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Abstract. This paper presents the harmonic elimination using an active power filter (APF) 
for three-phase system. The design and performance comparison study of the 
compensating current controllers are explained. The performance of the PI controller and 
the proportional plus resonant (P+RES) controller are compared in the paper. Moreover, 
the hardware implementation of the considered system is also presented in this paper. For 
the experimental results, the P+RES controller can provide a good performance to control 
the compensating current compared with using the PI controller. 
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1. Introduction 
 
Power quality problems have an effect on the domestic and industrial electric systems. The harmonics are a 
part of the serious problems. The voltage source connected nonlinear loads can generate the harmonics 
into the electric systems. These harmonics cause many disadvantages [1-8] such as loss in transmission lines 
and electric devices, protective device failures, measuring instrument malfunction and short-life electronic 
equipment in the system. Nowadays, there are several nonlinear loads. These loads can suddenly change. 
Therefore, the active power filter (APF) is used in the paper. The APF can provide the efficiency and 
flexibility [9-11] for the harmonic elimination. 

The harmonic elimination system using the APF is shown in Fig. 1. From Fig. 1, there are four parts. 
In the first part, the considered power system is the balanced three-phase system. The second part is the 
APF topology [12]. In this paper, the three-leg split-capacitor topology [13, 14] is used to inject the 
compensating currents for harmonic elimination. The third part is the harmonic identification by using 
DQF method [15]. The last part is the control strategy. The aim of this paper is the performance 
improvement of the compensating current controller. Because it is significant to achieve the good 
performance for harmonic elimination. This paper presents the performance comparison of the 
compensating current controllers. The proportional plus resonant (P+RES) controller [16, 17] is considered 
to compare the performance with the proportional integral (PI) controller [18]. These controllers provide a 
small tracking error in steady state. However, when the non-linear load is changed, the P+RES controller 
can be adapted to control the compensating currents following on the significant harmonic orders in the 
system. Therefore, the P+RES controller can provide better results compared with PI controller. 
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Fig. 1. Considered power system and control strategy. 
 

This paper presents the implementation of APF in order to verify the performance comparison of the 
PI and P+RES controllers. From the literature reviews, the control strategy for APF can be implemented 
by analog circuits (one cycle control [19], PI control [20], quasi steady state control [21]) and digital 
techniques (adaptive linear element (Adaline) control [22], PI control [23], hysteresis control [24], fuzzy 
logic control [25], predictive control [26], one cycle control [27]). The advantages of analog circuits are fast 
computational time (no sampling time) and low cost. However, when the considered power system is 
changed, the control structure and parameters of analog circuits should be redesigned. Therefore, it is 
difficult and complicated. The design of control strategy is convenient and flexible to operate with the 
digital implementation. Moreover, the digital techniques provide a good control performance. In the paper, 
the proposed control strategy is performed by the digital signal processor (eZdspTM F28335). 
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The paper is structured as follows. The design of the PI and P+RES controllers are described in 
Section 2. The experimental setup is expressed in Section 3. In Section 4, the experimental results and 
discussion are also shown. Finally, Section 5 concludes the advantage of the P+RES controller. 
 

2. The Compensating Current Control 
 
2.1. The Design of The PI Controller 
 
The discrete design approach [28] is used to design the PI controller. This approach is suitable for the 
digital control. The block diagram to design the PI controllers on dq0-frame are illustrated in Fig. 2.  
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Fig. 2. The block diagram to design the PI controllers on dq0-frame. 
 

From the block diagram in Fig. 2, the closed-loop transfer function can be derived in Eq. (1). From Eq. 
(1), the parameters of   and 

pcK  are calculated by using the root-locus technique on Z-plane as shown in 

Fig. 3. 
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Fig. 3. The root – locus of the compensating current control. 
 

The desired dominant pole can be calculated in Eq. (2). The sampling time (Ts) and damping ratio (ζ) 
are defined to 25 μs and 0.7, respectively. The range of the considered harmonic frequencies for the 
compensating current control is 2500 Hz (50 harmonic orders). Therefore, the bandwidth of the current 
loops control (ωni) are equal to 15.71 rad/s. 
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For  =0.8536 and
pc

K =262.66, the appropriate PI controller parameters are
pc

K =262.66,
ic

K

=1.54×106. The details of the PI controller design can be found in the previous publications [18]. 

  
2.2. The Design of The Proportional plus Resonant Controller 
 
The P+RES controller is developed from the PI controller [16]. The block diagram considered the discrete 
design approach is depicted in Fig. 4. From Fig. 4, the root locus can be explained by using the closed-loop 
transfer function in Eq. (2). The placement of poles and zero on Z-plane are shown in Fig. 5. The poles of 
the closed-loop transfer function in Eq. (2) must be located in the stability boundary (unit circle on Z-
plane). 
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Fig. 4. The block diagram to design the P+RES controllers on dq0-frame. 
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Fig. 5. The placement of zero and pole on Z-plane. 
The parameters of the P+RES controller consist of the proportional gain (

pcK ), the gain of resonant 

term ( rK ), the resonant frequency (
r

 ) and the quality factor ( Q ). The resonant frequency (
r

 ) in the 

P+RES controllers can be adjusted depending on the significant harmonic frequency on dq0-frame. The 

spectra of the reference currents on dq0-frame ( *

d
i , *

q
i , *

0
i ) are shown in Fig. 6. Therefore, the

rd
  , 

rq
  and 

0r
  are set to 3002  , 3002  and 0 rad/s, respectively.  
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Fig. 6. The spectra of the reference currents on dq0-frame. 
 

For example on dq-axis (
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pcK and rK are designed depending on specific values 

(ωni =2π×300 rad/s, ζ =0.7). The root locus technique on Z-plane is used to obtain the desired dominant 

pole. (
pc

K =414,
r

K  =517.5) as shown in Fig. 7. 
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Fig. 7. The criteria for designing
pcK and rK . 

 
The characteristic of quality factor ( Q ) is shown in Fig. 7. The Q  can be calculated by Eq. (3). From 

this equation, the
r

f , 
H

f  and 
L

f  are the resonant, high and low frequencies, respectively. The suitable Q  
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should be selected in the boundary as shown in Eq. (4). The boundary of Q  in this case is 1.5< Q <150. 

Therefore, The Q  is defined to 10 (
r

f =300 Hz, 
H

f = 315 Hz, 
L

f =285 Hz). Moreover, according to Fig. 7, 

the pole of resonant term at Q =10 is located in the stable region. 
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3. Experimental Setup 
 
The experimental setup for the harmonic elimination system using an APF consists of two main parts. The 
first part is the experimental rig as shown in Fig. 9. It can be seen in Fig. 9 that the experimental rig can be 
decomposed into four sections. The first section is the considered power system. The three-phase voltage 
source connected with the three-phase rectifiers is shown in number 1 to 5. The second section is the 
voltage/current sensors and signal conditioning circuits as shown in number 6. The PCC voltages (

)(, uvwpcc
v ) 

are measured by using the transformers (220Vac /15Vac). The DC bus voltages (
1,dc

V ,
2,dc

V ) are measured by 

using the voltage transducers (LEM LV25-P). The load currents (
)(uvwL

i ) and compensating currents (
)(uvwc

i ) 

are measured by using the current transducers (LEM HX10-P). The range of all measured signals (
)(, uvwpcc

v ,

)2,1(,dc
V ,

)(uvwL
i ,

)(uvwc
i ) for the DSP board are adjusted by signal conditioning circuits. The third section is the 

control platform as shown in number 7 and 8. This section consists of three processes to generate the pulse 
signals (S1-S6). First, the host computer provides the user interface to the DSP board. The eZdspTM 

F28335 board calculates the reference voltages of APF ( *

),( outuvw
v ) from the proposed control strategy. Second, 

the D/A converters (DAC712P) are used to transform the *

),( outuvw
v  from the digital signals to the analog 

signals. Third, the analog signals of *

),( outuvw
v  (reference signals) are sent to compare with the triangular 

carriers in PWM modulator. The pulse signals (S1-S6) from the PWM technique are sent to drive the 
insulated-gate bipolar transistors (IGBTs) of the APF. The fourth section is the APF topology as shown in 
number 9 to 11. The capacitors (

1,dc
C =

2,dc
C =4700 μF) are connected with IGBT-Intelligent Power Module 

(IPM) (6MBP50RA-120) on the DC side. The APF inductances (
)(uvwc

L =18 mH) are connected with IGBT-

IPM on the AC side. The APF injects the
)(uvwc

i into the considered power system at the PCC points (number 

3). 



DOI:10.4186/ej.2017.21.6.69 

ENGINEERING JOURNAL Volume 21 Issue 6, ISSN 0125-8281 (http://www.engj.org/) 75 

 

1. Three-phase voltage source

2. Source inductance

3. Point of common coupling

4. Line inductance

5. Three-phase rectifier

6. Voltage/Current sensors 

    and Signal conditioning circuits

7. eZdspTMF28335, D/A converter 

    and PWM modulator

8. Host Computer

9. IGBT-IPM and Gate drive circuit

10. DC Bus capacitors

11. APF inductance

12. Power quality analyzer

12

1

2

3

4

5

6

7

8

9

10

11

 
 
Fig. 9. The overall of experimental rig. 
 

The second part is the software for the control of the APF. The code composer studio (CCS v3.3) is 
used to program on eZdsp F28335 board. The overall flowchart to control the APF can be described in Fig. 
10. The phase locked loop algorithm, the DQF harmonic detection, the DC bus voltage control (PI), the 
compensating current control (PI, P+RES) and control strategy on dq0-axis are written in C programming 
languages by using the CCS v3.3. 
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Fig. 10. Flowchart of the harmonic identification and control strategy. 
 

4. Experimental Results and Discussion 
 
The harmonic identification and control strategy in Fig. 1 are supported by the hardware implementation. 
The APF parameters are designed following on the previous researches [29, 30]. The harmonic elimination 
results for the balanced three-phase system are depicted in Fig. 11–12. 

The performance of the proposed controller for harmonic elimination using the APF are tested with 
three load conditions. The first load condition is the amplitude of load currents at 2 A(peak) (RL=120 Ω, 
LL=0.1H). The second load condition is the amplitude of load currents at 3 A(peak) (RL=80 Ω, LL=0.1H). 
The third load condition is the amplitude of load currents at 4 A(peak) (RL=62 Ω, LL=0.1H).  

The testing results of the harmonic elimination using a PI controller in Fig. 11 (a)-(c) show that this 
controller can control the compensating current even though the load is dynamic condition. From Fig. 11 

(a)-(c), the load currents ( Lui , Lvi , Lwi ) before compensation are highly distorted waveform. The average total 
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harmonic distortion (%THDav) of this current is equal to 29.3 %, as shown in Fig. 13 (a). After 

compensation, the APF injects the compensating current ( cui , cvi , cwi ) into the considered power system at a 

PCC point. The source currents after compensation ( sui , svi , swi ) are nearly sinusoidal waveform. 

The %THDav is equal to 10.66 %, as shown in Fig. 13 (b). According to Fig. 11(a)-(b), for the dynamic load 
testing, when the non-linear load resistor (RL) is changed from 120 Ω to 80 Ω and 80 Ω to 62 Ω, the 

waveforms of 
)(uvws

i after compensation are oscillating sinusoidal waveform. The peak amplitude of 
su

i  is 

equal to 5.80 A(peak) (4.10 A(rms)) and 7.35 A(peak) (5.20 A(rms)), respectively. In the steady state condition, the 

su
i  is constant at 4.20 A(peak) (2.97 A(rms)) and 4.95 A(peak) (3.5 A(rms)), respectively. From Fig. 11(d), the total 

DC bus voltage loop control can regulate the total DC bus voltage ( dcV ) following on the total DC bus 

reference ( *

dcV ) even though the loads are varied. It can be seen from Fig. 11(d) that the 
1,dc

V and 
2,dcV

are equal to 120 V. Therefore, the dcV is constant at 240 V. The results in Fig. 11(d) confirm that the PI 

controllers of the DC bus voltage control provide good performance. 
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Fig. 11. The testing results of harmonic elimination with PI controller. (a) The peak amplitude of load 
current changing from 2 A(peak) to 3 A(peak), (b) The peak amplitude of load current changing from 3 A(peak) 
to 4 A(peak), (c) The amplitude of load currents at 3 A(peak), (d) The performance of the DC bus voltage 
control. 



DOI:10.4186/ej.2017.21.6.69 

ENGINEERING JOURNAL Volume 21 Issue 6, ISSN 0125-8281 (http://www.engj.org/) 77 

 

vpcc,u

iLu

icu

isu

vpcc,u

iLu

icu

isu

vpcc,u

iLu

icu

isu

120V

120V

[Vdc,1,Vdc,2 (100V/div)],[time (20 s/div)]

Vdc,1

Vdc,2

RL = 80  ,

LL = 0.1 H 

RL = 120  ,

LL = 0.1 H 

RL = 62  ,

LL = 0.1 H 

[vpcc,u (200V/div)],[iLu ,icu ,isu (5A/div)],

[time (10 ms/div)]

[vpcc,u (200V/div)], [iLu ,icu ,isu (5A/div)],

[time (10 ms/div)]

[vpcc,u (200V/div)],[iLu ,icu ,isu (5A/div)],

[time (5 ms/div)]

RL = 80  ,

LL = 0.1 H 

RL = 120  ,

LL = 0.1 H 

RL = 62  ,

LL = 0.1 H 

RL = 80  ,

LL = 0.1 H 

RL = 80  ,

LL = 0.1 H 

(a) (b)

(c) (d)

6.9 A(peak) 7.7 A(peak)

 
 
Fig. 12. The testing results of harmonic elimination with P+RES controller. (a) The peak amplitude of load 
current changing from 2 A(peak) to 3 A(peak), (b) The peak amplitude of load current changing from 3 A(peak) 
to 4 A(peak), (c) The amplitude of load currents at 3 A(peak), (d) The performance of the DC bus voltage 
control. 

 
The results of the harmonic elimination using a P+RES controller are shown in Fig. 12 (a)-(c). From 

the results in Fig. 12 (a)-(c), this controller provides the good performance for harmonic elimination. 
The %THDav after compensation is equal to 9.28 %, as shown in Fig. 13 (c). Therefore, the performance of 
the harmonic elimination with the P+RES controller is better than that from the PI controller. From the 
dynamic load testing, fig. 12 (a) and (b) show the waveform of 

)(uvws
i  to a step change of the RL from 120 Ω 

to 80 Ω and 80 Ω to 62 Ω, respectively. It can be seen that the waveforms of 
)(uvws

i  are oscillating sinusoidal 

waveform. The peak amplitude of 
su

i  is equal to 6.90 A(peak) (4.88 A(rms)) and 7.70 A(peak) (5.44 A(rms)), 

respectively. In the steady state condition, the 
su

i  is still constant at 4.20 A(peak) (2.97 A(rms)) and 4.95 A(peak) 

(3.5 A(rms)), respectively. As a result, the transient response of the 
su

i  from P+RES controller are nearly the 

same as the transient response of the 
su

i  from PI controller. However, the focus of this paper is to achieve 

the performance of the harmonic elimination (%THD). From the results in Fig. 12 (d), the 
1,dc

V and 
2,dc

V  

can be varied following on the command values. In particular, the overall results are proposed in Table 1. 
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5.93%
4.10% 4.27%

3.50%

23.04%

10.64%

(a) (b) (c)
 

 
Fig. 13. The spectrum of source currents. (a) Before compensation, (b) After compensation (PI controller), 
(c) After compensation (P+RES controller). 
 
Table 1. The performance of the source currents before and after compensations. 
 

Performance 
Index 

The decrease of the 
amplitude of load 
currents (2 A(peak)) 

(RL = 120 Ω, LL = 0.1 H) 

The load currents  
(3 A(peak)) 

(RL = 80 Ω, LL = 0.1 H) 

The increase of the 
amplitude  of load 
currents (4 A(peak)) 

(RL = 62 Ω, LL = 0.1 H) 

%THD 

Phase 
Before 
Comp. 

After Comp. Before 
Comp. 

After Comp. Before 
Comp. 

After Comp. 

PI P+RES PI P+RES PI P+RES 

u 29.5 9.9 8.9 29.3 10.1 9.0 29.2 11.3 10.2 

v 29.2 10.3 8.2 29.0 10.1 8.9 28.8 11.3 9.4 

w 29.8 12.9 8.5 29.6 11.7 9.9 29.4 12.5 10.3 

ave 29.5 11.11 8.53 29.3 10.66 9.28 29.1 11.71 9.97 

 
In addition, the APF topology as shown in Fig. 1 can compensate the harmonic current in the 

unbalanced three-phase system. But the testing for the harmonic elimination in this work is only considered 
in the balanced three-phase system. However, the authors will test the unbalanced three-phase system in 
the future work. 
 

5. Conclusion 
 
The PI and the proportional plus resonant (P+RES) controllers are designed by discrete design approach. 
The design of PI and P+RES controllers are fully presented in this paper. The harmonic elimination system 
with the three-leg split-capacitor APF and the overall control strategy on dq0-axis have been implemented. 
In the paper, the performance comparison of the compensating current control using the PI and the 
P+RES controllers is tested with dynamic load changing. The experimental results confirm that the 
proposed control strategy based on digital control is very useful to mitigate the harmonics in the system. 
The results show that the P+RES controller can provide the good performance of the harmonic 
elimination compared with the PI controller in term of %THD. 
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