1,483 research outputs found

    Digital Current-Control Schemes

    Get PDF
    The paper is about comparing the performance of digital signal processor-based current controllers for three-phase active power filters. The wide use of nonlinear loads, such as front-end rectifiers connected to the power distribution systems for dc supply or inverter-based applications, causes significant power quality degradation in power distribution networks in terms of current/voltage harmonics, power factor, and resonance problems. Passive LC filters (together with capacitor banks for reactive power compensation) are simple, low-cost, and high-efficiency solution

    Grid Voltage Unbalance and The Integration of DFIG’s

    Get PDF
    Double-fed induction generators (DFIG’s) became the predominant generator installed for wind generation applications in the mid 1990’s. Issues pertaining to the operation and control of DFIG’s subsequently became apparent, particularly in weak areas of the grid network. Ironically weak areas of the grid tend to be where the average wind speed is high and the usual location of wind farms. One of the issues that emerged was the quality of the voltage in the network at the point of common coupling (PCC) with the DFIG’s. An important issue is the question of voltage unbalance at the PCC. As part of this work, research was undertaken into the issue of voltage unbalance in a distribution network. Investigative studies were undertaken on a small wind farm connected to the Irish distribution network. The results obtained were then analysed and conclusions drawn, with recording of daily, weekly and seasonal variation of voltage unbalance. The behaviour of DFIG’s to varying levels of network voltage unbalance at the wind farm was analysed, and it was observed that the DFIG’s had difficulty remaining connected to the distribution network when voltage unbalance exceeded certain threshold levels. The behaviour of DFIG’s to the effects of grid network voltage unbalance is further investigated in this work. A literature review was undertaken of the effects that utility network voltage unbalance has on DFIG’s. Emerging from this research, the suitability of appropriate control schemes to alleviate the problems caused by grid voltage unbalance were investigated. Control techniques to improve performance of a DFIG during conditions of asymmetrical grid voltage including measures to control the rotorside and grid-side converters in a DFIG, were designed and then implemented in Matlab/Simulink and results showed improved behaviour. A synchronous generator system was similarly investigated and improvements shown. This research also includes development of a laboratory based DFIG test system. A DSP based digital microcontroller and interfacing hardware has been developed for a 5kVA DFIG laboratory based system. The system comprises of a machine set; a dc machine with common shaft coupling to a three-phase wound rotor induction machine. The dc machine emulates a wind turbine, and drives the induction machine in response to required speed. A converter has been constructed to control the rotor power of the induction machine. Interfacing schemes for the required feedback signals including voltage and current transducers and speed measurement were designed to enable control of both the rotor-side and grid-side converters of the DFIG. Grid/stator voltage oriented control is implemented to control both the rotor side and grid side converters respectively. An additional feature is the implementation of a single DSP controller, configured to control both the rotor side and grid side converters simultaneously. Initially the DFIG test rig was tested as a standalone system, with a load bank connected to the stator terminals of the induction machine. Testing of the DFIG was also conducted with the test rig connected directly to the grid, and the system operated in subsynchronous and super-synchronous modes of operation. Hardware and software solutions were implemented to reasonable success. The laboratory based test rig has been designed for operation as a rotor converter for a DFIG; however the converter can also be configured to operate as a system for a synchronous generator, or for operation as a machine drive. Further research may allow the rig to be used as a DFIG/UPQC (unified power quality controller) test bed

    The Implementation of Active Power Filter using Proportional plus Resonant Controller

    Get PDF
    This paper presents the harmonic elimination using an active power filter (APF) for three-phase system. The design and performance comparison study of the compensating current controllers are explained. The performance of the PI controller and the proportional plus resonant (P+RES) controller are compared in the paper. Moreover, the hardware implementation of the considered system is also presented in this paper. For the experimental results, the P+RES controller can provide a good performance to control the compensating current compared with using the PI controller

    Multi-resonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions

    Get PDF
    This paper presents a new multiresonant frequencyadaptive synchronization method for grid-connected power converters that allows estimating not only the positive- and negative-sequence components of the power signal at the fundamental frequency but also other sequence components at other harmonic frequencies. The proposed system is calledMSOGI-FLL since it is based on both a harmonic decoupling network consisting of multiple second-order generalized integrators (MSOGIs) and a frequency-locked loop (FLL), which makes the system frequency adaptive. In this paper, the MSOGI-FLL is analyzed for singleand three-phase applications, deducing some key expressions regarding its stability and tuning. Moreover, the performance of the MSOGI-FLL is evaluated by both simulations and experiments to show its capability for detecting different harmonic components in a highly polluted grid scenario.Peer ReviewedPostprint (published version

    Measurement of the Loop Gain Frequency Response of Digitally Controlled Power Converters

    Full text link
    [EN] The study of the loop gain frequency response in a power converter is a powerful tool commonly used for the design of the controllers used in the control stage. As the control of medium- and high-power electronic converters is usually performed digitally, it is useful to find a method to measure the digital loop gains. The purpose of this paper is to present a method for properly measuring the loop gain frequency response of digitally controlled power converters by means of an analog frequency response analyzer (FRA). An analog sinusoidal reference signal generated by the FRA is injected through an analog-to-digital converter into the digital controller, and added to the discrete feedback signal. To obtain the frequency response of the open-loop gain, both feedback and disturbed feedback signals are sent back to the FRA by using the pulsewidth modulation peripherals of the controller.This work was supported by the Spanish Ministry of Science and Innovation under Grants ENE2006-15521-C03-02 and ENE2009-13998-C02-02.GonzĂĄlez EspĂ­n, FJ.; Figueres AmorĂłs, E.; GarcerĂĄ, G.; GonzĂĄlez-Medina, R.; Pascual Molto, M. (2010). Measurement of the Loop Gain Frequency Response of Digitally Controlled Power Converters. IEEE Transactions on Industrial Electronics. 57(8):2785-2796. https://doi.org/10.1109/TIE.2010.2056610S2785279657
    • 

    corecore