiently many
people who are familiar with Aalborg.

Based on this important observation, we leverage crowdsourcing to collect
empirical knowledge to help evaluate ranking functions in spatial keyword
querying. Crowdsourcing platforms make it possible to apply a qualification
test for workers, which can be used to make sure that workers are familiar
with the relevant region. A crowdsourcing based solution faces three ma-
jor challenges: (1) How to produce questions that can be answered easily
by crowdsourcing workers? (2) How to interpret and combine the answers
received from the workers to achieve an integrated evaluation? (3) How to de-
termine which ranking function is better based on the evaluation? We design
three components, namely a matrix-based question model, a crowdsourcing-
based evaluation, and a global evaluation, to tackle the three challenges. The
system framework of our approach is shown in Figure C.2.

Given a spatial keyword query qi, two ranking functions f1 and f2 pro-
duce two top-k lists l1 and l2. We first map the complex comparison of l1
and l2 into a series of easy-to-understand binary questions. These questions
are represented in a matrix where each cell corresponds to a question like
“Is object A better than B for query qi?”. Here, qi is a concrete query. We
use binary questions instead of list-wise questions where workers are asked
to provide a complete ranking of the given list. It is likely to be difficult
and time-consuming for workers to provide complete rankings since it re-
quires workers to carry out many POI comparisons. Moreover, they cannot
provide a proper ranking even if they are not familiar with one of the POIs
in the question. We also propose methods to reduce the number of binary
questions to ask, as each question comes at a cost in crowdsourcing. Sub-
sequently, we publish a set of selected binary questions to a crowdsourcing
platform and obtain answers from workers. Based on those answers, we
utilize matrix factorization to obtain answers to all questions in the matrix.
Based on the answers, we are able to tell which of l1 and l2 is better for qi.
Accordingly, the ranking function that gives the better list is preferred for
query qi. We repeat the process for M queries, and the ranking function that
scores overall highest is regarded as the globally better one.

The paper makes the following contributions:

• We establish a crowdsourcing-based framework to evaluate ranking
functions used in spatial keyword querying.

• We propose a matrix-based binary question model for two ranking lists
generated by two ranking functions for a spatial keyword query. The
model is able to control the number of questions to be sent to a crowd-
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sourcing platform according to a given budget and the platform’s cost
model.

• We design a crowdsourcing model that can transform the crowd work-
ers’ answers to the binary questions into a comprehensive ranking of
the two ranking lists.

• We present a global evaluation method that aggregates the comparison
results of the ranking list pairs for a set of spatial keyword queries,
which enables us to conclude which ranking function is the better one.

• We use a real data set to conduct experimental studies. The results
show that the proposed approach is efficient and effective in evaluating
ranking functions in spatial keyword querying.

The rest of the paper is organized as follows. Section 2 gives the problem
statement and provides an overview of the proposed framework. Section 3
elaborates on the question model for crowdsourcing. Section 4 details the
crowdsourcing model. Section 5 presents the global evaluation for ranking
functions. Section 6 reports on the empirical studies. Section 7 reviews re-
lated work. Section 8 concludes and discusses future work directions.

2 Problem Formulation and Framework

2.1 Definitions and Problem Statement

The data considered can be abstracted as spatial objects, defined as follows.

Definition C.1 (Spatial Object). A spatial object o is represented as a 2-tuple o =
(loc, KW), where o.loc is o’s geo-location and o.KW = {kw1, kw2, ..., kwn} is a set
of keywords that describe the object. The value of n is not fixed here, and spatial
objects can have different number of keywords.

The spatial objects, or POIs, in a region of interest, e.g., a city like Los
Angeles, form a set of spatial objects. In many cases, users want to find
a reasonable number of objects that are most relevant or interesting with
respect to a location and a set of keywords that describe the user’s needs.
Thus corresponds to issuing a top-k spatial keyword query [2].

Definition C.2 (Top-k Spatial Keyword Query). Given a set O of spatial ob-
jects, a top-k spatial keyword query q is formulated as q = (loc, KW, k), where
loc is a query location, KW is a set of query keywords, and k is an integer. Query
q returns k objects from O that are most relevant to the given query location and
keywords.
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From a service provider’s perspective, a query q = (loc, KW, k) is pro-
cessed by employing a ranking function that quantifies the objects’ relevance
to the query and by returning the k best objects. A prototypical ranking func-
tion scores an object with respect to its distance from the query location and
its textual relevance to the query keywords.

Definition C.3 (Ranking Function). Given a set O of spatial objects, a ranking
function f : O → [0, 1] returns a score between [0, 1] for an object. We assume that
a lower score means that the object is more relevant to the query.

Many ranking functions can be defined for top-k spatial keyword queries.
In the context of location-based services (LBS), a service provider may have
a set of ranking functions that may be used for different inputs or scenar-
ios. Also, different service providers may employ different (sets of) ranking
functions in order to deliver distinctive services. For the sake of simplicity,
Figure C.1 illustrates a scenario where a single service may have multiple
ranking functions, each of which can be used to process a top-k spatial key-
word query.

Location 
Based 
Service 

Ranking functions: f1, f2, …, fn 

③ (loc, KW, k, fi) 

④ (oi1, oi2, … oik) 

① (loc, KW, k) 

② Select an fi 

⑤ (oi1, oi2, … oik) User 

Data: spatial objects 

Fig. C.1: Top-k Spatial Keyword Query

Our research does not aim to define new ranking functions, but aims
instead to evaluate given ranking functions. For this purpose, we need to
involve multiple object sets and different queries. For a given set of objects
and a particular ranking function, many queries can be issued. Each query
returns a particular top-k list determined by the ranking function employed.

Definition C.4 (Top-k Ranking List). Given a set O of spatial objects, a query
q = (loc, KW, k) (k ≤ |O|) processed using a ranking function f returns a top-k
ranking list LO,q, f = (o f

1 , . . . , o f
k ) where

• f (o f
1 ) ≤ . . . ≤ f (o f

k ), and

• ∀o ∈ O \ LO,q, f ( f (o) ≥ f (o f
k )).
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Research Problem. We tackle the problem of evaluating spatial keyword
ranking functions using crowdsourcing. Without loss of generality, we focus
on evaluating two ranking functions on one spatial object set.

2.2 Framework

Given a spatial object set O and two ranking functions f1 and f2, our solu-
tion evaluates f1 and f2 by considering M (M > 1) top-k spatial keyword
queries Q = {q1, . . . , qM}. Without loss of generality, we assume all queries
in Q have the same value for k. For ranking function f1, we get M top-k
ranking lists, i.e., LO,q1, f1 , . . . , LO,qM , f1 . Likewise, we get M top-k ranking lists
LO,q1, f2 , . . . , LO,qM , f2 for ranking function f2.

Figure C.2 shows the framework of our solution. It consists of M Local
Evaluations, one for each of the queries in Q, and a Global Evaluation that
draws the final conclusion based on the M local evaluations.

A local evaluation has three components. The Ranking Process accepts a
top-k spatial keyword query and outputs two top-k ranking lists l1 and l2 by
using ranking functions f1 and f2, respectively.

Receiving the two ranking lists, the Question Model employs a learn-to-
rank method to compute an ordered k-list l12 that aims to capture important
characteristics of l1 and l2. Subsequently, the question model uses a 2k by
2k matrix to represent element pairs from the two lists. It is used for gener-
ating considerably fewer than 2k × 2k binary questions, taking into account
the given cost budget and three lists. These binary questions are of the form
“Do you think place A is better than place B for query q?”. The maximum
number of objects considered is 2k, which happens when l1 and l2 are dis-
joint. However, if l1 and l2 have objects in common, fewer than 2k objects are
considered.

The Crowdsourcing Based Evaluation component publishes the binary ques-
tions on a crowdsourcing platform. Answers from crowd workers are then
collected to form a partially instantiated 2k× 2k matrix, which is transformed
to a fully instantiated matrix through factorization. The elements in the com-
plete matrix are counted to produce a crowdsourced top-k list l f .

List l f as well as the original l1 and l2 are passed to the global evaluation,
where l1 and l2 are compared in terms of their similarity and consistency with
l f . Function f1 is assigned a score if l1 is deemed better than l2; otherwise,
f2 is assigned a score. All such scores for the M queries are given to a score
aggregator that draws a conclusion based on the aggregated scores given to
functions f1 and f2.
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Fig. C.2: System Framework
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2.3 Running Example

To better understand the process of generating the binary questions, produc-
ing the final list and evaluating two lists, we will tell a case throughout this
paper. In the following sections, we will show some examples by which we
can summarize the general ideas behind the algorithm.

Table C.1: Properties of dataset. For simplification, we use upper letters in the ID column to
represent the spatial objects in the rest part of the paper.

ID Spatial Object Location Keywords

A Maxim Bar 57.05108,
9.9184

food, bar, Jomfru Ane Gade, Borg-
ergade, maxim

B D’Wine Bar 57.04828,
9.91696

food, bar, Algade, Boulevarden,
Wine

C Tempo Bodega 57.05112,
9.91646

bar, Borgergade, Jomfru Ane Gade,
Boulevarden, Vesterbro

D Joe & the Juice 57.04821,
9.92145

cafe, coffee, Nytorv, Østeraagad,
Jyllandsgade

E Cafe Azzurra 57.04287,
9.91731

cafe, Jyllandsgade, busterminal,
Bornholmsgade,John F. Kennedys
Plads

F Starbucks Coffee 57.04833,
9.92247

cafe, coffee, Bornholmsgade,
Salling Stormagasin, Starbucks

G Visse Pizzaria 56.99109,
9.93112

fastfood, E45, vissevej, Taha Wais,
visse

H Amantes 57.0718,
9.92647

fastfood, E45, 9440, Liam Lund,
Forbindelsevejen

I McDonald’s 57.0702,
9.94647

fastfood, 9440, McCafe, Nr.Uttrup
Torv, music

J Hasseris Pizza 57.03565,
9.88452

pizza, music, Fyrrebakken, Thule-
bakken, Hasseris

K The Wharf 57.05144,
9.91634

music, pub, Jomfru Ane Gade,
beers and ales, fantastic

L Skotten 56.99117,
9.93107

food, bar, music, vissevej, Skotten

M Munken 57.05209,
9.90775

food, pub, Kastetvej, restaurent,
munken

To illustrate, we show 13 spatial objects located in a query region that
covers part of Aalborg City. From these 13 spatial objects, we get four pairs
of lists when searching four queries leveraging two ranking functions. The
dataset and the search results are shown in Table C.1 and Table C.2, respec-
tively.
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Table C.2: Top-5 lists produced by ranking functions

ID Query Ranking Function List

1 food bar
f1 A,B,C,D,E
f2 C,B,A,F,G

2 food cafe
f1 D,E,F,G,H
f2 F,E,D,E,I

3 fastfood
f1 G,H,I,J,A
f2 I,H,G,J,M

4 food pub
f1 A,D,G,J,K
f2 H,E,B,I,L

3 Question Model for Crowdsourcing

This section details the determination of the questions to be asked to the
crowd. The whole process is shown in Figure C.3.

3.1 Matrix Based Question Model

Suppose the ranking process outputs two top-k ranking lists l1 = 〈a1, a2, . . . , ak〉
and l2 = 〈b1, b2, . . . , bk〉 for a given query q and two ranking functions f1 and
f2.

A naive question model is to use a 2k× 2k matrixM, where the columns
(rows) consist of a1, a2, . . . , ak, b1, b2, . . ., and bk. Each cellM[i, j] corresponds
to a question like “Is ai better than bj?” or “Is bi better than aj?”. This way,
we need to ask 4k2 binary questions in order to evaluate lists l1 and l2, which
is an impractically large and costly number of questions to ask. Also, it may
be hard to get sufficiently many crowdsourcing workers to answer so many
questions.

Therefore, we propose a cost-aware question model that is able to op-
timize the result quality under a given cost constraint. In our setting, we
employ |W| workers, each of which is expected to answer Nbq binary ques-
tions. For each binary question a worker answers, we need to pay a cost of
C 1. As a result, we need to pay C · |W| · Nbq to accomplish an evaluation
task using the crowdsourcing platform. As C is a constant for a selected
crowdsourcing platform, we focus on finding a sufficiently small set W and
a sufficiently small number Nbq.

Essentially, not all cells in the 2k× 2k matrixM are of equal importance.
We need to prioritize the cells in M and only ask binary questions corre-

1This cost C may be divided according to a particular ratio between a worker and the crowd-
sourcing platform. Nevertheless, the concrete low level details do not affect the cost that we have
to pay.
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Fig. C.3: The Process of Generating Binary Questions

sponding to the important cells.
A preliminary step is to use a triangular matrix instead of the original full

matrix. In particular, we only use the lower triangular part of M, assum-
ing that cells M[i, j] and M[j, i] are equivalent. This means that we regard
questions “Is ci better than cj?” and “Is cj better than ci?” as the same. In
other words, a “yes” to the first question is equivalent to a “no” to the second
question. This way, we only look at cells M[i, j] where i ≥ j. This yields
Nbq = 2k(2k−1)

2 = k(2k− 1).
We proceed to further reduce Nbq, i.e., decrease the number of binary

questions to ask.
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3.2 Binary Question Generation

We generate a sufficiently small number of binary questions in four steps.
First, we use a learn-to-rank method to construct a list l12 of k most impor-
tant spatial objects from the two top-k lists l1 and l2. Second, we compute
the similarity between l12 and l1 (l2) to decide which objects in l1 (l2) to ig-
nore in binary questions. Third, we use spatial object entropy to control the
number of binary questions. Fourth, we generate the binary questions for the
crowdsourcing platform.

A List by Learn-to-Rank

The ListNet method [9] can solve the ranking problem on the lists of objects,
and the features we extract are similar to those the ListNet method requires,
so we adopt the ListNet method in this work. As shown in the upper part
of Figure C.3, this step has two processes, training and ranking. The train-

ing accepts a set of queries Que =
{

Que(1), Que(2), ..., Que(m)
}

. Each query

Que(i) results in two ranking lists generated by the two ranking functions.
Then, a list of objects o(i) = (o(i)1 , o(i)2 , ..., on(i)

(i)) is extracted from these two

ranking lists, where o(i)j is the j-th object in the ranking list, and n(i) is the

number of objects in o(i). Furthermore, each list of spatial objects o(i) is asso-
ciated with a list of scores g(i) = (g(i)1 , g(i)2 , ..., gn(i)

(i)), where g(i)j is the score

of object o(i)j with respect to a query Que(i). The score g(i)j represents how

relevant an object o(i)j is to a query Que(i). Here, we manually select several
queries from different categories as our training queries and then adopt the
following equation to obtain g(i)j [9].

g(i)j =



2

∑
k=1

n(k)

the position of o(i)j in lk
, if o(i)j ∈ l1 ∩ l2

n(1)

the position of o(i)j in l1
, if o(i)j ∈ l1 ∧ o(i)j /∈ l2

n(2)

the position of o(i)j in l2
, if o(i)j ∈ l2 ∧ o(i)j /∈ l1

A feature mapping function Ψ(·) produces a feature vector x(i)j = Ψ(Que(i),

o(i)j ) for each pair of query Que(i) and spatial object o(i)j [9]. Each list of

feature vectors x(i) = (x(i)1 , x(i)2 , ..., xn(i)
(i)) and its associated list of scores
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g(i) = (g(i)1 , g(i)2 , ..., gn(i)
(i)) form a training instance (x(i), g(i)), i = 1, 2, ..., m.

The training set is given as
{
(x(i), g(i))

}m

i=1
.

The goal of training is to learn a ranking function f that generates a
score f (x(i)j ) for each feature vector x(i)j . These can be organized into a

list of scores z(i) = ( f (x(i)1 ), f (x(i)2 ), . . . , f (xn(i)
(i))) for the list of feature vec-

tors x(i). Here, in order to minimize the total loss on the training data,
a loss function L based on the two lists of scores g(i) and z(i) is denoted
as ∑m

i=1 L(g(i), z(i)). Specifically, we adopt the method in [9] to define L:

L(g(i), z(i)) = −∑∀o∈Gk
Pg(i)(o)log(Pz(i)(o)), where Pz(i)(Gk)) = Πk

t=1
exp( f (x(i)ot ))

∑n(i)
l=t f (x(i)ol

)

and Gk is the top-k subgroup containing all the permutations.
In ranking, given a new query Quei′ and its corresponding list of spatial

objects oi′ , a list of feature vectors x(i
′) is produced by using the feature map-

ping function Ψ. Using this list of feature vectors and the trained ranking
function, the corresponding list of scores g(i

′) is generated. Last, top-k spatial
objects oi′ are ranked in a list l12 in ascending order of the scores.

We adopt the ListNet method [9] in the learn-to-rank step. In ListNet,
a cross entropy metric and gradient descent are used as the loss function
and learning algorithm, respectively. The gradient of L(g(i), z(i)) with respect

to parameter Que of f can be computed as follows: ∆Que = ∂L(g(i),z(i)( f )
∂Que =

−∑n(i)

j=1 Pg(i)(x(i)j )
∂ f (x(i)j )

∂Que + 1

∑n(i)
j=1 exp( f (x(i)j ))

∑n(i)

j=1 exp( f (x(i)j ))
∂ f (x(i)j )

∂Que . For simplic-

ity, we also use a linear neural network model to calculate the score of a
feature vector fQue(x(i)j ) = 〈Que, x(i)j 〉, where 〈·, ·〉 denotes an inner product.

Similarity Based Question Reduction

When deciding the binary questions to ask, the similarity between the input
ranking lists l1 = (a1, . . . , ak) and l2 = (b1, . . . , bk) can give us indications
about what not to ask. For example, if we know ai = bj, it is unnecessary
to ask “Is ai better than bj?” or the opposite. Let Nc = |l1 ∩ l2|. The origi-
nal 2k× 2k matrix M can be reduced to a (2k− Nc)× (2k− Nc) matrix M′.
In particular, matrix M′ is obtained by removing any column or row cor-
responding to a bj that appears in l1. By reducing matrix M to M′, the
total number of possible binary questions is also reduced. Now Nbq becomes
(2k−Nc)(2k−Nc−1)

2 .
If Nc = |l1 ∩ l2| ≥ 2, we can further reduce the number of binary questions

that we should ask. This is done by using the Kendall Tau Coefficient. Refer
to the original l1 = (a1, . . . , ak) and l2 = (b1, . . . , bk). If ai = bj and ai′ = bj′ for
1 ≤ i < i′ ≤ k and 1 ≤ j < j′ ≤ k, ai and ai′ are said to be concordant in the
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two raking lists. Consequently, it is unnecessary to ask “Is ai better than ai′?”
as the two ranking lists agree on this. Accordingly, for each concordant pair
ai and ai′ we can reduce Nbq by 1. Assuming that there are Nτ concordant

pairs, Nbq becomes (2k−Nc)(2k−Nc−1)
2 − Nτ .

Entropy Based Spatial Object Selection

For the remaining cells in matrixM′, we want to select and ask questions that
involve the most important spatial objects. For that purpose, we consider the
amount of information a spatial object conveys in its keywords.

Intuitively, if a spatial object has a keyword that is more representative,
this spatial object is more likely to be searched for and is thus of higher
importance. Also, the more frequent a keyword occurs in spatial objects,
the more representative this keyword is. With these considerations, we use
entropy to compare spatial objects. The entropy takes into account the fre-
quency of keywords in a certain spatial object as well as the relative pro-
portion of their total distribution across objects. A spatial object will have a
higher entropy if more representative keywords are associated with it.

Consider a spatial object set O and an object o. Let f be a ranking func-
tion, and let κ( f , o) be a subset of o.KW that is relevant to spatial objects
obtained by f . We use κ( f , O) =

⋃
o∈O κ( f , o) to denote the union of such

sets over all objects in O. We intend to determine the fraction of all key-
words in κ( f , O) that come from object o’s contribution. This is captured by
Pκ( f ,O)(o) =

|κ( f ,o)|
|κ( f ,O)| .

Here, we give an example to classify this point. Given a query q with a
keyword q.keywords = (Fast food) and a ranking function f , O = {o1, o2, o3, o4}
is the result of top-4 query according to f , where o1.keywords = (Food,
Restaurant, Burger king), o2.keywords = (Food, Burger king), o3.keywords
= (Food, Restaurant) and o4.keywords = (Restaurant). Thus, Pκ( f ,O)(o1) =
3+3+2

4 = 2, Pκ( f ,O)(o2) =
3+2

4 = 5
4 , Pκ( f ,O)(o3) =

3+3
4 = 3

2 , and Pκ( f ,O)(o4) =
3
4 .

Then, we can find that o1 is more relevant to q and o4 is less relevant to q.
Further, we can filter some spatial objects in the process of generating binary
questions.

Accordingly, a spatial object o’s entropy is defined as

Entropy(o) = − ∑
kw∈o.KW

Pκ( f ,O)(o)logPκ( f ,O)(o)

The entropy of objects will be considered when we decide which object pairs
should be included in binary questions that we publish to a crowdsourcing
platform.
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Generating Binary Questions

So far, we obtained a matrix M′ with Nbq = (2k−Nc)(2k−Nc−1)
2 − Nτ cells that

correspond to possible binary questions. Now we describe how to generate
Mq < Nbq binary questions from these cells.

The questions are generated by Algorithm C.1. The algorithm first pro-
cesses each pair of objects in ranking list l12 (lines 2–3) that results from the
learn-to-rank step (Section 3.2), as list l12 is regarded as having the k most
important objects from lists l1 and l2. Specifically, the algorithm checks if
the entropy difference between a pair of objects is smaller than a threshold
σ (line 4). If so, a question is generated for the pair, as their closeness calls
for human intelligence to judge whether the ranking between them is appro-
priate (lines 5–9). If the question budget has been exhausted, the algorithm
returns (line 11).

Otherwise, the algorithm continues similarly on the common part of lists
l1 and l2 (lines 14–26). If there is room for additional questions, the algorithm
continues to work on all remaining objects in the union of l1 and l2 (lines 27–
39). The “if-then-else” statements in the algorithm are used because our
setting of binary questions is biased rather than symmetric. Having both
directions of comparisons in the binary questions is expected to offset the
bias to some extent.

4 Crowdsourcing Model

4.1 Answers from Crowd Workers

Each worker needs to answer Mq questions of the form “Is object o better
than object o′ for a query Que?” When we get |W| binary (yes or no) answers
from |W| workers for each such question, we need to synthesize an overall
answer to the question. We use three different methods to make this decision.
The amount paid to a single worker is the same for the three voting methods
that we use.

Majority voting (MV): MV does not require workers to specify their con-
fidence. It simply counts which answer, yes or no, is the most frequent among
the |W| answers, and it uses that as the overall answer.

Voting based on constant confidence (VC): VC requires each worker wi ∈
W to specify a constant confidence cci from 10% to 100% before starting to
answer the questions. After all |W| answers are obtained for the current
question, the majority is decided using weighted counting. In particular, let
Wy (Wn) be the set of workers that give yes (no). The count of yes votes is
∑wi∈Wy cci, and that of no votes is ∑wi∈Wn cci.

Voting based on dynamic confidence (VD): VD is more complex than
VC in that it requires a worker wi ∈ W to specify an individual confidence
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Algorithm C.1 GenerateQuestions(Ranking lists l1, l2, and l12, matrix M′,
entropy threshold σ, number of questions Mq)

1: Question list lq← ∅
2: for each spatial object o ∈ l12 do
3: for each spatial object o′ ∈ l12 after o do
4: if |Entropy(o)− Entropy(o′)| < σ then
5: if o appears before o′’s in matrixM′ then
6: Add question “Is o′ better than o?” to lq
7: else
8: Add question “Is o better than o′?” to lq
9: end if

10: end if
11: if |lq| = Mq then return lq
12: end for
13: end for
14: lc ← l1 ∩ l2
15: for each spatial object o ∈ lc do
16: for each spatial object o′ ∈ lc after o do
17: if |Entropy(o)− Entropy(o′)| < σ then
18: if o appears before o′’s in matrixM′ then
19: Add question “Is o′ better than o?” to lq
20: else
21: Add question “Is o better than o′?” to lq
22: end if
23: end if
24: if |lq| = Mq then return lq
25: end for
26: end for
27: lr ← (l1 ∪ l2) \ lc
28: for each spatial object o ∈ lr do
29: for each spatial object o′ ∈ lr after o do
30: if |Entropy(o)− Entropy(o′)| < σ then
31: if o appears before o′’s in matrixM′ then
32: Add question “Is o′ better than o?” to lq
33: else
34: Add question “Is o better than o′?” to lq
35: end if
36: end if
37: if |lq| = Mq then return lq
38: end for
39: end for
40: return lq
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dci,j when answering the j-th question. The overall counting for a particular
question is similar to that in VC, except that for the j-th question, the local
confidence dci,j is used.

4.2 Matrix Factorization

After we have decided the overall answers for all the Mq binary questions,
matrixM′ (see Section 3.2) still has missing values in its cells. Such cells cor-
respond to questions that we have not sent to crowdsourcing. In other words,
as an ideal situation, for a query, we can ask 2k× 2k questions and generate a
2k× 2k matrix. Based on the answers to all these questions, it would be easy
to judge which ranking function is better. This option, however, is infeasible
due to the high number of questions. As the matrix is incomplete, we use
matrix factorization to obtain a complete matrix that contains answers to all
the 2k× 2k binary questions. In particular, we use an EM procedure [10] to
determine the missing values by maximizing the log-likelihood of the values
of all cells. In each iteration, we fill missing cells with the corresponding val-
ues in the current model estimate in the expectation step and obtain updated
model parameters by performing non-negative matrix factorization on that
intermediate matrix in the maximization step.

4.3 The Final List for Objects

By now, we have obtained answers to all binary questions corresponding to
cells in matrix M′. Based on these answers, we utilize Borda Count [11] to
get the final ranking list for all objects. We use l f to denote the final list.

Specifically, we use o � o′ to capture each overall answer that “Object o is
better than object o′ for query Que.” This way, all the binary answers can be
captured as a set of such ordered pairs. For each object o ∈ O, we count its
occurrences on the left hand side in such ordered pairs. That count is object
o’s Borda Count. Finally, we rank all objects according to their Borda Counts
in a non-ascending fashion.

For example, given a set of objects O = {A, B, C, D} and a set of ordered
pairs {A � B, A � C, A � D, C � B, C � D, B � D}, the Borda Counts for
all objects are as follows: g(A) = 3, g(B) = 1, g(C) = 2, g(D) = 0. Therefore,
the final list l f is 〈A, C, B, D〉.

5 Global Evaluation for Two Ranking Functions

Sections 3 and 4 explain how to obtain a final ranking list l f for two ranking
lists l1 and l2 that result from ranking functions for a query Que. Then we
compare l1 and l2 with respect to l f . Specifically, we calculate the Kendall
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Tau Coefficients τ1 between l1 and l f and τ2 between l2 and l f . The one with
the larger coefficient is regarded as the better ranking list.

We use a set of queries QUE = {Que1, Que2, ..., QueM} for evaluating
ranking functions f1 and f2. For each Quei, we use the process described so
far to judge which of f1 and f2 gives a better result. The ranking function
that produces the better list is assigned a score. After all queries in QUE are
processed, the ranking function with the higher total score is regarded as the
better ranking function.

6 Empirical Studies

6.1 Experimental Setup

We employ a real dataset of POIs extracted from OpenStreetMap2. All the
POIs are from the city of Aalborg, Denmark. Each POI has a place name, a
location given by coordinates, and a set of keywords. Also, each POI belongs
to one of 41 categories (e.g., pubs, banks, cinemas). Table C.3 lists the dataset
properties.

Table C.3: Data Set Properties

Property Description
Total # of categories 41
Total # of objects 1043
Total # of unique keywords 1028
Total # of keywords 3773
Average # of words per category 39.72
Average # of unique words per category 10.82
Average # of unique words per object 3.62

We generate queries based on the locations and keywords in the dataset.
Given a set O of POIs and a positive integer k, we generated a query q with k
spatial keywords as in the literature [6]. For the q.loc part, we randomly pick
a location from the whole region of O. For the q.KW part, we first sort all the
keywords that occur in objects in O in descending order of their frequencies
and then randomly pick k keywords among all keywords in the percentile
range 10 to 40. This way, we get 91 queries. Further, we manually annotate
these queries using semantic information (e.g., pubs, banks, cinemas) and
classify them into 41 categories. In addition, we produce two ranking func-
tions by adjusting the parameter (i.e., α = 0.7( f1), α = 0.3( f2)) of a popular
ranking function [2], and we form top-15 ranking lists for each query using

2http://www.openstreetmap.org
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them. The ranking function is as follows.

DST(q, o) = α
Dε(q.loc, o.loc)

maxD
+ (1− α)(1− P(q.KW|o.KW)

maxP
)

Here, α ∈ [0, 1] is used to balance between spatial proximity and text rele-
vancy; the Euclidian distance between q and o, Dε(q.loc, o.loc), is normalized
by maxD, which is the maximum distance possible between two POIs; and
maxP is used to normalize the text relevancy score into the range from 0 to
1. The training queries are also chosen randomly because multi-cross valida-
tion, which is basically repeating the experiment with different sets of binary
questions, is expensive in our setting.

We use CrowdFlower3 as the crowdsourcing platform. It is chosen for
several reasons. First, it allows high throughput with little effort. For exam-
ple, in preliminary experiments, an entire task was completed in less than
one hour. Second, it allows us to test workers with “test questions” before
starting to collect real answers from the workers. This helps us identify and
avoid irresponsible workers.

Next, we describe the configuration of CrowdFlower. We first provide the
workers with the following items: a query that consists of a query location
and a set of keywords; a sequence of questions each of which includes a
link to Google Maps that allows the workers to view the query location and
the spatial objects involved in the question in addition to labels indicating
a worker’s answer and confidence. An example is shown in the Figure C.4.
Then a sequence of binary questions are asked: (a) A question takes the form
“Is POI 1 better than POI 2?” Here, “better” means “more relevant to the
given query.” So we ask whether one POI should be ranked higher than
the other in a query result. (b) When workers answer a question, they must
indicate their confidence in the answer. We provide three confidence levels:
very confident, confident, and low confidence.

The parameters and their values used in the experiments are shown in
Table C.4.

6.2 Effectiveness Study

In order to evaluate the performance of our proposal, we execute the follow-
ing step. We define a set of categories C =

{
C1, C2, ..., Cg

}
, where Ci is a set

of queries Ci =
{

Que1, Que2, ..., QueMi

}
. Suppose that we have a maximum

budget and run the entire process (Figure C.2) for each category Ci using Mi
queries. The result for category Ci can be represented as an Mi-dimensional
vector ~v = (v1, v2, ..., vMi ), where vi is the score of ranking function f1 as
described in Section 6.1.

3http://www.crowdflower.com
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Query: cheap hotel

1. Do you think ''Hotel Hvide Hus (Vesterbro 2, 9000 Aalborg, Denmark)'' is better than 
''First Hotel Europa (Vesterbro 12C, 9000 Aalborg, Denmark)'' for the given query?
Click here to see the query location and the two points of interest on Google Maps
     Yes
     No
Enter your confidence in your answer.

Select one

Fig. C.4: An Example in CrowdFlower

Table C.4: Parameter Settings

Parameter Value
Total budget $50
Total # of binary questions 1183
Max # of workers per binary question 31
Max # of binary questions per query 21
Average # of workers per binary question 15
Average # of binary questions per query 13
Average cost per binary question $0.003

However, a very high budget is economically infeasible. Assuming a par-
ticular budget b, we run the entire process (Figure C.2) for each category Ci
using Mi queries. This gives a result that can be represented as another Mi-
dimensional vector ~vb for ranking function f1. We use cosine similarity (CS)
to compare how similar ~vb and ~v are since CS is widely used and also suits
our needs. The more similar they are, the better the result with budget b is,
as budget b achieves a performance comparable to what is achieved with the
maximum budget.

Effect of Training Queries. We study how the training queries affect
the performance of the proposed approach. We vary the number of training
queries from 5 to 20. The results, shown in Figure C.5a, show that the per-
formance improves as the number of training queries increases. Further, the
experimental results advocate aforementioned assumption on the settings.

Effect of budget. Figure C.5b plots the CS against the budget that is
varied in the range [10, 50]. In this experiment, we use voting based on
dynamic confidence (VD in Section 4.1). We set the number of workers per
binary question to 15, and the cost per binary question to $0.003. The figure
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Fig. C.5: Effects of Training Query Number and Budget

shows that the proposed approach is affected by the budget. When we spend
a larger budget, we obtain a better effectiveness. Furthermore, we can see that
when the budget exceeds 40, the CS of the proposed approach is quite good
and maintains a steady state. This indicates that our approach is inexpensive
yet effective.
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Fig. C.6: Effects of Voting Methods and Matrix Factorization

Effect of voting methods. Next, we compare the three voting methods
(cf. Section 4.1). In this experiment, we set the number of workers per binary
question to 15, the cost per binary question to $0.003, and dcij to 0.5. Fig-
ure C.6a plots the CS against the number of binary questions that is varied in
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the range [1, 21]. We can see that voting method VD outperforms the other
two methods. Specifically, VD can increase the average CS by 3.63% and
2.55% compared to MV and VC, respectively. On the other hand, MV deliv-
ers the worst performance. The reason is that MV assumes that all workers
have the same quality, and the answers from all workers are treated equally.
This is not realistic, because workers are of different quality due to their dif-
ferent backgrounds and experiences. In contrast, VD models workers’ quality
dynamically for different questions and has the best evaluation performance.
It is also noteworthy that VC’s performance is in-between, since it is able to
capture workers’ different confidences, but does not allow workers to vary
their confidence from question to question.

Effect of matrix factorization. We also evaluate the effect of matrix factor-
ization (MF). To do so, we implemented two versions of our approach, with
and without MF. The results are shown in Figure C.6b, where the x-axis rep-
resents the number of binary questions, and the y-axis represents the CS. We
can see that the method with MF is clearly better than the one without MF.
Through MF, we are able to determine answers for the binary questions that
we do not crowdsource due to the budget constraint. This way, we recover
more information that is used to evaluate the ranking functions.
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Fig. C.7: Effects of Entropy Threshold and Worker Number

Effect of entropy threshold. In this experiment, we study the effect of dif-
ferent entropy thresholds used for σ in Algorithm C.1. We set the number of
workers per binary question to 15, the number of binary question per query
to 13, and the cost per binary question to $0.003. The results of varying σ in
the range [0.1, 0.9] are shown in Figure C.7a. Clearly, the entropy threshold
has a significant impact on the CS. When the entropy threshold increases,
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the CS of the proposed approach also increases. But after some point (0.7
in the experiment), CS stays stable. When the entropy threshold increases,
object pairs are more likely to be included in crowdsourcing, which in turn
tends to exploit more human intelligence in the evaluation. In the remaining
experiments, we use the entropy threshold 0.7.

Effect of the number of workers. We also study whether the number of
workers for each question affects the performance of the proposed approach.
We vary the number from 5 to 30. Figure C.7b shows that the proposed ap-
proach is affected by the number of workers per question. As more workers
are employed for a question, more human intelligence is exploited, which
tends to help achieve a better evaluation. On the other hand, after some
point, using more workers does not further improve the evaluation. In this
experiment, for instance, when the number of workers per question exceeds
20, the CS of the proposed approach changes only little.

C1 C2 C3 C4 C5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Categories

C
S

 

 

f2

f1

Fig. C.8: Effect of Category

Performance for different categories. Next, we investigate whether the
query keywords used affect performance. We classify the query keywords
into five categories: “Accommodation” (C1), “Education” (C2), “Tourist”
(C3), “Food” (C4), and “Shop” (C5). The experimental results are shown in
Figure C.8. Clearly, different categories result in different evaluation perfor-
mance. Category C3 is of special interest as its evaluation result is opposite
to those of the other four categories. The possible reason is that tourists al-
ways visit some places according to their interest, and therefore the textual
similarity is more important than the spatial location. In this situation, f2
works better because it gives more weight to the textual part in the ranking.
For the other four categories, the query location is more important than the
textual similarity, and f1 works better as it considers the spatial aspect to be
more important in the ranking.
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Fig. C.9: The Time Cost of Voting Methods and With/Without MF

6.3 Efficiency Studies

We also examine the time efficiency of the proposed approach. We set the
number of workers per binary question to 20, the number of binary question
per query to 13, and the cost per binary question to $0.003.

First, we compare the average time cost of our proposal with the different
majority voting methods (Section 4.1). As shown in Figure C.9a, the method
with MV is fastest, VD is the slowest, and VC is in-between. The difference
is attributed to the different processes of these methods. MV is the simplest
without any worker-specified confidence, VD is the most complex with vary-
ing confidence from worker to worker and from question to question, and
VC is again in the middle with different confidence for workers, but not for
questions.

Second, we study the time cost of our proposal with and without MF. The
results are reported in Figure C.9b. The approach with MF takes longer time
(300 seconds at most) than the one without MF, since more answers of binary
questions need to be determined after crowdsourcing. As the evaluation is
not time-critical, the time difference is acceptable given that MF results in a
clearly better evaluation.

7 Related Work

7.1 Spatial Keyword Search

Existing research on spatial keyword search focuses mainly on how to com-
pute the top-k most relevant POIs when taking into account spatial location
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and text relevancy.
Wu et al. [12] and Li et al. [13] propose a hybrid indexing framework to

facilitate computing the top-k spatial web objects. Cao et al. [7] define the
Location-aware top-k Prestige-based Text retrieval query that retrieves top-
k spatial objects by considering both the location proximity of an object to
the query and the prestige of the object. Junior et al. [14] design a new index
named Spatial Inverted Index and related algorithms to perform top-k spatial
keyword queries.

Cao et al. [6] define the problem of finding a group of objects that match
the query keywords, minimizing intra-group distance and the distance among
the objects in the group and the query location. Their method is restricted
to Boolean keyword queries and Euclidean distance. Differently, Zhang et
al. [4] study the collective keyword search that detects the spatially closest
objects that match m user-specified keywords. Wu et al. [8] study efficient,
joint processing of multiple top-k spatial keyword queries and design an in-
dex structure for efficiently finding the object closest to the query location
among all objects that cover all the keywords specified in the query. In or-
der to address scalability problems, Long et al. [15] use efficient exact and
approximate algorithms to process two types of collective spatial keyword
queries.

Our research studies spatial keyword search from a different angle. Spe-
cially, we develop a spatial keyword query evaluation system based on crowd-
sourcing. Our proposal can be used to evaluate the ranking functions used
in the previous research on spatial keyword search.

A recent study [16] also employs crowdsourcing to evaluate ranking func-
tions used in spatial keyword search. Given a set of spatial objects, it obtains
partial rankings of them by synthesizing the answers of crowdsourcing work-
ers to binary questions. In contrast, this paper uses a different overall frame-
work (Figure C.2) that does not rely on partial rankings of spatial objects.
Also, the question model and crowdsourcing model in this paper make use
of learning and information processing techniques. We do not experimen-
tally compare with the method in [16] because it takes a set of POIs as input
whereas our method takes two ranked lists as input.

7.2 Crowd-based Query Processing

Crowdsourcing is widely used in the process of answering queries that are
hard for machines but relatively easy for human intelligence.

Many studies on crowdsourcing focus on quality control. Joglekar et
al. [17] propose an evaluation of worker quality by designing techniques
that generate confidence intervals for worker error rate estimates. Supposing
the rate between false positive and false negative for each worker is known,
Parameswaran et al. [18] investigate the number of assignments that are re-
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quired for a task. In order to accurately estimate a worker’s quality, Feng et
al. [19] propose a worker model to compute the worker’s quality and a ques-
tion model to compute a question’s result using the worker model. Zheng et
al. [20] aim to improve the result quality of generated questions by designing
online task assignment approaches. They incorporate evaluation metrics into
assignment strategies and consider quality measures. In order to increase the
speed of query processing and reduce the operation cost, Wang et al. [21]
propose a method based on data cleaning to reduce the effect of dirty data
on aggregate query answers.

Other studies employ crowdsourcing to implement crowd-based opera-
tors, e.g., join [22], sort [23], max [24], graph search [25], and path selec-
tion [26]. In general, our work also falls into this category, but we focus on
a specific topic, namely how to evaluate different ranking functions used in
spatial keyword search.

8 Conclusion and Future Work

In this paper, we propose a crowdsourcing-based approach to evaluating
ranking functions used in spatial keyword querying. Our approach consists
of a series of steps. We use a matrix to model all possible binary questions
concerning the different results returned by two ranking functions f1 and f2.
As such a matrix is typically too large for a given budget, we use multiple
steps to reduce the number of binary questions to be sent to crowdsourcing.
Furthermore, we design a crowdsourcing model that obtains the answers
to the binary questions sent to crowdsourcing. Finally, we devise a global
evaluation process that compares f1 and f2 based on a multitude of sets of
answers from crowdsourcing. We conduct extensive empirical studies on our
proposals with real data. The results show that the proposal is efficient and
able to deliver effective evaluations of ranking functions in spatial keyword
querying.

Several directions exist for future work. First, it is possible to extend
the binary question model to ask more complex questions that may also be
helpful for the evaluation. Second, other economic models may be used in
determining the number of questions for crowdsourcing for a given budget.
Note that the proposed framework can accommodate such alternative eco-
nomic models without substantial changes. Third, it is of interest to extend
the proposal so that more than two ranking functions can be evaluated si-
multaneously. Fourth, it is also of interest to adapt the approach to tasks
different from evaluating ranking functions in spatial keyword querying.

110



References

Acknowledgements

The authors would like to thank CrowdFlower. Jinpeng Chen’s work was
partly sponsored by a scholarship from the China Scholarship Council (CSC).
This work was partly supported by the National Natural Science Foundation
of China and Fundamental Research Funds for the Central Universities.

References

[1] D. Zhang, C.-Y. Chan, and K.-L. Tan, “Processing spatial keyword query
as a top-k aggregation query,” in Proceedings of the 37th International ACM
SIGIR Conference on Research & Development in Information Retrieval (SIGIR
’14). ACM, 2014, pp. 355–364.

[2] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most
relevant spatial web objects,” Proc. VLDB Endow., vol. 2, no. 1, pp. 337–
348, Aug. 2009.

[3] I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial
databases,” in Proceedings of the 24th International Conference on Data En-
gineering (ICDE 2008), 2008, pp. 656–665.

[4] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsure-
gawa, “Keyword search in spatial databases: Towards searching by doc-
ument,” in Proceedings of the 25th International Conference on Data Engi-
neering (ICDE 2009), 2009, pp. 688–699.

[5] D. Zhang, B. C. Ooi, and A. K. H. Tung, “Locating mapped resources
in web 2.0,” in Proceedings of the 26th International Conference on Data
Engineering (ICDE 2010), 2010, pp. 521–532.

[6] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi, “Collective spatial keyword
querying,” in Proceedings of the 2011 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD ’11). ACM, 2011, pp. 373–384.

[7] X. Cao, G. Cong, and C. S. Jensen, “Retrieving top-k prestige-based rele-
vant spatial web objects,” Proc. VLDB Endow., vol. 3, no. 1-2, pp. 373–384,
Sep. 2010.

[8] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, “Joint top-k spatial keyword
query processing,” IEEE Transactions on Knowledge and Data Engineering,
vol. 24, no. 10, pp. 1889–1903, 2012.

111



References

[9] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, “Learning to rank: From
pairwise approach to listwise approach,” in Proceedings of the 24th In-
ternational Conference on Machine Learning (ICML ’07). ACM, 2007, pp.
129–136.

[10] S. Zhang, W. Wang, J. Ford, and F. Makedon, “Learning from incom-
plete ratings using non-negative matrix factorization,” in Proceedings of
the 2006 SIAM International Conference on Data Mining, pp. 549–553.

[11] J. A. Aslam and M. Montague, “Models for metasearch,” in Proceedings
of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’01). ACM, 2001, pp. 276–
284.

[12] D. Wu, G. Cong, and C. S. Jensen, “A framework for efficient spatial web
object retrieval,” The VLDB Journal, vol. 21, no. 6, pp. 797–822, 2012.

[13] Z. Li, K. C. K. Lee, B. Zheng, W. C. Lee, D. Lee, and X. Wang, “IR-tree:
An efficient index for geographic document search,” IEEE Transactions on
Knowledge and Data Engineering, vol. 23, no. 4, pp. 585–599, April 2011.

[14] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg, “Efficient
processing of top-k spatial keyword queries,” in Proceedings of the Interna-
tional Symposium on Spatial and Temporal Databases (SSTD 2011). Springer,
2011, pp. 205–222.

[15] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu, “Collective spatial
keyword queries: A distance owner-driven approach,” in Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’13). ACM, 2013, pp. 689–700.

[16] I. Keles, S. Saltenis, and C. S. Jensen, “Synthesis of partial rankings of
points of interest using crowdsourcing,” in Proceedings of the 9th Workshop
on Geographic Information Retrieval (GIR ’15). ACM, 2015, pp. 15:1–15:10.

[17] M. Joglekar, H. Garcia-Molina, and A. Parameswaran, “Evaluating the
crowd with confidence,” in Proceedings of the 19th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD ’13).
ACM, 2013, pp. 686–694.

[18] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis,
A. Ramesh, and J. Widom, “Crowdscreen: Algorithms for filtering data
with humans,” in Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’12). ACM, 2012, pp. 361–372.

[19] J. Feng, G. Li, H. Wang, and J. Feng, “Incremental quality inference in
crowdsourcing,” in Proceedings of the International Conference on Database

112



References

Systems for Advanced Applications (DASFAA 2014). Springer, 2014, pp.
453–467.

[20] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng, “Qasca: A quality-aware
task assignment system for crowdsourcing applications,” in Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’15). ACM, 2015, pp. 1031–1046.

[21] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo,
“A sample-and-clean framework for fast and accurate query processing
on dirty data,” in Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’14). ACM, 2014, pp. 469–
480.

[22] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng, “Leveraging tran-
sitive relations for crowdsourced joins,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’13).
ACM, 2013, pp. 229–240.

[23] X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz, “Pair-
wise ranking aggregation in a crowdsourced setting,” in Proceedings of
the Sixth ACM International Conference on Web Search and Data Mining
(WSDM ’13). ACM, 2013, pp. 193–202.

[24] P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis, “Max algo-
rithms in crowdsourcing environments,” in Proceedings of the 21st Inter-
national Conference on World Wide Web (WWW ’12). ACM, 2012, pp.
989–998.

[25] A. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzotis, and
J. Widom, “Human-assisted graph search: It’s okay to ask questions,”
Proc. VLDB Endow., vol. 4, no. 5, pp. 267–278, 2011.

[26] C. J. Zhang, Y. Tong, and L. Chen, “Where to: Crowd-aided path selec-
tion,” Proc. VLDB Endow., vol. 7, no. 14, pp. 2005–2016, Oct. 2014.

113



References

114



Paper D

Extracting Rankings for Spatial Keyword Queries
from GPS Data

Ilkcan Keles, Christian S. Jensen, Simonas Šaltenis

The paper has been published in the
LBS 2018: 14th International Conference on Location Based Services,

pp. 173–194, 2018. DOI: 10.1007/978-3-319-71470-7_9

https://doi.org/10.1007/978-3-319-71470-7_9


Abstract

Studies suggest that many search engine queries have local intent. We consider the
evaluation of ranking functions important for such queries. The key challenge is to
be able to determine the “best” ranking for a query, as this enables evaluation of the
results of ranking functions. We propose a model that synthesizes a ranking of points
of interest (PoI) for a given query using historical trips extracted from GPS data. To
extract trips, we propose a novel PoI assignment method that makes use of distances
and temporal information. We also propose a PageRank-based smoothing method to
be able to answer queries for regions that are not covered well by trips. We report
experimental results on a large GPS dataset that show that the proposed model is
capable of capturing the visits of users to PoIs and of synthesizing rankings.

c© 2018 Springer International Publishing AG. Reprinted, with permission,
from Ilkcan Keles, Christian S. Jensen, and Simonas Šaltenis, Extracting Rank-
ings for Spatial Keyword Queries from GPS Data, LBS 2018: 14th Interna-
tional Conference on Location Based Services, 2018.
The layout has been revised.



1. Introduction

1 Introduction

A very large number of searches are performed by search engines like Google
or Bing each day. One source [1] reports that Google processes more than 7
billion queries per day. A recent study [2] of users’ local search behavior
indicates that 4 in 5 users aim to find geographically related information. It
also shows that 50% of the users who conducted mobile search and 34% of
the users who used a computer or tablet visit a point of interest (PoI) on
the same day. These statistics indicate the importance of location-based web
querying.

To support queries with local intent, the research community has pro-
posed many different spatial keyword functionalities to find relevant nearby
PoIs [3]. A prototypical spatial keyword query takes a set of keywords and a
location as arguments and returns a list of PoIs ranked with respect to a range
of signals. Example signals include PoI ratings, properties of the neighbor-
hoods of the PoIs, the distances of the PoIs to the query location, the textual
relevances of the PoIs to the query keywords, and the relative expensiveness
of the PoIs. These signals can be combined in multiple ways to obtain a
ranking function. Most studies focus on indexing and efficient retrieval and
thus evaluate the computational efficiency of proposed techniques. In con-
trast, the evaluation of the quality of the ranking functions is not covered
well. We think that evaluation of the ranking functions is crucial since it is an
important step towards increasing user satisfaction with location-based ser-
vices; however, it is difficult to assess the quality of a ranking function when
there is no yardstick ranking to compare against. The goal of this study is
to propose a framework for constructing such baseline rankings that reflect
the preferences of the users. Future studies will then be able to use the con-
structed rankings to evaluate the quality of different ranking functions.

A few studies ( [4–7]) consider the use of crowdsourcing to synthesize
rankings for objects and they can be used for spatial keyword queries. How-
ever, crowdsourcing-based approaches are expensive since workers need to
be paid for each crowdsourcing task. They are also time consuming since
there is a need to wait for the workers to complete the tasks. Further, it
may be difficult to recruit workers who know about the spatial region of the
query. Therefore, as a supplement to crowdsourcing, we focus on the use of
GPS data to synthesize rankings.

We propose a method to build rankings for spatial keyword queries based
on historical trips extracted from GPS data. We define a trip as a pair of con-
secutive stops extracted from a GPS trajectory. The stops represent the source
and the destination of a trip, and we are interested in trips where the desti-
nation is a PoI. While the GPS data does not include spatial keyword queries,
we can reasonably assume that a recorded trip to a PoI corresponds to issuing
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a spatial keyword query at the starting location of the trip with a keyword
that is part of the textual description associated with the PoI. For instance,
if a user visited a restaurant r starting from a location l, we assume that the
user issued a spatial keyword query at l with the keyword “restaurant” and
that r is the preferred restaurant. Further, a PoI is considered to be relevant to
the users in a region if many trips starting in that region visit the PoI. To the
best of our knowledge, this is the first study of using GPS data to synthesize
rankings for spatial keyword queries.

To synthesize rankings, we first extract stops of users from available GPS
data. Then, we assign the stops to the PoIs that were visited. Furletti et al. [8]
propose a PoI assignment method based on the distance between a stop and
a PoI. We extend their method by taking into account temporal patterns of
the users’ visits to PoIs. Next, we extract all trips to PoIs.

Using the trips, we build a grid structure, where each cell records two
values for each PoI, namely the number of trips from the cell to the PoI and
the number of distinct users involved. To address the issue that some cells
may have few or no trips, we adopt a personalized PageRank [9] based al-
gorithm to smooth the values. The intuition behind using PageRank is that
nearby grid cells should have similar values just like web pages linking to
each other should have similar values. The resulting grid structure is used to
form a ranking for a given spatial keyword query. First, the grid cell that con-
tains the query location is found. Then the PoIs are filtered with respect to
the query keywords. Finally, the PoIs are ranked according to the number of
trips and the number of distinct users. The resulting ranking reflects the pref-
erences of the users for PoIs, and a ranking function that produces a ranking
more similar to the synthesized ranking is more preferable. Although a given
collection of GPS data is limited in its geographical coverage and its coverage
of users, we are still able to produce rankings in the particular settings where
the GPS data offers good coverage.

To summarize, the main contributions are: (i) A method for synthesizing
rankings of PoIs from GPS data that is able to produce results for regions
without GPS data and that employs the number of trips and distinct users
to rank PoIs, (ii) A stop assignment algorithm that employs users’ tempo-
ral patterns when assigning stops to PoIs, (iii) PageRank-based algorithm to
smooth the values for grid cells, (iv) An evaluation using a dataset of some
0.4 billion GPS records obtained from 354 users over a period of nine months.

The remainder of the paper is organized as follows. Section 2 covers pre-
liminaries, related work, and the problem definition. The proposed model is
covered in Section 3. Section 4 covers the evaluation, and Section 5 concludes
and offers research directions.
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2 Preliminaries

2.1 Data Model

The proposed method uses GPS records collected at one hertz from GPS
devices installed in vehicles.

A GPS record G is a four-tuple 〈u, t, loc, im〉, where u is the ID of a user,
t is a timestamp, loc is a pair of Euclidean coordinates representing the lo-
cation, and im is the vehicle ignition mode. Even though im is not part of a
GPS measurement, it is included in our dataset as a useful automotive cen-
sor measurement. An example GPS record is 〈5, 2014-03-01 13:44:54, (554025,
6324317), OFF〉, where the coordinates of the location are given in the UTM
coordinate system. Next, a trajectory TR of a user is the sequence of GPS
records from this user ordered by timestamp t, TR = G1 → ... → Gi → ... →
Gn. We denote the set of all trajectories by STR.

We are interested in the locations where a user stopped for a longer time
than a predefined threshold. We extract all such stops from STR. Specifically,
a stop S is a three-tuple 〈G, at, dt〉, where G is a GPS record, at is the arrival
time at G.loc, and dt is the departure time from G.loc. When we say the
location of a stop, we refer to the location of G. Next, a point of interest (PoI)
P is a three-tuple 〈id, loc, d〉, where id is an identifier, loc is a location, and d
is a document that contains the textual description of the PoI.

We assume that a significant portion of users’ stops are visits to PoIs, so
when a user makes a stop, it is probable that the user did so to visit a PoI.
We define an assignment A as a pair 〈S, P〉 of a stop S and a PoI P, indicating
that a user stopped at the location of S to visit P. We are unable to assign all
stops to PoIs, so only some stops have a corresponding PoI.

Having extracted all the stops of a user, we obtain the user’s location
history. In particular, the location history H of a user is defined as the se-
quence H = S1 → ... → Si → ... → Sm of the user’s stops ordered by at. A
user’s location history captures the user’s trips. Specifically, a trip T is a pair
〈Si, Sj〉 of a source and a destination stop. Given a trip T = 〈Si, Sj〉 and an
assignment A = 〈Sj, P〉, we say that T is a trip to PoI P.

Our goal is to use the trips extracted from GPS records to synthesize
ranking of PoIs for spatial keyword queries.

Definition D.1 (Top-k Spatial Keyword Query). Let SP be a set of PoIs. A top-
k spatial keyword query q = 〈l, φ, k〉 on SP is a three-tuple, where l is a query
location, φ is a set of query keywords, and k indicates the number of results. The
query q returns k PoIs from SP that rank the highest according to a given rank-
ing function. A frequently used ranking function is a weighted combination of the
proximity of the PoI location to q.l and the textual relevance of the PoI to q.φ [3].

Problem Statement. We assume a set SG of GPS records obtained from
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vehicles and a set SP of PoIs. Given a top-k spatial keyword query, we solve
the problem of constructing a top-k ranking of PoIs included in SP using SG.

2.2 Related Work

Some studies propose crowdsourcing to obtain rankings of items ( [4–7]).
Yi et al. [4] propose a method based on pairwise comparisons and matrix
completion. Chen et al. [5] also use pairwise comparisons and propose an
active learning method that takes worker reliability into account to synthe-
size rankings. Stoyanovich et al. [6] use list-wise comparisons and build
preference graphs for workers and combine these to obtain a global ranking.
Keles et al. [7] propose a method based on pairwise comparisons in order
to rank PoIs for a given query without assuming a total ranking on the PoIs.
Crowdsourcing-based approaches are hard to apply in large-scale evaluations
since they are expensive and time-consuming. In the context of spatial key-
word queries, it is a challenge to recruit workers familiar with the relevant
region and PoIs.

Some studies use GPS data to identify stops, visited PoIs, and interesting
places ( [8, 10–20]). An important place is one where users stop for a while.
In these studies, a stop is generally defined either as a single GPS record
corresponding to the loss of satellite signal when a user enters a building or
a set of GPS records where a user remains in a small geographical region for
a time period.

Alvares et al. [10] enrich GPS trajectories with moves and stops. They re-
quire a predefined set of possible stop places that is then used for annotating
trajectories. Palma et al. [11] enable the detection of stops when no candidate
stops are available. They use a variation of DBSCAN [21] that considers tra-
jectories and speed information. The main idea is that if the speed at a place
is lower than the usual speed, the place is important. We use GPS data col-
lected from vehicles, and we have a specific signal telling whether the engine
is on or off. This simplifies the detection of stops.

Many clustering-based methods have been proposed to identify signifi-
cant locations from GPS data. Ashbrook et al. [12] use a variation of k-means
clustering to identify locations. Kang et al. [13] propose a time-clustering
method. Zhou et al. [14] propose a density based clustering algorithm to
discover personally meaningful locations. Zheng et al. [15] propose a hi-
erarchical clustering method to mine interesting locations. They employ a
HITS [22] based inference model on top of the location histories of the users
to define the interestingness of the locations by considering users as hubs and
locations as authorities. Cao et al. [16] employ a clustering method to identify
semantic locations. They enhance the clustering using semantic information
provided by yellow pages. They propose a ranking model that utilizes both
location-location relations and user-location relations as found in trajectories.
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They also consider the stay durations and the distances traveled. Montoliu
et al. [17] propose time-based and grid-based clustering to obtain places of
interest. We are not using clustering because we are not interested in regions;
instead, we want to identify the specific PoIs that are visited by users.

Some studies use different strategies to extract significant places from GPS
data. Bhattacharya et al. [19] propose a method based on bearing change,
speed, and acceleration for walking GPS data. In a recent study [20], they
make use of density estimation and line intersection methods to extract places.
Their work requires walking GPS data and polygon information for each PoI.
Their method is not applicable in our setting.

Finally, methods have been proposed that identify visits to PoIs from GPS
data. Given a stop, the goal is to identify a PoI. Spinsanti et al. [18] annotate
stops with a list of PoIs based on the distance between the stop and the PoIs
and the average durations people spend at the PoIs. Their method requires
average stay durations for each PoI, which are provided by experts. This
information is not available in our setting. Furletti et al. [8] propose a method
that also forms a set of possibly visited PoIs by taking walking distance and
opening hours into account. We extend their stop assignment strategy. Shaw
et al. [23] consider the use of learning-to-rank methods to provide a list of
possible PoIs when a user checks in. They use historical check-ins to form a
spatial model of the PoIs. They also make use of PoI popularity information
and user-specific information like a user’s check-in history and information
about a user’s friends that have already checked in at the PoI. Kumar et al.
[24] and Gu et al. [25] model the geographic choice of a user taking into
account the distance between the stop and a PoI as well as the number of
possible PoIs and their popularity when multiple PoIs are possible. They use
labeled data (direction queries and check-ins) to train their model. Since we
have no personal information or check-in data, we are unable to use their
method when assigning stops to PoIs.

3 Proposed Method

3.1 Overview

The method consists of two phases: model-building and ranking-building.
The model-building phase takes a set of GPS records and a set of PoIs as

the input and outputs a regular grid that partitions the underlying geograph-
ical space. Each grid cell records two values for each PoI: the number of trips
from the cell to the PoI and the number of distinct users making trips.

Using the GPS records, we first extract stops. Then we determine the
home and work locations of the users and assign non-home/work stops to
PoIs. In the next step, we extract the set of all trips to the PoIs and we com-
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pute the number of trips and distinct users for each cell and PoI. Finally, we
smooth the values of the grid cells using an algorithm based on personalized
PageRank [9].

The ranking-building phase uses the grid structure constructed to syn-
thesize rankings for top-k spatial keyword queries. Given a query, we first
locate the cell that contains the query location. Then the PoIs that have val-
ues in this cell are filtered according to the query keywords. The remaining
PoIs are sorted according to the scores produced by a scoring function that
is a weighted combination of the number of trips and the number of distinct
users of a PoI in the cell of a query. The first k PoIs constitute the output.

3.2 Stop Extraction

To extract stops, we use the ignition mode attribute. Similar to Cao et al. [16],
we employ a duration threshold parameter ∆th to check whether an OFF
record represents a stop. If the duration between consecutive OFF and ON
records exceeds ∆th, a stop is formed from the first GPS record. Arrival-
time attribute at and departure-time attribute dt of the stop correspond to the
timestamp attributes of the OFF and ON records, respectively.

Since GPS readings might be inaccurate or missing, we augment the pro-
cedure with a distance threshold dth. Only if the distance between the location
of the ON record and the location of the OFF record is below dth and the time
difference exceeds ∆th, the arrival record is classified as a stop.

To exclude stops at traffic lights but include short stops, e.g., to pick up
kids at a kindergarden, ∆th should be set to a value between 5–30 minutes.
Parameter dth can be set to a value in the range 100–500 meters.

If the GPS dataset does not contain an ignition mode attribute, the stops
can be extracted by the methods mentioned in Section 2.2. In other words, all
the subsequent steps of the proposed method are applicable to GPS trajecto-
ries in general.

3.3 Determining Home/Work Locations

Home and work locations are not of interest to our study, so a first step is to
eliminate stops that relate to such locations.

To determine home/work locations, we employ an algorithm based on
DBSCAN [21], which is a density-based clustering algorithm with two pa-
rameters, eps and minPts. If a point p has more than minPts points in its
eps-neighborhood, that is in the circular region centered at p with a radius of
eps, it is a core point. The points in the eps-neighborhood of a core point p
are said to be directly reachable from p. A point q is reachable from p if there
is a sequence of points 〈p1, ..., pn〉 with p1 = p and pn = q, where each pi+1
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is directly reachable from pi. The objects reachable from a core point forms a
cluster.

A

B C D

eps

E

Fig. D.1: An Example DBSCAN Cluster

Figure D.1 shows an example cluster with minPts set to 4. Here, A is a
core point since there are 5 points within its eps-neighborhood. Points B and
C are directly reachable from A, and E is reachable from A since there is a
sequence 〈A, C, D, E〉, where all of the preceding points of E are core points
and each point in the sequence is directly reachable from the preceding point.
All points reachable from A form the cluster.

The parameters are set to different values for each user since the total
number of stops differs among users. For a given user, we set minPts to a
value that is proportional to the number of distinct days this user has stops,
and we introduce a parameter phw as the constant of proportionality. For
instance, a phw value of 4/7 means that the user should have at least four
stops a week to consider clustering them into a home/work cluster.

To determine the eps parameter, we first compute the distances between
the locations of each stop belonging to the user and its nth nearest neighbor
stop with n = minPts. Then we sort these distance values and eliminate those
that exceed the globally defined distance threshold parameter (dnth). Finally,
for each distance value vi, we compute the percentage of increase of the next
distance value vi+1: (vi+1 − vi)/vi. The distance value with the maximum
percentage of increase becomes the eps parameter.

Having found the DBSCAN parameters of a user, we cluster his/her stops
with respect to the location and compute the average stay duration for each
cluster. If the duration exceeds a threshold ∆hw, we conclude that the cluster
represents a home/work location, and we mark the stops in the cluster as
home/work stops. The intuition behind using a duration threshold to deter-
mine home/work locations is that people typically spend a long duration at
home and work.
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3.4 Stop Assignment to PoIs

The next step is to assign the remaining stops to PoIs. The goal is to assign
as many stops to PoIs as possible while being conservative, thus getting as-
signments that are true with high certainty. To achieve this, we propose two
methods: distance based assignment and temporal pattern enhanced assignment.

Distance Based Assignment (DBA). Furletti et al. propose a stop an-
notation method [8] that uses a maximum walking distance parameter and
creates a list of PoIs that are within the maximum walking distance from the
location of the stop and that have opening hours matching the time of the
stop. Similarly, our DBA method searches for candidate PoIs in a circular
region centered at the location of a stop with radius adth, a distance threshold
that captures the maximum walking distance from the location of a stop to a
PoI. In addition, the DBA method employs a parameter lim that sets an upper
limit on the number of PoIs in the considered region. This avoids assigning
a stop to a PoI when there are too many nearby PoIs. In such situations, it
is not clear which nearby PoI was visited. Our goal is to make those assign-
ments that we can make with relatively high certainty, so that the preferences
of the users are captured while trying to avoid errors.

To assign a stop S to a PoI, we find the set of PoIs within the region
defined by the location of S and parameter adth. Then we check whether the
opening hours of the PoIs, if available, match with the arrival and departure
time attributes of S. If the cardinality of the result set is below lim, we assign
S to the closest PoI. Otherwise, we do not assign S to any PoI.

Temporal Pattern Enhanced Assignment (TPEA). The output of DBA
might contain unassigned stops. These occur when there are either too many
or no PoIs around the stops. We utilize temporal visit patterns to assign the
unassigned stops.

For each user, we cluster non-home/work stops with respect to their lo-
cations using DBSCAN with minPts equal to the lim and eps equal to adth
from DBA. If a cluster contains stops that are assigned to PoIs, we construct
a so-called visit-pattern matrix for the cluster.

In this 2D matrix, the first dimension represents different days, and the
second represents different times of a day. The value in a cell is the number
of PoIs that the user visited during the corresponding time period. We use
three levels of groupings of weekdays: top, weekdays/weekends, day. At the
top level, we do not use the day information and the matrix has only one row
and groups PoI visits by periods of a day. At the weekdays/weekends level,
the matrix contains one row for weekdays and one for weekends. At the day
level, we build seven rows, one for each day of the week. An example matrix
for the weekdays/weekends level is shown in Table D.1.

Next, for each unassigned stop in the cluster, we check the number of
PoIs for the corresponding cell starting from the top level of day grouping. If
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Table D.1: Example Visit-Pattern Matrix

00:00
06:00

06:00
12:00

12:00
18:00

18:00
00:00

Weekdays 0 0 2 0
Weekends 0 0 1 0

Poi1

p
1 - 14:15 Mon

 

p
2 - 14:15 Wed

 

p
1 - 13:25 Tue

 

16:15 Wed
 

p
3 - 13:25 Sun

 

(a)

00:00
06:00

06:00
12:00

12:00
18:00

18:00
00:00

0 0 3 0
(b)

Fig. D.2: Cluster of Stops and Visit-Pattern Matrix - Top Level

there is only one PoI, we assign the stop to this PoI. If there is more than one
PoI, we proceed to the weekdays/weekends level and, finally, the day level.
Otherwise, we conclude that we cannot assign the stop.

Example. Figure D.2a represents one of the clusters of a single user after
the assignment with DBA. Yellow rectangles and red circles represent the
assigned and unassigned stops, respectively. The corresponding PoIs are
denoted by p1, p2, and p3. We want to assign the stop in the ellipse, and we
break a day into four 6-hour periods.

We first check the matrix at the top level. We only have visits to PoIs in the
time period between 12:00 and 18:00, and 3 distinct PoIs are visited. The top
level matrix is shown in Table D.2b. Since the relevant cell value (3) exceeds
1, we consider the weekdays/weekends level. We have 3 stops on weekdays
with 2 different corresponding PoIs, and we have 1 stop on weekends. The
matrix is shown in Table D.1. The value of the relevant cell is 2, so we move
to the day level, which is shown in Table D.2.

Table D.2: Visit-Pattern Matrix - Day Level

00:00
06:00

06:00
12:00

12:00
18:00

18:00
00:00

...
Wednesday 0 0 1 0
...

Now the value of the relevant cell (Wednesday, 12:00-18:00) is 1, so the
user visited only p2 on a Wednesday during the time period containing 16:15.
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Therefore, we assign the stop to p2.

3.5 Computing Values of Grid Cells

We use Danske Kvadratnet1, which is the official geographical grid of Den-
mark, as the underlying grid structure. The grid consists of equal-sized
square cells of size 1 km2 and it contains 111, 000 cells.

Initializing Values of Grid Cells. Next, for each PoI pi, we form the set
Tpi of trips to pi. Using these sets, we initialize a grid structure for each PoI.
For each cell, the number of trips from the cell to the PoI and the number of
distinct users making these trips are computed and recorded.

Table D.3: Number of Cells out of 111, 000 cells with Non-zero Values for Top-5 PoIs

PoI ID Before Smoothing After Smoothing
1 148 2, 021
2 142 1, 521
3 115 2, 123
4 98 2, 148
5 98 1, 652

Smoothing the Values. After the initialization, many PoIs have sparse
grids, where many cells have no trips to the PoIs. Table D.3 shows the num-
ber of cells with non-zero values for top-5 PoIs. Only 3 PoIs have more than
100 cells with non-zero values after initialization. Sparse grids are a prob-
lem since this reduces the number of spatial keyword queries that we can
construct rankings for. If neighboring cells of an empty cell have non-zero
values, it is reasonable to assume that trips starting in these cells are also
relevant for the empty cell. So, the neighboring cell values can be used for
smoothing to address the sparsity problem. The smoothing also helps reduce
noise in cell values.

As the smoothed grids of multiple PoIs will be used in the ranking build-
ing phase, a smoothing method should have two properties. First, for a PoI,
a smoothing algorithm should not change the sum of all the values in the
grid for that PoI. Inflating or deflating the sum of values would unfairly pro-
mote or demote the PoI in relation to other PoIs in a constructed ranking.
Second, the ordering of the values for all PoIs in a specific cell before and af-
ter smoothing should be similar in order to reduce distortion of the original
spatial popularity data for the PoIs.

The literature contains some smoothing and interpolation methods for
spatial grid based data. The inverse distance weighting (IDW) method [26]
is proposed to interpolate missing values using distance-based weighting.

1http://www.dst.dk/da/TilSalg/produkter/geodata/kvadratnet
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This method builds on the intuition that the effect of a cell’s value on the
value of an originally empty cell should depend on how close the cell is
to the empty cell. However, IDW does not contain a smoothing method,
and it changes the sum of values in the grid. Therefore, we do not utilize
IDW in our work. Kernel-based methods [27] have also been proposed for
smoothing. For these, it is possible to preserve the sum of the values since
they produce a probability distribution as output. The sum of the values
can then be distributed according to this distribution. However, they might
introduce changes to the ordering of grid cells since kernel-based methods
yield continuous functions that might not reflect the original properties of
the data.

We use a smoothing algorithm based on personalized Pagerank [28] to
interpolate values for cells with no trips. The PageRank algorithm was pro-
posed for web graphs, where web pages are the vertices and hyperlinks are
the edges. The algorithm assigns a page rank value to each website to indi-
cate the relative importance of it within the set. A web page is considered
important if other important web pages link to it. The algorithm can be
described as a random walk over a directed graph G = 〈V, E〉. A random
walker starts from a randomly chosen vertex. Then, with probability 1− α, it
follows an outgoing edge, and with probability α, it teleports to another ran-
domly chosen vertex y ∈ V, where α has the same value for each web page
and 0 < α < 1. The PageRank of a vertex is the probability that a random
walker will end up at the vertex.

Personalized PageRank [9] was proposed in order to incorporate person-
alized preferences. This is achieved by changing the uniform probability
distribution of teleportation to a random web page to a personalization pa-
rameter that is basically a distribution based on user preferences. We use this
parameter to utilize the initial values of the grid cells while smoothing the
values.

The PageRank algorithm is a good candidate for smoothing, since, if a
cell is close to another cell, they should have similar values just like the page
rank values for the web pages linking to each other. The main idea is that if
a PoI is of interest to drivers leaving from a cell, it might also be of interest
to drivers leaving from nearby cells.

We first convert the underlying grid into a directed graph. For each cell,
we introduce a vertex. Then, we add edges from a “cell” to the neighboring
“cells” with weight w = 1/d2, where d denotes the distance between the cen-
ters of the cells. The edge weights define how the page rank value of a vertex
should be distributed to the adjacent vertices. In the initial version of PageR-
ank, it is equally distributed. In our case, we use weights based on distance
to make sure that the page rank value is distributed inversely proportional
with the distance between the grid cells corresponding to the vertices. Then
we apply PageRank to this graph for both number of trips and number of
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users values. We use the initial cell values obtained after the initialization to
determine the personalization parameters. The probability of teleportation to
a vertex is set proportional to the actual value of the corresponding grid cell.

The procedure yields a probability distribution that indicates the likeli-
hood that a random walker will end up at a particular vertex. We distribute
the total number of trips and the total number of distinct users to the cells
proportional to the output probability distribution. For instance, assume that
we are smoothing the numbers of trips and that the total number of trips
to the PoI is 100. A cell with probability 0.23 then gets the value 23. Note
that this smoothing procedure is done for each PoI. Table D.3 shows that
smoothing provides a significant increase in the number of cells with non-
zero values.

Example. Let G be a grid with cells c1, c2, c3, c4, c5, c6. The grid structure
is shown in Figure D.3a. The first value represents the number of trips from
each cell to a PoI before smoothing.

c1 - 0,
0.126,
1.890

c2 - 10,
0.277,
4.155

c3 - 2,
0.141,
2.115

c4 - 2,
0.135,
2.025

c5 - 1,
0.201,
3.015

c6 - 0,
0.120,
1.800

(a)

c1 c2 c3

c4 c5 c6

11 11

11 11

11 11110.50.50.50.5 0.50.50.50.5

(b)

Fig. D.3: Grid Structure and Corresponding Graph

The graph representing the grid is given in Figure D.3b. Each vertex
has an edge to each vertex that represents a neighboring cell. Each edge is
assigned a weight as explained above. For instance, the distance between c1
and c2 is 1 unit, and the distance between c1 and c5 is

√
2 units, so the weight

of edge (c1, c5) is 1/d2 = 0.5.
Then, we apply personalized PageRank using the initial values as the

personalization input. The second value of each cell in Figure D.3a represents
the resulting probability of the cell.

Finally, we distribute the sum of the values according to the pagerank
values. The third value of each cell in Figure D.3a represents the smoothed
value. Here, c5 has the second largest value because it is closer to the cell
with the largest value (c2) than c4 and c6, and it has more edges than c3 and
c1 since it is in the middle column. The effect of the number of edges is
not an issue when smoothing is applied on a large grid since the grid cells,
except the cells on the boundary of the grid structure, have the same number
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of edges.

3.6 Extracting Rankings for Queries using the Model

To form a ranking for a given top-k spatial keyword query, we use the grid
model.

Algorithm D.1 The Algorithm for Ranking-building Phase
Input: q - top-k spatial keyword query, model - the grid model
Output: rk - a ranked list of PoIs

1: c← the corresponding grid cell for q.l in model
2: p← the set of PoIs that have values in c
3: p f ← the PoIs in p which are filtered using the query keywords q.φ
4: Rank the PoIs in p f with respect to their values in c and assign it to rall
5: if rall has more than k elements then
6: rk ← the first q.k elements of rall
7: return rk
8: else
9: return rall

10: end if

The algorithm, given in Algorithm D.1, first finds the cell that contains the
query location l. Then it filters the PoIs with values in the cell with respect to
the query keywords to exclude the PoIs that do not contain query keywords.
Here, we assume that all PoIs with descriptions that do not contain any of
the query keywords will not be among the popular ones for this query. The
ranking is computed using the ranking function given in Equation D.1, where
n denotes the number of trips, d denotes the number of distinct users, and β
is the weighting parameter.

s = β× n + (1− β)× d where 0 ≤ β ≤ 1 (D.1)

If there are more than k relevant elements in the ranking then the top k
elements form the output of the algorithm, as shown in Lines 5–7. Otherwise,
the ranking is the output, as shown in Line 9. It is important to note that the
output ranking might contain fewer than k elements. Although the algorithm
does not produce a complete ground-truth ranking, the partial ranking is still
useful for evaluation purposes as it provides valuable information about the
expected result.
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4 Experimental Evaluation

In Section 4.1, we report on studies aimed at understanding effects of param-
eter settings. In Section 4.2, we compare the stop assignment methods with
a baseline method. Finally, we study the effect of smoothing and weighting
parameters on the output rankings in Section 4.3. We do not present a com-
plexity analysis since we think that it is not a real concern due to the fact that
model-building is performed only once.

In the experiments, we use 0.4 billion GPS records collected from 354 cars
traveling in Nordjylland, Denmark during March to December 2014. The PoI
dataset used in the experiments contains around 10, 000 PoIs of 88 categories.
All of the PoIs are located in or around Aalborg.

4.1 Exploring the Parameters

To explore the effects of changing the parameters on the outputs of the dif-
ferent steps, we vary one parameter at a time while fixing other parameters
to their default values. The parameters are described in Table D.4.

Stop Extraction

Here, we study the effect on stop extraction of varying ∆th and dth.

0 5 10 15 20 25 30 35 40 45 50 55 60
Parameter ∆th (minutes)

0

100000

200000

300000

400000

500000

600000

N
um

be
r o

f S
to

ps

(a)

50 100 150 200 250 300 350 400 450 500
Parameter dth (meters)

346000

347000

348000

349000

350000

351000

352000

N
um

be
r o

f S
to

ps

(b)

Fig. D.4: Effects of Parameters ∆th and dth

As shown in Figure D.4a, the number of stops decreases as ∆th increases,
as expected. The decrease is smooth. In order to capture meaningful stops
from GPS data, parameter ∆th should be set to a value in the range of 5–30
minutes since this setting would exclude quite short stops which might not
be a visit to a PoI and as we see from the figure, there are a lot of quite short
stops.

As can be seen in Figure D.4b, the number of stops increase when dth in-
creases, which is as expected. Although this parameter has some effect on the
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Table D.4: Parameters

Notation Step Explanation
Default
Value

∆th

Stop extraction

Minimum duration be-
tween two GPS records to
consider the first one as a
stop.

10 minutes

dth

Maximum distance be-
tween two GPS records to
consider that their loca-
tions match.

250 meters

∆hw Determining
home and work
locations

Minimum average stay
duration in home/work
locations.

240 minutes

phw

Minimum fraction of
days in a week a per-
son is expected to visit
home/work.

Three days a
week (3/7)

adth
Stop assign-
ment to PoIs

Maximum distance be-
tween a PoI and the loca-
tion of a stop.

100 meters

lim

Maximum number of
PoIs within the region
bounded by the location
of a stop and the adth
parameter.

5 PoIs

number of stops extracted, the increase in the number of stops is negligible.
This parameter is introduced to eliminate inaccurate GPS readings, and the
results suggest that there are only few inaccurate readings in our dataset.

Determining Home/Work Locations

Here, we analyze the effect of phw and ∆hw on determining home/work loca-
tions.

As shown in Figure D.5a, both the number of home/work locations and
the number of stops assigned to home/work locations decrease when phw
increases, because of the fact that more weekly stops are required to form a
cluster. The decrease in the former is sharper than the decrease in the latter
which is a consequence of that parameter phw is used to limit the number of
stops in a cluster to be considered as a home/work location. The clusters that
are left out when phw increases are the clusters with a small number of stops.
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Fig. D.5: Effect of Parameters phw and ∆hw

This is why the decrease in the number of stops assigned to home/work loca-
tions are not as sharp as the decrease in the number of home/work locations.

Figure D.5b shows that the numbers of home/work locations and stops
decrease as ∆hw increases, as expected. Unlike when increasing phw, the
patterns of decrease are quite similar for both when increasing ∆hw. This
suggests that the average durations that users spend inside clusters are not
correlated with the number of stops in the clusters.

Stop Assignment to PoIs

Here, we analyze the effect of parameters adth and lim on the assignment of
stops to PoIs. In addition, we assess the effect of adth on the distance between
stop location and the assigned PoI for TPEA. Figure D.6 shows the effect of
varying adth on the number of stops that can be assigned to PoIs and the
number of PoIs that receive assignments of stops when lim is set to 5 or 10.
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Fig. D.6: Effect of Parameter adth

Figure D.6a shows that for both lim values, the number of assigned stops
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increases up to a point and then decreases when adth increases. When adth
is small, it is impossible to assign some stops since there are no PoIs in the
region defined by the location of the stop and the parameter. However, when
adth increases, the number of PoIs within the bounded region increases as
well. At some point, the number of PoIs starts to exceed the value of lim, and
we are unable to assign the stop to a PoI. When this occurs, the number of
stops starts to decrease.

Figure D.6b shows that the number of PoIs with stops assigned to them
follows a very similar pattern. The decrease after an increase is also the result
of having too many PoIs (> lim) inside the region bounded by parameter adth.
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Fig. D.7: Effect of Parameter adth on Distance Distribution for TPEA

Figure D.7 shows the effect of varying adth on the distribution of the dis-
tance between the stop location and the assigned PoI for TPEA when lim
is set to 5. The red lines show the medians, and the green lines show the
means of the distance values. For this experiment, we only consider the stop
locations assigned by TPEA. The figure shows that the distance between the
stop and the assigned PoI increases when adth increases, as expected since
parameter eps is set to adth parameter in the density based clustering. This
figure also shows that although no specific distance threshold parameter is
employed by TPEA, the distance between the stop and the assigned PoI does
not exceed a few multiples of adth since it employs density-based clustering
to form the visit pattern matrices. In other words, the assigned PoIs when
TPEA is employed are still within reasonable distance from the stops.
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Fig. D.8: Effect of Parameter lim

Figure D.8 shows the effect of varying parameter lim on the number of
assigned stops and the number of PoIs in assignments when adth is set to 100
or 250 meters. As expected, both the number of stops and the number of PoIs
increase when lim increases because the algorithm is able to assign stops that
it could not assign for smaller values of lim.

Figures D.6 and D.8 also show that TPEA is able to assign additional stops
using the temporal patterns of the users found in the initial assignment with
the DBA method. For instance, the number of stops assigned using TPEA is
around 110, 000 while it is 90, 000 using DBA in Figure D.6a for adth = 100
and lim = 5.

4.2 Evaluation of Stop Assignment

To evaluate the accuracy of stop assignment methods, we use the home/work
locations extracted from GPS data using the method explained in Section 3.3
since we do not have access to a proper ground-truth data. To extract home/
work locations, we use the default values given in Table D.4 for parame-
ters ∆hw and phw. Then, the extracted home/work locations are inserted to
the PoI database. The assignments of home/work stops to the newly in-
serted home/work PoIs forms the ground-truth dataset for this experiment.
In other words, no stops are assigned to any regular PoI in this ground truth.
However, we use the set of all PoIs (regular PoIs and home/work PoIs) in this
experiment. We assign the complete set of stops using the proposed meth-
ods and compare our methods with the closest assignment method (CA) that
assigns the stop to the closest PoI regardless of the number of PoIs around it.

In particular, we report the precision and recall [29] for the stop assign-
ment methods. The true positives are the stops marked as home/work stops
that are assigned to the correct home/work PoI, and the false positives are
the non-home/work stops that are assigned to a home/work PoI. The false
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negatives are the home/work stops that are assigned to a PoI different from
the ground-truth PoI or are not assigned at all.
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Fig. D.9: Precision and Recall

Figure D.9a shows that precision values of DBA and TPEA are higher
than that of CA. The precision of DBA is slightly higher than that of TPEA
since utilization of the temporal visit patterns of the user can introduce false
positives. The precision, at 0.93, indicates that DBA and TPEA are able to
assign home/work stops and the remaining stops almost correctly.

Figure D.9b shows that CA has better recall than DBA and TPEA that
cannot assign all the home/work stops due to the constraints set by parame-
ters adth and lim. Since the unassigned home/work stops are false negatives,
DBA and TPEA have lower recall than CA. For adth = 50 and adth = 100,
DBA and TPEA achieve a recall above 0.8. TPEA achieves a slightly higher
recall because of an increase in the true positives and a decrease in the false
negatives compared to DBA.

4.3 Exploring the Effect on Output Rankings

We proceed to study the effect of the grid smoothing method and the weight-
ing parameter of the ranking function (β) on the output top-k rankings.

Smoothing, described in Section 3.5, changes the original values of the
grid as well as introduces non-zero values in cells that lack data. This, in
effect, extrapolates the available data to wider geographical areas, but it may
also distort the original data. To observe the effect of the smoothing, we
compute the top-10 PoIs for the grid cells that have initial values for at least
10 different PoIs, before and after smoothing, and we report the distribution
of the Kendall tau distance [30] between them. The top-10 lists are formed
according to the ranking function in Equation D.1.

To explore the effect of the weighting parameter (β) in Equation D.1, we
present the average Kendall tau distance between the rankings constructed
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for top-k spatial keyword queries using different β values. The set of queries
used in this experiment consists of top-k queries with k = 10 and k = 15. The
set of keywords used in top-k queries is {“restaurant”, “supermarket”,“store”},
and the set of locations include the centers of grid cells that contain values
for at least k PoIs.

Kendall Tau Distance. The distance is defined in Equation D.2 [30],
where R1 and R2 denote the rankings that are compared and P is the set
of pairs of the PoIs.

K(R1, R2) =

∑
(p,q)∈P

K̄p,q(R1, R2)

|P| (D.2)

Function K̄p,q is given in Equation D.3. If R1 and R2 agree on the ranking
of PoIs p and q, the function evaluates to 0; otherwise, it evaluates to 1.

K̄p,q(R1, R2) =

{
0 if R1 and R2 agree on p, q
1 if R1 and R2 do not agree on p, q

(D.3)

Effect of Smoothing

We report the Kendall tau distance distributions between top-k rankings ob-
tained before and after smoothing for different β values.
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Fig. D.10: Kendall Tau Distance Distribution

136



5. Conclusion and Future Work

The results are shown in Figure D.10, where the red lines show the me-
dians and the green lines show the means of the distance values. The points
denoted by a plus sign shows outlier distance values. On average, we achieve
a Kendall tau distance around 0.15, which means that we can capture 85%
of the relations between pairs after smoothing. We can also see that for all
β values, the resulting distribution is right-skewed. We achieve a Kendall
tau distance less than 0.1 for half of the grid cells and a Kendall tau distance
around 0.3 for 75% of the grid cells. Further, for β values 0, 0.25, and 0.5, the
smoothing does not introduce any changes in top-k PoIs for at least 25% of
the grid cells.

Effect of Weighting Parameter

Figure D.11 reports the average Kendall tau distance between the top-k rank-
ings produced using different β values for top-10 and top-15 queries. For
instance, in Figure D.11a, the green bar on the group β = 0 indicates that
the average Kendall tau distance between the rankings produced with β = 0
and β = 0.25 is around 0.12. The distances between rankings produced with
different β values are less than 0.2. This suggests that the proposed model to
extract output rankings is not overly sensitive to the weighting parameter.
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Fig. D.11: Avg. Kendall Tau Distance for Top-k queries

5 Conclusion and Future Work

The paper proposes a model with two phases, model-building and rank-
building, to synthesize rankings for top-k spatial keyword queries based on
historical trips extracted from GPS data. We propose a novel stop assignment
method that makes use of the distances between the locations of the stops
and the PoIs as well as temporal information of the stops to obtain the trips.
We also propose a Pagerank-based smoothing method in order to extend the
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geographical coverage of the model. Experiments show that the model is able
to produce rankings with respect to the visits of the users, and that the output
rankings produced by the model are relatively insensitive to variations in the
parameters.

In future work, it is of interest to use the methods proposed here for eval-
uation of the ranking functions for spatial keyword queries, as this is the mo-
tivation behind this work. Another future direction is to explore probabilistic
stop assignment in order to contend better with dense regions since the pro-
posed methods use a conservative distance based approach when assigning
stops to PoIs. In other words, we assign a stop to a PoI if it is highly prob-
able that the visit occurred. As a result, it is not possible to assign stops in
regions with many PoIs. It is also of interest to try to employ more advanced
home/work identification methods to be able to determine home/work lo-
cations more accurately. It is also of interest to combine data sources like
geo-coded tweets and check-ins with GPS data to form rankings for spatial
keyword queries.
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Abstract

Identifying visited points of interest (PoIs) from vehicle trajectories remains an open
problem that is difficult due to vehicles parking often at some distance from the vis-
ited PoI and due to some regions having a high PoI density. We propose a visited PoI
extraction (VPE) method that identifies visited PoIs using a Bayesian network. The
method considers stay duration, weekday, arrival time, and PoI category to compute
the probability that a PoI is visited. We also provide a method to generate labeled
data from unlabeled GPS trajectories. An experimental evaluation shows that VPE
achieves a precision@3 value of 0.8, indicating that VPE is able to model the rela-
tionship between the temporal features of a stop and the category of the visited PoI.
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1. Introduction

1 Introduction

Mobile devices and vehicles are often able to track their movements using
GPS and other localization methods. The resulting trajectories can be used
in several fields such as traffic management, security, and location based ser-
vices. As the amount of available trajectory data increases day by day, it
becomes increasingly important to be able to assign semantic information to
this data. Indeed, a number of studies consider the enrichment of trajecto-
ries with semantic information. SMoT [1] and CB-SMoT [2] annotate stops.
SMoT requires a predefined set of candidate places to stop while CB-SMoT
uses clustering and speed information to detect stops that are not predefined.
Further, many proposals [3–8] use some form of clustering to extract interest-
ing and significant locations. Bhattacharya et al. [9] propose a method based
on bearing change, speed, and acceleration to identify interesting locations.
Some of the methods proposed [6, 7] also support ranking of output loca-
tions. We focus on the identification of visits to PoIs because identified visits
can provide valuable insights about the behavior of users. In particular, this
information can help understand the popularity or the importance of PoIs,
which in turn is useful when location-based services, such as spatial keyword
search, are designed and evaluated [10].

There are a few studies on extracting visited PoIs and activities from
GPS trajectories. Nishida et al. [11] propose a probabilistic PoI identifica-
tion method for GPS and Wi-Fi trajectories. The method is semi-supervised
and employs a hierarchical Bayesian model that makes use of personal prefer-
ences, stay locations, and stay times for each PoI category to assign a stop to
a PoI. Bhattacharya et al. [12] propose a two-phase algorithm to assign stops
to PoIs given a PoI database containing a polygon for each PoI and mobile
phone trajectory data. The first phase includes generation of random points
according to an error distribution for each GPS record and kernel density es-
timation on the latitude, longitude, and time dimensions. The second phase
ranks the PoIs using a line segment intersection based approach. However,
both of these studies require mobile trajectory data that includes walking
GPS data and Wi-Fi data. In contrast, extracting visits to PoIs from vehicle
trajectories is different since drivers often park their vehicle some distance
from the location of the visited PoI and walk to the PoI, with walking not be-
ing part of the trajectory. Another complication is that while a mobile phone
is personal, a car is often shared. Thus, it is difficult to personalize car trajec-
tories. Furletti et al. [13] and Keles et al. [10] use a distance based approach
to assign stops to PoIs. However, these methods are not accurate when stops
are surrounded by many nearby PoIs. The assumption that the closest PoI is
visited often does not apply in this scenario.

We propose a method to extract visited PoIs from vehicle GPS trajectories
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that takes into account temporal aspects. The method employs a time-based
Bayesian network with distance based filtering to determine the category of
a visited PoI. In order to learn the Bayesian network, we use a labeled dataset
constructed using distance based assignment based on cases where there is
only a single possible PoI within the vicinity of a stop. The Bayesian network
takes weekday, arrival time, and stay duration into account to determine the
category of the visited PoI.

To summarize, we present a method for the extraction of visited PoIs
from vehicle trajectories. The main contributions are: (i) An algorithm using
a temporal feature-based Bayesian network in combination with distance-
based filtering to assign a stop to a PoI, (ii) A distance-based method to
construct labeled temporal feature vectors from vehicle trajectories, (iii) An
evaluation using a dataset of about 0.4 billion GPS records obtained from 354
users over a period of nine months.

The remainder of the paper is organized as follows. Section 2 covers
preliminaries and the problem definition. The proposed method is presented
in Section 3. Section 4 covers the evaluation, and Section 5 concludes the
paper.

2 Preliminaries

2.1 Data Model

The method in this paper relies on GPS data collected from cars and a point
of interest (PoI) database to find visited PoIs for each user.

Definition E.1 (Point of Interest). A point of interest (PoI) P is a five-tuple 〈id, x,
y, c, o〉, where id is an identifier, x and y are coordinates, c is the set of categories of
the PoI, and o is the opening hours of the PoI for each day of the week. A category
can be one of the place types supported by the Google Places API 1 and there are no
hierarchical relations among categories.

An example PoI is 〈Louvre Museum, 451327, 5412229, museum, {09:00–
18:00, 09:00–22:00, 09:00–18:00, 09:00–22:00, 09:00–18:00, 09:00–18:00}〉, where
coordinates are given in the Universal Transverse Mercator (UTM) coordinate
system, and the opening hours information is a set containing opening hours
for each weekday.

Definition E.2 (GPS Record). A GPS record G is a five-tuple 〈u, t, x, y, im〉, where
u is a user ID, t is a timestamp, x and y are coordinates, and im is the ignition mode
of the vehicle obtained from GPS device preinstalled on the vehicle.

1https://developers.google.com/places/supported_types
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The trajectory of a user is defined by sorting GPS records of the user with
respect to the timestamp t.

Definition E.3 (Trajectory). A trajectory TR of a user is the sequence of GPS
records from this user ordered by timestamp t: TR = G1 → ... → Gi → ... → Gn.
We denote the set of all trajectories by STR.

We are interested in the locations where a user stopped and spent longer
time than a predefined threshold. We extract such stops for all users from
STR.

Definition E.4 (Stop Location). A stop location S is a three-tuple 〈G, at, dt〉, where
G is a GPS record that represents the stop, at is the arrival time at the stop location,
and dt is the time of departure from the stop location.

We assume that a user stops at a location to visit a PoI.

Definition E.5 (Assignment). An assignment A is a pair 〈S, P〉 of a stop location
S and a PoI P, indicating that the user who stopped at location S visited PoI P. The
set of all assignments SA might not contain all stop locations due to various reasons.

2.2 Problem Statement

Let STR denote a set of GPS trajectories and SP denote a database of PoIs in
the geographical region covered by STR.

We tackle the problem of identifying visits of users whose trajectories
are given in STR to the PoIs contained in SP. This problem can be divided
into two sub-problems: Identifying the stops in trajectories, and assigning
the stops to PoIs with the available information. We focus on the second
problem.

3 Visited PoI Extraction

We propose Visited PoI Extraction (VPE), a method that employs a Bayesian
network to extract visited PoIs. Section 3.1 gives the overview of VPE, and
Sections 3.2 and 3.3 detail how we build the Bayesian network and how it is
used for assignment, respectively.

3.1 Overview

VPE uses a Bayesian network in combination with distance-based filtering
to determine the most likely PoI category of a stop location. The Bayesian
network represents the relationship between a stop (based on the weekday,
time, and duration of the stop) and the category of the PoI. To learn the
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Bayesian network, VPE includes a method to construct a labeled dataset from
GPS records because human labeled datasets like check-ins are usually not
available for vehicle trajectories. The assignment phase assigns a given stop
location to a PoI using the Bayesian network built in the previous phase. It
computes the joint probability of the category and stop location and outputs
the category with the maximum probability. Additionally, the set of possible
categories is restricted to the categories of nearby PoIs.

3.2 Building the Bayesian Network

Start

Stop Location 

Extraction

Labeled Dataset 

Construction

Learning the 

Bayesian Network
End

Determining Home/

Work Locations

STR: Set of user 

trajectories
SP: PoI database

Fig. E.1: Flowchart of Building the Bayesian Network

The flowchart for building the Bayesian network is given in Figure E.1. It
consists of four phases: stop location extraction, determining home/work lo-
cations, labeled dataset construction, and learning the Bayesian network. We
need to determine home/work locations in order not to assign stops which
correspond to home/work place to any PoIs. In other words, it excludes
stops that are related to home/work locations, which is a necessary step to
identify true visits to PoIs.

Stop Location Extraction and Determining Home/Work Locations

To extract stop locations and to determine home/work locations of users, we
use methods employed in previous work [10]. For stop location extraction, we
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use a duration threshold parameter ∆th and a distance threshold parameter
dth to infer whether a GPS record with ignition mode IGNITION-OFF corre-
sponds to a stop location. If the time difference between an IGNITION-OFF
record and the next IGNITION-ON record exceeds ∆th and the spatial dis-
tance between them is below dth, the location of the IGNITION-OFF record is
classified as a stop location.

To determine the home/work locations of a user, we employ a density
based clustering approach. First, we cluster the stop locations of a user with
DBSCAN [14]. The parameters of DBSCAN are determined with respect to
a proportionality parameter (phw). For instance, a phw value of 5/7 means
that the user should have at least 5 stop locations per week for a set of stop
locations to form an output cluster. If the average stay duration of the GPS
records in an output cluster exceeds a duration threshold (∆hw), we conclude
that the stop locations forming the cluster are home/work stops.

Labeled Dataset Construction

To learn a Bayesian network, we need labeled stop locations to estimate distri-
butions of stop locations over weekdays, arrival times, and stay durations for
each PoI category. A labeled stop is an assignment that maps the stop loca-
tion to the visited PoI. Unfortunately, labeled stops are typically not available
for vehicle trajectories. Thus, VPE includes a method for extracting labeled
stops directly from the trajectories. To generate labeled stops, we rely on
distance based assignment (DBA) [10] with extreme parameter settings. The
DBA method takes a stop location, a distance threshold parameter (adth), and
a limit parameter (lim) as input. It assigns the stop location to the closest
PoI if the number of PoIs in the circular region centered at the location of
the stop location with a radius of parameter adth is below parameter lim. We
use lim = 1 that makes it highly probable that the PoI a stop is assigned to
is the actual visited PoI because DBA only assigns a stop location to a PoI
if the PoI is the only PoI within the region surrounding the stop. Thus, the
correctness of resulting labeled stops should be sufficiently large to derive
distributions for the temporal parameters in the Bayesian network. Let us
note that the labeled set is drawn from a different feature base, i.e., it is com-
pletely distance-based, and thus the derived temporal samples are labeled
based on an independent feature space.

Learning the Bayesian Network

The Bayesian network contains four nodes. One node is the category of the
PoI that the stop is assigned to. The three remaining nodes correspond to
three attributes that can be inferred from a stop location: time index, day
index, and stay duration, which is the difference between the at and dt at-
tributes of a stop location. The time and day index values are determined
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from the arrival time (at) at the stop location according to the parameters
of time period duration tp and day granularity dg. The day is divided into
equal time slots of duration tp, and the time index is a value identifying the
time slot. For instance, if tp is 2 hours and at is 08:23, the time index value
is 4. Possible values of dg are 1, 2, and 3 corresponding to a daily level, a
weekdays-weekend level, and no distinction, respectively. So, if dg is set to 1,
we have 7 possible values for the day index, and if dg is set to 2, we have 2
possible values.

Time Index

Category

Day Index

Stay Duration

Fig. E.2: Structure of the Bayesian Network

The structure of the Bayesian network is shown in Figure E.2. Each node
refers to an attribute inferred from a stop location and contains a conditional
probability table. A directed edge from node A to node B shows that the
value of attribute B is dependent on the value of attribute A. The structure
is based on the preliminary analysis of the labeled dataset constructed by the
method explained in Section 3.2 with parameter adth = 100 m.

(a) (b)

Fig. E.3: Day and Time Index Distributions for Universities

The day and time distributions for the university category when tp = 1
and dg = 1 are illustrated in Figure E.3. According to these distributions,
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people tend to visit universities on weekdays (1–5), arriving during the time
period 08:00–10:00. These distributions also show that the day of the week
and the time have an affect on the probability of visiting a category, and
this is why we have edges from the time index and day index nodes to the
category node in the Bayesian network.
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Fig. E.4: Stay Duration Distribution for Different Categories

The stay duration distribution for some categories is shown in Figure E.4,
where the green and red lines represent mean and median values, respec-
tively. This figure shows that the category has a significant impact on the
stay duration. For this reason, we have an edge from the category node to
the stay duration node. We model the stay duration values of each category
as a log-normal distribution [11]:

sd ∼ lnN (µ, σ2),

where µ and σ are the mean and standard deviation of the stay duration
values for a category. For the stay duration node, we compute the observed
mean and standard deviation for each category while learning the Bayesian
network. The observed distribution is then used to compute conditional
probability of a stay duration value given a PoI category.

After deciding the structure, we learn the Bayesian network with the la-
beled dataset. The learning here means forming conditional probability ta-
bles for the nodes of Bayesian network.
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3.3 Assignment using Bayesian Network

We proceed to explain how the Bayesian network is used to assign a stop
location to a PoI. The assignment method employs distance-based filtering,
which reduces the number of possible categories. It does so by filtering the
PoIs according to a distance factor parameter (df ) that together with adth,
introduced in Section 3.2, determines a distance threshold.

Algorithm E.1 The Assignment Algorithm

Input: bn - Bayesian network, sl - Stop location, adth - distance threshold for
labeled dataset construction, df - distance factor, tp - time period duration,
dg - day granularity

Output: p - visited PoI
1: ti← time index of sl wrt tp
2: di← day index of sl wrt dg
3: sd← stay duration of sl
4: adt← adth · df . calculation of distance threshold
5: pSet← set of PoIs within adt meters of sl
6: cSet← getCategories(pSet) . set of categories of PoIs
7: cSelected← argmaxcat∈cSet P(cat, ti, di, sd) . computation of joint

probability using Bayesian network bn
8: if ∃!p ∈ pSet; (p.c = cSelected) then
9: return p

10: else
11: return . unique assignment is not possible
12: end if

The algorithm is given in Algorithm E.1. It takes a Bayesian network, a
stop location, a distance threshold, a factor, a time period duration, and a
day granularity as inputs and outputs a PoI that the stop location is assigned
to. First, it computes time index, day index, and stay duration values using
the input stop location as shown in lines 1–3. Then it calculates the distance
threshold in line 4 and filters the PoIs around the given stop location and
forms the set of possible categories, in lines 5–6. The filtering also uses open-
ing hours information if it is available. Then it selects the most probable
category from the set of possible categories by computing the joint probabil-
ity of category, stay duration, day index, and time index using the Bayesian
network (line 7). The joint probability is computed using Equation E.1.

P(cat, ti, di, sd) = P(di) · P(ti) · P(cat | di, ti) · P(sd | cat) (E.1)

If only one PoI has the selected category, that PoI is returned. Otherwise,
the stop location is not assigned to any PoIs (line 11).
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4 Experimental Evaluation

We continue with evaluating the proposed method. We present the experi-
mental setup in Section 4.1. Then we report on studies aiming to understand
the effect of parameters in Section 4.2. In Section 4.3, we present the effect of
distance based filtering (DBF) on VPE. Finally, we report on the stay duration
distributions of the output assignments in Section 4.4.

4.1 Experimental Setup

We use GPS data collected from 354 cars during the period 01/03/2014–
31/12/2014 with a frequency of 1 Hz. The trajectory dataset contains around
0.4 billion GPS records and the PoI dataset contains around 10, 000 PoIs of 88
categories. The majority of GPS records and all of the PoIs are located in or
around Aalborg, Denmark. The complete dataset is used in all experiments.

We use default values for the parameters controlling stop location extrac-
tion and home/work stop location extraction since our focus is assignment
of stop locations to PoIs. The parameters ∆th, dth, ∆hw, and phw are set to 10
minutes, 250 meters, 240 minutes, and 3/7 (three days a week), respectively.
With the default parameters, we obtain 349, 637 stop locations, out of which
129, 836 correspond to home/work stops.

In order to evaluate the proposed VPE method, we construct a ground
truth dataset. We use a labeled dataset constructed by using the method
explained in Section 3.2. The labeled dataset obtained with adth = 100 m
contains 36, 691 assignments. The top-5 PoI categories and the number of
stop locations which are assigned to a PoI of this category are as follows:
supermarket - 3, 961, store - 3, 925, school - 3, 020, restaurant - 2, 832 and
lodging - 2, 214.

To evaluate our algorithm and split the labeled data into training and test
datasets, we apply 10-fold cross validation. The training dataset is used to
learn the Bayesian network, and the test dataset is used to evaluate it. In
order to make sure that the test dataset contains stop locations with more
than one possible PoI, we extend the region defined by a stop location and
adth using a parameter df . If the number of PoIs in this region exceeds the
minimum PoI count parameter (mpc), the stop location is included in the test
set. In other words, the test set contains only stop locations with more than
mpc PoIs around them.

For experimental purposes, we modify the assignment algorithm used in
VPE. Instead of returning a single PoI, it is set to return a list of possible
categories sorted according to the joint probability value obtained from the
Bayesian network. We report the following metrics: (i) p@n - Precision at
position n: The percentage of stop locations for which the category of the PoI,
the stop location is assigned to, is in the first n categories in the output list, (ii)
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mrr - Mean Reciprocal Rank: The average position of the category of the PoI
a stop location is assigned to in the output list, (iii) npc - Number of Possible
Categories: The average number of possible categories after distance-based
filtering.

We also report the results of applying our algorithm without distance-
based filtering to show the effect of this filtering. When the assignment al-
gorithm is applied without distance-based filtering, the set of possible cate-
gories cSet in line 6 of Algorithm E.1 is set to all possible categories in the PoI
database.

4.2 Exploring the Parameters

We first explore the effect of the parameters of the proposed method on the
stop location assignment. We vary the value of an explored parameter while
fixing all other parameters to their default values. The parameters and their
default values are given in Table E.1.

Table E.1: Parameters and Default Values

Notation Name Default Value

adth
Distance

Threshold
100 meters

df Distance Factor 2
tp Time Period 0.5 hours
dg Day Granularity 1

mpc
Minimum PoI

Count
3 PoIs
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Fig. E.5: Effect of adth

Figure E.5a shows that precision values decrease when adth increases since
the number of possible categories also increases as shown in Figure E.5b.
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However, VPE is still able to achieve a mean reciprocal value of 2 out of 6–8
categories.
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Fig. E.6: Effect of df

Figure E.6a shows that the precision decreases when the distance factor
increases. This occurs because the number of possible categories increases
sharply, as shown in Figure E.6b. The decrease in precision is expected when
more categories are possible. However, the increase in number of possible
categories is sharper than the increase in mean reciprocal rank, which shows
that VPE performs well even though the number of possible categories is
high.
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Fig. E.7: Effect of mpc

Figure E.7a shows that the precision decreases when the minimum PoI
count, and thus the number of possible categories increases,as shown in Fig-
ure E.7b. This is also expected since having more PoIs to choose from makes
assignment more difficult.

Figures E.8a and E.8b show that time period of a time slot affects the
model’s performance. We can see that best performance is achieved when
the time period is 30 minutes or 1 hour. From these figures, we infer that in-
creasing the time period reduces the proposed method’s ability to distinguish
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Fig. E.8: Effect of tp

PoI categories.
Our experiments show that the day granularity does not have a significant

effect on the proposed method. This suggests that even though some specific
categories have different day distributions, most of the categories have similar
distributions for each day.

4.3 Effect of Distance Based Filtering

Figures E.5a, E.5b, E.8a, E.8b show that the VPE method performs much
better with distance-based filtering. For instance, Figures E.5a and E.5b show
that it achieves a p@1 value around 0.5, a p@3 value around 0.8, and an mrr
value of between 2 and 2.5 for all adth values. We can also see that the p@1
value increases from 0.2 to 0.5 and that the mrr value decreases from being in
the range 10–12 to being in the range 2–2.5 when we use VPE with distance-
based filtering.

4.4 Output Stay Duration Distribution

This set of experiments is designed to check whether the stay duration dis-
tributions of the assignments obtained by VPE match with the stay duration
distributions in the labeled dataset shown in Figure E.4. For this experiment,
we perform assignment of the stop locations that have no assignment in the
labeled dataset. We use VPE with the default values and compute the distri-
butions from the assignments obtained. Here, the assignments contain only
the assignments obtained using VPE. In other words, the assignments in the
labeled dataset are not used when computing the distributions.

The stay duration distributions of the same categories obtained with VPE
are shown in Figure E.9. This figure shows that stay duration has a signif-
icant effect on the PoI that is assigned to a stop location. For instance, if a
stay lasts more than 45 minutes, the probability that the visit is to a grocery
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Fig. E.9: Stay Duration Distributions obtained with VPE

store is quite low. Figure E.9 also shows that stay duration distributions of
the categories as computed from output assignments are quite similar to the
distributions computed from the assignments in the labeled dataset. This
suggests that the network structure used in the VPE method together with
the log-normal distribution assumption are able to model the relation be-
tween stay duration values and categories.

We also designed experiments to explore the degree of importance of the
stop location attributes included in the Bayesian network on the PoI category
prediction. To explore this, we omit the term in Equation E.1 corresponding
to the attribute we are investigating the effect of and then compute the joint
probability without it. The experiments show that the stay duration is more
important for visited PoI category prediction than the day and time indexes.

5 Conclusion

The paper proposes a visited PoI extraction (VPE) method for vehicle trajec-
tories using a Bayesian network together with distance-based filtering. The
Bayesian network represents the relationship between the temporal attributes
of a stop and the category of the visited PoI. VPE also includes a method to
build a labeled dataset on top of unlabeled GPS records. The experimental
results show that the proposed method is capable of detecting the category
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of visited PoI from the temporal information, and it achieves a p@3 value of
0.8.

In future work, it is of interest to combine other data sources like check-
ins with GPS data in order to achieve a better assignment performance. This
might provide more accurate information about arrival day and time distri-
butions.
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Abstract

Spatial keyword queries retrieve points of interest that are relevant to the supplied
keywords and that are close to the query location. We propose a new spatial keyword
query, namely the top-k transportation-mode aware spatial textual clusters query (k-
TMSTC) that returns k density-based clusters of relevant spatial objects. We propose
DBSCAN-based and OPTICS-based algorithms to process k-TMSTC queries. We
also propose an algorithm to find the kth nearest neighbor distance for all objects.
We evaluate the proposed algorithms on a real dataset and show that our proposal is
capable of processing k-TMSTC queries in interactive time.

The layout has been revised.



1. Introduction

1 Introduction

With the proliferation of geo-tagged content on the web and the extensive use
of mobile phones, the number of people who search for local places using
mobile or web applications increase day by day. A recent study on users’
search behavior [1] reports that 4 out of 5 users search for geographically
related information. In addition, 50% of the mobile users and 34% of the web
users who conducted search for points of interest (PoIs) visit one of the PoIs
on the same day. These statistics indicate the importance of location-based
queries for search engines and mobile applications.

To support queries with local intent, the research community has pro-
posed different variants of spatial keyword queries [2–11]. Most of the exist-
ing proposals return lists of individual PoIs that are ordered with respect to a
scoring function. The Boolean kNN query [4, 9] and the top-k spatial keyword
query [2, 3, 5–7, 10] are examples of this type. However, a user may be in-
terested in small regions containing many relevant PoIs instead of individual
PoIs that may be located far away from each other. This might happen when
a user wants to visit multiple PoIs or wants to browse or explore different
options before making a final decision. For instance, a tourist looking for at-
tractions would prefer attractions that are located close to each other instead
of traveling long distances between different attractions. Another example is
a user who wants to buy jeans. This user may prefer visiting a region with
several shops to check the prices before deciding where to buy.

We propose the top-k transportation-mode aware spatial textual cluster
(k-TMSTC) query to address browsing or exploratory user behavior. A k-
TMSTC query takes a query location, a set of keywords, an integer value k,
and transportation modes for both to-cluster and in-cluster travel as argu-
ments. The query identifies k clusters of relevant PoIs to make it possible
for the user to browse different relevant PoIs within a cluster. Each cluster
contains relevant PoIs with respect to the query keywords, and the clusters
are ranked with respect to a cost function. In order to take the user’s trans-
portation modes into account, we propose two new cost functions, namely a
spatial and a spatio-textual cost function. An example dataset with textual
relevance weights is illustrated in Table F.1a. An example 3-TMSTC query
with query keyword “jeans” on this dataset and the result clusters are il-
lustrated in Figure F.1b. The grid represents a city, q represents the query
location, and the pis represent shops throughout the city.

Existing studies have proposed query types to target the same user behav-
ior. Skovsgaard et al. [12] propose the top-k groups spatial keyword query
that takes a query location, a set of keywords, and a value k as parameters
and returns top-k groups of PoIs ordered according to a cost function. The
main limitation of this query type is that it does not consider in-group dis-
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jeans tshirt hat
p1 0.25 0.25 0.25
p2 0.2 0 0
p3 0.3 0.7 0
p4 0 0.2 0.5
p5 0.25 0.4 0
p6 0.5 0 0.2
p7 0.45 0 0
p8 0 0.3 0.1
p9 0.1 0.4 0.4
p10 0 0 0.5
p11 0.2 0 0.3
p12 0.8 0 0
p13 0.3 0.2 0.1
p14 0 0 0

(a)

qp2p1
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1 2

3

(b)

Fig. F.1: Example Dataset and Example k-TMSTC Query with Keyword “jeans”

tances properly. The cost function utilized by top-k groups query considers
the diameter of a group, which is the maximum distance between a pair of
PoIs in the group. We find that it would be more convenient for the users to
consider the actual distance that the user needs to travel instead of consider-
ing the diameter. If the diameter of the group is considered, another PoI can
be added to the group without changing the cost if it does not affect the di-
ameter. However, doing so might change the distance the user needs to travel
to visit all the PoIs in the group. Wu and Jensen [11] propose the top-k spatial
textual cluster (k-STC) query that takes a query location, a set of keywords, a
value k, and density-based clustering parameters. It returns top-k clusters or-
dered with respect to a cost function. The main limitation of this query type
is that it expects users to provide density based clustering parameters for a
region that they might not have any information about. It may be difficult
for a user to provide appropriate values for the clustering parameters since
it requires knowledge about the distribution of relevant PoIs. Further, this
query type does not consider the user’s transportation mode while ranking
the clusters. We believe that a user’s transportation mode affects the user’s
preferences on how much they would like to travel to and within a group of
PoIs.

We propose two algorithms to process k-TMSTC queries. The first is
based on the DBSCAN algorithm [13] and is built on top of the algorithms
proposed to process k-STC queries [11]. It first determines the parameters
for density-based clustering using the method employed by the VDBSCAN
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algorithm [14]. This method finds kth nearest neighbor distances of PoIs
and checks the difference between them to determine different density lev-
els. It returns parameters corresponding to the different density levels. The
DBSCAN-based algorithm then constructs a set of k-STC queries with these
parameters and process these queries in parallel. The output clusters are
ranked with respect to proposed spatial and spatio-textual cost functions.
The second algorithm is based on the OPTICS algorithm [15] and creates a
cluster ordering using the OPTICS algorithm. It determines the parameters
while creating the cluster order, and then it constructs clusters corresponding
to different density levels using the cluster order. Therefore, the OPTICS-
based algorithm does not have a separate parameter determination phase.

We also propose an algorithm called FastKDist that is based on the SGPL
index structure that aims to efficiently determine the list of kth nearest neigh-
bor distances for all PoIs in a set of query-relevant PoIs. In other words,
the FastKDist algorithm basically processes a k-dist query for each relevant
object, which returns the distance of the kth nearest neighbor to the relevant
object. For each PoI in the set, it creates a visit order of the grid cells to find
the kth nearest neighbor.

To summarize, our main contributions are:

• Definition of the k-TMSTC query to support exploratory and browsing
behavior.

• Two algorithms based on the DBSCAN and OPTICS to process k-TMSTC
queries.

• An algorithm (FastKDist) that finds kth nearest neighbor distances for
all objects in a set.

• An evaluation of the proposed algorithms using a dataset from Yelp1

that contains around 150, 000 PoIs.

The rest of the paper is organized as follows. Section 2 covers the related
work, and Section 3 defines the top-k transportation mode aware spatial tex-
tual cluster query. We present the proposed algorithms in Section 4. The
DBSCAN-based algorithm and the OPTICS-based algorithm are presented in
Sections 4.2 and 4.3, respectively. We report on the experimental evaluation
in Section 5, and Section 6 concludes the paper.

2 Related Work

Spatial keyword querying has attracted substantial attention in recent years.
A prototypical spatial keyword query [16] takes the following parameters: a

1https://www.yelp.com/
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query location, a set of keywords, and a value k representing the cardinality
of the result set. It retrieves spatial web objects, or PoIs, that are close to the
query location and textually relevant to the query keywords. Several efficient
spatio-textual indexes have been proposed to support spatial keyword query-
ing. Most of these indexes combine the R-tree with a text indexing method
like inverted files and signature files such as the IR2-tree [2], the IR-tree [3, 6]
and S2I [5]. These hybrid index structures are capable of utilizing both spatial
and textual information to prune the search space when processing a query.
We adopt the IR-tree [3] in this work.

Most of the existing spatial keyword query proposals have single-object
granularity. These proposals retrieve a list of objects that are close to the
query location and textually relevant to the query keywords. Some propos-
als [4, 9] use the query keywords as Boolean predicates to filter out the objects
that are not textually relevant. Then, the remaining objects are ranked with
respect to their distances to the query location. Other proposals [2, 3, 5–7, 10]
combine textual relevance and spatial proximity to rank the spatial objects.
Furthermore, a range of studies investigate variants of the prototypical spa-
tial keyword query that address different use cases. The location aware top-k
prestige based text retrieval query [17] retrieves the top-k spatial web ob-
jects ranked according to both prestige-based relevance and spatial proximity,
where the prestige-based relevance captures both the textual relevance of an
object and the effects of nearby objects. Li et al. [18] propose a spatial query
that considers the direction of the user. This query also uses the keywords as
Boolean predicates and retrieves a list of objects ranked with respect to the
spatial proximity to the query location. Wu et al. [19, 20] cover the problem
of maintaining the result set of top-k spatial keyword queries while the user
(query location) moves continuously.

Some spatial keyword query proposals focus on retrieving a single set of
objects. Collective spatial keyword queries [21–24] return a set of objects such
that the set collectively covers the query keywords and the cost of the set is
minimized. The cost of a set can be defined in terms of the spatial distances
of the objects in the set to the query location, the spatial distances between the
objects in the set or the inherent costs of the objects within the set. Collective
spatial keyword queries cannot be utilized for the browsing user behavior
we target in this work since the objects within the set collectively covers the
query keywords and the users are interested in browsing alternatives.

Some studies have proposed query types to target browsing user behav-
ior. Skovsgaard et al. [12] propose a top-k groups spatial keyword query that
returns top-k groups with respect to a cost function. The cost function takes
into account the textual relevance of the PoIs inside the group, the diameter
of the group, which is the maximum pairwise distance between two objects in
the group, and the minimum distance between an object in the group and the
query location. They propose the Group Extended R-tree (GER-tree) to effi-
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ciently process top-k groups spatial keyword queries. The GER-tree is based
on the R-tree [25], and it maintains information about the textual represen-
tation of the objects and their inter-object distances by utilizing compressed
histograms. The top-k groups keyword query has two drawbacks. First, the
in-group distance is modeled by utilizing the diameter of the group. We
find that the in-group distance should be modeled as the actual distance that
a user needs to travel to visit all the objects in a group. Second, the cost
function utilized by this query does not consider the user’s transportation
mode to the group and within the group. In their demo paper [26], the au-
thors propose a work-around to take the transportation mode into account by
changing the weighting parameter utilized in the cost function. In fact, they
adjust the weights given to the spatial distances and the textual relevance to
account for a specific transportation mode. We find that it would be more
realistic if the cost is defined with respect to the duration needed to visit all
the places within the group according to a particular transportation mode.

Wu and Jensen [11] propose the top-k spatial textual cluster (k-STC) query
that takes additional density-based clustering parameters together with the
query parameters and returns top-k clusters ordered with respect to a cost
function. The cost function considers the minimum distance between the
query and the cluster and the textual relevance of the objects inside the
cluster. They propose a basic DBSCAN-based algorithm to process k-STC
queries utilizing the IR-tree [3]. They propose three advanced query pro-
cessing methods that address inefficiencies of the basic approach. The first
method reduces the number of range queries needed by checking whether the
neighborhood of an object has already been examined. The second method
utilizes a grid-based index structure, named Spatially Gridded Posting Lists
(SGPL), to estimate the number of objects that might be included in the re-
sult of a range query. A range query is not issued if the estimated number
of objects is not high enough. An SGPL on a regular grid is constructed for
each term, and each grid cell contains the set of objects that is located inside
the cell and that contains the term. The third method utilizes the SGPL data
structure to process range queries efficiently. There are two issues with k-STC
queries. First, the user is expected to provide the density-based clustering pa-
rameters. The problem of expecting these parameters from users is that users
are unable to have sufficient information about the region where the query
is issued or about the distribution of PoIs around the region. Second, the
transportation mode is not taken into account in the cost function. We think
that doing so is important when forming and ranking clusters. For instance,
a user with a car might not care about travelling 20 km to a cluster, but if the
user has a bicycle then 20 km is likely an unattractive distance to travel. In
this work, we extend k-STC queries to overcome these issues. We also utilize
the methods proposed to process k-STC queries in order to process k-TMSTC
queries.
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3 Problem Definition

We consider a data set D in which each object p ∈ D is a pair 〈λ, d〉 rep-
resenting a point of interest (PoI), where p.λ is a point location and p.d
is a document containing a textual description of the PoI. The document
p.d is represented by a weight vector (w1, w2, ..., wn) in which each dimen-
sion corresponds to a distinct term ti in the data set. The weight wi of a
term ti in a document can be computed in several different ways, e.g., us-
ing tf-idf weighting [27] or language models [28]. We employ the function
tr(p, ψ) = ∑ti∈ψ p.d.wi to assess the textual relevance of an object (p) to a
given set of words (ψ).

Definition F.1. Given a location λ, a set ψ of keywords, and an upper bound for
the distance ∆ub, the relevant object set Dψ satisfies (i) Dψ ⊆ D, and (ii) ∀p ∈
Dψ (tr(p, ψ) > 0 ∧ ‖p λ‖ ≤ ∆ub), where ‖p, λ‖ denotes the distance between the
location λ and the PoI p.

We adopt the density based clustering model [13], and clusters are query
dependent. We proceed to present the relevant definitions from density
based clustering. We provide these definitions in order to define top-k spatial
textual cluster and top-k transportation mode aware spatial textual cluster
queries. The density based clustering related definitions and the definition
of top-k spatial textual cluster query are reproduced from [11].

Definition F.2. The ε-neighborhood of a relevant object p ∈ Dψ, denoted by
Nε(p), is defined as Nε(p) = {pi ∈ Dψ | ‖p pi‖ ≤ ε}.

Definition F.3. A dense ε-neighborhood of a relevant object Nε(p) contains at
least minpts objects, i.e., |Nε(p)| ≥ minpts. An object whose ε-neighborhood is
dense is called a core object.

Definition F.4. A relevant object pi is directly reachable from a relevant object pj
with regard to ε and minpts if (i) pi ∈ Nε(pj) and (ii) pj is a core object.

Definition F.5. A relevant object pi is reachable from a relevant object pj with
regard to ε and minpts if there is a chain of relevant objects p1, ..., pn, where p1 = pi,
pn = pj, and pm is directly reachable from pm+1 for 1 ≤ m < n.

Definition F.6. A relevant object pi is connected to a relevant object pj with regard
to ε and minpts if there is a relevant object pm such that both pi and pj are reachable
from pm with regard to ε and minpts. The connected relation is symmetric unlike
the reachable relation.

Having the definitions related to density based clustering, we now pro-
ceed to define spatial textual cluster and the query types.
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Definition F.7. A spatial textual cluster C with regard to ψ, ε, and minpts sat-
isfies the following conditions: (i) C ⊆ Dψ and (ii) C is a maximal set such that
∀pi, pj ∈ C, pi and pj are connected through dense ε-neighborhoods when consid-
ering relevant objects. A spatial textual cluster is a density-based cluster [13] found
from the relevant object set Dψ.

We now proceed to define top-k spatial textual cluster query. We utilize
this query type to process k-TMSTC queries.

Definition F.8. A top-k spatial textual cluster (k-STC) query is defined by Wu
and Jensen [11] as q = 〈λ, ψ, k, ε, minpts〉, where λ is a point location , ψ is a set of
keywords, k is the number of result clusters, and ε and minpts are the density-based
clustering parameters. It returns a list of k spatial textual clusters that are sorted in
ascending order of their scores computed by a scoring function. The scoring function
employed is given in Equation F.1, where dq.λ(C) is the minimum spatial distance
between the query location and the objects in C and trq.ψ(C) is the maximum text
relevance in C. Parameter α is used as a balancing factor between spatial proximity
and textual relevance.

scoreq(C) = α · dq.λ(C) + (1− α) · (1− trq.ψ(C)) (F.1)

Definition F.9. A top-k transportation-mode aware spatial textual clusters
(k-TMSTC) query is defined as q = 〈λ, ψ, k, tmc, tmi〉, where λ is a point location,
ψ is a set of keywords, k is the number of result clusters, and tmc and tmi are trans-
portation modes for traveling to the cluster and traveling in the cluster, respectively.
A cluster is defined as a subset of Dψ and a k-TMSTC query identifies the k best max-
imal density-based clusters with respect to a cost function. The transportation mode
can be one of the following: driving, cycling, walking, and public transportation.

It is important to note that we extend the k-STC query definition given
by Wu and Jensen [11] by removing the ε and minpts parameters and taking
transportation-mode information into account. We think that it is difficult
for a user to state a purposeful pair of ε and minpts parameters. We also
think that a user’s transportation modes play an important role in the user’s
preferences. To illustrate, a tourist who rented a car might be willing to travel
farther than a tourist who just walks to visit attractions. Since we are still
interested in density-based clusters, a proposal for top-k transportation-mode
aware spatial textual cluster query should contain a method to determine the
ε and minpts parameters automatically. Further, we allow these parameters
to be different for each returned cluster.

Intuitively, the cost function should consider the distance between the
query location and the cluster as well as the transportation mode both to
the cluster and in the cluster. It should also take the cluster size and the
textual relevances of the objects in the cluster into account. In order to achieve
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these, we first define a spatial cost function and then extend it with textual
relevance. The spatial cost function, given in Equation F.3, only considers
the duration of traveling as the cost measure and defines the cost as the
duration of traveling needed per PoI. In Equation F.3, td(q, C) refers to the
travel duration needed to visit all the PoIs. The definition td(q, C) is provided
in Equation F.2, where md(q.λ, C) is the minimum distance between the query
location and the cluster, udtc and udic are durations corresponding to one
distance unit for the transportation modes to the cluster and in the cluster,
respectively, and d(C) is the total distance that needs to be traveled in the
cluster. The distance in the cluster is the length of a Hamiltonian path visiting
all PoIs. For simplicity, we compute such a path greedily. The first PoI in the
path is the PoI closest to the query location, and the next PoI is always chosen
as the closest unvisited PoI from the previous PoI.

td(q, C) = md(q.λ, C) · udtc + d(C) · udic (F.2)

costsp(q, C) =
td(q, C)
|C| (F.3)

The spatio-textual cost function is given in Equation F.4, where tr(p, q.ψ)
is the textual relevance of p to the query keywords q.ψ. It considers both the
duration of traveling needed and the textual relevance of the objects within
the cluster. The cost in this version is modeled as the duration of traveling
needed per textual relevance.

costst(q, C) =
td(q, C)

∑
p∈C

tr(p, q.ψ)/|C| (F.4)

Example: Let us assume that udtc and udic are equal to 1. Then, the travel
durations for clusters C1 = {p1, p2, p3} and C2 = {p5, p6, p7} in the example
provided in Figure F.1b are td(q, C1) = 5 and td(q, C2) = 5 +

√
2. The spatial

costs are costsp(q, C1) = 5/3 and costsp(q, C2) = (5 +
√

2)/3. The average
textual relevance within the clusters C1 and C2 are 0.25 and 0.4, respectively.
So, the spatio-textual costs are costst(q, C1) = 20 and costst(q, C2) = 16.04. So,
if we utilize the second cost function while ranking the clusters, the ordering
should change, and C2 should be the first cluster.

Problem Statement. Given the definitions above, the problem we tackle is
to develop an efficient algorithm to process k-TMSTC queries with a response
time that supports interactive search.
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4 Proposed Method

In the following, we propose two algorithms to process the k-TMSTC query.
We first explain the index structures used for indexing PoIs in Section 4.1.
Sections 4.2 and 4.3 present the algorithms for the processing of k-TMSTC
queries.

4.1 Indexes

We employ the IR-tree [3] and spatially gridded posting lists (SGPL) [11] to
index the objects.

The IR-tree is an R-tree [25] extended with inverted files [29]. An inverted
file index has two main components: (i) A vocabulary of all distinct words
appearing in the text descriptions of the objects in the data set being indexed,
and (ii) a posting list for each word t, i.e., a sequence of pairs (id, w), where
id is the identifier of an object whose text description contains t and w is the
word’s weight in the object. Each leaf node of an IR-tree contains entries of
the form o = (id, λ), where e.id refers to an object identifier and o.λ refers to
a minimum bounding rectangle (MBR) of the spatial location of the object.
Each leaf node also contains a pointer to an inverted file indexing the docu-
ments of all objects stored in the node. Each non-leaf node contains entries of
the form e = (id, λ) representing the children of the node where e.id is a child
node identifier and e.λ is the MBR of all entries contained in the child node
identified by e.id. Each non-leaf node also contains a pointer to an inverted
file indexing the text descriptions of the entries stored in the node’s subtree.

Example: An IR-tree with fanout 4 indexing the example dataset given in
Table F.1a is illustrated in Figure F.2.

R7 R8

R2 R5 R6

p9 p11 p13 p10 p12 p1 p2 p3 p14 p7 p8 p4 p5 p6

R3 R4

jeans: (R7, 0.8), (R8, 0.5)

tshirt: (R7, 0.7), (R8, 0.4)

hat: (R7, 0.5), (R8, 0.5)

jeans: (R2, 0.3), (R5, 0.8), (R6, 0.3)

tshirt: (R2, 0.4), (R6, 0.7)

hat: (R2, 0.4), (R5, 0.5), (R6, 0.25)

jeans: (R3, 0.45), (R4, 0.5)

tshirt: (R3, 0.3), (R4, 0.4)

hat: (R3, 0.1), (R4, 0.5)

jeans: (p9, 0.1), (p11, 0.2), (p13, 0.3) 

tshirt: (p9, 0.4), (p13, 0.2), 

hat: (p9, 0.4), (p11, 0.3), (p13, 0.1)

jeans: (p12, 0.8) 

hat: (p10, 0.5)

jeans: (p1, 0.25), (p2, 0.2), (p3, 0.3)

tshirt: (p1, 0.25), (p3, 0.7)

hat: (p1, 0.25)

jeans: (p7, 0.45) 

tshirt: (p8, 0.3)

hat: (p8, 0.1)

jeans: (p5, 0.25), (p6, 0.5)

tshirt: (p4, 0.2), (p5, 0.4)

hat: (p4, 0.5), (p6, 0.2)

Fig. F.2: Example IR-tree

A SGPL [11] is a grid-based index structure proposed for selectivity esti-
mation and processing of range queries. First, an n× n grid is created on the
data set, and the grid cells are indexed by a space filling curve. Then, for each
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word wi, a SGPL is created. The SGPL of wi is a sorted list of entries of the
form 〈cj, Swi ,cj〉, where cj is the index value of a grid cell and Swi ,cj is a set of
objects that contain wi in their documents and are located in cell cj. Although
we only show the identifiers of the PoIs in the example SGPL below for the
sake of simplicity, the index structure also stores the location and the textual
weight associated with wi.

0

qp2p1

p3

p4 p5

p6

p7

p8

p9 p10

p11 p12

p13

p14

1

2

3

8 10

9 11

4

5

6

7

12 14

13 15

(a) 4× 4 Grid

jeans (0, {p11, p12, p13}),
(1, {p9}),
(4, {p3}),
(5, {p1, p2}),
(14, {p7}),
(15, {p5, p6})

tshirt (0, {p13}),
(1, {p9}),
(4, {p3}),
(5, {p1}),
(14, {p8}),
(15, {p4, p5})

hat (0, {p11, p13}),
(1, {p9, p10}),
(5, {p1}),
(14, {p8}),
(15, {p4, p6})
(b) SGPL

Fig. F.3: Example Spatially Gridded Posting Lists

Example: Figure F.3a illustrates a 4× 4 grid on the 14 objects given in
Table F.1a. Grid cells are indexed using a 2-order Z-curve. The numbers in
bold are the Z-values of the cells. Table F.3b shows the SGPLs for words
“jeans”, “tshirt”, and “hat”. For instance, the first entry of “hat” indicates
that the grid cell with Z-value 0 has two PoIs (p11 and p13) that contain “hat”
in their documents.

4.2 DBSCAN-based Algorithm

We present the DBSCAN-based algorithm that uses the IR-tree. Then we
present how to use the SGPL instead of the IR-tree for the DBSCAN-based
algorithm.
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Algorithm

The DBSCAN-based algorithm is built on top of the algorithms proposed to
process k-STC queries. Given a query, we determine the set of possible ε
and minpts values and construct the set of k-STC queries. Then we process
these queries in parallel using the methods proposed by Wu and Jensen [11].
The clusters are then sorted with respect to one of the cost functions given in
Equation F.3 and Equation F.4, and the top-k disjoint clusters are returned as
the result.

Algorithm F.1 DBSCAN-based Algorithm

Input: irtree - IR-tree, q - k-TMSTC query, minmp - Minimum minpts value,
maxmp - Maximum minpts value, incth - Increase threshold value to deter-
mine ε values

Output: clusters - The list of clusters
1: ∆ub, εub ← GetBounds(q.tmc, q.tmi);
2: Dψ ← irtree.RangeQuery(q.λ, q.ψ, ∆ub);
3: dbscanParams← ∅;
4: for minpts = minmp to maxmp do
5: paramList← GetEpsValues(irtree, q, Dψ, minpts, εub, incth); . Gets

executed in parallel using fork-join model
6: dbscanParams← dbscanParams.Add(paramList);
7: end for
8: queries ← The list of k-STC queries corresponding to the query q and

dbscanParams;
9: cSet← ∅;

10: for all query in queries do
11: cq← ProcessKstcQuery(query, irtree, Dψ); . Gets executed in

parallel using fork-join model
12: cSet← cSet∪ cq;
13: end for
14: clusters← top-k disjoint clusters of cSet sorted with respect to the cost;
15: return clusters;

The DBSCAN-based algorithm is given in Algorithm F.1. Given a query,
the algorithm first determines the upper bounds for the distance between the
query location and the cluster (∆ub) and for the ε parameter of the DBSCAN
algorithm (εub) according to the transportation mode parameters tmc and tmi
(line 1). We assume that the algorithm has access to a rule-based method (the
GetBounds call in the algorithm) to determine the upper bounds according
to the transportation mode parameters and the underlying spatial region. For
instance, if a user specifies that he plans to walk to the cluster, the ∆ub should
not be set to more than 3–4 kilometers. However, if he plans to drive then ∆ub
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can be set to 40–50 kilometers. We can determine εub similarly. For instance,
if a user plans to walk within the cluster, the εub should not be set to more
than 0.5–1 kilometers. However, if the user plans to cycle then it can be set to
2–3 kilometers.

Then, the algorithm obtains the relevant object set Dψ with regard to the
query keywords by issuing a range query using the query location, query
keywords, and the upper bound for the distance, ∆ub (line 2). The algo-
rithm then determines the possible ε values for minpts values in the range
of [minmp–maxmp] and the given query using the relevant object set (lines 3–
7). The algorithm has an additional increase percentage threshold incth to be
used in determining ε values. We set it to 5% by default. To determine pos-
sible DBSCAN parameters, the algorithm first initializes dbscanParams as an
empty set (line 3). Then the list of (ε, minpts) pairs (paramList) is determined
for each minpts value in parallel. At the end of each parallel execution, the
resulting paramList is appended to dbscanParams (line 6). The default value
for the maximum minpts value (maxmp) is set to 10 since we do not think a
user can visit more than 10 PoIs according to a query result. Furthermore,
the default value for the minimum minpts value (minmp) is set to 3 since users
are interested in clusters and since we do not want to miss small clusters in
the result.

After the DBSCAN parameters are determined, the algorithm constructs
the corresponding k-STC query for each DBSCAN parameter tuple and pro-
cesses them in parallel (lines 8–13). It uses a simple fork-join model to process
the queries in parallel. The algorithm initializes the set of clusters cSet to an
empty set (line 9) and populates the set with the results of the queries by
forming the union with cq, which is the clusters for the current query (lines
11 and 12). Then the clusters are sorted in ascending order with respect to
their cost, and the top-k disjoint clusters with the least cost are returned as
the result (lines 14 and 15).

In the following, we describe the three subroutines called from the main
algorithm.

The function RangeQuery (Algorithm F.2) is used to find the relevant
objects in the ε-neighborhood of a given location using an IR-tree on the
objects. It is a standard range query algorithm with an additional check for
text relevance (lines 8 and 14).

The DBSCAN-based algorithm uses the approach employed by the VDB-
SCAN algorithm [14] to determine the ε values. VDBSCAN first computes
the k-dist values for each object in the dataset for a given k value and deter-
mines the cut-off points from the k-dist plot. The k-dist value for an object
is the distance between the object and the kth nearest neighbor. We utilize
the function GetEpsValues (Algorithm F.3) to determine possible ε values
using the IR-tree given a query, a minpts value, an upper bound(εub) for ε,
a relevant object set, and an increase percentage threshold (incth). The algo-
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Algorithm F.2 RangeQuery(λ, ψ, ε)

Input: λ - Query location, ψ - Query Keywords, ε - Query Range
Output: neighbors - The list of neighbors

1: Queue queue← ∅;
2: queue.Enqueue(root);
3: while queue is not empty do
4: e← queue.Dequeue();
5: N ← ReadNode(e);
6: if N is a leaf node then
7: for all object o in N do
8: if o is relevant to ψ and ‖λ o.λ‖min ≤ ε then
9: neighbors.Add(o);

10: end if
11: end for
12: else
13: for all object e′ in N do
14: if e′ is relevant to ψ and ‖λ e′‖min ≤ ε then
15: queue.Enqueue(e′);
16: end if
17: end for
18: end if
19: end while
20: return neighbors;

rithm initializes the list of k-dist values as an empty list. Then it determines
the k-dist value for k = minpts for each relevant object and adds it to the list
if the k-dist value is not UNDEFINED (lines 3–8). The function GetKDist
returns the k-dist value if it is less than εub. Otherwise, it is UNDEFINED.
Next, the algorithm checks if the list is populated. If not, it returns the empty
list (lines 9–11), which means that the algorithm is unable to find ε values for
the given parameters.

The list is then sorted. After sorting, the algorithm iterates over the list of
k-dist values and determines the cut-off points for different density levels in
the relevant object set (lines 13–27). We define a density level as a sorted list of
k-dist values that contains at least minpts values, do not have a percentage of
increase between the consecutive k-dist values exceeding the given incth, and
has a percentage of increase exceeding incth after the last k-dist value in the
list. The algorithm checks whether the percentage of increase is more than
incth between previous and current values (line 17). If there is an increase
and the number of consecutive k-dist values without the required percentage
of increase (nic) exceeds minpts, the algorithm adds a pair of the current k-
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Algorithm F.3 GetEpsValues(irtree, q, Dψ, minpts, εub, incth)

Input: irtree - IR-tree, q - k-TMSTC query, Dψ - Relevant object set, minpts
- The minpts value, εub - The upper bound value for ε, incth - Increase
percentage threshold

Output: params - the list of DBSCAN parameter tuples (ε, minpts)
1: params← ∅;
2: kdistValues← ∅;
3: for all object o in Dψ do
4: kdist← irtree.GetKDist(o.λ, q.ψ, εub, minpts) ;
5: if kdist is not UNDEFINED then
6: kdistValues.Add(kdist);
7: end if
8: end for
9: if kdistValues.Size = 0 then

10: return params;
11: end if
12: Sort(kdistValues);
13: prev← 0;
14: nic← 0; . The number of k-dist values that do not have the required

increase percentage (incth).
15: for i = 1 to kdistValues.size do
16: curr← kdistValues[i];
17: if prev 6= 0∧ the increase percentage between curr and prev exceeds

incth then
18: if nic ≥ minpts then
19: params.Add((curr, minpts));
20: end if
21: nic← 0;
22: else
23: nic← nic + 1;
24: end if
25: prev← curr;
26: end for
27: return params;

dist value corresponding to a density level and minpts input to the list of
parameters (lines 18 and 19). If there is an increase, the algorithm sets nic
to 0 (line 21). If the increase is insufficient, nic is incremented (line 23). The
algorithm terminates when the list of k-dist values is exhausted.

Example. Let us assume that the PoIs provided in the example dataset
given in Figure F.1 are the relevant PoIs for a k-TMSTC query. We set minpts
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to 3, εub to 5 units, and incth to 15%.

1 1.41 1.41 1.41 1.41 2 2 2 2.24 3.61 3.61 3.61 4 4.24
0 0 1 2 3 0 1 2 3 0 1 2 3 4
0 41 0 0 0 41.84 0 0 12 61.16 0 0 9.75 6

Table F.1: List of k-dist values and corresponding nic and increase percentage values

The first row of Table F.1 shows the sorted list of 3-dist values for the
relevant objects. The algorithm iterates over the list and computes the nic
and increase percentage values. The second and third rows of the table show
the nic and increase percentage values, respectively. The output ε values are
2 and 3.61 since the increase percentage values exceed the given incth and
nic is equal to 3 for both 3-dist values. However, 1.41 is not included in the
output set since the corresponding nic value is below the minpts parameter.

The algorithm to determine ε values employs the IR-tree on the objects
to determine the distance of the kth nearest neighbor to the object. Function
GetKDist is quite similar to RangeQuery given in Algorithm F.2. The query
location parameter is the object’s location, and the query range is set to εub.
This function has an additional parameter (k = minpts), which is the order of
the neighbor whose distance is of interest. The algorithm employs a priority
queue instead of a regular queue, and the nodes are added to the queue with
the priority value being their distance to the query location. Except from
using a priority queue, the only part that is different in the algorithm is line
9. Instead of adding to the neighbors list, the algorithm counts the number
of neighbors it has processed. If the current object is the kth neighbor, it just
returns the distance between the input location and the current object.

Algorithm F.4 ProcessKstcQuery(irtree, q, Dψ)

Input: irtree - IR-tree, q - k-STC query, Dψ - Relevant object set
Output: clusters - the list of clusters

1: slist← sort objects in Dψ in ascending order of dq.λ(o);
2: clusters← ∅;
3: while slist 6= ∅ do
4: o ← first element in slist;
5: c← GetCluster(o, q, irtree, slist);
6: if c 6= ∅ then
7: Compute cost of c;
8: clusters.Add(c);
9: end if

10: end while
11: return clusters;
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The function ProcessKstcQuery (Algorithm F.4) takes an IR-tree, a k-
STC query, and a relevant object set as input and returns the density based
clusters. It iterates over a sorted list of elements with respect to the distance
to the query location and gets the cluster with the object as core object (lines
4 and 5). If the cluster is not empty, its cost is computed, and it is added to
the result list (lines 6–9).

Algorithm F.5 GetCluster(irtree, q, o, slist)

Input: irtree - IR-tree, q - k-STC query, o - The core object, slist - Sorted list of
relevant objects

Output: C - the cluster
1: C← ∅;
2: neighbors← irtree.RangeQuery(o.λ, q.ψ, q.ε);
3: if neighbors.size < q.minpts then
4: Remove o from slist;
5: Mark o as noise;
6: return C;
7: else
8: Add neighbors to C;
9: Remove neighbors from slist;

10: Remove o from neighbors;
11: while neighbors 6= ∅ do
12: Object oi ← remove an element from neighbors;
13: neighborsi ← irtree.RangeQuery(oi.λ, q.ψ, q.ε);
14: if neighborsi.size ≥ q.minpts then
15: for all Object oj ∈ neighborsi do
16: if oj is noise then
17: Add oj to C;
18: else if oj /∈ C then
19: Add oj to C;
20: Remove oj from slist;
21: Add oj to neighbors;
22: end if
23: end for
24: end if
25: end while
26: end if
27: return C;

To get the cluster of a given core object, the function GetCluster (Algo-
rithm F.5) is utilized. It issues a range query centered at o with a range of q.ε
on the IR-tree (line 2). The goal is to check whether o is a core object. If the re-
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sult set neighbors has fewer than q.minpts objects, object o is marked as noise,
and an empty set is returned (lines 3–6). Otherwise, the algorithm initiates a
cluster C containing the objects in neighbors. Next, this cluster is expanded by
checking the ε-neighborhood of each object oi in neighbors except o (lines 12
and 13). If the ε-neighborhood of oi is dense (line 14), the objects inside the
neighborhood that are previously marked as noise are added to the cluster
(lines 16 and 17). The objects that are not processed yet are also added to the
cluster, removed from the sorted list, and added to neighbors (lines 18–22). If
no more objects can be added, cluster C is returned as the result (line 27). It is
important to note that this GetCluster is the same as in the regular DBSCAN
algorithm. We provide the pseudocode here to facilitate understanding of the
more advanced algorithms described later.

SGPL-based Improvements

The DBSCAN-based algorithm explained above uses the IR-tree for range
queries and does not utilize the SGPL-based improvements. We proceed to
explain how we can make use of the optimizations, namely selectivity esti-
mation and the FastRange algorithm [11], in the DBSCAN-based algorithm.
We also propose a FastKDist algorithm based on SGPL to compute the kth

nearest neighbor distances of all objects.

Selectivity Estimation

Wu and Jensen [11] propose a selectivity estimation method based on SGPL
to decrease the number of range queries issued to process queries. Given a set
q.ψ containing m query keywords, the corresponding m SGPLs are merged
to estimate the selectivity of a range query. Wu and Jensen define a merging
operator

⊕
on several SGPLs that produces a count for each non-empty grid

cell as follows: ⊕
wi∈q.ψ

(qs) = {〈cj, |
⋃

wi∈q.ψ
Swi ,cj |〉 | Ccj ∩ qs 6= ∅} (F.5)

The merge operator merges the SGPLs of query keywords and returns
a set of pairs, each of which contains a cell id and the number of relevant
objects in the cell. The definition approximates the circular query region
defined by λ and ε by its circumscribed square (qs) to check the intersection
effectively, and Ccj corresponds to the spatial region of the cell with id cj.
The idea is that if the number of relevant objects within the circumscribed
square is less than q.minpts, there is no need to issue a range query. To
incorporate this optimization, we just need to add a selectivity estimation
check before issuing range queries in lines 2 and 13 of GetCluster as given
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in Algorithm F.5. In other words, the algorithm should only issue a range
query if the selectivity estimate exceeds q.minpts.

FastRange Algorithm

Wu and Jensen [11] propose an algorithm to process range queries using
SGPL. To be able to process queries with several keywords, they override the
merging operator (

⊕
) with

⊕
as follows:⊕

wi∈q.ψ
(qs) = {〈cj,

⋃
wi∈q.ψ

Swi ,cj〉 | Ccj ∩ qs 6= ∅} (F.6)

The overrided merge operator given in Equation F.6 produces a set of
objects instead of a count for each grid cell to be able to process range queries
effectively.

Algorithm F.6 FastRange(λ, ψ, ε, sgplList)

Input: λ - Query location, ψ - Query Keywords, ε - Query Range, sgplList -
The list of SGPLs

Output: neighbors - The list of neighbors
1: neighbors← ∅;
2: qs ← The circumscribed square around the circular query region defined

by λ and ε;
3: mergedSgpl← ⊕

wi∈ψ
(qs);

4: for all Cell c ∈ mergedSgpl do
5: if c is completely inside the query region then
6: Add all the objects inside c to the neighbors;
7: else
8: for all Object o inside c do
9: if ‖λ o‖ ≤ qc.ε then

10: Add o to neighbors;
11: end if
12: end for
13: end if
14: end for
15: return neighbors;

The FastRange algorithm (Algorithm F.6) takes a location (λ), a query
range (ε), a set of query keywords (ψ), and the list of SGPLs (sgplList) as
arguments. It first applies the overrided merge operator to the given list of
SGPLs for the circumscribed square around the query region and assigns the
result to mergedSgpl (lines 2 and 3). If a cell c from mergedSgpl is completely
inside the query region, all objects in c are added to the result (lines 3 and
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4). If a cell intersects the query region, only objects in c that have distance to
object location no greater than ε are added to the result (lines 9 and 10).

The FastRange algorithm can be utilized in the DBSCAN-based algorithm
by just changing its calls to irtree.RangeQuery to calls to FastRange in lines
2 and 13 of the GetCluster function (Algorithm F.5).

FastKDist Algorithm

The DBSCAN-based algorithm needs to process the relevant object set to
determine the appropriate ε values for the set. To do this, the GetEpsValues
function given in Algorithm F.3 is employed. This requires a large amount
of compute time because that the algorithm traverses the IR-tree for each
relevant object. For this reason, a more efficient way to find the distance of
kth nearest neighbor (k-dist) for all relevant objects is desirable. We utilize the
approach proposed by Wu and Tan [30] together with SGPL index.

c3,3
q

(a) Levels

L2G3 L2G2

L2G2 L1G2

L2G1 L2G2

L1G1 L1G2

L2G1 L1G1

L2G2 L1G2

c3,3 L1G1

L1G1 L1G2

L2G3

L2G2

L2G1

L2G2

L2G3 L2G2 L2G1 L2G2 L2G3

q

(b) Groups

Fig. F.4: Levels and Groups for an Example kNN Query (redrawn from [30])

Wu and Tan [30] propose an algorithm on top of a grid-based index to
process k-nearest neighbor (kNN) queries. They propose a method to build
a visit order consisting of cells, levels, and groups in order to reduce the
number of cells that should be visited to answer the kNN query. Assuming
that ca,b is the cell that contains the query object, level l is the set of cells
such that each cell ci,j satisfies either i = a ± l ∧ b − l ≤ j ≤ b + l or j =
b ± l ∧ a − l ≤ i ≤ a + l. The cells in group g (1 ≤ g ≤ l + 1) of level
l is the set of cells ci,j that satisfy either i = a ± (g − 1) ∧ j = b ± l or
i = a± l ∧ j = b± (g− 1). LlGg denotes group g of level l. Figures F.4a and
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F.4b show the corresponding levels and groups for an example kNN query
(q) that is located in cell c3,3.

FastKDist employs the same idea on top of SGPLs since we need a grid
index that takes textual relevance to the given query into account. It also
makes use of caching in order to reuse the distance computations between
the objects.

The FastKDist algorithm (Algorithm F.7) takes a query q, the relevant ob-
ject set (Dψ) for q, k, an upper bound for ε (εub), and the list of SGPLs as input
and returns the k-dist values for all objects contained in the relevant object
set. It first merges the SGPLs to form the SGPL corresponding to the query
keywords (line 2). Then it computes the k-dist value for each object o in Dψ

(lines 3–28). The algorithm initializes the priority queue to build a visit order
for the object and enqueues the cell the object is located in and the first group
of the first level. Then it gets the next cell from the priority queue (function
call NextCell) and checks the distance between the objects located in the cell
and the current object. Function GetDistanceBetween employs a cache to
reuse the distance computations. If the distance is already computed, it re-
turns the value from the cache. Otherwise, the distance between the objects
is computed and added to the cache. If the distance between the objects are
less than the upper bound for k-dist value it is added to the list, and the
upper bound is updated if necessary (lines 13–21). This loop continues until
the priority queue is exhausted or the visited cell has a minimum distance to
the object that exceeds the upper bound.

Function NextCell takes an object and a priority queue as input and re-
turns the next cell to be visited. It dequeues an element from the queue and
checks whether it is a cell or a group. If it is a cell, it is returned immediately.
Otherwise, if the dequeued element is a group of the form LlGg, it first en-
queues the cells of LlGg to the queue with the distance between the cell and
the object. Next, it enqueues Ll+1Gg group with its minimum distance to the
given object. Next, the function checks whether l = g and if so, it enqueues
LlGg+1. Finally, the function calls itself recursively.

The FastKDist algorithm can be utilized in the DBSCAN-based algorithm
quite easily. We just need to remove lines 2–12 in function GetEpsValues
(given in Algorithm F.3) and add a function call to FastKDist to get the k-
dist values.

4.3 OPTICS-Based Algorithm

The main drawback of the DBSCAN-based algorithm presented in Section 4.2
is that given n different minpts and an average of m ε values for a k-TMSTC
query, it needs to process n × m k-STC queries in parallel. By using the
OPTICS algorithm [15], we can reduce the number of parallel queries to n
since it is possible to extract clusters from the output cluster ordering for
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Algorithm F.7 FastKDist(Dψ, k, εub, sgplList)

Input: Dψ - Relevant object set, k - The k value, εub - The upper bound value
for ε, sgplList - The list of SGPLs

Output: kdistValues - The list of k-dist values
1: kdistValues← new list;
2: mergedSgpl← ⊕

wi∈q.ψ
(); . The merge operator is applied to the whole

grid.
3: for all Object o ∈ Dψ do
4: distList← new list;
5: kdistub ← εub;
6: visitPQ← new priority queue; . Initialization of the priority queue

to determine the cells to be visited for o.
7: visitPQ.Enqueue(Cell(o));
8: visitPQ.Enqueue(L1G1); . Cells, groups and levels of mergedSgpl are

added to the priority queue with their minimum distance to the o.λ.
9: c← NextCell(o, visitPQ);

10: while c 6= null ∧ kdistub > Distmin(o, c) do
11: for all Object oc ∈ cell c do
12: d← GetDistanceBetween(o, oc);
13: if d < kdistub then
14: distList.Add(d);
15: if distList.size > k then
16: Remove the largest value from distList;
17: kdistub ← k-th largest value from distList;
18: else if distList.size = k then
19: kdistub ← k-th largest value from distList;
20: end if
21: end if
22: end for
23: c← NextCell(o, visitPQ);
24: end while
25: if distList.size = k then
26: kdistValues.Add(k-th largest value from distList)
27: end if
28: end for
29: Sort kdistValues;
30: return kdistValues;

the ε values lower than the upper bound εub. The second drawback of the
DBSCAN-based algorithm is that the DBSCAN parameters must be deter-
mined before processing k-STC queries. By using OPTICS, we can determine
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the set of parameters while constructing the cluster order since the parame-
ters are not needed until we extract the clusters from the cluster order. So,
we do not need to have a separate parameter determination phase.

In the following, we first briefly introduce preliminaries of the OPTICS
algorithm and then present the OPTICS-based algorithm for the processing
of k-TMSTC queries.

Preliminaries

The OPTICS algorithm [15] is proposed by Ankerst et al. for density based
clustering as an extension to the DBSCAN algorithm. The algorithm requires
minpts and generating ε (εg) parameters just like DBSCAN. However, instead
of a single list of density-based clusters, it constructs an ordering of data
points, the so-called density-based cluster order, which then can be used to
extract clusters for different values of εi that are smaller than the generating
distance εg (i.e., εi < εg). To define the cluster order, we first need to define
the relevant concepts.

Definition F.10. The core distance of an object o is defined as the minimum ε
value such that o is a core object. It is defined only if o is a core object with respect
to a generating distance parameter (εg), and it is equal to the distance between o and
its kth nearest neighbor with k = minpts.

Definition F.11. The reachability distance of an object p with respect to ob-
ject o is defined as the maximum ε value that makes p reachable from o. It is
undefined if o is not a core object with respect to εg. If o is a core object then it is the
maximum of the core-distance of o and the distance between o and p. Reachability
here means direct reachability as defined in Definition F.4.

Definition F.12. A cluster order is an ordered list of objects where each object has
two additional attributes: the core distance and the reachability distance from one
of the core objects. It contains all the objects from the database in the order of their
processing by the algorithm.

The OPTICS algorithm proposed by Ankerst et al. [15] is given in Algo-
rithm F.8. It creates a cluster order from the set of relevant objects according
to a generating ε value (εg) and a minpts parameter. The OPTICS algorithm
first initializes the cluster order as an empty list (line 1). It then iterates over
the set of relevant objects. If an object is not already processed, the algorithm
expands the cluster order starting from that object (lines 3–24).

To expand the cluster order from a given object o, the algorithm first cre-
ates a priority queue of seeds to store candidates for the cluster order (line 4).
The priority queue uses the reachability distance with respect to the closest
core object as the priority. The algorithm then issues a range query to get
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Algorithm F.8 OPTICS(irtree, q, Dψ, εg, minpts)

Input: irtree - IR-tree, q - k-TMSTC query, Dψ - Relevant object set, εg - The
generating ε parameter, minpts - The minpts value

Output: clusterOrder - the output cluster order
1: clusterOrder← new list
2: for all o ∈ Dψ do
3: if !o.processed then
4: seeds← new priority queue;
5: neighbors← irtree.RangeQuery(o.λ, q.ψ, εg);
6: o.processed← TRUE;
7: o.reachability_distance← UNDEFINED;
8: clusterOrder.Add(o);
9: if neighbors.size ≥ minpts then

10: o.core_distance← minpts-dist to o from neighbors;
11: UpdateOrderSeeds(seeds, o, neighbors);
12: while seeds is not empty do
13: oi ← dequeue an element from seeds;
14: neighborsi ← irtree.RangeQuery(oi.λ, q.ψ, εg);
15: oi.processed← TRUE;
16: clusterOrder.Add(oi);
17: if neighborsi.size ≥ minpts then
18: oi.core_distance← minpts-dist to oi from neighborsi;
19: UpdateOrderSeeds(seeds, oi, neighborsi);
20: end if
21: end while
22: end if
23: end if
24: end for
25: return clusterOrder;

the εg-neighborhood of o (line 5). Then, o is added to the cluster order (line
8). If the εg-neigborhood is dense, the object’s core distance is determined
(line 10). The algorithm then updates the seeds queue with the objects in the
εg neighborhood of o (line 11). The UpdateOrderSeeds function call adds
the neighbor objects to the seeds queue with their new reachability distances
from o. If a neighbor object is already in the queue, its reachability distance
is updated if the reachability distance from o is less than its current reacha-
bility distance. The same procedure is applied for each object oi dequeued
from the seeds queue (lines 12–21). When the order seeds queue is empty,
the algorithm returns back to the main loop and starts the same expansion
from one of the remaining unprocessed objects, if there are any.
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Algorithm

We proceed to propose the OPTICS-based algorithm that utilizes the IR-tree.

Algorithm F.9 OPTICS-based Algorithm

Input: irtree - IR-tree, q - k-TMSTC query, minmp - Minimum minpts value,
maxmp - Maximum minpts value

Output: clusters - The list of clusters
1: ∆ub, εub ← GetBounds(q.tmc, q.tmi);
2: Dψ ← irtree.RangeQuery(q, ∆ub);
3: cSet← ∅;
4: for minpts = minmp to maxmp do
5: cm← ProcessQueryForMinPts(irtree, q, Dψ, minpts, εub); . Gets

executed in parallel using fork-join model
6: cSet← cSet∪ cm;
7: end for
8: clusters← top-k disjoint clusters of cSet sorted with respect to the cost;
9: return clusters;

The OPTICS-based algorithm is given in Algorithm F.9. It first determines
the upper bound values ∆ub and εub and initializes the set of relevant objects
(lines 1 and 2). The algorithm then initializes the set of clusters cSet to an
empty set and processes the query for different minpts values in the range of
[minmp–maxmp] in parallel (lines 3–7). It uses a simple fork-join model, and
at the end of each parallel execution, expands cSet by taking its union with
the result from the parallel execution (line 6). Finally, it returns the top-k
disjoint clusters from cSet with respect to the cost.

The function ProcessQueryForMinPts (Algorithm F.10) processes the k-
TMSTC query for a single minpts parameter. It first determines the possible
values for ε and populates the cluster order from the relevant object set using
the OPTICS algorithm [15] with parameters εub and minpts (line 3). Nor-
mally, the OPTICS algorithm as given in Algorithm F.8 just creates a cluster
order. We update it to return the set of ε values while populating the cluster
order. The algorithm then iterates over the epsValues and constructs the clus-
ters for each ε value (lines 3–16). To construct the clusters for a single ε value,
it iterates over the cluster order and checks the reachability distance of the
object (line 6). If it is reachable from the current cluster with respect to the ε
value then it is just added to the current cluster (line 7). Otherwise, the algo-
rithm checks whether the object is a core object (line 8). If so, the algorithm
first adds the current cluster to the set of clusters, if it is populated, and ini-
tiates a new cluster with core object o (lines 9–13). The algorithm terminates
when the clusters for all possible ε values are extracted.

Function OPTICS is updated to return a list of ε values together with
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Algorithm F.10 ProcessQueryForMinPts(irtree, q, Dψ, minpts, εub)

Input: irtree - IR-tree, q - k-TMSTC query, Dψ - Relevant object set, minpts -
The minpts value, εub - The upper bound value for ε

Output: clusters - the result set of clusters
1: clusters← ∅;
2: clusterOrder, epsValues← OPTICS(irtree, q, Dψ, εub, minpts);
3: for all ε in epsValues do
4: C ← ∅ . Current cluster
5: for all Object o in clusterOrder do
6: if o.reachability_distance ≤ ε then . The object is reachable from

the current cluster.
7: Add o to C;
8: else if o.core_distance ≤ ε then . The object is a core object with

respect to ε, so we can initiate a new cluster.
9: if C is not empty then

10: Add C to clusters;
11: C ← ∅;
12: end if
13: Add o to C;
14: end if
15: end for
16: end for
17: return clusters;

the cluster order. We decided to integrate determining the ε parameters into
the OPTICS algorithm since we do not need the ε values until we construct
the clusters. As shown in Algorithm F.8, the OPTICS algorithm issues range
queries to get the εg neighborhood of each object to expand the cluster order.
The updated version issues range queries together with k-dist queries for
each object and process these two types of queries in an integrated manner.
For this reason, we use the function RangeQueryWithKDist that returns the
k-dist value together with the εg neighborhood instead of using the function
RangeQuery in Algorithm F.8. These two functions are quite similar, except
that the former takes an extra argument k = minpts and uses a priority queue
where the priority value is the node’s distance to the given object location. It
keeps track of the number of objects added to the neighbors and sets k-dist
to the distance of the kth object added to the neighbors. It then returns the
k-dist value together with the list of neighbors. When all relevant objects
are processed and the list of k-dist values is populated, the updated OPTICS
algorithm determines the list of ε values from the k-dist values using the
procedure given in Algorithm F.3 (lines 12–27).
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SGPL-based Improvements

The OPTICS-based algorithm explained above utilizes the IR-tree to process
range queries and k-dist queries in an integrated manner. In this section, we
explain how we can utilize SGPL instead of the IR-tree for processing a range
query together with a k-dist query.

The idea is quite similar to the FastKDist algorithm given in Algorithm F.7.
The function FastRangeWithKDist is defined by the main loop in the Algo-
rithm F.7 (lines 4–27), and it takes an object as an extra parameter. Since we
need to add all objects whose distance to the given object does not exceed
εub, the loop condition in line 10 is updated to c 6= null ∧ εub ≥ Distmin(o, c).
We add an outer if statement before line 13 since we need to check whether
the distance between the object and the input object does not exceed εub for
each object in the cell. If that is the case, the object is added to the list of
neighbors. This function returns the k-dist value and the list of neighbors for
the given object.

It is straightforward to utilize the function FastRangeWithKDist in the
OPTICS-based algorithm. We just need to call FastRangeWithKDist instead
of RangeQueryWithKDist.

5 Experimental Evaluation

We proceed to evaluate the proposed algorithms. Section 5.1 presents the
experimental setup. The proposals for k-TMSTC queries are evaluated in
Section 5.2. We first study the effect of the algorithm parameters on the pro-
posals. Then, we study the effect of the query parameters on the proposals.

5.1 Experimental Setup

We use a real dataset from Yelp that contains 156, 639 PoIs. The textual de-
scription of a PoI contains the name of the PoI, the categories that the PoI
belong to, and additional information such as parking and ambience. The to-
tal number of distinct words in the dataset exceeds 40, 000. The set of query
keywords is formed by choosing 10 random keywords from the top-50 cate-
gories in the dataset. The set of query locations consists of random locations
in the center region of the 10 cities with the highest PoI density. We form a
k-TMSTC query with k = 6 for each location and for each keyword, so the set
of k-TMSTC queries consists of 100 queries. Note that the value of k does not
affect the performance of the algorithms since they form all density based
clusters and compute their costs before returning the top-k clusters.

We evaluate the performance of the DBSCAN-based algorithm on the IR-
tree (v1), the DBSCAN-based algorithm on the SGPL (v2), the OPTICS-based
algorithm on the IR-tree (v3), and the OPTICS-based algorithm on the SGPL
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Table F.2: Parameters

Notation Explanation Values
incth Increase threshold 0.05, 0.06, 0.07, 0.08, 0.09,

0.1
maxmp Maximum minpts value 8, 9, 10, 11, 12, 13, 14, 15
h Order of z-curve in SGPL 14, 15, 16, 17, 18, 19, 20
|q.ψ| Number of keywords 1, 2, 3, 4
εub Upper bound for ε (km) 0.25, 0.5, 0.75, 1.0, 1.25,

1.5, 1.75, 2.0
∆ub Upper bound for distance

(km)
10, 20, 30, 40, 50, 60

(v4) under different algorithm and query parameter settings. Table F.2 lists
the parameter values used in the experiments, where bold values are the de-
fault values. We normally assume that we have access to a rule-based func-
tion to determine the upper bounds for ε and distance (εub, ∆ub) according
to transportation modes. However, we manually set these upper bounds for
the experiments to observe their effect on the query processing performance.
We change the value of one parameter while fixing the other parameters to
their default values in each experiment. Then we process the queries and re-
port the average elapsed time cost. All algorithms are implemented in Java,
and an Intel(R) Core(TM) i7-4720HQ CPU @ 2.60GHz with 16GB main mem-
ory is used for the experiments. The IR-tree and SGPL index structures are
disk-resident.

5.2 Performance Evaluation

We evaluate our proposals while varying the parameters listed in Table F.2.
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Fig. F.5: Effect of Parameter incth
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Increase Threshold (incth). Figure F.5a shows the performance of the al-
gorithms when varying the increase threshold parameter. Figure F.5a shows
that the DBSCAN-based algorithm on the IR-tree (v1) has substantially lower
performance than the competitors. For this reason and to show more detail
in the figures, we only report the average elapsed time for the other algo-
rithms as shown in Figure F.5b. The DBSCAN-based algorithms (v1 and v2)
improve as incth increases. This is expected since the number of k-STC queries
processed decreases as incth increases. As expected, the OPTICS-based algo-
rithms (v3 and v4) are insensitive to variations in the increase threshold. The
OPTICS-based algorithms first create the cluster order for each minpts value
and determine the ε values for density-based clustering according to the incth
parameter. Then the clusters are extracted from the cluster order with respect
to the ε values. Although the number of ε values decreases as incth increases,
this does not affect the elapsed time for the OPTICS-based algorithms. This
suggests that we can utilize smaller incth values for the OPTICS-based algo-
rithms without a performance loss.
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Fig. F.6: Effects of Parameters maxmp and h

Maximum minpts Value (maxmp). In order to observe the effect of the
range of minpts values on the proposed algorithms, we set the minimum
minpts value to 3 and vary the maximum minpts value. Figure F.6a shows the
elapsed time of the proposed algorithms when varying maxmp. The perfor-
mance of all algorithms become worse as maxmp increases, as expected. A
larger maxmp means a larger number of k-STC queries to be processed for the
DBSCAN-based algorithms. For the OPTICS-based algorithms, the number
of parallel queries is directly related to the range of minpts values as can be
seen in line 4 of Algorithm F.9.

Order of Z-Curve in SGPL (h). SGPL is constructed based on the grid
over the data set. The grid is indexed by a space filling curve. We adopt
the Z-curve in our evaluation. Other types of space filling curves can also
be utilized. The order h of the Z-curve defines the granularity of the grid
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5. Experimental Evaluation

that is expected to affect the performance of SGPL. A large h provides a finer
granularity for the grid. Since the parameter h is related to SGPL, it only
affects the algorithms that use the SGPL (v2 and v4). The average elapsed
time for these algorithms is shown in Figure F.6b. The time decreases as
h increases up to a certain point. Then the elapsed time increases again.
This shows that a finer granularity for the grid might result in having too
many distance computations between the objects in FastRange, FastKDist,
and FastRangeWithKDist algorithms.
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Fig. F.7: Effects of Parameters |q.ψ| and εub

Number of Keywords (|q.ψ|). Figure F.7a shows the performance of the
proposed algorithms when varying the number of query keywords. The per-
formance decreases as the number of query keywords increases. This is ex-
pected since the number of relevant objects increases when more keywords
are part of the query. This results in a larger search space; thus, the number
of range queries issued increases as well.

Upper Bound for ε (εub). Figure F.7b shows the effect of εub on the per-
formance of the algorithms. The performance of the DBSCAN-based algo-
rithms becomes worse as εub increases since a larger εub value results in more
k-STC queries. The performance of the OPTICS-based algorithms also be-
comes worse as εub increases since these algorithms issue range queries with
the radius of εub; thus, a larger εub value means a larger search space for the
range queries.

Upper Bound for Distance (∆ub). Figure F.8 shows the effect of ∆ub on the
performance of the algorithms. This parameter directly affects the number
of relevant objects, which increases as ∆ub increases. However, this increase
only affects the DBSCAN-based algorithm on the IR-tree (v1). For this rea-
son, the elapsed time for v1 is shown in this figure. The performance of the
other approaches is not affected substantially since the increase in the num-
ber of relevant objects is not high. Since all the query locations are in city
centers, most of the PoIs are already within 10 kms of the query locations.
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So, increasing this upper bound to 60 kms does not add a lot of extra PoIs to
the relevant PoI set.

Summary. Overall, the experimental evaluation shows that the OPTICS-
based algorithm on SGPL (v4) outperforms the other algorithms. It provides
a speedup up to 30x compared to v1, up to 4x compared to v2, and up to
5x compared to v3. The experiments also suggest that we are able to process
k-TMSTC queries with a response time that supports interactive search. The
effects of the FastKDist and FastRange algorithms on SGPL can be seen from
the difference between the elapsed times of the DBSCAN-based algorithm on
the IR-tree (v1) and the DBSCAN-based algorithm on the SGPL (v2).

6 Conclusion

This paper proposes and studies the top-k transportation-mode aware spa-
tial textual cluster (k-TMSTC) query that returns k density-based clusters of
points of interest that are relevant to query keywords. We propose a spa-
tial and a spatio-textual cost function to compute the costs of clusters. The
top-k clusters with the lowest costs form the output. We propose an algo-
rithm based on DBSCAN and an algorithm based on OPTICS to process k-
TMSTC queries. We also propose an algorithm called FastKDist to compute
the kth nearest neighbor distances for all objects in a given set. The DBSCAN-
based algorithm utilizes FastKDist to determine the density-based clustering
parameters. An experimental evaluation using real point of interest data
suggests that the proposed algorithms are capable of processing queries in
interactive time. The evaluation also indicates that FastKDist improves the
performance of the DBSCAN-based algorithm.

The proposed algorithms assume that upper bounds for the distance and
density-based clustering parameters are available. As future work, it is of
interest to propose a method that determines the upper bounds with respect
to the relevant PoIs on the fly. Furthermore, it is of interest to build an index
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structure that considers the cost function and is capable of providing an up-
per bound that enables effective search space pruning. Such an index struc-
ture might improve the query processing time of the proposed algorithms
since the need to form all candidate clusters before forming top-k clusters
may be removed.
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