172 research outputs found

    Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans

    Get PDF
    The combination of physical sensors and computational models to provide additional information about system states, inputs and/or parameters, in what is known as virtual sensing, is becoming increasingly popular in many sectors, such as the automotive, aeronautics, aerospatial, railway, machinery, robotics and human biomechanics sectors. While, in many cases, control-oriented models, which are generally simple, are the best choice, multibody models, which can be much more detailed, may be better suited to some applications, such as during the design stage of a new product

    Développement d'une unité de valves motorisées et algorithme de transition pour actionnement hydrostatique bimodal d'une jambe robotique

    Get PDF
    Les robots mobiles, tels que les exosquelettes et les robots marcheurs, utilisent des actionneurs qui doivent satisfaire à une large plage de requis de force et de vitesse. Par exemple, pour le cycle de marche d’une jambe robotique, la phase d’appui nécessite une force élevée tandis que la phase de balancement requiert une grande vitesse. Pour satisfaire ces requis opposés, le dimensionnement d’un système d’actionnement traditionnel à rapport de réduction unique conduit généralement à un moteur électrique lourd, surdimensionné et à une faible efficacité énergétique. Ainsi, l’alternative explorée est une architecture hydrostatique à deux vitesses où des valves motorisées sont utilisées pour reconfigurer dynamiquement le système entre deux modes de fonctionnement : fort ou rapide. La complexité réside dans le choix d’une technologie de valve légère ainsi que dans le développement d’un algorithme de contrôle permettant de réaliser les transitions de manière rapide et fluide. Un prototype d’une unité de valves motorisées est conçu et intégré dans l’architecture hydrostatique complète de l’actionneur et un banc d’essai d’une jambe robotique est fabriqué. Trois stratégies de contrôle des moteurs sont comparées lors du changement de mode : une vitesse constante, une diminution de vitesse et une réduction du courant. La méthode choisie, le contrôle en courant, est ensuite utilisée pour la démonstration des phases d’appui et de balancement de la jambe robotique. Par cette méthode, il est possible d’effectuer des transitions rapides, de maintenir une force suffisante et de minimiser les oscillations qui surviennent lors du contact avec le sol. Ces travaux offrent donc un premier point de comparaison au niveau du choix de valves, de la masse, de la vitesse d’actionnement et de la stratégie de contrôle

    An Energy Efficient Electro-Hydraulic Control System For A Collaborative Humanoid Robot

    Get PDF
    DissertationThis study presents the design of an energy efficient electro-hydraulic control system for a collaborative humanoid robot. Robots can be found in almost every aspect of our lives with different applications such as manufacturing, construction, agriculture, surgery, and transportation. The need for robots is on the rise as they perform certain tasks much faster and with more precision than humans. The lack of them having cognitive ability limits them in certain tasks as human interaction is often needed. Humans are currently better than robots in performing some tasks such as decision making and problem solving. In collaborative robotics, humans and robots are required to work together to achieve a common goal. In most cases, this is achieved by confining both entities in the same space. This allows for better accuracy for these robots with the flexibility and cognition of humans. Furthermore, research lately shows an increase in robots that use hydraulics with most showing that these hydraulics have energy saving abilities in robotic actuation. It is known that hydraulics have a high power to weight ratio thus allowing for more powerful yet compact robots to be built. An electro-hydraulic control system is thus described in this research in which the system allows the human user to manipulate the robot by having it mimic the user’s moves. This approach allows the user to not do any strenuous activities while the robot does the heavy lifting. Furthermore, the system does not need to be reprogrammed for a new task therefore reducing the reconfiguration time of the system. The proposed approach further allows the robot to work in hazardous situations while the user is in a safe environment. The system uses a proportional-integral-derivative (PID) algorithm to control a hydraulic cylinder allowing it to move with the user. Experiments performed to validate the study shows the reaction time as well as energy saving abilities of the system. Additionally, the results show that hydraulic systems have the ability to save energy during stall as well as increasing power density of the robot. Furthermore, an improved response time was recorded for the hydraulic system when being controlled by a remote operator

    Third-order robust fuzzy sliding mode tracking control of a double-acting electrohydraulic actuator

    Get PDF
    In the industrial sector, an electrohydraulic actuator (EHA) system is a common technology. This system is often used in applications that demand high force, such as the steel, automotive, and aerospace industries. Furthermore, since most mechanical actuators' performance changes with time, it is considerably more difficult to assure its robustness over time. Therefore, this paper proposed a robust fuzzy sliding mode proportional derivative (FSMCPD) controller. The sliding mode controller (SMC) is accomplished by utilizing the exponential law and the Lyapunov theorem to ensure closed loop stability. By replacing the fuzzy logic control (FLC) function over the signum function, the chattering in the SMC controller has been considerably reduced. By using the sum of absolute errors as the objective function, particle swarm optimization (PSO) was used to optimize the controller parameter gain. The experiment results for trajectory tracking and the robustness test were compared with the sliding mode proportional derivative (SMCPD) controller to demonstrate the performance of the FSMCPD controller. According to the findings of the thorough study, the FSMCPD controller outperforms the SMCPD controller in terms of mean square error (MSE) and robustness index (RI)

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    The Fourteenth Scandinavian International Conference on Fluid Power, SICFP15: Abstracts

    Get PDF
    At this time the conference includes various themes like hybrids, drives, digital hydraulics and pneumatics. Special attention in the program is given for energy efficiency, renewable energy production and energy recovery. They are reflecting well the situation, where environmental issues and energy saving are increasingly important issues

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Foot placement for running robots

    Get PDF

    Software framework for high precision motion control applications

    Get PDF
    Developing a motion control system requires much effort in different domains. Namely control, electronics and software engineering. In addition to these, there are the system requirements which may be completely different to these spanning from biomedical engineering to psychology. Collaboration between these fields is vital, however these fields should be involved only as much as they are needed to be in the fields of expertise of the others. Several software frameworks exist for the creation of robotics applications. But currently there is no standard for the creation of mechatronics systems nor is there a complete software package that can deal with all aspects in the programming of such systems. Existing frameworks each have their advantages and disadvantages, however they generally have limited or no dedicated structure for the development of the motion control aspect of the problem and deal extensively with the robotenvironment interactions and inter mechanism communications. Dealing with the higher levels of the problem, they are usually not well suited for hard realtime; since the interactions can run on soft realtime constraints. The software framework proposed in this study aims to achieve a level of abstraction between the different domains utilized within a system. The aim in using the framework is to achieve a sustainable software structure for the system. Sustainability is an important part of systems, as it permits a system to evolve with changing requirements and variable hardware, with the ultimate goal of having robust software that can be utilized on different platforms and with other systems using an abstraction layer between the hardware and the software. This ensures that the system can be migrated from a processing platform to any other platform and also from one set of hardware to another. The framework was tested on several systems that have precision motion control requirements such as a 10 degree of freedom micro assembly workstation, a modular micro factory and a haptic system with time delay. Each of the systems works in di erent processing platforms and have different motion control requirements. The achieved results from the implementations show that the software framework is an important tool for the development of motion control software
    • …
    corecore