Real-time detection of moving crowds
using spatio-temporal data streams

Dmytro Arbuzin

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 17.05.2017

Thesis supervisor:

Prof. Keijo Heljanko

A’, Aalto University

AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF ELECTRICAL ENGINEERING MASTER’S THESIS

Author: Dmytro Arbuzin
Title: Real-time detection of moving crowds using spatio-temporal data streams

Date: 17.05.2017 Language: English Number of pages: 4481

Department of Computer Science

Professorship: Computer Science

Supervisor and advisor: Prof. Keijo Heljanko

Over the last decade we have seen a tremendous change in Location Based Services.
From primitive reactive applications, explicitly invoked by users, they have evolved
into modern complex proactive systems, that are able to automatically provide
information based on context and user location. This was caused by the rapid
development of outdoor and indoor positioning technologies. GPS modules, which
are now included almost into every device, together with indoor technologies, based
on WiFi fingerprinting or Bluetooth beacons, allow to determine the user location
almost everywhere and at any time. This also led to an enormous growth of
spatio-temporal data.

Being very efficient using user-centric approach for a single target current Location
Based Services remain quite primitive in the area of a multitarget knowledge
extraction. This is rather surprising, taking into consideration the data availability
and current processing technologies. Discovering useful information from the
location of multiple objects is from one side limited by legal issues related to
privacy and data ownership. From the other side, mining group location data over
time is not a trivial task and require special algorithms and technologies in order
to be effective.

Recent development in data processing area has led to a huge shift from batch
processing offline engines, like MapReduce, to real-time distributed streaming
frameworks, like Apache Flink or Apache Spark, which are able to process huge
amounts of data, including spatio-temporal datastreams.

This thesis presents a system for detecting and analyzing crowds in a continuous
spatio-temporal data stream. The aim of the system is to provide relevant knowledge
in terms of proactive LBS. The motivation comes from the fact of constant spatio-
temporal data growth and recent rapid technological development to process such
data.

Keywords: Online clustering, Complex Event Processing, Distributed Systems

Contents

Abstract
Contents

1 Introduction

1.1 Real-time applications oL
1.2 Dataminingo
1.3 Location-based services L
1.4 The main motivation behind the thesis

2 Related Work

2.1 Clustering. Fundamentals,
2.1.1 Partitioning methods L.
2.1.2 Hierarchical methods
2.1.3 Density-based methodso
2.1.4 Grid-based methods L.

2.2 Streaming L
2.2.1 Streaming architecture oL
2.2.2 Streaming clustering algorithms
2.2.3 Streaming summary

2.3 Distributed and Parallel processing

24 Cluster analysis o
2.4.1 Cluster similarity
2.4.2 Pattern detectiono oo

2.5 Complex event processing

2.6 Location Based Services
2.6.1 Geolocation Lo Lo

3 Concept and Design

3.1 Big Picture o
3.1.1 Current approaches
3.2 Clustering
3.2.1 Discussion on a Window Model
3.2.2 Discussion on a merging process
3.3 Pattern detectiono
3.3.1 Basic definitionso oL o
3.3.2 Advanced patterns
3.3.3 CEPoperators
4 Implementation
4.1 Software tools
4.1.1 Apache Flink

4.1.2 Libraries and software components

il

ii

iii

28
28
29
30
33
35
37
38
41
43

4.2 Data Source . . .
4.3 Clustering

4.4 Complex Event Processing

5 Evaluation

5.1 Evaluation with artificial data
5.1.1 Cluster quality evaluation
5.1.2 Pattern detection evaluation
5.1.3 Discussion on the evaluation

5.2 T-Drive example
6 Conclusion

References

iv

47
47
49

54
o4
o4
61
69
70

74

76

1 Introduction

Data is the new oil!

Clive Humby, ANA Senior
marketer’s summit, November 2006

The phrase "Data is the new oil" was first time used about 10 years ago and since
then was repeated dozens of times by different technology capitalists in different
variations [1]. And indeed the concept of "Data' and especially "Big Data' has
undergone a huge transformation from a buzz word and a fuzzy concept less then
decade ago to a separate business and research industry nowadays. Moreover,
according to the latest Gartners’ Technology Hype Cycle chart [2] "Big Data" is not
even on the chart anymore. It dropped out in 2015 meaning that technology is not
a hype anymore and became an industry standard and a granted reality. Instead
Machine Learning is on a peak of a curve currently 1.

Cognitive Expert Advisors
Machine Leaming

expectations
Con

riscled Home
¥y Blackchain Sitvare-Dhelnad Secdeiy;
Smart Robots Autonomous Vehicles

Manaiube Elsclronics
Softwane-Defined Anything (SDx)

Mecro Data Cenbars

Gesture Contral Devices

IaT Pilaticmm

Commercial UAVs (Drones)
Affective Computing

Smart Data Discovery

irual Personal Assistants
Brain-Computer Interface
Conversational User Inleraces

Matural-Language Question Arwering

Enterprise Taxonomy and Ontology Managemant

Vialumetric Displays
Smart Waorkspace Husman
Personal Analylics Augmentaton
Cuantum Compuling

Data Broker Paas (dbvPaas)

Neuromerples Hafdwane
Conbext Brokering
802 11ax

Genefal-Purposs Machine Intelligence
40 Prinfing

Virtual Rieality

Srmarl Dust
#g af July 2016
. Peak of
Innovation Trough of Plateau of
Trigger Exér;ftl::at‘:iins Disillusionment Slope of Enlightenment Productivity
time w
Years to mainstream adoption: obeolate

Olessthan 2years © 2toSyears @ S5t 10years A more than 10 years @ before plateau
Figure 1: Hype Cycle for Emerging Technologies, 2016. Source: [2]

The full quote of Clive Humby makes oil analogy even more meaningful. “Data is
the new oil. It’s valuable, but if unrefined it cannot really be used. It has to be changed
into gas, plastic, chemicals, etc. to create a valuable entity that drives profitable
activity; so must data be broken down, analyzed for it to have value.”. Following this
logic, we can think of Statistics, Data Mining and Machine Learning as of tools to
break down the data in order to obtain the real value.

Nowadays technologies can easily manage almost all steps of data processing and
management.

e Data Collection. IoT (Internet of Things) is becoming another new differ-
ent industry and with billions of sensors gathering all kinds of information.
Currently we have much more data that we are able to analyze and exploit.

e Data Transportation. 5G, ZigBee, new standards of WiFi and Bluetooth
protocols. They all were developed with the aim to handle huge amount of
data with a low latency. Basically communication layer is one step ahead of
our current needs and ready to transport all available bytes and bits.

e Data Storing. Database industry is also going through a tremendous change.
NoSQL is no longer a "buzzword". NewSQL databases are appearing every day.
In-memory databases have become a standard already due to cheap RAM.

e Data Processing. MapReduce framework [3] has become a golden standard
for Big Data processing already a decade ago. Today there are many more
sophisticated solutions such as Apache Spark and Apache Flink. These in-
memory engines are able to process not only big datasets, but also heavy
distributed datastreams.

e Data Representation. This area only indirectly related to traditional Big
Data research and always stays a bit aside. However, Information Visualization
is a different topic being toughed in academia and hugely important in business,
especially in BI (Business Intelligence). The popularity of tools such as R,
Tableau, QuickSight from AWS, Zoomdata and many others clearly indicates
the demand and development, which is going on in this area.

All of these engineering and scientific fields together create a perfect environment
to manipulate data and extract meaningful knowledge. Each of these areas has
its own challenges and interesting problems to solve, however there is one more
area, which has the most potential and space for improvement. This area is data
analysis and algorithms. The actual state of play is that the majority of current most
common and wide-spread algorithms and methods in machine learning and data
mining were introduced long time ago to solve theoretical problems. Many of them
assume by default that the data is offline and available in one place. Moreover, some
of algorithms converge with a huge computational complexity and do not consider
other important factors such as network latency and space complexity, which cause
a lot of impact in distributed environments.

The motivation for this thesis comes from three different computer science areas:
location-based services (LBS), real-time applications and data mining. We exploit
the fact that current data processing technologies require modern algorithms and
new approaches.

1.1 Real-time applications

In the recent years there was a tremendous shift from a batch processing and offline
data analysis to a streaming data processing and in-memory computations. And
indeed, almost every data source is a stream by its nature and current applications
need to provide useful insights to their users as soon as possible. Data pipelines
and data flow management have become important areas of a computer science.
Technologies like Complex Event Processing (CEP) were introduced over decade ago,
but until recently were applied only in narrow domain areas such as stock markets.
The development of data processing technologies such as Apache Spark and Apache
Flink inspired by MapReduce allows us to process huge amount of data with relatively
small cost.

Stock markets, online advertising, internet of things and many more industries
require efficient solutions to process heavy data streams.

1.2 Data mining

This is another hot topic in a business as well as in an academia nowadays. Much
of recent research projects in data mining and machine learning are focused on
transformation popular algorithms and methods to satisfy needs of online applications
and distributed environments. As we will see throughout the thesis this is not a trivial
task and there is still a lot of space for improvement. In fact, there are very few fully
distributed machine learning algorithms, which are able to work with streaming data.
Due to some fundamental reasons very few of them can be as efficient in a stream
processing as in a batch processing. The development of incremental algorithms [4]
solves the problem for many use-cases, however there is no known general solution
across domains. One cannot generally transform a non-incremental algorithm into
an incremental one. Moreover, incremental algorithms do not solve problems of
distributed computing.

Inability of adjusting fundamental general purposed data mining algorithms to
requirements of streaming and distributing processing has created a shift to domain-
specific solutions. The main difference is that domain-specific algorithms exploit
metadata and particular features of a dataset and usually solve some specific task.

1.3 Location-based services

Location-based services are currently changing as well. From basic services on-demand
like online maps and route planning applications they evolved to real-time location
and context-based notification applications, which are currently available on every
mobile platform. However, almost all available services are targeting private users
and still remain quite primitive. It is surprisingly shocking, how little information
a person can obtain from location services, considering all volume and variety of
geodata that are available.

Lately much research in this area is conducted in two particular areas: local
positioning systems and personification of services. First ones are able to locate people

inside buildings using beacons, sensor identification technologies, Wi-Fi networks,
etc. Personification allows better targeting. With the help of technologies, such as
geofencig, it allows to provide people more personal and context-base information.

However, there are very few research projects ongoing, which try to exploit
geolocation information of crowds and not individuals. This is especially true for a
real-time context.

1.4 The main motivation behind the thesis

The topic of this thesis is "Real-time detection of moving crowds using spatio-temporal
data streams’. This thesis is a concept design of a possible future system, which not
only combines latest researches and technologies stated above, but also introduces
some new methods and techniques, which were not used previously. The suggested
system is able to detect clusters of moving objects, to recognize various interesting
patterns based on cluster discoveries and to provide almost real-time insights to a
user. From a technical point of view, the designed system is fully distributed and is
able to work with heavy spatial data streams.

The main motivation behind such application comes from many domain areas.
The most obvious use-case is real-time analyzing of a traffic flow. By detecting
clusters of vehicles, the system can provide almost real-time information about the
situation on roads. By informing other drivers about traffic congestion the system
can help to avoid or reduce road rages. Besides vehicles system can analyze people
flows in places of mass gatherings. For example, during concerts or football games
the system can discover how the crowd moves and react of this based on provided
information (for example we can open extra entrances or send more taxi cars to
big group of people). The system can detect places, where crowds often occur.
Based on this information we can dynamically place geofences in order to show more
advertisement or just some important notifications.

All these problems are possible to solve nowadays even without developed system,
however we should consider this research in a context of automation and a trend of
self-driving vehicles. Currently, in order to detect a moving crowd and take some
action on it, manual interference is required. Detecting can be done automatically
already today, but triggering a specific action based on some specific pattern is not
so common in the area of LBS. Most of today notification mechanisms are based on
basic parameters such as thresholds, time intervals or simple counts. In this thesis
we also present a number of interesting patterns, which can be detected by a system
while analyzing geo-temporal data stream. Based on these patterns the system can
emit new triggering events using CEP technology, which minimize human intrusion
to a service.

As it was already mentioned, current data mining techniques move towards
domain specific solutions in order to provide better results. This thesis is focused on,
but not limited to, vehicle systems and traffic flow systems in big cities and urban
areas.

2 Related Work

Being developed in an application area of LBS, this thesis deals with different research
and domain fields. The core concept can be separated into two major research topics:
cluster detection and pattern analysis. The nature of the data is geospatial. From
a technical side the designed system operates on a continuous data stream in a
distributed manner.

This chapter provides some fundamental knowledge about each of these areas as
well as discusses relevant research papers related to the thesis.

2.1 Clustering. Fundamentals

The initial challenge of the thesis problem (detecting gatherings of moving objects)
is an important part of data mining and statistics. Clustering is in a category of
unsupervised learning, meaning that algorithms "learn by observing" and do not
require previous training or set up.

Clustering or cluster analysis is the process of partitioning a set of data objects
into subsets. Each subset is a cluster, such that objects in a cluster are similar to
one another, yet dissimilar to objects in other clusters [5]. Unique features, based
on which items are combined into clusters are also called dimensions. Using dataset
with coordinates X and Y means that we have two dimensions. General purposed
algorithms are aimed to handle N dimensions, however, as we will see in a following
discussion, it is rather hard. The technique which decrease the number of data
dimensions is called dimensionality reduction.

There is no common terminology and strict categorization of cluster methods
or models, however it is useful to provide a brief overview and history of research
in order to justify the clustering method, which was later developed for a thesis
implementation. There are next common clustering method groups according to [5]:
partitioning, hierarchical, density-based and grid-based methods. Modern algorithms
often mix techniques from different groups, therefore it is hard to put some algorithms
just to one group.

2.1.1 Partitioning methods

This is the simplest and the most fundamental clustering technique. Given a set of
n objects and a number of required clusters k, a partitioning method constructs
k partitions of the data, where each partition represents a cluster and £ < n.
Algorithms of this group use a distance measure as a main criteria of similarity
(usually Euclidean, but can also use Mahalanobis). Partitioning methods discover
clusters of a spherical shape.

Probably the most popular algorithm of this group is K-Means. Being introduced
more than 50 years ago it still remains very popular and widely utilised [6]. This
indicates the difficulty in designing a general purpose clustering algorithm. The algo-
rithm uses entroids of a cluster C; to represent it. In the best case scenario centroid
is a clusters’ center point. K-means calculates the mean variable of neighbourhood

points to detect a centroid. There are special variations of K-means that use medoids
and other notions of average to define centroid. In general, algorithms of this group
are easy to understand and implement. There are many known extensions of k-means,
which address the problem of streaming and big datasets [7], [8] and can converge in
one pass at maximum. Nevertheless, initial restrictions of the amount of clusters as
input parameter and inability to detect clusters of arbitrary shapes together with
poor outlier handling make this group unsuitable for this thesis problem.

2.1.2 Hierarchical methods

Hierarchical methods work by grouping data objects into a hierarchy or “tree” of
clusters. Such method creates a hierarchical decomposition of the given set of data
objects. Hierarchical methods can be two types. Agglomerative or "bottom up":
each data item starts in its own cluster and pairs of clusters are merged as one moves
up the hierarchy. Divisive or "top down: all data items groups as one cluster at the
beginning. Methods of this group can utilise any notion of distance. To maintain
cluster hierarchy methods usually use some kind of tree data structures (B-tree for
example). The popular approach is to integrate hierarchical clustering with other
clustering techniques, resulting in multiple-phase (or multiphase) clustering.

The most famous algorithm of this group is Balanced Iterative Reducing and
Clustering using Hierarchies or just BIRCH [9]. Being introduced in 1996 by Zhang
et al. BIRCH has become one of the most adapted and influential algorithms. BIRCH
operates in two phases:

e Phase 1: It uses hierarchical technique to perform initial micro-clustering
calculations. BIRCH was the first clustering algorithm, which used a clustering
feature (CF) vector in order to maintain information about clusters. CF vector
of the cluster is defined as a triple: CF = (N, LS, SS), where N - a amount
of data points, LS - a linear sum of N data points, i.e., >, X;, and SS -
is the square sum of the N data points, i.e., S, X2. Structures LS and
5SS are n-dimensional arrays [10]. CF vectors for each cluster are stored in the
CF-tree. It is a height-balanced tree.

e Phase 2: BIRCH applies a (selected) clustering algorithm (for example iterative
partitioning) in order to cluster leaf nodes of a CF-tree, which removes sparse
clusters as outliers and groups dense clusters into larger ones.

CF vector from phase one has two important features: Incrementality and Additivity.
This allows very efficient usage of memory and also allows working with data streams.
After being introduced in BIRCH for the first time, CF vectors were adopted and
now widely used in many prominent clustering algorithms [8]. For a second phase an
iterative method can be selected as well.

In general, BIRCH demonstrates O(n) complexity, where n is a number of input
objects. Due to algorithms’ features it works well with streaming data and also have
a good linear scalability. There are also few versions that operate in parallel [11].
However, using notion of distance BIRCH converges well only with the numeric data
and discovers clusters only in a spherical shape.

2.1.3 Density-based methods

This group of clustering algorithms uses the notion of density and can expand clusters
in any direction. In other words, these algorithms can discover clusters of arbitrarily
shapes. They also handle outliers very well.

Density-based spatial clustering of applications with noise (DBSCAN) [12] is
a perfect example of a such algorithm. It was introduced just two months earlier
than BIRCH. And as well as BIRCH has created a whole new family of clustering
algorithms, which are used today. DBSCAN was one of the first algorithms to address
a spatial dimension’s problem, even though it is still a general purposed method
aimed to converge with a high dimensionality. One cannot treat spatial dimension
as just any other dimension due to its significance. Usually it is the only dimension,
which we take into consideration. As it will be shown later it often goes together
with temporal dimension.

DBSCAN has only three input parameters. minPts - the minimum amount of
data points to be considered a cluster. It should be set carefully, too low parameter
leads to many small clusters and too high will produce many noise data points and
very few clusters. Another parameter is € (eps) - the maximum distance between two
points to be considered neighbors. The algorithm picks randomly any point p , marks
it as visited and checks if there are any other points so the distance(p,p;) < e. If
there are enough points so that the amount of neighborhood points > minPts, the
algorithm creates a cluster. If there is no points within €, the algorithm marks p as
noise. In case there are neighbors, but not enough to create a cluster, the algorithm
moves to another point among neighbors to check if any unvisited points reachable
from there. Figure 2 illustrates this effect, which is called density-reachability.

"-\.

Figure 2: DBSCAN density-reachability example: points A, B, C' form a cluster.
N is a noise. minPts = 4. Source: [13]

Another well-known density-based algorithm is called OPTICS [14]. OPTICS
is based on a very clever idea: instead of fixing minPts and € , it only fixes
the minPts and plot the radius at which a cluster would be considered dense by

DBSCAN. In order to sort the objects on this plot, it processes them in a priority
heap, so that nearby objects are nearby in the plot.

DBSCAN time complexity is rather high, as it visits every point multiple times.
The average complexity is O(log(n)) and the worst case remains O(n?). OPTICS
comes at a cost compared to DBSCAN. Largely because of the priority heap, but
also as the nearest neighbor queries are more complicated than radius queries of
DBSCAN.

In general, performing very well in term of cluster discovery and flexibility both
algorithms are costly and require more than a single pass. Also very hard to parallel,
as a sequential pass through all points is required.

2.1.4 Grid-based methods

All previously discussed methods are data-driven, meaning that they all adjust to an
initial distribution of objects and partition them based on this distribution. Grid-
based methods from another hand locate data objects into predefined cell space (grids)
and then analyze each grid independently. This approach is called space-driven.

Grid-based methods use multiresolution grid data structure. It quantizes the
object space into a finite number of cells that form a grid structure on which all of
the operations for clustering are performed [5].

Some of the most popular grid-based algorithms are STING: STatistical IN-
formation Grid [15] and CLIQUE: An Apriori-like Subspace Clustering Method
[16].

STING splits the data space in rectangular cells using hierarchical and recursive
way. Figure 3 illustrates such rectangular structure, where each layer of cells
correspond to different level of resolution. Each cell contains statistical summary
regarding data points belonging to it, which is very useful for a data analysis tasks.
Values are precomputed and stored as statistical parameters.

\\ '/%u__'ﬂ‘n st Layar

i<th layar

Figure 3: Hierarchical structure for STING clustering. Source: [5]

CLIQUE (CLustering In QUEst) is very simple and straightforward, but yet
powerful grid-based algorithm for finding clusters. CLIQUE partitions each dimension
into non-overlapping intervals, thereby partitioning the entire embedding space of
the data objects into cells. However, in an opposite to STING it has only one layer.

It uses a density threshold to identify dense cells and sparse ones. A cell is dense if
the number of objects mapped to it exceeds the density threshold [5].

It is important to notice that almost every grid-based algorithm utilizes the
notion of density. They discover dense grid-cells using just simple count (CLIQUE)
or some kind of density value based on the amount of data points and some weighted
coefficients. Therefore, one can consider these algorithms as density-based with
respect to a predefined space. Dense grid cells can be considered as micro-clusters
(BIRCH).

Grid-based methods provide some fundamental advantages compare to other
methods. Grid structure by default allows parallel processing and incremental
updating, as each cell can be computed separately. The only linear process, which is
necessary, is to combine neighboring dense grid-cells into clusters. However, this step
can be also optimized. In the case of a hierarchical grid structure (STING) merging
can be done recursively by going each step one layer higher.

As for disadvantages these methods are heavily dependent on input parameters and
underlying grid structure. Also finding arbitrary-shaped clusters can be challenging
as it requires extra processing step to go from separate cell to single data-point and
sometimes this not possible at all.

2.2 Streaming

Most of discussed clustering algorithms and methods assume by default to work with
static datasets and have all data available in one place from the very beginning. The
problem of processing a data stream into clusters was formulated long time ago and
still widely discussed in academia. Some of classic algorithms such as BIRCH are
incremental by default and easily fit to a streaming architecture. However, for most
of clustering methods streaming extensions were developed.

Before the main discussion about streaming clustering algorithms it is necessary
to discuss basic streaming related features and fundamentals, which play important
role in an algorithm design and data processing. In this discussion we follow mainly
"The world beyond batch: Streaming 101" article by Tyler Akidau [17], but also cite
some research papers from academia.

2.2.1 Streaming architecture

Since data stream is an infinite sequence of data objects (or unbounded data) arriving
in random order, it is impossible to apply many standard operations and queries
such as aggregations, sorting, reduce functions, etc. In fact, there is a special kind
of queries designed especially for streams, which run continuously over a time and
incrementally return new results as items arrive. They are known as long-running,
continuous, standing and persistent queries [18] , [19]. However, even they do not
provide queries which cannot be done incrementally e.g. sorting. The only way to
achieve these kind of operations on data stream is to cut it into chunks of finite
size and then work with them independently. Method of cutting a data stream into
smaller chunks is called windowing. According to common terminology in academia

10

[20], [21] there are three main types of window models i.e. temporal spans:

e Fixed window model. In this model data stream is sliced up into equal data
segments using timestamps. Timestamps can be emitted based on event time
(actual time, when the data item was created) or processing time (time, when
the system observes the item for the first time). In the ideal world these times
are equal. Figure 4 illustrates the difference. Besides timestamps slicing can be
done based on a simple count i.e. tuple-based windowing, e.g., after every ten
data items. The special case of a fixed window model is a landmark window
model, where each time we cut a stream from the beginning until now.

e Sliding window model. Generalization of fixed windows. The data stream
is divided in the same way as fixes model by a constant length or a fixed period.
The only difference is that the period is less than window length, thus there is
a window overlap on each iteration. This approach is useful for different kinds
of optimizations. For example, if we are counting a sum for sliding window
chunks we can re-use already calculated value for an overlapping part, which
belongs to both chunks: previous and current.

e Damped window model. In this model the system assigns weighted coeffi-
cients to sliding windows, i.e. latest windows are more important than previous
ones. Usually the weight of data decreases exponentially over the time.

Event Time

Figure 4: Event time vs. processing time. The X-axis represents event time
completeness in the system, i.e. the time X in event time up to which all data with
event times less than X have been observed. The Y-axis represents the progress of
processing time, i.e. normal clock time as observed by the data processing system as
it executes. Source: [17]

These three window models were introduced in early 2000s, when internet and
web applications just started to grow. Fourth window model has become very popular
recently, especially in a context of modern web applications:

11

e Session window model. Dynamic type of windows, which composed of
events sequence terminated by a gap of inactivity greater than some threshold.
Nowadays, sessions are very popular to analyze online user behavior. Sessions
are very powerful, because their length cannot be defined beforehand and
heavily depend on data source.

Figure 5 illustrates different window techniques. In most streaming real life scenarios
data is pre-grouped by a key (some common parameter, which allows to subset
smaller data stream from the main one). For example, in session window model key
is usually a user id.

Sliding Sessions

Figure 5: Different window models. Each example is shown for three different
keys, highlighting the difference between aligned windows (which apply across all the
data) and unaligned windows (which apply across a subset of the data). Source: [17]

2.2.2 Streaming clustering algorithms

Silva et al. did an outstanding job in 2013 by creating a survey for streaming
clustering algorithms [10]. Since then the state of the art situation regarding clustering
algorithms almost did not change. In their survey authors investigated 13 different
algorithms regarding next 7 aspects:

1. Data structure for the statistical summary.
2. Window model.

3. Outlier detection mechanism.

4. Number of user-defined parameters.

5. Base offline clustering algorithm.

6. Cluster shape.

7. Type of clustering problem.

12

This taxonomy covers most of clustering problems, which were discussed in
previous parts

Table 1 from [10] perfectly summarizes features of different streaming algorithms.
Therefore, we can choose the right algorithm for solving our thesis problem by
rejecting some algorithms based on particular features. For example, all algorithms
based on K-means will not satisfy our case, as they require the number of cluster as
an input parameter. Basically working with spatio-temporal data we are interested

mostly in density-based algorithms and can focus only on D-Stream and DenStream
for a deeper analysis.

Algorithm | Data Window | Outlier | Input | Base Algo- | Cluster Cluster

Structure | model Detec- Params rithm Shape Problem
tion

BIRCH feature landmark| density- | 5 k-means hyper- object
vector based sphere

CluStream | feature landmark| statistical- 9 k-means hyper- object
vector based sphere

ClusTree feature damped | — 3 k-means /| arbitrary | object
vector DBSCAN

D-Stream | grid damped | density- | 5 DBSCAN | arbitrary | object

based

DenStream | feature damped | density- | 4 DBSCAN | arbitrary | object
vector based

DGClus grid landmark| — 5 k-means hyper- attribute

sphere

ODAC correlation | landmark| — 3 hierarchical | hyper- attribute
matrix clustering | ellipsis

Scalable k- | feature landmark| — 5 k-means hyper- object

means vector sphere

Single-pass | feature landmark| — 2 k-means hyper- object

k-means vector sphere

Stream prototype | landmark| — 3 k-median hyper- object
array sphere

Stream prototype | landmark| — 2 k-median hyper- object

LSearch array sphere

Stream coreset landmark| — 3 k-means hyper- object

KM-++ tree sphere

SW Clus- | feature landmark| — bt k-means hyper- object

tering vector sphere

Table 1: Analysis of 13 Data Stream Clustering Algorithms. Source: [10]

In both cases authors of algorithms were solving the same problem: discovering
clusters over an evolving data stream. This led to next constrains:

e No prior knowledge of the amount of clusters. Moreover, with a stream archi-

13

tecture the amount of clusters is often changing.
e Detected clusters should be an arbitrary shape.

e Algorithm should handle outliers well, as streaming context assumes much
noise.

Having the same goal, two algorithms were designed using different approaches.

2.2.2.1 DenStream

DenStream [22] or Density-Based Clustering over an Evolving Data Stream with Noise
was introduced in 2006 by Cao, Feng, et al. Being inspired by another fundamental
streaming clustering algorithm CluStream [23] it solved couple of major disadvantaged
which were present in its’ predecessor: bad handling of outliers, because of adopted
distance measurement together with poor performance and limitations because of
keeping fixed and pre-defined number of micro-clusters in memory.

DenStream utilized one important novelty of using damped window model, where
the weight of each data point decreases exponentially over a time t according to
fading function f(x) = 2" where A\ > 0. This formula is widely used in temporal
application. The higher value of A the lower importance of historical data.

DenStream operates in two phases: online part of micro-cluster maintenance and
offline part of generating final clusters on demand by the user.

Online part. Algorithm constantly maintains groups of core-micro-clusters,
potential-micro-clusters and outlier-micro-clusters, these clusters can be maintained
incrementally, as according to authors’ evaluation majority of incoming data points
belong to one of already existing clusters. Each of this micro-clusters have properties
of a radius 7 and a center c. Also each cluster has a weight w, which is calculated
as a sum of weights of all point, which are located within radius r to the center c
using FEuclidean distance. The difference if the micro-cluster is core, potential or
outlier depends on a integer u. If the w > u cluster if core. If the sum w > 5 * pu,
where [is a coefficient such as 0 < § < 1, micro-cluster is considered potential.
Otherwise, if the weight w < (* u micro-cluster is considered outlier.

At each arrival of a new point, algorithm firstly tries to insert it into a nearest
potential-micro-cluster. If the distance from the potential-cluster center to a new
point is lower or equal some parameter ¢ algorithms inserts the point, otherwise it
tries to insert it to a nearest outlier-micro-cluster following the same distance check.
After that algorithms check if a new value of w exceeded parameter [u. If so, it
means that outlier—micro-cluster has grown a potential. In case no existing clusters
can accept new point, a new outlier-micro-cluster created with a center of new point.
As the weight of each cluster decreases over the time. The algorithm need to perform
the status-check of all clusters and remove old clusters.

Besides basic principles authors use special kind of approximations and calculations
to guarantee that the number of outlier-micro-cluster is finite together with other
checks for convergence. The online part is initialized by running DBSCAN on a first
amount of points N to initialize first potential and outlier micro-clusters.

14

Offline part. The online part allows the system to maintain dense areas of a
data stream, however to achieve real meaningful clusters authors uses variation of
DBSCAN, which can be run on request. They use the notion of density-reachability
similar to the original DBSCAN in order to merge potential and core micro-clusters
into full clusters.

In general, algorithm has demonstrated good results during the evaluation with
different input parameters.

2.2.2.2 D-Stream

Almost at the same time, in 2007, Chen, Yixin, and Li Tu have introduced their own
solution to a given problem: algorithm called D-Stream [24], which was also presented
as an alternative and a successor of CluStream. D-Stream is also using density-based
approach. It uses two-phase approach similar to CluStream and DenStream: online
phase and offline. Another important feature is damped window model, very similar
to DenStream. In this way there is no need to keep track of old data points, as the
weight or density coefficient of each point is calculated according to the formula:

D(z,t) = X1 = Nt

where A € (0,1) is a constant called the decay factor and ¢ and ¢, is current
time (processing time) and event time. As the current time is constantly changing
there is a need to update density coefficient of each data point every second, however
according to authors it is not necessary, as due to the grid structure we work only
with grid cells, not with data points. Underplaying grid consists of some fix amount
of grid cells, such as every arriving data point is mapped to a corresponding cell.
Figure 6 illustrates the process of the algorithm. Every grid cell has among others a
property called cell density, which is a sum of density coefficients of every data point
mapped to particular cell:

D(g,t) = >_ (D(z,1)

Therefore, the entire cell grid density can be updated upon a new point arrival
according to the following formula:

D(g,tn) = A" % D(g,t;) + 1,

where ¢, is a new point processing time and ¢, is a last update of grid cell ¢
such as t, > t; .

Online part. Each data point is mapped to a corresponding grid cell ¢ on
arrival. Every grid cell has a feature vector maintaining next information: ¢; - time
of the last update, D - density coefficient, status = {SPORADIC, NORMAL} is
a label used for removing sporadic grids and a type. Each grid cell can be one of
three types: dense, sparse and transition. Grid cell is considered as dense when
density coefficient D(g) > %, where (), > 1, a special parameter controlling
the threshold and N - amount of grid cells. Sparse grid cell is a cell with density

15

| I |
e P
L‘ LM I
| 2 i o |
(S 21 211
Dt Stream i F e e &‘r v .1' [= :

OB
i I¥

I Demigy G 1 Chitering resulfs

Oulins protesing Offline pracescing

Figure 6: DStream workflow. Source: [24]

coefficient D(g) < ﬁ, where 0 < () < 1, an input parameter. Transition grid
is a grid, which density coefficient is in between values of being a dense or a sparse
grid. Also grid cell can be outside or inside, meaning if it surrounded by neighbor
cells from all sides or not.

Offline part. While online part is responsible for processing incoming data points
and maintaining summarized information about grid cells, the actual clustering is
done by running a grid inspection process with some time gap interval. During the
inspection run algorithm checks the status of each grid cell assigning a special status
(SPORADIC or NORMAL) to a cell and updates a grid list - a special hash table,
which contain all NORMAL grid cells and SPORADIC. In this way, for the actual
clustering algorithm does not need to check whole grid cell, but only that are present
in a grid list. After each update of grid list the clustering procedure, which is similar
to the standard method, is called. Neighboring inside dense cells together with
outside transition cells form a cluster. The algorithm demonstrated very good results
during the evaluation and has been widely adopted by academia.

2.2.3 Streaming summary

Working with data streams is not trivial and many traditional methods often cannot
be applied. Manipulating data streams requires a special set of tools and methods
in order to achieve meaningful results. Clustering over a data stream is even more
difficult, as data arrives continuously and clusters are changing constantly. Therefore,
there is no ultimate solution, which solves this issue. For our thesis goal we have
discussed two, in our opinion, most suitable algorithms. However, none of them fully
satisfies thesis needs.

DenStream is very good density-based streaming algorithm, but has a couple of
disadvantages. Firstly, it is hard to parallelize as a feature vector of micro-clusters
should be a solid data structure. Secondly, it is not completely online. Actual
clustering is happening by a user request using DBSCAN-like algorithm.

D-Stream is more suitable for our purpose, as it uses grid structure, therefore it
is possible to transform it into distributed algorithm. However, it comes with a cost
as we will see in a next chapter. Also damped window model is not the best for our
case. The discussion on it will be in the next chapter. In general, we use D-Stream
as a base algorithm for this thesis, but modify it quite much.

16

2.3 Distributed and Parallel processing

All discussed clustering algorithms require at least one full pass at the best case
scenario through all data points in order to converge, therefore parallel clustering
is not a trivial task and not that many successful implementations of clustering
algorithms exist. And indeed, if we look at algorithms like DenStream or DStream
or any other algorithms, which act in iterative manner they all in one way or another
require a single thread at some point during the execution and many of them need to
maintain a common state, which is not always possible in distributed environments.

The difference between parallel and distributed computing is rather vague and
up for arguing, however for this discussion we will stick to traditional definitions,
where parallel computing - is a type of computation in which many calculations
or the execution of processes are carried out simultaneously [25] and distributed
computing - is a type of computing carried out in a distributed system, which is the
one where components located at networked computers communicate and coordinate
their actions only by passing messages [26]. In other words, the main difference
between parallel and distributed computing is a memory state. Parallel processes
have access to shares memory, while in distributed system every process has their
own memory instance. Figure 7 illustrates the difference.

™y

[a) e
i { —
L | 7
A
et
(&) [Processar I
—
-
d.-"' r.len-.m-,-_
|_ Prac éadsa | f"r
[Memory | /
\ ‘,r" FrOCesser
1
- i
oy |
el [Citemory]
| Memary |
icl

l Processor || Processor -_ Pracessar |
i i
Mefany]

Figure 7: (a), (b): a distributed system. (c): a parallel system. Source: [27]

Parallel computing was always very hot topic in computer science and some
parallel clustering algorithms were developed long time ago [28]. However, starting
from mid-2000s, after the MapReduce framework [3] was introduced and became
de-facto the standard for BigData processing, data mining area received a new wave
of algorithms fitting new distributed paradigm.

Similar to streaming, extensions for almost all popular clustering methods were
developed for distributed environments over the last decade. However, before dis-
cussing the actual algorithms, it is important to underline main challenges in parallel
clustering as well as different kinds of parallelism.

17

According to Talia [29] main goals of the use of parallel computing technologies
in the data mining field are:

e Performance improvements of existing techniques.
e Implementation of new (parallel) techniques and algorithms.

e Concurrent analysis using different data mining techniques in parallel and
result integration to get a better model (which is more accurate).

And there are three parallelism strategies, that can be applied:

1. Independent parallelism. In this way processes are executed in parallel in
an independent manner, so as each process has access to the whole dataset and
they do not communicate with each other.

2. Task parallelism. Each process executes different operations on (a different
partition of) the data set.

3. SPMD parallelism. SPMD (Single Program Multiple Data) parallelism
where multiple processors execute the same algorithm on different subsets and
exchange the partial results to cooperate each other.

These strategies are not necessary the only ones to be used in parallel data mining,
moreover often they can be combined in so-called hybrid approaches in order to
improve performance and accuracy of results. However, majority of parallel clustering
algorithms follow the combination of tasks and SPMD parallelism with master-slave
architecture [30].

From the very beginning many attempts to parallelize DBSCAN have been made.
Many extensions similar to [31] adopt the master-slave model, when data is equally
distributed among slaves. Clusters are computed locally at slaves and sent to a master
node for a sequential merging in the end. This approach creates communication
overhead and very low parallel efficiency during the merging phase.

Some of more recent extensions such as PDSDBSCAN [32] exploit disjoint-set
data structure to break the access sequentially of the original DBSCAN. Figure
8 illustrates the algorithm. Singleton tree (single node tree) for each point of the
dataset is created at the beginning. Merging is done hierarchically, intermediate trees
created after exploring the eps-neighborhood for randomly selected points. After
going one step (leaf) higher algorithm terminates. Flexibility and scalability of
merging is possible due to main operations of Disjoint-Set Data Structure: FIND
and UNION. Authors managed to obtain good evaluation results for both: parallel
and distributed variations of PDSDBSCAN.

Particular interest for current thesis represent density-based clustering algorithms
for a MapReduce framework. MR-DBSCAN [33] is one of the most popular extensions.
The algorithm is done in a 4-stages MapReduce environment, meaning that there is
a sequence of 4 MapReduce jobs required to be executed in order to converge. Figure
9 illustrates them. At the first step MR-DBSCAN summarises the data statistic such

@ e SR
S A @ © (9 eo:
DRONONONS Lo
. __"@' ﬁ;,l . O ’
'@ ®
{a) Data points
- W £ £ ERE # 4 2
1 2 3 4 5 4] 7 & g [0 11
) 4 i) A A . .Y
12 13 14 15 16 17 18 19 20 2]
{b) Singleton trees
A A A AT) A A)
8 2 15
T]?- 'qxﬂlv“ 13 -;-2“[.]?‘1*]
41 326 7 12 9 18 19 16 14 11
(c) Intermediate trees
S B

10

2 17 6712 9 18
(d) Final trees

18

Figure 8: An example showing the PDSDBSCAN algorithm at different stages.

Source: [32]

as spatial distribution, amount of records and creates an index. At the second step
local distributed clustering is performed following the logic of base parallel algorithm
[34]. During a third step bordering subspaces are being discovered using some of

topology information from the first step in order to be merged.

At the last step

merging of bordering areas is done together with formatting data for an output.

“Partition | Merge | ——— “Bounda
Partit AN
smlﬁlgl | [Candidﬂiea' ";,arzﬁ:gg [Eardetry

T et = Gandidates

/ Y ;,-'/_/
¥

Uﬂ1€l Wl[h

31.’. a: Glabal
I'v."lerge 'Cll.ISlEl I[J

'l

Figure 9: The process and dataflow of MR-DBSCAN. Source: [33]

pGrid: Parallel grid-based data stream clustering with MapReduce [35] is an
interesting extension. It was developed for a streaming data on top on already
discussed D-Stream. Algorithm follows two-phase architecture design, mapping

19

arriving data object to a base grid system but instead of doing merging sequentially
as in original version, pGrid utilises MapReduce framework merging grid cells by
each dimension and in the end combining overlapping grid cells. Figure 10 provides
algorithm description for a 2-dimensional space.

gridID, gridindex
g0, [0.0)
g1, [1,0)
g2, [2.0) excaming e grids form local clusters
g3 [0.1) #ong the ¥ dimension along the X dimension
gd (LI) - . form global clusters from
7 | g8 c L
g5, [2a) 7 | — — local clusters
g6, [0.2) e | e |65 = bz [%
E7, [1.2} 4 LR
o a2 63 o3| s
g8, [%2) == glbafalbih: ge
e o1 oz 4 glblas,b2.b3a2l: €5, 62, 51
k¢
L [gr | oo I-F' '-r’
1 a | g% examine the gring a|m§ form local clusters b
il the % dimension along the ¥ dimersion : | E6 | g7 | g8
0 | g2
Y VAN AT AT g3 | g4 | g5

[} z x { 1

st irgut : —)
LIE:;JE:-II::EIIJM : :: :: :: ., Hu : E'J Tl :zxr
s Jeo |E2 - 2 | EI)

VAYEY,
¥) Fs 2
IncexKey

— Rule 1

Rule 2 —

.

Figure 10: A 2-D example of the MapReduce clustering. Source: [35]

2.4 Cluster analysis

Discovering clusters is an important step, however modern applications require often
not only to detect clusters but also to analyze them and provide some useful insights.
Especially this is true at a streaming environment, where clusters are dynamic and
change with the time. Detection of those changes is a difficult task and can be
approached from different angles.

2.4.1 Cluster similarity

The first and the most obvious task in cluster analysis is a cluster similarity task, i.e.
analysing how two objects are related between each other. Similarity is most often
measured with the help of a distance function. The smaller the distance, the more
similar the data objects.

Probably three most often applied distance measure functions are Euclidean,
Cosine and Jaccard distances. As a cluster is just a set of objects, the one can treat
these objects differently and get different results. The choice of a particular distance
measure mostly depends on domain logic of an application.

Probably the most popular measure is Euclidean distance, where we treat clusters

20

as sets of individual points:

n

d([xlax27"-7xn]7[y17y2a--'7yn]) = Z($Z_yl)2
=1

With a Cosine similarity clusters can be evaluated as vectors of objects:
T kY

dC’osine I
\/ 2o 1’12 > yi2

Finally, with a Jaccard distance between two sets can be compared as "bags of
objects":
|AN B
|AU B|

djacca'rd(A7 B) =1-

Jaccard distance which comes from Jaccard index, also known as Jaccard similarity
coefficient, is a very simple but yet powerful statistic for comparing two sets of objects.
The formula of a coefficient itself looks next:

|AN B

J(A’B>:|AUB| where 0< J(A,B) >1

J(A,B) equals one means that sets are completely similar and equals zero that
they are diverse. The idea is nicely presented with Venn diagrams at Figure 11.

Figure 11: Intersection and union of two sets A and B. Source: [36]

The variation of a Jaccard similarity measure is Szymkiewicz-Simpson coefficient
or also known as overlap coefficient [37]. It allows to identify if one set is a subset of
another set. In order to calculate it, one need to divide an intersection size of two
sets by the smaller size set of both:

|AN B

overlap(A, B) = min(|A[,|B])

2.4.2 Pattern detection

Analyzing cluster similarity is a relatively easy task. More challenging and sophisti-
cated goal is to analyze evolving clusters according to a time dimension. By default,

21

in a dynamic streaming environment there is no prior knowledge about cluster cre-
ation and any dependencies. Clusters may appear and disappear in random order
and random places. The task of streaming cluster analysis is to find some kind of
patterns and dependencies in series of cluster discoveries.

The huge research topic is discovering and analyzing relative motion patterns
in groups of moving point objects. This topic is not directly linked to clustering,
but in our case notions of "group of moving points" and "moving clusters" are quite
similar. The only difference is that moving point objects (MPOs) are represented as
geospatial lifelines: a series of observations consisting of a triple of id, location and
time [38] and clusters presented as single objects. Moving point objects are a frequent
representation for a wide range of phenomena: from animal migrations to traffic
analysis systems and even soccer player movement analysis. Understanding motion
processes is an important precondition for the design of location based services.

Laube together with Imfeld and Weibel [39] has defined next popular pattern,
that can be discovered within set of MPOs:

e Flock. This pattern describes group of objects, that are close to each other
and moving in the same direction (i.e. moving clusters).

e Leadership. This pattern is very similar to the flock one. The only difference
is that one object should be heading in a particular direction for some time.

e Convergence. This pattern describes group of objects, moving to the same
location.

e Encounter. This pattern is a special type of Convergence, when group of
objects reach the same location at the same time.

The authors also suggested efficient algorithms to discover these patterns, however
without any particular clustering technique and working directly with MPOs, which
are stored as a simple matrix.

Later Gudmundsson, van Kreveld and Speckmann have reviewed Laubes’ work and
improved convergence time complexity for the encounter pattern [40]. Gudmundsson
together with Benkert [41] have also dedicated a separate research just to detecting
flock patterns. Figure 12 presents the notion of a flock discovery.

(a]

Figure 12: (a) A polygonal line describing the movement of an entity p in the time
interval [t1,%6]. (b) A flock for p; , 2, 3 in the time interval [tr,o]. Source: [41]

Yanwei et al.[42] extended the idea of a flock reporting to the trajectory online
clustering using density-based clustering algorithm as a base method. Figure 13

22

demonstrates that clustering trajectories can be seen as an extension of a flock
pattern detection.

Figure 13: An example of line segment clusters and trajectory clusters. Each line
segment with an arrow represents a trajectory line segment of the moving object,
and the number on the line segment indicates the time interval of the line segment.
Source: [42]

Kalnis et al. studied the discovery of moving clusters in a database of object
trajectories [43]. The key difference of clustering trajectories or movement patterns
and discovering moving clusters is that the identity of a moving cluster remains
unchanged while its location and content may change over time. Presented algorithms
utilize DBSCAN as a clustering method. Authors also provided a definition of a
moving cluster, which we will follow in this master thesis. Figure 14 provides a
visual definition of this concept. Authors used already discussed Jaccard coefficient
to analyze cluster similarity. In their paper authors use value of 6 = 0.5.

2.5 Complex event processing

Complex event processing (CEP) is an emerging technology, which allows the system
to track and analyze flows of information in forms of data streams using event-driven
approach [44]. This concept was originally developed from a need of analyzing and
processing streaming information in real-time without storing data to the database
first. For example, the system is responsible for detecting fire in a building using
smoke and temperature sensors. The alarm should be triggered as soon as possible
from one hand, from the other hand, there is no need to store updates from sensors,
if they are not related to a fire alarm. Such examples can be found in almost any
domain area: from finance sector and stock markets to IoT area and monitoring
different kinds of environments.

The core notion in CEP is an event. An event is an occurrence within a particular
system or domain; it is something that has happened, or is contemplated as having
happened in that domain. The word event is also used to mean a programming entity
that represents such an occurrence in a computing system [44]. Basically any change
of state in a particular system can be considered as an event. The word "complex"

23

/0
I:}I"'
&
o | |
lp |
€y, o
el =4
:J'G-}:ﬂ-‘ %51 o c, 2
3 ,\ u_,,\f-};% & E:r*ljﬁ‘:
g &;-Oi
51 SI 33

Figure 14: 51,55, 53 - snapshots of DBSCAN results. (4,5, C3 - discovered
clusters at each snapshot at some timestamps. Cj,C;11 is a moving cluster if

% >0 where 0<6>1. Source: [43]

in CEP means that the system can aggregate new events based on some basic events

using specific set of rules and patterns, therefore there is a next terminology in terms
of CEP:

e Atomic Event. A primitive (basic) event, which represents the smallest entity
in terms of an information flow. Atomic events can be defined as instantaneous
(happening in a specific point of time), significant (related to a domain context),
indivisible (cannot be decomposed into smaller entities). Usually provided
outside of the system and seen as a ground truth.

e Complex Event. Also known as composed or derived event. An event, which
is created by a system as a result of event processing. Complex events are
based on a sequence of atomic events. The logic or rules for creating such
events are described by events patterns.

e Event Pattern. A formalized set of rules, which describe complex events
inside the system. The system analyzes a stream of atomic events and emits
new complex events recognizing predefined patterns. Patterns normally de-
scribed with the use of formal logic and Boolean operators, such as sequence,
conjunction, negation, composition, etc.

For example, Hu Wenhui et al. in their work on applying CEP technology to process
high level business logic of RFID (Radio-Frequency IDentification) applications [45]
have defined six event operators:

1. Aggregation: (An) means n instances of event type A occur.

2. Disjunction: (A|B) means either A or B occurs (two disjunction events are
generated if both occur).

24

3. Conjunction: (A&B) means both A and B occur.

4. Negation: (A) means no instance of A occurs; this must be qualified by
operator Within.

5. Sequence: (A;B,t) means A and B both occur, A first, within t time units of
each other.

6. Within: Within(A,t) means A occurs with constraint that the interval of the
instance is less than t time units.

The authors claims that these 6 operators are enough to describe business logic of
most RFID applications. Graphically basic operators are presented at Figure 15.

O——0 O—L3—0

E=(An) E=(~A)

E=(A&B) E=(AB)

Figure 15: Visualization of Aggregation, Negation, Conjunction and Disjunction. A
and B - atomic events. E - complex aggregated events. Source: [45]

The main advantage of CEP architecture is that the complexity of events basically
remains unlimited. New event patters can be described based on previous simple
patterns, producing new complex events in a system. Figure 16 illustrates such
pattern.

E={itam) & (-B)) | C)
Figure 16: Example of a more complex composite event. Source: [45]

In general CEP provides very powerful and flexible way to analyze data streams.
We will use its apparatus for a cluster analysis.

2.6 Location Based Services

This thesis is developed as a part of location based services. LBS have a rich
history of research and take their roots from more than 20 years ago, when the GSM

25

communication went global and there occurred a need for detecting a mobile phone
location inside the mobile network. In the academia LBS are often seen as a part
of a bigger topic: context-aware services. Context-aware services can be defined as
services, which dynamically change their behavior based on some specific context
information [46]. Therefore, in a case of LBS the context is location. Activity,
identity or time can also carry context information. Figure 17 presents the whole
picture.

The turning point for the LBS development was over a decade ago, when GPS-
capable mobile phones reached the mass market. Since then LBS has developed in a
number of different directions:

e Became proactive. First LBS were reactive, meaning that the service was
always triggered by the user. The example of reactive LBS is a map service
(Google Maps), where user explicitly asks for a specific location or a route.
Proactive LBS are triggered automatically, whenever a user enters a certain
area. Applications like Foursquare are able to send push notifications about
interesting places nearby without a user request.

e Became user-centric. Initially LBS were seen as services of mobile operators
exclusively, where telecom networks were responsible for identifying users’
locations and providing extra services. The development of smartphones and
wireless mobile telecommunications (3G, LTE) has shifted the focus to the
application level, where each application can request an access to a user
location and provide context-aware information (e.g. Foursquare). However,
the ownership of the data and the full control of which application gets this
access belong to the user.

e Spread to indoor. Traditional positioning systems such as GPS have proved
their efficiency for an outdoor tracking. Despite the fact that the research on
indoor positioning technologies started long time ago [47], they remained quite
primitive until recently. Due to the development of the network infrastructure
and communication protocols (WiFi, Bluetooth) currently there are many
indoor navigation solutions available based on fingerprinting [48] and Bluetooth
beacons [49].

In general, LBS have shown a great development targeting single users. Using
technologies such as geofencing modern systems are able to deliver relevant notifica-
tions to users, based not only on the actual location, but also on additional context
information e.g. movement patterns [50]. However, LBS remain extremely poor in
the area of providing information based on location of multiple objects. Even though
multitargeting (ability to track many objects) services existed more than 10 years ago
[51], they did not receive a lot of further development from the research community.
Partly this is due to the historical user-centric shift, where the user is responsible for
sharing its own location. Legal issues are also an obstacle here. Studies have shown
that users trust less systems, which "silently" track their locations [52]. As for our
knowledge, there is no ultimate solution efficiently utilizing the location information
of crowds.

26

Conlod-amars sonicos.

-, Locaton-based senvices A
=i,
y
| £ i ‘
Sncordary Perzons Techmeal Spalial S Pirvyeical
comexl . oonbaxt conlost oonbad conrheEl coniost
, o o,
PN
Frirrary ¢ = | ; . g
[r— Tiia Leszaliz klendity Actheiy

Figure 17: LBS as a part of context-aware services. Source: [46]

Current thesis can be seen as a middleware layer of proactive LBS, as we do not
deal with the location extraction.

2.6.1 Geolocation

The main idea of LBS is to provide services based on users’ location. The concept of
geolocation is responsible for identification or estimation of the real-world geographic
location of an object. The most common and popular system of describing objects’
location is World Geodetic System (WGS) also known as WGS84, where 84 refers to
a 1984 year, when the system was established. Many current technologies including
GPS are using this system.

The position in WGS84 standard consists of a three-dimensional Cartesian coordi-
nate system and an associated ellipsoid so that W(GS84 positions can be described as
either XYZ Cartesian coordinates or latitude, longitude and elevation coordinates [53].
In real world applications the location is usually described just with XY coordinates
(latitude and longitude) and accuracy.

Even though WGS84 is very reliable and wide-spread system, sometimes it is not
very convenient to work with each objects’ location individually and there is a necessity
to group them according to their position in some order. In 2007 Gustavo Niemeyer
introduced a convenient way of expressing location by using short alphanumeric
strings named Geohash. Geohash is a string representation of a location. It utilizes a
hierarchical spatial data structure which subdivides space into buckets of grid shape.
Single geohash identifies a rectangular cell on a surface of Earth. Initially the whole
surface is divided into 32 cells, each cell represented by a single character. Each
extra character added to a string divides a corresponded cell into 32 sub-cells. This
approach allows achieving a particular precision and "zoom in" effect into any point
on Earth. Table 2 demonstrates the idea of geohash with different precision levels
and size dimensions. Any coordinate pair can be represented with a geohash with a
certain precision. Usually nearby locations have similar prefixes, which allows very
flexible and powerful manipulations while working with geohases. However, this
is not always the case, there are edge-places straddling large-cell boundaries. For

27

example, in France, La Roche-Chalais (u000) is just 30km from Pomerol (ezzz).
Geohashes are particularly interesting in terms of the current master thesis,
because they basically represent global scalable grid structure to encode spatial data.

Table 2: An example of geohashes with string length and size dimensions near the
equator

Geohash Length Cell Dimensions
g 1 ~ 5,004km x 5,004km
gc 2 ~ 1,251km x 625km
gcp 3 ~ 156km x 156km
gepu 4 ~ 39km x 19.5km
gcpuu 5) ~ 4.9km x 4.9km
gcpuuz 6 ~ 1.2km x 0.61km
gepuuz9 7 ~ 152.8m x 152.8m
gcepuuz94 8 ~ 38.2m x 19.1m
gepuuz94k 9 ~ 4.78m x 4.78m
gepuuz94kk 10 ~ 1.19m x 0.60m
gepuuz94kkp | 11 ~ 14.9cm x 14.9cm
gcpuuz94kkpb | 12 ~ 3.7cm x 1.8cm

28

3 Concept and Design

The aim of this thesis is to design a system for real-time crowd detection and analysis,
using as an informational source a data stream with spatial-temporal data. The
system is a natural part of the proactive LBS development. Before going to technical
details and architecture, we need to define problems, which this system solves, and
questions, which this system answers. Simply speaking we need to answer a question
why do we even need this system.

The future system should be able to solve next tasks:

e Crowd detection. The system should be able to detect crowds in a continuous
data stream.

e Pattern detection. The system should be able to detect and analyze inter-
esting patterns and insights over time.

The application area of such system can be very broad: from monitoring traffic
situation on roads to optimizing logistics or peoples’ flow in places of mass gathering
(airports, shopping centers, railway stations, etc.).

Also, the system should satisfy latest technical standard and modern trends,
namely:

e Real-time computing. This is very critical for current systems, as today
users demand the information to be delivered as soon as possible. And not
only delivered, but also analyzed and presented in a nice readable format. The
time gap between the data point being emitted and the same data point being
processed by the system should be minimal.

e Scalability. With an exponential grow of the data it is very critical, that the
system can scale and adjust to a huge workload and amount of data. Scaling
in Big Data is achieved through distribution and parallelism. This also called
scaling out.

In this section we answer how our designed approach solves stated problems and
demonstrate how we address technical challenges.

3.1 Big Picture

The designed system consists of two parts:

e Clustering. This part is responsible for detecting clusters on a continues
data stream. The data point should consist at least of a unique identifier
emitting this point, timestamp and position information (latitude, longitude).
Any additional information might be useful for extra analysis, but 4 fields are
enough to perform clustering operation.

29

e Pattern detection. The second part is responsible for a pattern detection
by analyzing found clusters from a previous step. The main criteria here, is
that pattern detection should be done also online without storing intermediate
results to a database (so called two-phase algorithms).

Figure 18 illustrates a general workflow of the system. The output of the system is a
stream of events in terms of CEP terminology. Simply speaking the system triggers
a special notification for each detected pattern and emits a new event. These events
and patterns are described later in this chapter.

Incoming stream of data points

clustering module

19 k]

Vi
i il
il

I
strid: am of clus.it:hrs
i b

ho e wow
A L¥: sl 3.

‘ pattern detection module

JLﬂlHL

ou t:ﬂl‘ﬂll‘lg stream of events

Figure 18: Workflow of the system

3.1.1 Current approaches

Before describing our approach to this problem it is useful to analyze already existing
systems and methods.

To our knowledge there are no publicly available applications, which are able
to detect clusters on evolving data stream, recognize patterns in them and at the
same time satisfy technical demands, such as scalability, distributed processing and
online architecture. There are many existing clustering algorithms, most prominent
of which were presented in the previous chapter, however none of them satisfy stated
needs.

Streaming algorithms such as D-Stream and DenStream are not distributed and
require a single pass via all data points at least once, which is a serious bottleneck.
In general, algorithms which are using a feature vector or some kind of a tree as an
underlying data structure are much less scalable than algorithms using grid system.
Also all presented streaming algorithms consists of two parts: online and offline.
Online part usually responsible for mapping incoming points to a correspondent
data structure and offline part, which is mostly triggered with some time interval, is
responsible for clustering itself. Our aim is to design a system, which can operate in
a pure streaming manner.

30

Due to already discussed architecture challenges not many distributed extensions
for streaming algorithms exist. Presented in a related work parallel extension of a
DStream algorithm pGrid follows MapReduce framework. However, being already
outdated traditional MapReduce job should run on top of a database, which leads
again to a two-phase approach. Moreover, in case of pGrid three MapReduce jobs
are required in a case of the 2D grid. Two jobs for merging grid cells according to X
and Y coordinates. And one final job in order to merge overlapping areas. This is
not very efficient and MapReduce being performed on stored pre-aggregated data
cannot be considered as a completely online method.

As for the second part of the problem - pattern detection, there are very few
methods, which analyze moving clusters. Most of the research on a pattern recognition
has been conducted for trajectories and not for clusters. Very few research projects
try to analyze patterns in a cluster discovery. And those who do, actually remain
quite primitive. For example already discussed work on moving clusters [43] can only
provide information if the cluster is moving or not. Basically no major research has
been conducted in this field. There is also no known classification and even generally
accepted terminology on a dynamic cluster discovery and cluster patterns.

3.2 Clustering

Let us declare a single data-point P with the minimum required parameters for the
algorithm to function.

P(id, timestamp, lat, lon),

where id - unique identifier of the object producing the data point, timestamp -
event time, when data the point was emitted, lat - latitude in a WGS84 system,
lon - longitude an in WGS84 system.

The first step is to map an arriving data point to a corresponding data structure. A
grid-based data structure was chosen for our system due to its ability to be processed
in parallel. Moreover, since our system is designed only for spatial data, meaning
two dimensional grid, we can take full advantage of a natural grid world-wide system:
geohashes. This allow our system to operate almost at any point on Earth without
any previous setup. Also geohash allows naturally "zoom-in" and "zoom-out" just by
changing precision, providing hierarchical order, very similar to STING clustering
algorithm. In this case the precision of a geohash can be an input parameter from a
user, as for different data sources different cell size might work better.

The first computing step is to calculate a geohash for each incoming point convert-
ing an initial data point P(id, timestamp, lat,lon) into P(id, timestamp, geohash),
where geohash is a character array with a set precision. After this step we work with a
stream, where each point is mapped to a corresponding geohash (grid cell), therefore
the following step is to group data points by this geohash. Figure 19 illustrates these
two actions.

31

incoming stream of data points

geohash computing for each paint

i Hi 1 1
I stream df points with gelohashes i
I e e HH

p -]
iL lL JL keyed streamlL JL lL

Figure 19: The system calculates a geohash for each data point and group data
points into keyed stream

Since the data stream is infinite and non-stopping by default, the only way to
analyze data, is to reduce data objects with some time gap, using a windowing tech-
nique. Section 3.2.1 provides a discussion about alternatives and possible outcomes.
Our approach uses fixed window model with simple count technique of a density
coefficient. Fixed window model is used in many streaming algorithms, for example
BIRCH. Count technique of calculating a density threshold is used in CLIQUE. The
aggregated Table 3 summarizes different ideas implemented in our method, which
were borrowed from other prominent algorithms.

Table 3: Key features of a suggested algorithm together with idea sources
Feature Implementation | Source

Grid data structure | Geohash system | STRING, D-Stream
Density calculation | Object count CLIQUE

Window model Fixed BIRCH

Cluster shape Arbitrary* D-stream

* limited to a single grid cell shape

The time gap for "cutting" a continues data stream according to a fixed model is
another input parameter and can be changed to fit better a particular data source.
After grouping a data stream by a geohash the algorithm performs reduce operation
with a time interval 7. The discussion on a time interval is presented in the Section
3.2.1. The outcome of the reduce operation is a stream of grid cells G , where each
grid cell has a following format:

G(geohash, List < P >, timestamp),

where geohash - name of a geohash, by which points where grouped previously,
List < P > - array of data points belonging to this grid cell, timestamp - the
timestamp of the latest point.

32

(abc, p4)
(abc, p0) (bcd, p&) %z, p1)
{ach, p1) (bed, p7)
y (abc, p2) (bcd, p&) Ef‘lz' Eg:
T (abc. p3) (bcd, pa) ¥=
(abc, p4)
¥ L J L
[reduce by a key (gechash)
(ach, 4) be;g g:
N N

Figure 20: Reduce function groups all data points with the same geohash within
time interval 7' into a grid cell

The reduce process in details is presented in the Figure 20 and a whole process is
in the Figure 21. After the reduce operation the output stream consists of grid cell
objects G, where at each grid cell contains all data points, which were detected in
this area in a previous interval 7.

incoming stream of data points

geghash wmnuhng for each point

[
B JL

keyed sireaam

[Raduce by key (geahash)]
JL strbam of grid n:pils JL J
5- -..l' |.|. .

Figure 21: Algorithm pwrform a reduce operation over the keyed stream with a time
interval T

Another user input parameter to the system, is a density threshold D, which is
responsible for considering grid cells dense or sparse. If the amount of objects P
in G more or equal than D, grid cell is considered dense, otherwise it considered
sparse and the algorithms filters it out. Figure 22 illustrates this step with example.
Therefore, at the next step we keep only dense grid cells.

33

(abc. pd)

(&b, pl) [Bed, pa) iz, pl)
(ach, p1) (bed, pr) -

(abe, p2) (bed, p) E:lg'ggz

T {abc, p3) {bed, pa) -
(abc, pd)
v L L 2
[reduce by a key (geohash)]

[ach, 4) (bcd, 3)
1z, 2)

[filtar out sparse cells (D =3)]

iL (ach, 4) lL (bed, 3)

Figure 22: After the reduce operation algorithm filters out grid cells G, where
> P < D. In our example D =3

After filtering out sparse grid cells, the algorithm performs merging operation,
to create cluster out of neighboring dense grid cells. This can be done in two
ways: sequentially, simply by iterating through all dense grids in a data stream
and recursively, by "zooming up" to a higher level of geohashes. The discussion on
this issue is presented in the Section 3.7. In the initial version of the algorithm we
perform merging sequentially with the maximum time complexity of O(n?) , where
n is amount of grid cells after filtering. The algorithm uses the same value of a time
interval T, in order to be consistent and not to create a bottleneck. The output of a
merging function is a list of found clusters C:

C(id, List < G >,gN,pN),

where id - is a unique identifier of a cluster; List < G > - array of dense grid cells,
which form the cluster, g/N - number of grid cells in a cluster, p/N - amount of data
points, forming the cluster.

At this point the clustering procedure is considered finished. The overall delay
from receiving the last data point to creating clusters is 2 % 7. The whole process is
presented in the Figure 29.

3.2.1 Discussion on a Window Model

There are two window models, which are widely adopted for a streaming clustering;:
fixed and damped. The difference is that with fixed window model stream is divided
in equal snapshots according to some time interval parameter (sometimes count) and
with the damped window model each point is assigned a timestamp-based coefficient,
which decreases over time. Each of these models has advantages and disadvantages.
Here we evaluate both models in terms of a current thesis domain area.

However, let us firstly describe the data stream and some design challenges related
to moving objects. Let assume that the window time interval parameter 7T; equals 5
minutes (300 seconds) and T is a time of the latest taken snapshot. We have two
points P, and P; arriving at the time 77 =T — 240,cconas and Ty =T — 104cconds

34

incoming stream of data points

[geoshash computing for @ach point]

\L stream of points with geohashes ‘L

— J

keyed stream

V Y

l reduce by a key (geehash]) l

J L stream of grid cells J L
[J

filter out sparse cells

T JL stream of dense grid calls JL

| clustering operation |/

JL Sat of found clusters JL

Figure 23: The overall process of clustering

accordingly. This looks alright, if we know that both points remained unchanged
since the last update. However, in a dynamic environment the assumption is that
each object is constantly moving. Therefore, there is a possible scenario, that point
Py has significantly changed its’ location during the time difference 7' — T} or 240
seconds as in our example. This might lead to the inconsistency of a false positive
count, where the algorithms will consider the data point mapped to a particular grid
cell, even though the actual location of a point P; at the time T will be different.
The problem, is that in most cases we receive location updates from objects with
some sampling interval Tg, moreover usually this interval is not a constant and in
real world might vary a lot. For example, in case of vehicles GPS signal might be
blocked by different obstacles (tunnels, high buildings, etc) or might arrive with some
latency delay due to network issues. The optimal scenario is when T; = Ty, however
this is very unlikely. With the grow of source data objects, the delta of Tg will grow
as well. Here two scenarios are possible: T; < Tg and T; > Ts. In case of T; < Tg
we will have a situation, where not all data points were captured by a single snapshot
and clustering results might be damaged by a data fragmentation over time, meaning
that a part of data will be clustered in one snapshot and another part in another
snapshot. In case of T; > Ty, the situation is that some moving objects can update
its location multiple times during the snapshot, which leads to a double count of
some points. This is not a big issue if there is a global state providing guarantees that
each point is presented only once in a snapshot with the latest timestamp taking into
consideration. During the development of a current thesis, we came to a conclusion
that providing such global guarantees is very difficult in a distributed streaming

35

environment and will definitely come with a cost of performance.

In this context, choosing the windowing interval parameter 7T; is critical for a
successful execution of the algorithm and should heavily depend on data source and
features of a data stream. Now let us see how different window models can help to
overcome described above challenges.

The fixed window model is more straightforward and easy to work with due to
it simplicity. At the time T; of the latest snapshot the algorithm has access to all
data points, which have arrived during the period (7;,7;_1). Following previously
stated example, the weight of the point P;, which has arrived at the time 77 is
the same as for the point P, which has arrived at the time T3, even though P; is
relatively old. In a distributed environment depending on 7Ty parameter we might
have duplicate points affecting clustering results and create some data inconsistency.
The grid cell density threshold in this case is an integer value, usually a sum of data
points belonging to a particular grid cell.

Using a damped window model assumes that each data point has a density
coefficient parameter and this parameter loss it’s value over time. In this case the
density threshold is an aggregated float value, the sum of density coefficients of all
points belonging to a particular grid cell. This approach might be more accurate for
clustering results, however besides that it does not create any additional value to the
algorithm. Also in case there is no prior knowledge if the object is constantly moving
or not, damped window model might be misleading. For example, in case of vehicles
the object might just be standing in a traffic jam or at the city lights for some time.
So technically it should not lose any weight, but with the damped window model
it does. Also for the later cluster analysis we only care about if the object belongs
to the cluster or not (true or false), having flexible density coefficients of grid cells
make the analysis more complex and does not bring any value. In the end, while
working with data objects like vehicles or mobile devices (people) we aim to obtain
as much precision and correctness as possible. Either the object is there or not.

To sum up, we can state that the fixed window model is more suitable for our
domain area. It has some disadvantages such as false positive location counts or
double count, but the same disadvantages are true for a damped window model.
Plus, damped window model adds some fundamental limitation for a later cluster
analysis, as data points belonging to the same entity (grid cell) cannot be treated
equally.

3.2.2 Discussion on a merging process

Forming final clusters from some smaller entities (grid cells or micro clusters) is a
bottleneck and the least efficient part of all distributed algorithms. In most cases
at least one full pass through the whole dataset is required. Here we discuss two
possible approaches for merging dense grid cells in our algorithms.

The first one and the obvious one: is a simple loop through all dense grid cells.
The worst time complexity with this approach is O(n?), where n - amount of dense
grid cells. The algorithm randomly picks a dense cell and create a cluster out of it.
Than through iterating over other dense cells the algorithm checks if a current dense

36

cell is a neighboring cell to an already created cluster. If yes, the algorithm adds a
cell to a cluster, if no, new cluster is created out of a current cell. In the worst case
scenario all dense cells will not have dense neighbors and the final amount of cluster
will equal n. Algorithm 1 shows this process in details with a pseudocode.

Algorithm 1 Dense cells merging process
Result: Array of clusters

Input : Array of dense cells grids
Output : Array of clusters clusters

initialization of a cluster array clusters
initialization of a flag

foreach grid cell G in grids do
flag = false

if clusters is empty then
C = cluster from G

clusters < C
continue end

foreach cluster C' in clusters do

if C is neighbour of G then
clusters < C

flag = true
break end

end

if flag # true then
C = cluster from G

clusters < C

=1

end
end

Another approach for creating cluster is more elegant in terms of distributed
environment. As we already discussed geohash names are designed in a way, that
neighboring geohashes most of the times have same prefixes, the closer geohashes
geographically to each other, the more characters will overlap in their names. This
rule is not strict, as there are some areas (mostly edge cases near poles and also
along the Greenwich meridian). Nevertheless, in most parts of the Earth we can
group dense cells together by using the same geohash, but with a lower precision.
Let us assume that initial clustering is done with a precision 7 (152.9m x 152.4m).
After obtaining dense grid cells we can "zoom out" to a precision 5 (4.9km x 4.9km),
group initial dense grid cells by first 5 characters in their names and create clusters
in parallel within our new areas with a precision 5. There is still a possibility that
neighboring grid cells might end up in different merging areas, therefore we still need
to execute a sequential check. However, in case of hierarchical technique the amount

37

of objects to iterate through drops significantly with each geohash precision level.

The merging process is a bottleneck of every distributed clustering algorithm
and there is no ultimate solution to solve this problem. In our final design we use
straightforward solution presented at the algorithm 1 above, however this process can
be optimized by using hierarchical merging. This very much depend on the amount
of data and the geographical location.

3.3 Pattern detection

The second part of the algorithm is a pattern detection and knowledge discovery
based on previously found clusters. For this task we are using CEP concept and its
semantics. CEP satisfies our technical needs:

¢ Real-time computing. One of the core advantages of CEP is that every-
thing is processed in a streaming environment. There is no need for storing
intermediate results in a database. Another feature of CEP is that patterns
are detected almost instantaneously, which provides almost real-time reaction.

e Scalability. By default, CEP is designed to work with multiple atomic event
sources, so scalability is in its core. However, this feature is dependent of the
actual framework.

The first task in order to implement pattern detection is to define and describe events,
patterns and a formal logic of a future system. From a cluster detecting part we
receive a set of discovered clusters in a form:

C(id, List < G >,gN,pN),

where id - is a unique identifier of a cluster; g/N - number of grid cells in a cluster;
pN - amount of data points, forming the cluster. List < G > - set of dense grid
cells, which form the cluster.

The first step is to decompose set of discovered clusters to a stream of events
initialing the CEP process. Moreover, as G is also an aggregated value, we decompose
it to smaller entities in order to make following mining easier and more flexible.
Therefore, the system creates a stream of events called newCluster Event in a form:

newCluster Event(id, Set < geohash >,gN, Set < objectld >,pN,t),

where 1d - is a unique identifier of an event; Set < geohash > - set of geohash
strings with an initial precision (7), they carry the location information of the event;
Set < objectld > - set of unique identifiers of objects, forming the cluster; pN -
amount of objects, forming the cluster; t - timestamp of a snapshot, when the cluster
was formed.

New cluster event newC Luster Event is considered as an atomic (primitive) event.
Basically this is the only atomic event, which we have in the system. Therefore,
our task is to describe set of rules to derive new events in order to extract some
meaningful knowledge. Unfortunately, we cannot just apply CEP operators presented

38

in the Section 2.5, as they all require at least two types of atomic events (A and B
in the example). Therefore, firstly let us describe what we strive to discover in a free
language and then formalize it with CEP operators.

3.3.1 Basic definitions

The pattern detection system is receiving new batch of discovered clusters every
time interval T;. Every cluster has its own unique identifier. There is no previous
knowledge or any additional information about the past. The first challenge is to
detect if the cluster is new or repeating (the system has detected it before). Let
us defined repeating cluster with the help of already discussed Jaccard similarity
measure.

Cluster C'is a repeating cluster, if the Jaccard coefficient of two new clusters
is greater or equal than a coefficient 6, which can be a user input parameter. For
example, in already discussed concept of moving clusters presented in the Section 14,
authors use € = 0.5. This means that at least half of objects forming both compared
clusters should have the same id.

Definition 3.1. Repeating cluster. Cluster C|(id, Set < geohash >, gN, Set <
objectld >,pN,t) and Cy(id, Set < geohash >,gN, Set < objectld >,pN,t) is a
repeating cluster, if

(Set < objectld >¢, N Set < objectld >c,)
(Set < objectld >¢, U Set < objectld >c,)

Jid = > 0, where tcl # tc2

The next step is to detect a moving cluster. Location of any cluster C'is defined
by a set of geohash strings, where every string represents a partial location of a
cluster, therefore we can apply the same Jaccard coefficient measure to compare
these strings. If strings are the same, the coefficient will be equal to one, which
would mean the position is exactly the same. If the coefficient equals to zero, the
position is different. In our system we use the value of 6 = 0.5, which means that
we consider the location the same, if half of the underplaying grid cells are the same.
This allows us to neglect some minor shifts, which could be triggered by noise data
or missing updates from some objects. Finally, we introduce time gap parameter Tj,
within which two clusters can be detected. This parameter is domain dependent and
can vary based on the data stream origin. For example, in mining car movements we
can set it to half an hour, so if the system discovers repeating cluster within half
an hour, the system considers it a moving cluster, otherwise - it is just a repeating
cluster. From this simple but yet powerful logic we can derive two definitions.

Definition 3.2. Moving cluster. Cluster C4(id,Set < geohash >,gN,Set <
objectld >,pN,t) and Cy(id, Set < geohash >,gN, Set < objectld >,pN,t) is a
moving cluster, if

(Set < objectld >¢, N Set < objectld >c,)

Ji ==
47 (Set < objectld >¢, U Set < objectId >¢,)

> ¢

and

39

(Set < geohash >¢, N Set < geohash >¢,)
(Set < geohash >¢, U Set < geohash >¢,)

Jgeo =

and
0 <t02 _tC1 STg

Definition 3.3. Standing cluster. Cluster C(id, Set < geohash >,gN, Set <
objectld >,pN,t) and Cy(id, Set < geohash >,gN, Set < objectld >,pN,t) is a
standing cluster, if

(Set < objectld >¢, N Set < objectld >¢,)

Jia = ‘ , >0
a (Set < objectld >¢, U Set < objectld >¢,) —
and
Jo = (Set < geohash >¢, N Set < geohash >¢,) > o

(Set < geohash >¢, U Set < geohash >¢,)

and
0 <t02 _tC1 STg

Standing cluster is a very useful pattern. For example, when working with vehicle
data we can discover traffic jams or some traffic accidents.

Another interesting pattern, which can be derived from the same Jaccard equation
is hotspot. When the location is the same, but objects’ identifiers are different.
In practice this means the geographical location, where clusters often appear. In
traffic systems it can be intersections, traffic lights or just some bottlenecks. For
this pattern we do not need the time constrain 7}, limiting two events occurrence.
For the location detection, actual clusters do not matter, only the place, where they
occur.

Definition 3.4. Hotspot. Cluster C(id, Set < geohash >,gN, Set < objectld >
,pN,t) and Cy(id, Set < geohash >, gN, Set < objectld >,pN,t) define a hotspot,
if

(Set < objectld >¢, N Set < objectld >¢,)

Jia = - < 0, wh te, to,
a (Set < objectld >¢, U Set < objectld >¢,) where e, 7 fo
and
Jyo = (Set < geohash >¢, N Set < geohash >¢,) > where te, % te,

(Set < geohash >¢, U Set < geohash >¢,)

A couple of simple patterns can be declared with the help of an overlap coefficient.
We can easily detect if some smaller cluster has joined a bigger one. There is
actually an interesting observation, that if two clusters have the same size, an overlap

40

coefficient is equal to a Jaccard coefficient. We can utilize this knowledge in order to
detect joining clusters. If the overlap coefficient between two clusters is high, let us
say > 60 = 0.8, we know that one cluster is a subset of another. At the same time,
when clusters are the same size, the Jaccard coefficient is also equal > 6 = 0.8. In
reality this means that they are very similar and one is always a subset of another.
However, if the overlap coefficient is high and Jaccard coefficient is small, we can state
that one cluster is a subset of another, however the second cluster one is much bigger.
Depending on what cluster is bigger chronologically C; or C5 we can detect joined
cluster or separated cluster. In case if a smaller cluster was first such as t¢, < te, we
consider C a joined cluster. In case t¢, > t¢, we consider () a separated cluster.
For these patterns 7} interval is used in order to filter out clusters, which occur far
from each other in terms of time.

Until now we did not use location similarity to define these patterns. By adding it
we can extend the definition and derive two very powerful patterns, namely growing
cluster pattern and shrinking cluster pattern. If the overlap coefficient of locations is
high, for example > o = 0.8, we can state that one cluster if just joined another
and the first one did not move, therefore we can consider it a growing cluster. If the
timestamp order is different, such as the smaller cluster occur after the bigger one,
we can call it a shrinking cluster. In real life, while analyzing traffic flows, with the
help of this pattern we can detect the traffic jam and the cluster, which caused it.

Definition 3.5. Joined & Separated cluster. Cluster C(id, Set < geohash >
,gN, Set < objectld >,pN,t) is a joined cluster to a cluster Cy(id, Set < geohash >
,gN, Set < objectld >,pN,t) if

(Set < objectld >¢, N Set < objectld >c,)

7 min(|Set < objectld >¢, |,|Set < objectld >¢, |) —
and
7 (Set < objectld >¢, N Set < objectld >c,)
id =

<
(Set < objectld >¢, U Set < objectld >¢,) — 7

and

_ (Set < geohash >¢, N Set < geohash >¢,)
~ min(|Set < geohash >¢, |,|Set < geohash >¢, |)

geo

and
0< |t02 —t01| < Tg

Definition 3.6. Growing & Shrinking cluster. Cluster C(id, Set < geohash >
,gN, Set < objectld >,pN,t) is a joined cluster to a cluster Cy(id, Set < geohash >
,gN, Set < objectld >,pN,t) if

(Set < objectld >¢, N Set < objectld >¢,)

= >0
min(|Set < objectld >¢, |, |Set < objectld >¢, |)

Oia

41

and

(Set < objectld >¢, N Set < objectld >c,) <
(Set < objectld >¢, U Set < objectld >¢,) — 7

Jia =

and

_ (Set < geohash >¢, N Set < geohash >¢,)
~ min(|Set < geohash >¢, |,|Set < geohash >¢, |)

geo

and
0< |t02 —t01| S Tg

These six basic patterns, which can be found by using just Jaccard and Overlap
coefficients for objects and geohashes is a basis for a further knowledge discovery.
Table 4 summaries them. Parameter values are presented just as an example to
provide an approximate scope.

In the related work section four patterns were mentioned, which can be found
while mining separate moving objects: flock, leadership, convergence and encounter.
While mining clusters we can work only with full entities and not with separate
objects, therefore our system can discover only half of them: flock and encounter.
Already at this point they are equivalent to our moving cluster and evolving cluster
definitions.

Table 4 presents 8 patterns, which were defined. Each of these patterns creates a
corresponding event, which can be later used to define complex events.

3.3.2 Advanced patterns

Comparing two new cluster events already provides a lot of knowledge, however we
can define even more interesting patterns comparing three clusters. In particular, we
are interesting in two scenarios: splitting clusters and merging clusters.

In a first case we assume that one big cluster has split into two smaller ones. In
a second case we want to find two smaller clusters, which have merged into one big
one. These use cases are not as easy to detect as already defined basic patterns,
however we expect to detect such behavior while analyzing traffic and people flows.

Merging and Splitting cluster patterns are extensions of joined and separated
cluster patterns. The only difference is that instead of looking just for one small
cluster, which has joined or has separated, we need to find two small clusters and
one big. Depending on timestamps order they can be defined as splitting clusters or
merging.

Let us say, we have three clusters A, B and C' such as C, A match joined cluster
pattern of the Definition 3.6 and B, A also match the same pattern. We can claim
that C, B are merging clusters into A, in case Jaccard coefficient J(C,B) < 0,
where 6 is some small value (= 0.2). In this way we ensure, that C' and B is not
the same cluster. Splitting cluster pattern is exactly the same, just with a different
timestamp order.

42

Table 4: Basic patterns summary. Parameters can be changed depending on particular
data. Ji - Jaccard similarity between objects. Jg, - Jaccard similarity between
geohashes. O,y - overlap similarity between objects. tcq, teo - timestamps of first

and second clusters in consecutive time

Pattern name Conditions Parameters estimation

Repeating cluster Jig >0 #=0.5

Moving cluster Jgeo <Y v=0.5
0<te, —to STg Tg:30mm

Jig >0 f=0.5

Standing cluster Jgeo = 7Y v=10.5
O<tc’2—tc'1§Tg Tg:15mm

Jig < 0 =0.5

Hotspot { oo > 7 y =05

Oiq > 0 #=0.8

Joined cluster Jia <7 7 =04

Ogeo < 0 oc=028
O<tc2—t01 STg Tg:?)()mm

Oiq >0 0 =0.8

Jz‘d < Y v = 0.4

Separated cluster Oyes < 0 =028
O<tc’1—t02 STg Tg:30mm

Oiq >0 =0.8

Growing cluster Opes = 0 =08
O<t02_t01 STg Tg:30mm

Oiq >0 0 =0.8

. . Jz‘d S Y Y= 0.4

Shrinking cluster Opeo > 0 =028
O<t01—t02 STQ Tg:30mm

Definition 3.7. Merging & Splitting cluster. Cluster A(id, Set < geohash >
,gN,Set < objectld > ,pN,t) is a merging cluster from clusters: B(id, Set <
geohash >, gN, Set < objectld >,pN,t) and C(id,Set < geohash >, gN, Set <
objectld >,pN,t) if:

Owu(B, A) > 0
Jid(B7 A) < Y
tg>1p
O0ul(C, A) > ¢
ta > to
Jiy(B,C) <o

This definition does not use the location information and assumes that locations

43

of three clusters are different. If we add the location constrain and 6 is some high
value for example 6 = 0.8:

Ogeo(B, A) > 0 || Oyeo(C, A) > 6

so if the overlap coefficient between a small cluster and a big cluster is high, we can
state that one moving cluster has joined a standing cluster, therefore together they
are merging clusters.

Up to this point we have defined eight basic patterns and two advanced pattern:
merging /slitting. With basic patterns we could not use CEP operators and syntax,
however, advanced patterns can be already defined in terms of CEP. Moreover, for
advanced definitions we already used concepts from basic patterns (joined cluster,
standing cluster).

3.3.3 CEP operators

This section shows an example how complex CEP events can be aggregated. Currently
pure CEP events are not a part of the final system, however they can be considered
as a future work. After having a set of different atomic events, we are able to monitor
them and define pure CEP patterns for detection. Let us redefine advanced pattern
Merging & Splitting cluster of the Definition 3.7 using operators from the Section
2.5.

We know that in order to detect a merging cluster A we need that two clusters
B and (' had joined it. Therefore we are looking for a sequence of two joined cluster
events.

Definition 3.8. Merging cluster event. Let J;(A, B) and J2(C, D) be two
joined cluster events. M (Jy, J2) is a merging cluster event if B = D and can be
presented with CEP operator Aggregation and Within:

M(J1(A, B); (J2(C, D),t), where B =D

J(A.B)
B=D7 =——w(AC)

W(C, D)

Figure 24: Merging cluster event is an aggregation of two joined cluster events with
constrain

Time t is some small time constrain to filter out noisy data. Because in case
B = D, timestamps tp = tp are also the same. Therefore, two joined cluster events
will occur almost simultaneously in the stream.

44

Traditional CEP language presented at the section 2.5 does not assume complex
constrains, however in our use-case we need to ensure some condition at every stage.
Merging cluster event of the Definition 3.8 is an example how new events can be
derived from basic ones. This process allows very flexible and powerful set up of new
and more meaningful patterns. Pattern logic is mostly based on a domain features
of a data stream. We leave these definitions for a further work.

Figure 25 presents the overall workflow of the system. After detecting basic events,
we have two option: create a new event based on a pattern and forward it further to
a stream or just create a notification, that such event has been discovered and leave
the action to the end user. Advanced pattern module is just for demonstration and
not required for a system to function. From the other side, we can create basically
infinite amount of additional layers to detect and take action on new events.

inceming stream of data points

Nz

[gechash computing for each point

Clustering stream of points with gechashes
part
- /J

keyed siream

reduce by a key (geohash)

)
JL stream of grid cells ‘JL I

(filtar out sparse cellz

T J_L stream of dense grid cells lL

(clustering operation |

Set of found clusters

fransform 1o “new cluster event™ stream

stream of new cluster evenls JL

CEP [

part Basic patterns detection madule]

J‘L strean pl basic evénts J.L
: Advanced patterns detection module !

|
|
............... e =
| H 1 |
\ HI i
LY il i s
it e -
[L

L [
o £

outcoming stream of notifictions

Figure 25: The overall workflow of the system

45

4 Implementation

This chapter presents the implementation of the previously described system. Re-
quirements for the implementation framework remain the same, so for the design:

e Stream processing. The system should be able to process potentially heavy
incoming data streams in a real-time, therefore the framework must support
comprehensive stream computing.

e Distribution and Scalability. The framework must support distributed and
parallel processing, in order to handle heavy workload and ensure the fault
tolerance. In other words, the framework should ensure scaling out.

e CEP-compliance. For the pattern detection module of the system, we need
the framework, which supports CEP programming.

In the following sections we will discuss software tools, which were chosen to satisfy
our requirements. Also we will present the actual design of the clustering module
and CEP module.

4.1 Software tools

The system is written in the Java programming language, version 8. Java has a
number of advantages. First of all, it’s arguably the most popular programming
language, which provides us extensive support from the community in the form of
different libraries and third-party software components. Secondly, Java programs
run on the Java virtual machine (JVM), which allows them to run on any computer
regardless of the hardware architecture. Another language, which is run on JVM is
Scala. Scala has recently become very popular language for a distributed and parallel
computing, therefore many libraries and even frameworks are written in Scala. Due
to the JVM we can use Scala libraries, while programming in Java. Finally, Java is
supported by major frameworks for distributed big data analytics.

Apache Flink was chosen as a framework for this master thesis.

4.1.1 Apache Flink

Apache Flink [54] is an open-source stream processing framework for distributed,
high-performing, always-available, and accurate data streaming applications. It was
developed as a result of the collaboration between TU Berlin, Humboldt University
and Hasso-Plattner Institute [55]. Flink was developed as an alternative for the
Hadoop MapReduce framework, providing fast in-memory computation.

Apache Flink satisfies all requirements, which we need, in order to build a system:

e Stream processing. Flink supports processing unbounded datasets out of
the box. Despite many other frameworks (e.g. Apache Spark), Flink is natively
designed to work with data streams. It also supports a dataset processing;

46

however, it treats them as a finite data stream. As a result Flink provides a great
functionality (event time semantics, flexible windowing, iterative execution)
for a stream processing.

e Distribution and Scalability. Being a successor of the MapReduce frame-
work, Flink provides a fast parallel processing and easy distributed deployment
following shared-nothing architecture.

e CEP-compliance. Finally, Flink has a number of additional libraries, one of
which is FlinkCEP - a library for working with events and event patterns.

Besides listed benefits Flink also has a rich ecosystem, supporting different kinds
of connectors as data sources and data sinks. However, being already very powerful
out of the box, Flink lacks some specific functionality, which is required for our
system. We compensate it, by using external libraries.

4.1.2 Libraries and software components

In this section we list all libraries and packages, which were used for the system
implementation. We used Maven as a source for them.

e org.apache.flink - groudld for all flink packages in the Maven repository.

— flink-java:1.0.3 - Java version of the Flink framework, version 1.0.3.
— flink-streaming-java_2.10:1.0.3 - streaming Java component.

— flink-clients_ 2.10:1.0.3 - additional package for Flink, which provides
command line interface and remote execution on the server.

— flink-cep_ 2.10:1.0.3 - CEP library for Flink.

— flink-jdbc:1.0.3 - JDBC connector, which allows connection to a number
of databases.

e ch.hsr:geohash:1.3.0 - implementation of geohashes in Java.

e org.elasticsearch:elasticsearch:2.3.4 - library for connection to the Elasticsearch.
We used it just for testing purposes and debugging.

As you can see, the project is mainly developed by using just flink related libraries
and Java 8 built-in components. The only one external library, which was used in
the algorithm itself is a geohash library.

The whole application consists of 4 major components: data source, clustering,
CEP and data sink.

47

4.2 Data Source

Our system is designed to work with continuous data streams. Even though streams
are natural data source in many real-life scenarios, there are no available data streams,
which we could use for the evaluation of the algorithm. So in order to test our system,
the first task was to create a software component, which can emulate a data stream
from a static dataset.

For this purpose, we followed the example of the Flink DataStream API Demo
[56] provided by the dataArtisans, a company behind the Flink framework. The
DataSource component is able to load data sequentially from a single CSV file, where
records are sorted according to a timestamp field. Basically other fields do not play
a role at this step. The program reads a file line by line and parses the timestamp
field in each line. Stream emulation part has two input parameters:

e maxEventDelay - an integer value. Means time is seconds. It is responsible for
producing events out of order, so the points, which are coming to the clustering
part are unsorted within an internal of maxEventDelay. This is done in order
to simulate real-life situation, where data often arrive with some delay due to
network latency or other obstacles.

e servingSpeedFactor - the serving speed factor by which the logical serving time
is adjusted. This parameter is responsible for "speeding up' the data flow.
When the parameter equals 60, the events of 60 seconds real time arrive in one
second of computing time. This is done for testing purposes.

After parsing the line, the program adjusts the actual timestamp with a max-
EventDelay value and creates a new tuple with a new timestamp and the line itself.
Therefore, the clustering part receives a data point with two timestamps - one,
which is a part of a line (event time), and a timestamp, emitted by the data source
component (processing time).

4.3 Clustering

At the beginning of the clustering part, we connect to the data source and read the
stream of strings. Therefore, the first task is to parse the incoming string to a data
object. We expect a single string to consists of next 4 parameters:

(id, timestamp, lat, lon),

where id - unique identifier of the object producing the data point, timestamp -
event time, when data the point was emitted, lat - latitude in a WGS84 system,
lon - longitude a in WGS84 system.

The first operation, which we perform is a map function, which transforms each
line into a tuple of a String containing geohash and MovingtPoint object. MovingPoint
consists of next fields:

e id - an integer field, keeping the identification number of the point.

48

e timestamp - a long value, keeping the event time in epoch milliseconds.

e location - a composite value of latitude and longitude, whcih are stored as
float values.

e geohash - a string value, which keeps the geohash with a precision 7.

We on purpose duplicate the geohash value in a MovingObject itself and in a resulting
tuple. In order to group objects by the geohash as a key in a following step.

As a result of the first parsing + mapping step we have a data stream of Tu-
ple2<String, MovingObject> data types. Next operation is keyBy, which groups
tuples with the same key into the same parallel processes.

After the elements are grouped by a geohash, we are ready to apply window
function and reduce moving objects into grids. The input parameter to a window
function is time. It can be in seconds, minutes or milliseconds. However, we need
to remember about servingSpeedFactor parameter from a previous part. In case
servingSpeedFactor equals 60, we have a correlation such as 1 second of real time
equals 1 minute of a logical time, therefore time parameter of 3 equals window time
interval parameter T; = 3 minutes.

After the window function is applied, we perform a fold operation. Fold is a
variation of a reduce function, with the only difference that the output value can
be different type of the input value. Our input value is MovingObject, the output
object is a type of GridCell and it consists of:

e name - a string value, which keeps the geohash with a precision 7.

e density - a float value. Describes a density coefficient of cell, in our case it is
a simple count of moving objects.

e lastUpdate - long value. The timestamp of the last moving object, mapped
to this cell.

e objects - a HashSet of moving object ids, mapped to this grid cell.

After the fold function we have a stream of GridCell type, where new items arrive
in a sort of batches with a time interval of windowing. Next step is to filter out
sparse grid cells, therefore we apply a simple filter function with a parameter N =5
in our case, so that we keep only grid cells with Density > N.

After only dance grid cells are left in the stream we apply windowAll function
in order to merge neighbouring grid cells. The difference between a simple window
function and a windowAll function, is that the second one is for non-keyed streams,
therefore it is not paralleled. We apply it with the same time parameter T; as the
first windowing, in order to be consistent.

Merging clusters is done sequentially according to the algorithm in the previous
chapter. The output of merging is a data stream of tuples containing key (long value)
and a value (set of found clusters): long value is common timestamp for all clusters,
being formed in this window. This is necessary in order to distinguish clusters from
different timestamp periods in the later analysis. Cluster object itself has following
fields:

49

e name - a unique identifier of the cluster. We use built-in Java universally
unique identifier (UUID) function to create it.

e timestamp - the timestamp of the latest movingObject, which belongs to this

cluster.

e gridNumber - integer value. The amount of dance grids, of which this cluster

consists.

e objectNumber - integer value. The amount of moving objects, of which this

cluster consists.

e ids - a set of ids of moving objects.

e geohashes - a set of geohash strings, which belong to this cluster.

At this point, the clustering part is complete. In the implementation we strictly
follow the design description. The process is presented at the Figure 26.

DataStream Emulator

[—
S —

L

.
|

map: (5iring -> Tuple2<Siring, MovingPoint=

]

part

C'““”“Eﬂ stream of points with gechashes L
L =

l

keyBy(String)

)

keyed stream

V

timeWindow + fold: (TupleZ -> GridCell)

Ik

stream of grid cells

)
i

Titar funtion

]

T+ I

stream of dense grid cells

’ timeWindowAll + clustering: (GridCell -=

Tuple2<| ong, HashSet<Clusters=:

Set of found clusters

Figure 26: Clustering implementation with Apache Flink

4.4 Complex Event Processing

After the clustering is done, we have a stream of tuples Tuple2<Long, Hash-
Set<Cluster», which arrives every time interval 7;. In order to start CEP analysis,
the first task is to decompose each set of clusters, back to the cluster stream. As we

50

already discussed in the concept design chapter, we consider each cluster as a new
cluster event in CEP terminology. In order to produce a stream of newClusterEvent
objects, we apply windowAll function and iteratively transform each Cluster objects
into newClusterEvent object. This time we apply windowAll function with a count
parameter of 1 and not time. This is possible, because we need to transform each
outcoming set of clusters and there is no need to use time parameter at this step.
newClusterEvent object consists of next fields:

e key - a geohash string with a precision 7.

e objectNumber - integer value. The amount of moving objects, which this
cluster consists of.

e gridNumber - integer value. The amount of dance grids, which this cluster
consists of.

e timestamp - long value. The timestamp, when the cluster was created. We
use this value to distinguish clusters from the same iteration.

e ids - an array of object ids. Ids stored as integers inside the array.

e cell - an array of geohash strings, which indicate current cluster location.

From this moment we work with a data stream of new cluster events. And can
apply CEP operators in order to detect patterns.

Our implementation of the clustering algorithm strictly follows the initially
designed concept, however with the CEP implementation this is not the case and the
implementation is slightly different from the original design. This happened because
there is no common API for the complex event processing, every library differs and
does not provide the same functionality. Flink’s CEP library pattern operators are
listed in the Table 5.

These 7 operators are different from operators, which we have discussed at the
Section 2.5 as an example. Only Within operator matches. Aggregation, conjunction
and sequence can be defined with a Flink CEP API quite easily. However, it is not
very helpful in our case. Our pattern detection is entirely based on a cluster analysis,
where in order to detect a pattern and emit a new event, we need to compare two
clusters, which occur in a sequence. Unfortunately, Flink CEP API does not provide
such functionality. Operator where can be only applied to a single event. There is no
way to trigger a pattern based on a complex condition, where we can compare two
or more events. However, Flink CEP API provides a different way to apply complex
conditions. This can be done with the help of PatternSelectFunction<IN, OUT>
and PatternFlatSelectFunction<IN, OUT> interfaces. Therefore, in order to detect
our defined patterns from the Section 3.3.1, we firstly need to create a pattern stream
with a help of Flink CEP operators and then select desired patterns manually with
our selectors, which implement two mentioned interfaces. This approach is definitely
not the most efficient and creates a lot of overhead in terms of the workload of the
system, however it is enough for us to test the algorithm.

ol

Table 5: Flink CEP pattern API operators. Source: [54]

Pattern Operation Description
Begin Defines a starting pattern state.
Appends a new pattern state.
Next A matching event has to directly succeed the previous

matching event.
Appends a new pattern state.

Followed By Other events can occur between a matching event and
the previous matching event.

Where Defines a filter condition.

Or Adds a new filter condition to already defined one.

Defines a subtype condition for the current pattern state.
Only if an event is of this subtype, it can match the staf]
Within Defines the maximum time interval for an event sequence
to match the pattern.

Subtype

®

In order to detect basic patterns, we need to compare two new cluster events and
for advanced patterns three new cluster events, therefore we created three Flink CEP
patterns:

e begin(A).followedBy(B)
e begin(A).followedBy(B).within(T)
e begin(A).followedBy(B).followedBy(C').within(T})

A, B,C - new cluster events, T, - is a time interval within which we consider
clusters for comparison. We declare two patterns for the two clusters comparison,
the one is with within operator and the second one is without. That is because
for dynamic patterns, such as moving cluster or separated cluster, we take into
consideration time constrain and for static pattern, such as evolving cluster, time
interval is not important.

In order to detect all pattern from our algorithm design, we use combinations of
three Flink CEP patterns and three selector functions, where conditions are defined:

e EvolvingPatternSelector - selects only patterns, which match the evolving
pattern condition.

e TwoClustersSelector - selects all other patterns, with two patterns compari-
son.

e ThreeClustersSelector - selects our advanced patterns, where three clusters
are involved.

In each selector function we firstly calculate Jaccard similarity coefficient and
Overlap similarity coefficient and then check them for the set of constrains. The
whole picture is presented at table:

52

Table 6: Initially designed patterns and their implementation with Flink CEP API

Pattern name

Flink pattern

Selector function

+ within

Moving cluster followedBy + within TwoClusters
Standing cluster followedBy + within TwoClusters
Evolving cluster followedBy EvolvingCluster
Joined/Separated | followedBy + within TwoClusters
Growing/Shrinking | followedBy + within TwoClusters
Merging/Splitting followedBy + followedBy ThreeClusters

The result of each selector function, is a stream of notifications. Notification on
each pattern is emitted to a correspondent stream after each pattern is detected. In
the end we combine three streams into one notification stream. At this point the

process is considered finished. The CEP part implementation workflow is presented

at the Figure 27.

53

| DataStream Emulator |

Va 7 N iL

[map: (String -= Tuple2<String,MovingPoint]

Clustering|| stream of points with gechashes lL
part <>
(keyBy(String)]

L 3

keyed stream

—
.r"—'l\""\

timeWindow + fold: (Tuple2 - GridCell)

]
T wmagrace JLI

| filter funtion

T ~ JL stream of dense grid cells JL

[tmewWindowAll + clustering: (GridCell -> J J
TupleZ2<Long. HashSet<Clustersa:» '
Set of found clusters

- N
countWindowAll1) + decompose: } \

(Tuple2=Long, HashSet=Clusters=> -»
CEP newtClusterEvents)
part i
JL stream of neyy cluster wmtsiL
TollcedBy
|1|=a'slurlt:1B!Ir followedBy h?:::.w
warthini
[s | e]
N . N
setector] ﬁed-;\rll I(;—Ev
y, N
notification streams
i unian operation :

N st %

Figure 27: The CEP implementation workflow. Arrows presenting streams in the
CEP part mean logical division, not distribution

54

5 Evaluation

This chapter evaluates the developed system. In order to make sure that the system
works as expected it should run on the data, where we have the knowledge that clusters
and moving patterns exist. To the best of our knowledge, there are no available data
streams or even datasets with such information. Therefore, the evaluation strategy
is next:

1. Check the cluster quality with the artificial data
2. Test pattern detection with the artificial data
3. Run the whole system with the real-life data

In order to test if the algorithm works correctly, artificial dataset should be created.
It can be done by using CATLES simulation tool [57]. CATLES was developed as a
part of the LBS research at the TU Berlin specifically for such purposes. It allows to
create GPS traces of moving objects at any place of the Earth using Google Maps
service as an underlying maps provider. It also allows to choose the mean of the
transportation from walking, cycling or vehicle. The first task is to ensure that
cluster discovery functions with a sufficient cluster quality. The second task is to
test pattern detection with artificial data. After that the algorithm can be tested on
real data streams.

T-Drive dataset [58] is used for the real-life scenario evaluation. It was collected
as a part of the Microsoft research. The dataset contains GPS trajectories of 10357
taxis during the period of Feb. 2 to Feb. 8, 2008 within Beijing. The average
sampling interval is 177 seconds with a distance of about 623 meters. This dataset
was used in many other research projects [59], [60]. In our opinion it is one of the
best location related datasets, which is available in a free access.

For evaluation purposes Elasticsearch engine is used as a database to store
results. Analytics and visualization platform called Kibana is used for the graphical
representation. Web Map Service (WMS) from the OpenStreetMap Foundation is
used as a map provider to display results in Kibana.

5.1 Evaluation with artificial data

The first task is to evaluate the clustering part. The quality of discovered clusters
should be analyzed. The most straightforward and efficient way to do it, is to
compare, discovered by the algorithm, clusters against the ground truth. Therefore,
a data stream containing clusters is required for this task.

5.1.1 Cluster quality evaluation

We created a dataset of GPS traces of 25 objects (vehicles), which are moving from
Ernst-Reuter Platz to Alexander Platz in Berlin. Figure 28 shows the route.

There is no real time in CATLES, only relative logical time, which always starts
with one millisecond and ends when the recording is stopped. In order to create real

95

e LR Fosa-Lurernbung-Plata

Paigaire nmuaadum F g
HANSANIERTE Bundeskanzkrame o T Alexanderplatz

@ @ & 14 m X B ‘ﬁ‘Tr a 1
Refchsingsqrbscs & BBkm y’ e
¥ (]

. -
3 - [ol 5 2 il J
; 3 —’—".%_‘_ il
\ L b TR :
1 L Tuwguten N O Gendarmmenmaril |
Erriet-Rewter-Platz F
LP1ZMEFG dorlin e
; = s TeegarQy Dot
Patedaner Blat: S g -

. Zoalogischer Bedbehabt vor Méxik
2o Poanen Berin B B IR e sl &

MWedin Markt 9 & [}

Berin-Charlerenburg - ' 1

B Badin

lottenbeg

Checkpain Chuelie

Figure 28: The chosen route to test the cluster quality

timestamps, we used an estimated travel time from Google Maps (15 minutes) and
made a correlation with a logical time of GPS traces from CATLES. In case of this
route, CATLES time is 249617 milliseconds. This gives us a notion that one minute
of the Google time approximately equals 16641 milliseconds in CATLES. Having
such correlation, GPS traces of 25 objects were created with a sampling frequency of
1 minute. In order to obtain 25 traces, we divided CATLES trace into 15 chunks
and took first 25 entries from each chunk. In this way each point has a different
location and the same location is not used 25 times. However, these 25 points are
still very close to each other. After having 15 chunks of 25 objects, we assign objects
from a first chunk the real timestamp as of 12:00, 20 February 2017. Then through a
simple loop the timestamp T; is set for remaining chunks simply increasing it by
one minute at each iteration. In the same loop a unique ID is also assigned for each
entry. In order to make traces more natural, each timestamp is randomized by the
time uncertainty 7.

5.1.1.1 General test case

In the first test we use 7T, = 10 seconds, so each timestamp is in the interval
[T; — 5,T; + 5]. Using True Positive Rate or Sensitivity definition from statistics, let
us declare that the cluster quality is:

Qc _ Cfound :
Oorigmal
where C'tounq - amount of objects discovered by the algorithm and Clyjgina - amount
of objects in the original cluster. In this case Coyriginar = 25.
This definition of the cluster quality is also known as In general, there are five
input parameters:

e T, - an timestamp distribution of objects
e T, - atime of a fixed window model

e D - density threshold, which is responsible for considering a grid cell dense or
sparse

e T, - sampling rate of an object

o Coriginal - amount of moving objects

We run the first test with next parameters presented in the Table 7.

Table 7: Clustering quality test parameters

T

T;

D

T

Com’ ginal

10 seconds

60 seconds

none

60 seconds | 25

The visual result is presented in the Figure 29

|'..l I'\-u'-
e
g,
24
L L i
R ",
Lo f
A ’
| g B
BB ry
'] ",

T e

it =
A %
i - R
- %
arpiepa
LEE k]
| o b
i
5
%
Y
[l %
K
H

56

Figure 29: Clustering output with 25 objects. One tile - is one geohash with the

precision 7

The algorithm has discovered clusters along the whole route in 15 different places.
The final count of found clusters - 38. Figure 30 illustrates the distribution of clusters

by size.

el

0

Cluster quality distribution

_-|IIII|
1 9 5 &4 4 3 1 1

Figure 30: Cluster quality distribution. Test case without applying density threshold

At the first glance the result is quite random, however there is a major cluster
with 20 objects or more at every time interval 7. Also there is a clear division for
small clusters and big ones. Small clusters consisting of 1 to 5 objects can considered
as noise. This noise occurs because we have a small uncertainty of 7, and at each

57

window function objects from the same original cluster are left in different time slices.
In the Figure 29 there are only 15 clusters seen, because there is an overlap at each
place and below one main cluster there is a couple of noise clusters. If we consider
only major clusters, where amount of objects C'ouna > 5, the average cluster quality
is:

Q. = 89%

The 15th cluster at Alexander Platz is a noise cluster, therefore only 14 clusters
were taking into consideration for the cluster quality calculation. The idea that
clusters cannot be detected at every place, where they are expected, provides the
notion of the consistency coefficient:

Pfound

Ccoe f =

Pom'ginal ’
where Pfounq is @ number of places, where clusters were found and F,;igina; - number
of original cluster locations. In our case:
14
Croef = — * 100% = 93%
15
This result is extremely high and already at this phase we can state that clustering
algorithm works. However real-life data usually is not that good. Chosen T,
parameter is optimistically low.
Using results form the first test, the density threshold coefficient D is introduced.
It is responsible for filtering out sparse cells, therefore noise clusters.

5.1.1.2 Test case for checking time distribution

Let us run another clustering test with parameters presented in the Table 8.

Table 8: Clustering quality test parameters
T'r’ ,-Tz D Ts Ooriginal
60 seconds | 1 minute | 5 1 minute | 25

In this test the time interval of [T; — 30,7; + 30], which basically covers the
whole period of the sampling time. Also sparse grid cells were filtered out. Figure 32
presents the result. This time due to a filter parameter results are much cleaner and
only 14 clusters were discovered. One for each time gap. The cluster size distribution
is presented in the Figure 31.

The average cluster quality and the consistency coefficient are:

Qe = 88% Clogey = 93%

As it is seen, the time distribution almost does not affect the clustering quality.
This result is not really accurate though, as we only changed the time distribution

58

Cluster quality distribution

b

7 I I I
5
1 1 4 4

4

e o HEEE

Figure 31: Cluster quality distribution. Test case with applying density threshold

B B ey

In-:ﬂ r: i i B e, DR
: E:'lr i Lo o |
! B N il L A
A - -
% i w - T f,f’"'
L e T
: - I [
.M,.._tﬂ.l\-"’" % i - i . FE— l-@t
IS i3 P *
ol | S mirangesratl =L

Figure 32: Clustering output with 25 objects with the time distribution and density
threshold

without changing locations. Basically the time delay does not play a role, as soon
as cars update their locations from the same grid. This is very unlikely in real-life
scenarios, where time is always strictly bounded with the location. However, this
only matters in the pattern detection and at this phase of testing, the goal is to
discover optimal input parameters for following tests.

5.1.1.3 Test case for checking optimal window size

As it was discussed in the Section 3.2.1 clustering quality should heavily depend
on the window time interval 7T;. Let us run two tests with T, < Tg and T; > Tg
accordingly to see the difference.

Table 9: Clustering quality test parameters with T; < Tg
Tr T'z D Ts Com‘ginal
60 seconds | 30 seconds | 5 60 seconds | 25

The result of this test is presented in the Figure 33. The final amount of clusters
is 17. Figure 34 shows the cluster quality (size) distribution.

Figure 33: Clustering output with 25 cars. T; < Tg case.

Cluster quality distribution

15

v
15
13
11 I I I
5 I m
1 1 1 1 1 1 2 2 7

Figure 34: Cluster quality (size) distribution. 7; < Ts test case

=3

The overall cluster quality and consistency coefficient:
Qe =66% Coper = 100%

This result correlates with our discussion on the window model, with a higher
fragmentation we receive more frequent results, but lose significantly in the cluster
quality.

Scenario T; > Tg, which is presented in the Table 11, demonstrates more stable
results with 14 clusters and smooth distribution, presented in the Figure 35.

Table 10: Clustering quality test parameters with T; > Tyg
Tr T'z D Ts Coriginal
60 seconds | 90 seconds | 5 60 seconds | 25

The average cluster quality is:
Qc - 90% Ccoef = 93%

The quality of the most of clusters is higher than in previous tests. We run one more
test with T} being twice bigger than 7.

60

Cluster quality distribution

25

o I I I I I
1 4 4 4 1

Figure 35: Cluster quality (size) distribution. 7; > T test case

B

-
n

=

Table 11: Clustering quality test parameters with T; > T
Tr T; D Ts Cariginal
60 seconds | 120 seconds | 5 | 60 seconds | 25

Visual output of this test is presented in the Figure 36.

ol

=t [m
=4 1A - Ii!m b}
mr"&lgaﬁ i F\%itﬁ:?] I—j;___jf_:
:-": [| }a-'?x'h"-iq Q"Z‘ i L T ;51;:%‘
Tl |]Eih o N F.,_,-?_ e R

Figure 36: Clustering output with 7; =2 x Ty

The algorithm has discovered 10 clusters. Figure 37 shows the quality (size)
distribution.

Cluster quality distribution

4 F 1 1 F

Figure 37: Cluster quality (size) distribution. 7; = 2 % T test case

B OB OB B R B OB

=

61

This scenario provides high clustering quality, but low consistency:

Qe = 94% Clrpey = 66%

Moreover, 10 clusters were emitted during 7 window operations, which means
that some pairs of clusters have the same creation timestamp, which would affect
during the pattern detection.

To sum up the clustering quality evaluation part we can state that algorithms
works well. The only major input parameter, which effects the result is window size
interval T;. Figure 38 shoes the dependency. We can state that T; should be bigger
than 7§ but lower than 2x7T,. In our case T; = 1.5xT,. We will use this parameter
for the pattern detection evaluation.

Optimal window size

110
100
o0 —_—
BOD
70
&0

50
T1 T2 T3 T4

=== Cluster quality Comsisten cy coefficient

Figure 38: Optimal window size evaluation. T1=0.5x%xTy; T2="T,; T3 =1.5x%Tj;
T4 =2xT,

5.1.2 Pattern detection evaluation

In the Section 3.3 eight basic patterns and two advanced patterns were defined.
Here we evaluate the most interesting of them, namely: moving cluster, standing
cluster, hotspot, growing and merging clusters pattern. There is no need to explicitly
evaluate all patterns, as many of them are quite similar and based on each other. For
example, merging cluster pattern is the same as splitting cluster pattern, only with
the different timestamp order, therefore if merging cluster pattern functions well
there is a guarantee that splitting also works. Moreover, as they both are extensions
of joined and separated patterns, we can verify them automatically just by testing
merging clusters pattern. Shrinking pattern equals growing, but with the inverse
timestamp order.

In order to test each of these patterns, the specific dataset is required. The
same route has been used for testing pattern detection. In the previous set of tests,
the timestamp distribution value 7T, = 60 seconds was used. However, it was
only time distribution without the location correlation. Test results have shown
that it almost does not affect clustering results as soon as updates arrive from the

62

same location. In order to simulate the data stream closer to a real-life scenario,
location updates were bounded to timestamps. Also the delay parameter T} is
introduced. Ty or maxEventDelay (as it is named in the previous chapter) is an
integer value, responsible for producing events out of order. In this way the event
time is different from the processing time, which is the case for almost all real-life
streaming applications.

Figure 39 illustrates features of time and location distribution. There are couple
of changes from the previously used dataset. Firstly, the objects sampling rate 75 is
now 2 minutes, as there is no need to receive updates every single minute with such
small location changes. T, = 40 seconds, so the moving object emits the location
update at any point in the interval [T"—40,T], where T is the exact sampling time,
i.e, 2,4, 6, etc. minutes. Now the location is correlated with the timestamp, so the
moving object at the time T — 40 is approximately by 288 meters behind the object,
which updates the location at the time 7. The speed is 26 km/h (15 minutes’ route
and 6.5 km distance). The delay value T, = 20 seconds, which makes the uncertainty
time interval one minute and uncertainly location is still approximately 300 meters.

Emsi-Fauter
Plaiz Alexanderplatz

——t———F+—+—

Time = lgcation distribation:
40 seconds
) - - =~ G min
4 min 20 sec
| I I | T
T | 1 T L
5 fiin & min :
20 sec —_—r
Max time delay:
20 sec

Figure 39: Time characteristics of the dataset. Ty = 2 minutes; 7T, = 40 seconds;
Ty = 20seconds

From the clustering quality evaluation, we have found that the optimal value of
the window size T; should be in the interval [T,2 % Tj], therefore, having T, = 120
seconds, the T; = 150 seconds for the pattern testing. Another parameter, which
is changed to match real-life scenario is the density threshold D. Now we use two
density thresholds: D, and D.. D, is an original density coefficient, which is
responsible for considering a single grid cell dense or sparse. D, is an additional
threshold responsible for filtering out clusters with less than half of original objects.
This separation of the density coefficient into two parts allows us to consider more
grid cells for clustering, but still work only with quality clusters in the pattern
detection phase. Table 12 presents all input parameters for the following tests.

63

Table 12: Input parameters for the basic pattern detection
Tr ﬂ Ts Td Coriginal D g D c
40 seconds | 150 seconds | 120 seconds | 20 seconds | 25 3 12

According to the pattern detection design, the algorithm also depends on next
parameters:

e Jaccard coefficient J;; — 6

e Jaccard location coefficient Jye, — 7y
e Overlap coefficient O,y — «

e Overlap location coefficient Oge, — 3

Values presented in the Table 13 are used for the basic patterns evaluation.

Table 13: Parameters for the basic pattern evaluation
0| v | a| B
Moving cluster pattern | 0.5 | 0.5 | - -
Standing cluster pattern | 0.5 | 0.5 | - -

Hotspot 0.510.5
Growing cluster pattern | 0.4 | - | 0.8 | 0.8

5.1.2.1 Moving cluster pattern

The result for the moving cluster pattern is presented in the Figure 40

g, e CEA T

.J S 3 -
C “ Waariepars o, -
A W
X ol D:]
e i i - [Berlin
2 "
/ Tame :

Figure 40: Three pairs of moving clusters

The algorithms detected 3 moving cluster events. Tables 14 presents short
summary about each of them.

Clusters became more spread and the quality of clustering dropped significantly
due to the distribution. Nevertheless, the algorithm has detected three moving
cluster events by analyzing 6 discovered clusters. In reality this is the same cluster,

Table 14: Three moving cluster events

\ First cluster

\ Second cluster

First moving cluster event

Location (geohash) u336xpt u336xrd, ud36xrs, ud36xre
Amount of objects 25 19
Cluster quality 100% 76%

Ji

0.76

Second moving cluster event

Location (geohash)

u336xrs, u336xr

u336xxz, ud36xxy, ud36xzb

Amount of objects

13

19

Cluster quality

52%

76%

Jid7

0.55

Third moving cluster event

Location (geohash)

u33db24, u33db21

u33dbbs, u33dbbe

Amount of objects

13

14

Cluster quality

52%

56%

Jida

0.5

64

65

Table 15: Standing cluster event summary

First cluster \ Second cluster
Location (geohash) u33dclr, u33delq
Amount of objects 24 17
Cluster quality 96% 68%
J; 0.76
Jgeo 1

however the system treats it as independent clusters and creates three independent
events. There is a possibility to combine moving cluster events together to create
traces with the help of advanced CEP patterns. It can be a task for the future work.

5.1.2.2 Standing cluster pattern

In order to detect this pattern, we extended the dataset for 2 periods of the sampling
time (4 minutes). Meaning that when the cluster reaches the destination location
(Alexanderplatz), it keeps standing and updates the location two more times. The
result can be seen in the Figure 41.

iy g = 3 - g el .
W 3 % £ o L]

. ks o
D azes il z g e o
C 3
e i y S PARHLE :
!

Figure 41: Two standing clusters at Alexanderplatz

The Figure 41 also illustrates that firstly algorithm has discovered moving clusters
and then triggered standing pattern event. The Table 15 provides information about
the event.

Standing cluster is easier to detect than the moving cluster. Also the cluster
quality rises as the location remains unchanged and the location distribution does
not affect the result.

5.1.2.3 Hotspot

For testing this pattern, the original dataset was extended by adding another 25
objects, which are repeating the original route, however half an hour later. Also new
25 objects have different ids. Figure 49 illustrates findings.

Table 16 shows the events summary. Hotspot is basically the simplest pattern to
discover.

66

LELE]

Derfin
Lxas

BIES

Figure 42: Two hotspot locations at Alexanderplatz and Ernst-Reuter Platz

Table 16: Summary of two hotspot events

‘ First cluster ‘ Second cluster
Alexanderplatz hotspot
Location (geohash) u33dclr, u33delq
Amount of objects 25 18
Cluster quality 100% 72%
Jgeo 1
Ernts-Reuter Platz hotspot
Location (geohash) u336xpt
Amount of objects 25 18
Cluster quality 100% 72%
Ji
Jgeo 1

5.1.2.4 Growing & Joined cluster

For testing a growing cluster pattern the original dataset was extended by prolonging
the waiting time at Alexanderplatz of the first group of objects (the same idea as for
the standing cluster, but now about 20 minutes waiting). Also one smaller cluster
of 12 objects was following the same route 15 minutes after the first one. The idea
is that the second cluster will arrive at Alexanderplatz and join the first cluster, so
they will form a growing cluster. For this test the cluster density threshold D, was
lowered to 6 (50% of the smaller cluster size).

Growing cluster pattern is just an extension of the joined cluster pattern, therefore
results of the joined cluster detection were also saved to Elasticsearch for the analysis.
Figure 43 presents all results.

The algorithm has discovered 4 joined cluster events, however only one of them
was a real event. It is presented in the Table 17. Three other events are false
positives and were triggered on the same moving cluster. This happened because
of the eventual fragmentation, which happens often with the time and location
distribution. The idea is that the big cluster is divided into two parts by the window
operation, so two parts being in reality one cluster are analyzed in different time
slices and considered as two clusters. At the next window operation, they are again

67

ax, T

L T =g (o0 g

S G < ..
4 ; = < o “ L]

T, =
Barli
: [T1H -

L L o Few el

B Sl i 3 L

: ¥ B —_ 1‘

Figure 43: Smaller cluster has joined the bigger one at Alexanderplatz

in the same time slice, therefore seen as one cluster by the system. Unfortunately
such fragmentation always occurs with the time window strategy T; > T%.

Table 17: Joined cluster pattern summary

First cluster | Second cluster
Location (geohash) u33dclk | u33dclr, udddclq
Amount of objects 6 28
Cluster quality 50% 75%
J; 0.222
Jgeo 0
Oiq 1

The system did not catch the growing cluster event, because this pattern is not
possible to detect by the design.

5.1.2.5 Merging cluster

For testing the merging clusters patter next scenario was simulated: 20 objects
are moving from Erntst-Reuter Pltaz to Brandenburg Gate and another 20 objects
moving from the Mexican Embassy to Brandenburg Gate as well. According to the
simulation two groups should meet at the Victory Column and arrive together as
one cluster to the destination point. Figure 44 illustrates routes.

Two datasets were created and later combined into one for this test. Both datasets
follow the same distribution strategy as in previous tests. However, because they
have different length and travel time, they were not synchronized against each other.
Table 18 presents input parameters for this test.

Table 18: Input parameters for the basic pattern detection
Tr ,-Tz Ts Td Com'ginal D g D c
40 seconds | 150 seconds | 120 seconds | 20 seconds | 20 3 10

Figure 45 presents the outcome result.

68

[I RMTL IR Thariin
B s ey Y = |
- — =
{ :_—E'!'m
”~
. y
ad h [
|
1 ""\-'?"" — m..r.uIJ.'M
—-_“ srmaten om0
- - II
4
| |
| |
Lomrersrae! - |
ﬁh“"l— il | | w
2 N B
% i (=7 TR R (P gt T I_
| F
o oy ko 1 x , u:ﬂ-'-i:-\ /’:{:’
8 Vo ;¥ vy
-{m;::ﬂ ! — = s Thuasras am D e P Ahen
& ritha o - E = CyBrar
.7 b
5 B 1
T
1 ERGARTEN
Grofbo E
Ticrgarien l:enl.rrvuL b die
e"-\-andebenllr..UH
-] i é
.-;’-f;/"'
! e
el mr.\a«*‘ﬂf# -
e
|l LPiz ke
p—— LA e .n'-,,—o—-"_T:"-'-':--F]
R T S R R T P L 11
i = 1 &) & min B Kunsigewirbemuseim] —
2dkm Portimer Motz [
f THad g et
; o Eeheet i) B
totschaft von Mexiko .:::'- I
& .I:f Binge Theatsr am & 10 Potsdamer Fiaz Arkaden

&

Figure 44: Two groups of objects should meet at the the Victory Column

Table 19: Two small clusters resulted into one

First cluster Second cluster Result cluster

Location (geohash) u33db0j u33db20, u33db0p | u3d3db2k, ud3db2m, u3d3db27

Amount of objects 11 16 34
Cluster quality 55% 80% 85%
inrst—result 0.222
Jsecond—result 0.351
0

inrstfsecond

The algorithm has successfully recognized the merging clusters pattern. Table
19 presents the result of 3 clusters analysis. In this scenario clusters should had
been detected earlier, however due to the time asynchronization the algorithm only

detected the final cluster at the destination point.

69

o
o

o LOneta e, Paul-Litea o,

Schaiderannsirafie

1ok
£ it
= i
L ¥ cijaln dESETTF =
| T G
. r
1 e
o ¢
— BB
n 2

........

=
W
B
B
]
El
s,
G @
LT |

BB

i
AL

n
k-

Figure 45: Two clusters have merged into one at the Brandenburg Gate

5.1.3 Discussion on the evaluation

To sum up, the system has proved its’ functionality and an ability to analyze moving
objects. However, closer to real-life conditions (location + time distribution) the
quality of results decreases. The average cluster quality from all tests is 72%, which
can be considered high, however this is mainly because of the standing cluster pattern
and hotspot pattern, where cluster quality is usually high. In more complex patterns,
such as moving cluster or merging clusters, there are often clusters with 50% to 60%
quality.

The algorithm depends on many input parameters and they affect the output
result significantly. The most important parameter is the density threshold D. The
strategy with splitting D into two parameters, D, - density threshold for grid cells
and D, - density threshold for cluster, has proved its efficiency. This allows to
discover clusters more accurate in terms of the location distribution. The second
most important parameter is the window size 7T;. Experiments have shown the best
result with the 7T} being a bit bigger than the sampling time.

Joined cluster pattern and Growing cluster pattern did not work as expected.
Joined cluster pattern produces a lot of false positive results because of the fragmen-
tation. Growing cluster pattern, being an extension of the joined cluster pattern
(it has one more constrain) did not provide any result. Partly this was due to the
implementation issues, but mainly because the design of the pattern is not optimal
and requires some modifications.

The main outcome is that the algorithm needs to be calibrated before working in
the real-life environment. Having many input parameters, it is hard to evaluate it
properly and provide some final general conclusion. However, as the proof of concept,

70

it has shown good results and should be considered for the future development.

5.2 T-Drive example

In the previous Section we have verified the system’s functionality. Now it can be
applied to a real dataset. This cannot be considered as a true evaluation, because
there is no ground knowledge about clusters and moving patterns in the dataset.
However, it is important to test the system on the real-life scenario and try to analyze
the result.

From the dataset description we only know the time and distance distribution.
Figure 46 presents them.

035 i i ¥ v v 0T
03 1 0

n2s 1 0.5

proporion

a = . o S —

(] F 4 3 8 10 12 o 1000 2000 3000 4000 5000 GODD OO0 2000
miradai L]
(a) time interval (b} distance interval

Figure 46: Histograms of time interval and distance between two consecutive points.
Source: [58]

Even though the average time distribution is 177 seconds, it is clearly seen from
the Figure 46, that there is a major division. Majority of the location updates arrive
within 1 minute. The second big group updates the location information every 5
minutes. Because the dataset consists of taxi cars, the assumption is that cars on
shift (moving cars) update their location frequently and cars waiting at parking
lots send signals not so often. Therefore, while choosing input parameters for the
algorithm execution, we should focus on the smaller sampling value.

We execute the algorithm with next parameters:

e Density threshold D = 5.
e Window size T; = 1,5 minutes.

The system was set up to discover moving, standing, merging and hotspot patterns.
Joined and growing patterns were excluded based on previous test results.

As it is impossible to analyze the result against the ground knowledge, here we
provide some interesting statistics. The system has discovered 3075 clusters. Figure
47 presents the cluster distribution over time. It is clearly seen that in the beginning
there are much more clusters than in the end. Maybe it is somehow related to the

71

fact that last two days is a weekend. However, even for the weekend it seems strange.

300

200

150

50

. ‘ | ||‘ 1IN, ||.

Februany February February 3rd Febmuary 4th February 4th Feoruany Sth Febnmry Sth Febnuary Gth Febneary 7th February Tth February 8th February Sth
Ind 2008 Bnd 2008 2008 2008 2008 200E 2008 2008 2008 Faie} 2008 2004

Figure 47: Histogram of the cluster count according to the time

Figure 48 presents the distribution of clusters by size. As it is seen, the majority
of clusters consist of 6 cars. Also 2188 (83%) of all clusters consist of 1 grid cell.
Actually, considering the single grid cell size (&~ 152.92152.4 meters) and the dataset
origin (taxi cars), the density threshold parameter D = 5 seems high for a single grid.
It should be split into two parameters in the later analysis, as we already discussed
in the previous Section.

As for the pattern detection, the statistic is next: only 30 standing clusters and
only 8 moving clusters were found. The result is extremely low. Partly it can be
explained that taxis do not move in groups, however too high density threshold
probably also affected the result. 107 merging clusters were discovered. This might
seem high comparing to the low moving clusters result, however most of merging
clusters were found at parking lots, where big amount of cars are located. Here we
can see the effect of the fragmentation, cause by the windowing. The same cluster
is being considered as two small clusters at one time slice and later it is considered
correctly as the big one, triggering merging cluster pattern.

The most useful pattern in this test case is the hotspot. 153 locations were
detected as hotspots. Figure 49 illustrates the big picture. The most busy area is an
airport (top right corner on the map). The second busiest area is in the city center,
next to the Beijing Railway Station. A lot of hotspots were also detected at the
beginning of the highway on the way to the airport. Our assumption is that there is
the main city taxi parking.

From the algorithm evaluation on the T-Drive dataset, we can state that clustering
part of the algorithm works well and the designed system can be used for the cluster
discovery of moving objects. Pattern detection performed poorly on this dataset.

72

Cluster size distribution

00
800
700
600
500
400
300

200

100 II

0 | B BBl B e m m 8 = m m =
& 7 8

9 10 11 12 13 14 15 16 1% 20 21 23 18 22 17 24 25

Figure 48: Clusters distribution by size

However, taking into consideration that almost all patterns were verified on artificial
data, we can make a conclusion that T-Drive dataset does not contain many moving
patterns.

73

i e — | -1 1
000 _5 EX
oo = s i -': 1
i o)L SO ' oy
& = u]I]. b
5 e o0 oy i3
. “I T)
oo N
n i\ : <. -5 Y 1)
_ " .:.:;::eDI:IEﬂ' S O 'ﬂl
| =l - man
i) D0 Uy i ,) I o Iﬂ
i [T W oo == M
I i | np,
- I — ‘ Il
i ' -
(LA : i ']
1= = i R = L.
b ! ~
El:lgum 1 : = 'ZFT:]%
;EDD]::: e i I_I._.l_...
"i! | A "
LA 1 Ay
. = : m— o
) (o o
= i REf=L ¥ o ﬂf [
\ :) : —; 00
l |‘- . ma J [&
0) o A A

Figure 49: Heatmap of hotspot locations in Beijing

74

6 Conclusion

In this thesis we have designed, implemented and evaluated the system for detecting
and analyzing moving crowds in the continuous spatio-temporal data stream.

This project started as a natural continuation of the proactive Location Based
Services development, however it has rapidly evolved beyond the scope of LBS and
resulted into a comprehensive research at the intersection of Data Mining, Stream
Processing and Distributed Computing.

The main motivation for this thesis was encouraged by three indisputable facts:

e Poor development of proactive LBS targeting multiple users
e Rapid growth of spatio-temporal data
e Recent rise of various Big Data processing technologies

The outcome of such diversified project is a the unique system, which is capable of real-
time cluster recognition in a continuous spatio-temporal data stream. Furthermore,
it is able to extract meaningful knowledge and discover interesting behaviour by
exploring just created clusters using innovative pattern detection approach based on
Complex Event Processing technology.

From the technical point of view, developed system combines some of the best
practices of distributed computing and cluster analysis, which allows it to operate in
a truly distributed manner. Also this is one of the first completely online systems,
which can perform clustering operation without using a database. This is a great
advantage comparing to many so-called two-phase algorithms. The system is based
on powerful stream processing framework Apache Flink.

From the research point of view, developed clustering algorithm is absolutely
unique, as it was developed from scratch adopting some of the best clustering practises
as well as introducing some novelties, such as utilising geohash as a natural grid
structure. The pattern detection part is particularly important, as it is a pioneer
in the area of moving cluster analysis. There were almost no attempts to analyze
moving clusters with the help of CEP. There is no even common terminology in this
area.

The evaluation of the system has shown very promising results. Especially
clustering part, which performed well not only with artificial data, but also in the
real-life scenario. Current system is a perfect proof of concept example and can be a
foundation for a future research and development. Real-time distributed data mining
is not a trivial task and there are many natural obstacles, which are just impossible
to neglect. As we figured out, data fragmentation is a huge challenge. Trade-offs
between quality and consistency will always affect the result. Timestamp delays are
able to confuse even the best algorithm ever. However, current thesis demonstrates
that by targeting very specific problem in the particular domain area it is possible
to solve many of those problems, which are true for general purposed algorithms.

By this research we have shown that existing technologies in a combination with
innovative algorithms and fresh approaches are able to boost the development of

75

Location Based Services and shift the focus from current single-target user-centric
applications to proactive multi-target systems.

76

References

1]
2]

3]

[10]

[11]

Michael Haupt. Data is the new oil, 5 2016.

Gartner. Gartner’s 2016 hype cycle for emerging technologies identifies three
key trends that organizations must track to gain competitive advantage, 8 2016.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. Communications of the ACM, 51(1):107-113, 2008.

Alexa Megan Sharp. Incremental algorithms: solving problems in a changing
world. PhD thesis, Cornell University, 2007.

Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and
techniques. Elsevier, 2011.

Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition
letters, 31(8):651-666, 2010.

Marcel R Ackermann, Marcus Méartens, Christoph Raupach, Kamil Swierkot,
Christiane Lammersen, and Christian Sohler. Streamkm-++: A clustering
algorithm for data streams. Journal of Ezperimental Algorithmics (JEA),
17:2-4, 2012.

Paul S Bradley and Usama M Fayyad. Refining initial points for k-means
clustering. In ICML, volume 98, pages 91-99. Citeseer, 1998.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: An efficient data
clustering method for very large databases. In ACM Sigmod Record, volume 25,
pages 103-114. ACM, 1996.

Jonathan A Silva, Elaine R Faria, Rodrigo C Barros, Eduardo R Hruschka,
André CPLF de Carvalho, and Joao Gama. Data stream clustering: A survey.
ACM Computing Surveys (CSUR), 46(1):13, 2013.

Jiangiang Dong, Fei Wang, and Bo Yuan. Accelerating birch for clustering
large scale streaming data using cuda dynamic parallelism. In International

Conference on Intelligent Data Engineering and Automated Learning, pages
409-416. Springer, 2013.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226-231, 1996.

Chire. Ilustration of dbscan cluster analysis, 10 2011.

Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Joérg Sander.
Optics: ordering points to identify the clustering structure. In ACM Sigmod
Record, volume 28, pages 49-60. ACM, 1999.

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

[27]

[28]

7

Wei Wang, Jiong Yang, Richard Muntz, et al. Sting: A statistical information
grid approach to spatial data mining. 1997.

Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Ragha-
van. Automatic subspace clustering of high dimensional data for data mining
applications, volume 27. ACM, 1998.

Tyler Akidau. The world beyond batch: Streaming 101, 8 2015.

Jianjun Chen, David J DeWitt, Feng Tian, and Yuan Wang. Niagaracq: A
scalable continuous query system for internet databases. In ACM SIGMOD
Record, volume 29, pages 379-390. ACM, 2000.

Ling Liu, Calton Pu, and Wei Tang. Continual queries for internet scale
event-driven information delivery. IFEE Transactions on Knowledge and Data
Engineering, 11(4):610-628, 1999.

Johannes Gehrke, Flip Korn, and Divesh Srivastava. On computing correlated
aggregates over continual data streams. In ACM SIGMOD Record, volume 30,
pages 13-24. ACM, 2001.

Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands
of data streams in real time. In Proceedings of the 28th international conference
on Very Large Data Bases, pages 358-369. VLDB Endowment, 2002.

Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-based
clustering over an evolving data stream with noise. In SDM, volume 6, pages
328-339. STAM, 2006.

Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A framework
for clustering evolving data streams. In Proceedings of the 29th international
conference on Very large data bases-Volume 29, pages 81-92. VLDB Endowment,
2003.

Yixin Chen and Li Tu. Density-based clustering for real-time stream data. In
Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 133-142. ACM, 2007.

George S Almasi and Allan Gottlieb. Highly parallel computing. 1988.

George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems:
concepts and design. pearson education, 2005.

Miym. Distributed and parallel systems, 07 2009.

Xiaobo Li and Zhixi Fang. Parallel clustering algorithms. Parallel Computing,
11(3):275-290, 1989.

[29]

[33]

[35]

[36]
[37]

78

Domenico Talia. Parallelism in knowledge discovery techniques. In Applied Par-
allel Computing Advanced Scientific Computing, 6th International Conference,
PARA 2002, Espoo, Finland, June 15-18, 2002, Proceedings, pages 127-138,
2002.

Wooyoung Kim. Parallel clustering algorithms: Survey. Parallel Algorithms,
Spring, 2009.

Stefan Brecheisen, Hans-Peter Kriegel, and Martin Pfeifle. Parallel density-
based clustering of complex objects. In Advances in Knowledge Discovery and
Data Mining, 10th Pacific-Asia Conference, PAKDD 2006, Singapore, April
9-12, 2006, Proceedings, pages 179-188, 2006.

Md. Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao,
Fredrik Manne, and Alok N. Choudhary. A new scalable parallel DBSCAN
algorithm using the disjoint-set data structure. In SC Conference on High
Performance Computing Networking, Storage and Analysis, SC' ’12, Salt Lake
City, UT, USA - November 11 - 15, 2012, page 62, 2012.

Yaobin He, Haoyu Tan, Wuman Luo, Huajian Mao, Di Ma, Shengzhong Feng,
and Jianping Fan. MR-DBSCAN: an efficient parallel density-based clustering
algorithm using mapreduce. In 17th IEEE International Conference on Parallel
and Distributed Systems, ICPADS 2011, Tainan, Taiwan, December 7-9, 2011,
pages 473-480, 2011.

Xiaowei Xu, Jochen Jager, and Hans-Peter Kriegel. A fast parallel clustering
algorithm for large spatial databases. In High Performance Data Mining, pages
263-290. Springer, 1999.

Xin Sun and Yu Cathy Jiao. pgrid: Parallel grid-based data stream clustering
with mapreduce. Report, 2009.

Stephan Kulla. Intersection and union of two sets in a venn diagram, 04 2015.

Dezydery Szymkiewicz. Une contribution statistique a la géographie floristique.
Polskie Towarzy-stwo Botaniczne, 1934.

Kathleen Hornsby and Max J. Egenhofer. Modeling moving objects over
multiple granularities. Ann. Math. Artif. Intell., 36(1-2):177-194, 2002.

Patrick Laube, Stephan Imfeld, and Robert Weibel. Discovering relative motion
patterns in groups of moving point objects. International Journal of Geographical
Information Science, 19(6):639-668, 2005.

Joachim Gudmundsson, Marc J. van Kreveld, and Bettina Speckmann. Efficient
detection of motion patterns in spatio-temporal data sets. In 12th ACM
International Workshop on Geographic Information Systems, ACM-GIS 2004,
November 12-13, 2004, Washington, DC, USA, Proceedings, pages 250-257,
2004.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

79

Marc Benkert, Joachim Gudmundsson, Florian Hiibner, and Thomas Wolle.
Reporting flock patterns. Computational Geometry, 41(3):111-125, 2008.

Yanwei Yu, Qin Wang, Xiaodong Wang, Huan Wang, and Jie He. Online
clustering for trajectory data stream of moving objects. Comput. Sci. Inf.
Syst., 10(3):1293-1317, 2013.

Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering moving
clusters in spatio-temporal data. In Advances in Spatial and Temporal Databases,
9th International Symposium, SSTD 2005, Angra dos Reis, Brazil, August 22-2/,
2005, Proceedings, pages 364-381, 2005.

Opher Etzion and Peter Niblett. FEwvent processing in action. Manning Publica-
tions Co., 2010.

Wenhui Hu, Wei Ye, Yu Huang, and Shikun Zhang. Complex event processing
in rfid middleware: A three layer perspective. In Convergence and Hybrid
Information Technology, 2008. ICCIT’08. Third International Conference on,
volume 1, pages 1121-1125. IEEE, 2008.

Kiipper Axel et al. Location-based services: fundamentals and operation. John

Wiley & Sons, 2005.

Paramvir Bahl and Venkata N. Padmanabhan. RADAR: an in-building rf-based
user location and tracking system. In Proceedings IEEE INFOCOM 2000, The
Conference on Computer Communications, Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies, Reaching the Promised
Land of Communications, Tel Aviv, Israel, March 26-30, 2000, pages 775784,
2000.

Kamol Kaemarungsi and Prashant Krishnamurthy. Properties of indoor received
signal for WLAN location fingerprinting. In 1st Annual International Conference
on Mobile and Ubiquitous Systems (MobiQuitous 2004), Networking and Services,
22-25 August 2004, Cambridge, MA, USA, pages 14-23, 2004.

Sudarshan S Chawathe. Beacon placement for indoor localization using blue-
tooth. In Intelligent Transportation Systems, 2008. ITSC 2008. 11th Interna-
tional IEEE Conference on, pages 980-985. IEEE, 2008.

Sandro Rodriguez Garzon and Bersant Deva. Geofencing 2.0: Taking location-
based notifications to the next level. In The 2014 ACM Conference on Ubiquitous
Computing, UbiComp 14, Seattle, WA, USA, September 13-17, 2014, pages
921-932, 2014.

A Cupper, Georg Treu, and Claudia Linnhoff-Popien. Trax: A device-centric
middleware framework for location-based services. IEEE Communications
Magazine, 44(9):114-120, 2006.

[52]

[53]
[54]

[55]

[56]
[57]

[58]
[59]

[60]

80

Louise Barkhuus and Anind K. Dey. Location-based services for mobile
telephony: a study of users’ privacy concerns. In Human-Computer Interaction
INTERACT °03: IFIP TC18 International Conference on Human-Computer
Interaction, 1st-5th September 2003, Zurich, Switzerland, 2003.

Ordnance Survey. A guide to coordinate systems in great britain, 8 2016.

Apache Flink. Apache flink: Scalable stream and batch data processing, 2014 -
2017.

Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Frey-
tag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker
Markl, Felix Naumann, Mathias Peters, Astrid Rheinldnder, Matthias J. Sax,
Sebastian Schelter, Mareike Hoger, Kostas Tzoumas, and Daniel Warneke. The
stratosphere platform for big data analytics. VLDB J., 23(6):939-964, 2014.

dataArtisans. Demo applications for apache flink™ datastream, 2015.

Sandro Rodriguez Garzon, Bersant Deva, Benoit Hanotte, and Axel Kiipper.
CATLES: a crowdsensing-supported interactive world-scale environment simu-
lator for context-aware systems. In Proceedings of the International Conference
on Mobile Software Engineering and Systems, MOBILESoft 16, Austin, Tezas,
USA, May 14-22, 2016, pages 77-87, 2016.

Yu Zheng. T-drive trajectory data sample, August 2011.

Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowledge
from the physical world. In Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA,
August 21-2/4, 2011, pages 316-324, 2011.

Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong
Sun, and Yan Huang. T-drive: driving directions based on taxi trajectories. In
Proceedings of the 18th SIGSPATIAL International conference on advances in
geographic information systems, pages 99-108. ACM, 2010.

	Abstract
	Contents
	Introduction
	Real-time applications
	Data mining
	Location-based services
	The main motivation behind the thesis

	Related Work
	Clustering. Fundamentals
	Partitioning methods
	Hierarchical methods
	Density-based methods
	Grid-based methods

	Streaming
	Streaming architecture
	Streaming clustering algorithms
	Streaming summary

	Distributed and Parallel processing
	Cluster analysis
	Cluster similarity
	Pattern detection

	Complex event processing
	Location Based Services
	Geolocation

	Concept and Design
	Big Picture
	Current approaches

	Clustering
	Discussion on a Window Model
	Discussion on a merging process

	Pattern detection
	Basic definitions
	Advanced patterns
	CEP operators

	Implementation
	Software tools
	Apache Flink
	Libraries and software components

	Data Source
	Clustering
	Complex Event Processing

	Evaluation
	Evaluation with artificial data
	Cluster quality evaluation
	Pattern detection evaluation
	Discussion on the evaluation

	T-Drive example

	Conclusion
	References

