92 research outputs found

    Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities

    Get PDF
    Achieving sustainable freight transport and citizens’ mobility operations in modern cities are becoming critical issues for many governments. By analyzing big data streams generated through IoT devices, city planners now have the possibility to optimize traffic and mobility patterns. IoT combined with innovative transport concepts as well as emerging mobility modes (e.g., ridesharing and carsharing) constitute a new paradigm in sustainable and optimized traffic operations in smart cities. Still, these are highly dynamic scenarios, which are also subject to a high uncertainty degree. Hence, factors such as real-time optimization and re-optimization of routes, stochastic travel times, and evolving customers’ requirements and traffic status also have to be considered. This paper discusses the main challenges associated with Internet of Vehicles (IoV) and vehicle networking scenarios, identifies the underlying optimization problems that need to be solved in real time, and proposes an approach to combine the use of IoV with parallelization approaches. To this aim, agile optimization and distributed machine learning are envisaged as the best candidate algorithms to develop efficient transport and mobility systems

    Energy-Efficient Softwarized Networks: A Survey

    Full text link
    With the dynamic demands and stringent requirements of various applications, networks need to be high-performance, scalable, and adaptive to changes. Researchers and industries view network softwarization as the best enabler for the evolution of networking to tackle current and prospective challenges. Network softwarization must provide programmability and flexibility to network infrastructures and allow agile management, along with higher control for operators. While satisfying the demands and requirements of network services, energy cannot be overlooked, considering the effects on the sustainability of the environment and business. This paper discusses energy efficiency in modern and future networks with three network softwarization technologies: SDN, NFV, and NS, introduced in an energy-oriented context. With that framework in mind, we review the literature based on network scenarios, control/MANO layers, and energy-efficiency strategies. Following that, we compare the references regarding approach, evaluation method, criterion, and metric attributes to demonstrate the state-of-the-art. Last, we analyze the classified literature, summarize lessons learned, and present ten essential concerns to open discussions about future research opportunities on energy-efficient softwarized networks.Comment: Accepted draft for publication in TNSM with minor updates and editin

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    Failure Analysis in Next-Generation Critical Cellular Communication Infrastructures

    Full text link
    The advent of communication technologies marks a transformative phase in critical infrastructure construction, where the meticulous analysis of failures becomes paramount in achieving the fundamental objectives of continuity, security, and availability. This survey enriches the discourse on failures, failure analysis, and countermeasures in the context of the next-generation critical communication infrastructures. Through an exhaustive examination of existing literature, we discern and categorize prominent research orientations with focuses on, namely resource depletion, security vulnerabilities, and system availability concerns. We also analyze constructive countermeasures tailored to address identified failure scenarios and their prevention. Furthermore, the survey emphasizes the imperative for standardization in addressing failures related to Artificial Intelligence (AI) within the ambit of the sixth-generation (6G) networks, accounting for the forward-looking perspective for the envisioned intelligence of 6G network architecture. By identifying new challenges and delineating future research directions, this survey can help guide stakeholders toward unexplored territories, fostering innovation and resilience in critical communication infrastructure development and failure prevention

    Intelligent Multi-Dimensional Resource Management in MEC-Assisted Vehicular Networks

    Get PDF
    Benefiting from advances in the automobile industry and wireless communication technologies, the vehicular network has been emerged as a key enabler of intelligent transportation services. Allowing real-time information exchanging between vehicle and everything, traffic safety and efficiency are significantly enhanced, and ubiquitous Internet access is enabled to support new data services and applications. However, with more and more services and applications, mobile data traffic generated by vehicles has been increasing and the issue on the overloaded computing task has been getting worse. Because of the limitation of spectrum and vehicles' on-board computing and caching resources, it is challenging to promote vehicular networking technologies to support the emerging services and applications, especially those requiring sensitive delay and diverse resources. To overcome these challenges, in this thesis, we propose a new vehicular network architecture and design efficient resource management schemes to support the emerging applications and services with different levels of quality-of-service (QoS) guarantee. Firstly, we propose a multi-access edge computing (MEC)-assisted vehicular network (MVNET) architecture that integrates the concepts of software-defined networking (SDN) and network function virtualization (NFV). With MEC, the interworking of multiple wireless access technologies can be realized to exploit the diversity gain over a wide range of radio spectrum, and at the same time, vehicle's computing/caching tasks can be offloaded to and processed by the MEC servers. By enabling NFV in MEC, different functions can be programmed on the server to support diversified vehicular applications, thus enhancing the server's flexibility. Moreover, by using SDN concepts in MEC, a unified control plane interface and global information can be provided, and by subsequently using this information, intelligent traffic steering and efficient resource management can be achieved. Secondly, under the proposed MVNET architecture, we propose a dynamic spectrum management framework to improve spectrum resource utilization while guaranteeing QoS requirements for different applications, in which, spectrum slicing, spectrum allocating, and transmit power controlling are jointly considered. Accordingly, three non-convex network utility maximization problems are formulated to slice spectrum among base stations (BSs), allocate spectrum among vehicles associated with the same BS, and control transmit powers of BSs, respectively. Via linear programming relaxation and first-order Taylor series approximation, these problems are transformed into tractable forms and then are jointly solved by a proposed alternate concave search algorithm. As a result, optimal spectrum slicing ratios among BSs, optimal BS-vehicle association patterns, optimal fractions of spectrum resources allocated to vehicles, and optimal transmit powers of BSs are obtained. Based on our simulation, a high aggregate network utility is achieved by the proposed spectrum management scheme compared with two existing schemes. Thirdly, we study the joint allocation of the spectrum, computing, and caching resources in MVNETs. To support different vehicular applications, we consider two typical MVNET architectures and formulate multi-dimensional resource optimization problems accordingly, which are usually with high computation complexity and overlong problem-solving time. Thus, we exploit reinforcement learning to transform the two formulated problems and solve them by leveraging the deep deterministic policy gradient (DDPG) and hierarchical learning architectures. Via off-line training, the network dynamics can be automatically learned and appropriate resource allocation decisions can be rapidly obtained to satisfy the QoS requirements of vehicular applications. From simulation results, the proposed resource management schemes can achieve high delay/QoS satisfaction ratios. Fourthly, we extend the proposed MVNET architecture to an unmanned aerial vehicle (UAV)-assisted MVNET and investigate multi-dimensional resource management for it. To efficiently provide on-demand resource access, the macro eNodeB and UAV, both mounted with MEC servers, cooperatively make association decisions and allocate proper amounts of resources to vehicles. Since there is no central controller, we formulate the resource allocation at the MEC servers as a distributive optimization problem to maximize the number of offloaded tasks while satisfying their heterogeneous QoS requirements, and then solve it with a multi-agent DDPG (MADDPG)-based method. Through centrally training the MADDPG model offline, the MEC servers, acting as learning agents, then can rapidly make vehicle association and resource allocation decisions during the online execution stage. From our simulation results, the MADDPG-based method can achieve a comparable convergence rate and higher delay/QoS satisfaction ratios than the benchmarks. In summary, we have proposed an MEC-assisted vehicular network architecture and investigated the spectrum slicing and allocation, and multi-dimensional resource allocation in the MEC- and/or UAV-assisted vehicular networks in this thesis. The proposed architecture and schemes should provide useful guidelines for future research in multi-dimensional resource management scheme designing and resource utilization enhancement in highly dynamic wireless networks with diversified data services and applications

    Allocation des ressources dans les environnements informatiques en périphérie des réseaux mobiles

    Get PDF
    Abstract: The evolution of information technology is increasing the diversity of connected devices and leading to the expansion of new application areas. These applications require ultra-low latency, which cannot be achieved by legacy cloud infrastructures given their distance from users. By placing resources closer to users, the recently developed edge computing paradigm aims to meet the needs of these applications. Edge computing is inspired by cloud computing and extends it to the edge of the network, in proximity to where the data is generated. This paradigm leverages the proximity between the processing infrastructure and the users to ensure ultra-low latency and high data throughput. The aim of this thesis is to improve resource allocation at the network edge to provide an improved quality of service and experience for low-latency applications. For better resource allocation, it is necessary to have reliable knowledge about the resources available at any moment. The first contribution of this thesis is to propose a resource representation to allow the supervisory xentity to acquire information about the resources available to each device. This information is then used by the resource allocation scheme to allocate resources appropriately for the different services. The resource allocation scheme is based on Lyapunov optimization, and it is executed only when resource allocation is required, which reduces the latency and resource consumption on each edge device. The second contribution of this thesis focuses on resource allocation for edge services. The services are created by chaining a set of virtual network functions. Resource allocation for services consists of finding an adequate placement for, routing, and scheduling these virtual network functions. We propose a solution based on game theory and machine learning to find a suitable location and routing for as well as an appropriate scheduling of these functions at the network edge. Finding the location and routing of network functions is formulated as a mean field game solved by iterative Ishikawa-Mann learning. In addition, the scheduling of the network functions on the different edge nodes is formulated as a matching set, which is solved using an improved version of the deferred acceleration algorithm we propose. The third contribution of this thesis is the resource allocation for vehicular services at the edge of the network. In this contribution, the services are migrated and moved to the different infrastructures at the edge to ensure service continuity. Vehicular services are particularly delay sensitive and related mainly to road safety and security. Therefore, the migration of vehicular services is a complex operation. We propose an approach based on deep reinforcement learning to proactively migrate the different services while ensuring their continuity under high mobility constraints.L'évolution des technologies de l'information entraîne la prolifération des dispositifs connectés qui mène à l'exploration de nouveaux champs d'application. Ces applications demandent une latence ultra-faible, qui ne peut être atteinte par les infrastructures en nuage traditionnelles étant donné la distance qui les sépare des utilisateurs. En rapprochant les ressources aux utilisateurs, le paradigme de l'informatique en périphérie, récemment apparu, vise à répondre aux besoins de ces applications. L’informatique en périphérie s'inspire de l’informatique en nuage, en l'étendant à la périphérie du réseau, à proximité de l'endroit où les données sont générées. Ce paradigme tire parti de la proximité entre l'infrastructure de traitement et les utilisateurs pour garantir une latence ultra-faible et un débit élevé des données. L'objectif de cette thèse est l'amélioration de l'allocation des ressources à la périphérie du réseau pour offrir une meilleure qualité de service et expérience pour les applications à faible latence. Pour une meilleure allocation des ressources, il est nécessaire d'avoir une bonne connaissance sur les ressources disponibles à tout moment. La première contribution de cette thèse consiste en la proposition d'une représentation des ressources pour permettre à l'entité de supervision d'acquérir des informations sur les ressources disponibles à chaque dispositif. Ces informations sont ensuite exploitées par le schéma d'allocation des ressources afin d'allouer les ressources de manière appropriée pour les différents services. Le schéma d'allocation des ressources est basé sur l'optimisation de Lyapunov, et il n'est exécuté que lorsque l'allocation des ressources est requise, ce qui réduit la latence et la consommation en ressources sur chaque équipement de périphérie. La deuxième contribution de cette thèse porte sur l'allocation des ressources pour les services en périphérie. Les services sont composés par le chaînage d'un ensemble de fonctions réseau virtuelles. L'allocation des ressources pour les services consiste en la recherche d'un placement, d'un routage et d'un ordonnancement adéquat de ces fonctions réseau virtuelles. Nous proposons une solution basée sur la théorie des jeux et sur l'apprentissage automatique pour trouver un emplacement et routage convenable ainsi qu'un ordonnancement approprié de ces fonctions en périphérie du réseau. La troisième contribution de cette thèse consiste en l'allocation des ressources pour les services véhiculaires en périphérie du réseau. Dans cette contribution, les services sont migrés et déplacés sur les différentes infrastructures en périphérie pour assurer la continuité des services. Les services véhiculaires sont en particulier sensibles à la latence et liés principalement à la sûreté et à la sécurité routière. En conséquence, la migration des services véhiculaires constitue une opération complexe. Nous proposons une approche basée sur l'apprentissage par renforcement profond pour migrer de manière proactive les différents services tout en assurant leur continuité sous les contraintes de mobilité élevée
    • …
    corecore