6,600 research outputs found

    A New Approach to Linear/Nonlinear Distributed Fusion Estimation Problem

    Full text link
    Disturbance noises are always bounded in a practical system, while fusion estimation is to best utilize multiple sensor data containing noises for the purpose of estimating a quantity--a parameter or process. However, few results are focused on the information fusion estimation problem under bounded noises. In this paper, we study the distributed fusion estimation problem for linear time-varying systems and nonlinear systems with bounded noises, where the addressed noises do not provide any statistical information, and are unknown but bounded. When considering linear time-varying fusion systems with bounded noises, a new local Kalman-like estimator is designed such that the square error of the estimator is bounded as time goes to \infty. A novel constructive method is proposed to find an upper bound of fusion estimation error, then a convex optimization problem on the design of an optimal weighting fusion criterion is established in terms of linear matrix inequalities, which can be solved by standard software packages. Furthermore, according to the design method of linear time-varying fusion systems, each local nonlinear estimator is derived for nonlinear systems with bounded noises by using Taylor series expansion, and a corresponding distributed fusion criterion is obtained by solving a convex optimization problem. Finally, target tracking system and localization of a mobile robot are given to show the advantages and effectiveness of the proposed methods.Comment: 9 pages, 3 figure

    Information driven self-organization of complex robotic behaviors

    Get PDF
    Information theory is a powerful tool to express principles to drive autonomous systems because it is domain invariant and allows for an intuitive interpretation. This paper studies the use of the predictive information (PI), also called excess entropy or effective measure complexity, of the sensorimotor process as a driving force to generate behavior. We study nonlinear and nonstationary systems and introduce the time-local predicting information (TiPI) which allows us to derive exact results together with explicit update rules for the parameters of the controller in the dynamical systems framework. In this way the information principle, formulated at the level of behavior, is translated to the dynamics of the synapses. We underpin our results with a number of case studies with high-dimensional robotic systems. We show the spontaneous cooperativity in a complex physical system with decentralized control. Moreover, a jointly controlled humanoid robot develops a high behavioral variety depending on its physics and the environment it is dynamically embedded into. The behavior can be decomposed into a succession of low-dimensional modes that increasingly explore the behavior space. This is a promising way to avoid the curse of dimensionality which hinders learning systems to scale well.Comment: 29 pages, 12 figure

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Adaptation and learning over networks for nonlinear system modeling

    Full text link
    In this chapter, we analyze nonlinear filtering problems in distributed environments, e.g., sensor networks or peer-to-peer protocols. In these scenarios, the agents in the environment receive measurements in a streaming fashion, and they are required to estimate a common (nonlinear) model by alternating local computations and communications with their neighbors. We focus on the important distinction between single-task problems, where the underlying model is common to all agents, and multitask problems, where each agent might converge to a different model due to, e.g., spatial dependencies or other factors. Currently, most of the literature on distributed learning in the nonlinear case has focused on the single-task case, which may be a strong limitation in real-world scenarios. After introducing the problem and reviewing the existing approaches, we describe a simple kernel-based algorithm tailored for the multitask case. We evaluate the proposal on a simulated benchmark task, and we conclude by detailing currently open problems and lines of research.Comment: To be published as a chapter in `Adaptive Learning Methods for Nonlinear System Modeling', Elsevier Publishing, Eds. D. Comminiello and J.C. Principe (2018

    Distributed Maximum Likelihood for Simultaneous Self-localization and Tracking in Sensor Networks

    Full text link
    We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneously with target tracking. For linear Gaussian models, our algorithms can be implemented exactly using a distributed version of the Kalman filter and a novel message passing algorithm. The latter allows each node to compute the local derivatives of the likelihood or the sufficient statistics needed for Expectation-Maximization. In the non-linear case, a solution based on local linearization in the spirit of the Extended Kalman Filter is proposed. In numerical examples we demonstrate that the developed algorithms are able to learn the localization parameters.Comment: shorter version is about to appear in IEEE Transactions of Signal Processing; 22 pages, 15 figure

    Secure Distributed Dynamic State Estimation in Wide-Area Smart Grids

    Full text link
    Smart grid is a large complex network with a myriad of vulnerabilities, usually operated in adversarial settings and regulated based on estimated system states. In this study, we propose a novel highly secure distributed dynamic state estimation mechanism for wide-area (multi-area) smart grids, composed of geographically separated subregions, each supervised by a local control center. We firstly propose a distributed state estimator assuming regular system operation, that achieves near-optimal performance based on the local Kalman filters and with the exchange of necessary information between local centers. To enhance the security, we further propose to (i) protect the network database and the network communication channels against attacks and data manipulations via a blockchain (BC)-based system design, where the BC operates on the peer-to-peer network of local centers, (ii) locally detect the measurement anomalies in real-time to eliminate their effects on the state estimation process, and (iii) detect misbehaving (hacked/faulty) local centers in real-time via a distributed trust management scheme over the network. We provide theoretical guarantees regarding the false alarm rates of the proposed detection schemes, where the false alarms can be easily controlled. Numerical studies illustrate that the proposed mechanism offers reliable state estimation under regular system operation, timely and accurate detection of anomalies, and good state recovery performance in case of anomalies

    Nonlinear Information Filtering for Distributed Multisensor Data Fusion

    Get PDF
    The information filter has evolved into a key tool for distributed and decentralized multisensor estimation and control. Essentially, it is an algebraical reformulation of the Kalman filter and provides estimates on the information about an uncertain state rather than on a state itself. Whereas many practicable Kalman filtering techniques for nonlinear system and sensor models have been developed, approaches towards nonlinear information filtering are still scarce and limited. In order to deal with nonlinear systems and sensors, this paper derives an approximation technique for arbitrary probability densities that provides the same distributable fusion structure as the linear information filter. The presented approach not only constitutes a nonlinear version of the information filter, but it also points the direction to a Hilbert space structure on probability densities, whose vector space operations correspond to the fusion and weighting of information
    corecore