21,596 research outputs found

    Echo Cancellation : the generalized likelihood ratio test for double-talk vs. channel change

    Get PDF
    Echo cancellers are required in both electrical (impedance mismatch) and acoustic (speaker-microphone coupling) applications. One of the main design problems is the control logic for adaptation. Basically, the algorithm weights should be frozen in the presence of double-talk and adapt quickly in the absence of double-talk. The optimum likelihood ratio test (LRT) for this problem was studied in a recent paper. The LRT requires a priori knowledge of the background noise and double-talk power levels. Instead, this paper derives a generalized log likelihood ratio test (GLRT) that does not require this knowledge. The probability density function of a sufficient statistic under each hypothesis is obtained and the performance of the test is evaluated as a function of the system parameters. The receiver operating characteristics (ROCs) indicate that it is difficult to correctly decide between double-talk and a channel change, based upon a single look. However, detection based on about 200 successive samples yields a detection probability close to unity (0.99) with a small false alarm probability (0.01) for the theoretical GLRT model. Application of a GLRT-based echo canceller (EC) to real voice data shows comparable performance to that of the LRT-based EC given in a recent paper

    A universal setup for active control of a single-photon detector

    Full text link
    The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details of an apparatus which allows to attack a quantum-cryptographic connection. This device is capable of controlling free-space and fiber-based systems and of minimizing unwanted clicks in the system. With different control diagrams, we are able to achieve a different level of control. The control was initially targeted to the systems using BB84 protocol, with polarization encoding and basis switching using beamsplitters, but could be extended to other types of systems. We further outline how to characterize the quality of active control of single-photon detectors.Comment: 10 pages, 10 figure

    Theory of Dispersed Fixed-Delay Interferometry for Radial Velocity Exoplanet Searches

    Get PDF
    The dispersed fixed-delay interferometer (DFDI) represents a new instrument concept for high-precision radial velocity (RV) surveys for extrasolar planets. A combination of Michelson interferometer and medium-resolution spectrograph, it has the potential for performing multi-object surveys, where most previous RV techniques have been limited to observing only one target at a time. Because of the large sample of extrasolar planets needed to better understand planetary formation, evolution, and prevalence, this new technique represents a logical next step in instrumentation for RV extrasolar planet searches, and has been proven with the single-object Exoplanet Tracker (ET) at Kitt Peak National Observatory, and the multi-object W. M. Keck/MARVELS Exoplanet Tracker at Apache Point Observatory. The development of the ET instruments has necessitated fleshing out a detailed understanding of the physical principles of the DFDI technique. Here we summarize the fundamental theoretical material needed to understand the technique and provide an overview of the physics underlying the instrument's working. We also derive some useful analytical formulae that can be used to estimate the level of various sources of error generic to the technique, such as photon shot noise when using a fiducial reference spectrum, contamination by secondary spectra (e.g., crowded sources, spectroscopic binaries, or moonlight contamination), residual interferometer comb, and reference cross-talk error. Following this, we show that the use of a traditional gas absorption fiducial reference with a DFDI can incur significant systematic errors that must be taken into account at the precision levels required to detect extrasolar planets.Comment: 58 pages, 11 figures, 1 table, 3 appendices. Accepted for publication in ApJS. Minor typographical corrections; update to acknowledgment

    Detectors and Concepts for sub-100 ps timing with gaseous detectors

    Full text link
    We give a short compendium of the main ongoing detectors and concepts capable of performing accurate sub-100 ps timing at high particle fluxes and on large areas, through technologies based on gaseous media. We briefly discuss the state-of-the-art, technological limitations and prospects, and a new bizarre idea

    Characterization of an Ionization Readout Tile for nEXO

    Full text link
    A new design for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3~mm wide, on a 10~\si{\cm} ×\times 10~\si{\cm} fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207^{207}Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution σ/E\sigma/E=5.5\% is observed at 570~\si{keV}, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936~V/\si{cm}.Comment: 18 pages, 13 figures, as publishe

    A 16-channel Digital TDC Chip with internal buffering and selective readout for the DIRC Cherenkov counter of the BABAR experiment

    Full text link
    A 16-channel digital TDC chip has been built for the DIRC Cherenkov counter of the BaBar experiment at the SLAC B-factory (Stanford, USA). The binning is 0.5 ns, the conversion time 32 ns and the full-scale 32 mus. The data driven architecture integrates channel buffering and selective readout of data falling within a programmable time window. The time measuring scale is constantly locked to the phase of the (external) clock. The linearity is better than 80 ps rms. The dead time loss is less than 0.1% for incoherent random input at a rate of 100 khz on each channel. At such a rate the power dissipation is less than 100 mw. The die size is 36 mm2.Comment: Latex, 18 pages, 13 figures (14 .eps files), submitted to NIM
    corecore