207 research outputs found

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u

    A Survey on Adaptive Multimedia Streaming

    Get PDF
    Internet was primarily designed for one to one applications like electronic mail, reliable file transfer etc. However, the technological growth in both hardware and software industry have written in unprecedented success story of the growth of Internet and have paved the paths of modern digital evolution. In today’s world, the internet has become the way of life and has penetrated in its every domain. It is nearly impossible to list the applications which make use of internet in this era however, all these applications are data intensive and data may be textual, audio or visual requiring improved techniques to deal with these. Multimedia applications are one of them and have witnessed unprecedented growth in last few years. A predominance of that is by virtue of different video streaming applications in daily life like games, education, entertainment, security etc. Due to the huge demand of multimedia applications, heterogeneity of demands and limited resource availability there is a dire need of adaptive multimedia streaming. This chapter provides the detail discussion over different adaptive multimedia streaming mechanism over peer to peer network

    System analysis of a Peer-to-Peer Video-on-Demand architecture : Kangaroo

    Get PDF
    Architectural design and deployment of Peer-to-Peer Video-on-Demand (P2PVoD) systems which support VCR functionalities is attracting the interest of an increasing number of research groups within the scientific community; especially due to the intrinsic characteristics of such systems and the benefits that peers could provide at reducing the server load. This work focuses on the performance analysis of a P2P-VoD system considering user behaviors obtained from real traces together with other synthetic user patterns. The experiments performed show that it is feasible to achieve a performance close to the best possible. Future work will consider monitoring the physical characteristics of the network in order to improve the design of different aspects of a VoD system.El disseny arquitectònic i el desplegament de sistemes de Vídeo sota Demanda "Peer-to-Peer" que soporten funcionalitats VCR està captant l'interès d'un nombre creixent de grups de recerca a la comunitat científica, degut especialment a les característiques intrínsiques dels mencionats sistemes i als beneficis que els peers podrien proporcionar a la reducció de la càrrega en el servidor. Aquest treball tracta l'anàlisi del rendiment d'un sistema P2P-VoD considerant el comportament d'usuaris obtingut amb traçes reals i amb patrons sintètics. Els experiments realitzats mostren que és viable assolir un rendiment proper al cas més óptim. Com treball futur es considerarà la monitorització de les característiques físiques de la xarxa per a poder millorar el disseny dels diferents aspectes que formen un sistema de VoD.El diseño arquitectónico y el despliegue de sistemas de Video bajo Demanda "Peer-to-Peer" que soportan funcionalidades VCR está captando el interés de un número creciente de grupos de investigación dentro de la comunidad científica; especialmente debido a las características intrínsecas de tales sistemas y a los beneficios que los peers podrían proporcionar en la reducción de la carga en el servidor. Este trabajo se enfoca en el análisis de rendimiento de un sistema P2PVoD considerando el comportamiento de usuarios obtenido de trazas reales, junto a otros patrones sintéticos. Los experimentos realizados muestran que es viable lograr un rendimiento cercano al caso más óptimo. El trabajo futuro considerará la monitorización de las características físicas de la red para poder mejorar el diseño de los diferentes aspectos que conforman un sistema de VoD

    Modeling and Evaluation of Multisource Streaming Strategies in P2P VoD Systems

    Get PDF
    In recent years, multimedia content distribution has largely been moved to the Internet, inducing broadcasters, operators and service providers to upgrade with large expenses their infrastructures. In this context, streaming solutions that rely on user devices such as set-top boxes (STBs) to offload dedicated streaming servers are particularly appropriate. In these systems, contents are usually replicated and scattered over the network established by STBs placed at users' home, and the video-on-demand (VoD) service is provisioned through streaming sessions established among neighboring STBs following a Peer-to-Peer fashion. Up to now the majority of research works have focused on the design and optimization of content replicas mechanisms to minimize server costs. The optimization of replicas mechanisms has been typically performed either considering very crude system performance indicators or analyzing asymptotic behavior. In this work, instead, we propose an analytical model that complements previous works providing fairly accurate predictions of system performance (i.e., blocking probability). Our model turns out to be a highly scalable, flexible, and extensible tool that may be helpful both for designers and developers to efficiently predict the effect of system design choices in large scale STB-VoD system

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues
    corecore