28 research outputs found

    Ultra-Low-Power Uwb Impulse Radio Design: Architecture, Circuits, And Applications

    Full text link
    Recent advances in home healthcare, environmental sensing, and low power computing have created a need for wireless communication at very low power for low data rate applications. Due to higher energy/bit requirements at lower data -rate, achieving power levels low enough to enable long battery lifetime (~10 years) or power-harvesting supplies have not been possible with traditional approaches. Dutycycled radios have often been proposed in literature as a solution for such applications due to their ability to shut off the static power consumption at low data rates. While earlier radio nodes for such systems have been proposed based on a type of sleepwake scheduling, such implementations are still power hungry due to large synchronization uncertainty (~1[MICRO SIGN]s). In this dissertation, we utilize impulsive signaling and a pulse-coupled oscillator (PCO) based synchronization scheme to facilitate a globally synchronized wireless network. We have modeled this network over a widely varying parameter space and found that it is capable of reducing system cost as well as providing scalability in wireless sensor networks. Based on this scheme, we implemented an FCC compliant, 3-5GHz, timemultiplexed, dual-band UWB impulse radio transceiver, measured to consume only 20[MICRO SIGN]W when the nodes are synchronized for peer-peer communication. At the system level the design was measured to consume 86[MICRO SIGN]W of power, while facilitating multi- hop communication. Simple pulse-shaping circuitry ensures spectral efficiency, FCC compliance and ~30dB band-isolation. Similarly, the band-switchable, ~2ns turn-on receiver implements a non-coherent pulse detection scheme that facilitates low power consumption with -87dBm sensitivity at 100Kbps. Once synchronized the nodes exchange information while duty-cycling, and can use any type of high level network protocols utilized in packet based communication. For robust network performance, a localized synchronization detection scheme based on relative timing and statistics of the PCO firing and the timing pulses ("sync") is reported. No active hand-shaking is required for nodes to detect synchronization. A self-reinforcement scheme also helps maintain synchronization even in the presence of miss-detections. Finally we discuss unique ways to exploit properties of pulse coupled oscillator networks to realize novel low power event communication, prioritization, localization and immediate neighborhood validation for low power wireless sensor applications

    Ultra-Wideband Transceiver Design And Optimization

    Get PDF
    University of Minnesota Ph.D. dissertation. July 2015. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xiii, 128 pages.The technology landscape has quickly changed over the last few years. Developments in personal area networks, IC technology, DSP processing and bio-medical devices have enabled the integration of short range communication into low cost personal health care solutions. Newer technologies and solutions are being developed to cater to the personal operating space(POS) and body area networks(BAN). Health care is driving towards using multiple sensor and therapeutic nodes inside the POS. Technology has enabled remote patient care where the patient has low cost on-body wearables that allow the patient/physician to access vital signs without the patient physically visiting the clinic. Big semiconductor giants want to move into the wearable health monitor space. Along with the developments in fitness based health wearables, there has been a lot of interest towards developing BAN devices catering to the 'mission-critical' wearables and implants. Hearing aids, EKG monitors, neurostimulators are some examples. This work explores the use of the 802.15 ulta wideband (UWB) standard for designing a radio to operate in the a wireless sensor network in the BAN. The specific application targeted is a hearing aid. However, the design in this work is capable of working in a low power low range application with the ability to have multiple data rates ranging from a few kHz to 10's of MHz. The first radio designed by Marconi using spark-gap transmitters was an impulse radio (IR). The IR UWB technology boasts of low power, low cost, high data rates, multiple channels, simultaneous networking, the ability to carry information through obstacles that more limited bandwidths cannot, and also potentially lower complexity hardware design. The inherent timing accuracy associated with the technology gives UWB transmissions immunity to multipath fading and are hence make them more suitable for a cluttered indoor environment. The key difference with the traditional narrowband transceiver is that instead of using continuous wave (CW) transmission, impulses in time are used. The timing accuracy associated with these impulses require synchronization in time, rather than synchronization in frequency for carrier-based CW systems. A complete fully integrated system is presented in thesis. This work presents a low-power noncoherent IR UWB transceiver operating at 5GHz in 0.13um CMOS. A fully-digital transmitter generates a shaped output pulse of 1GHz 3-dB bandwidth. DLLs provide a PVT-tolerant time-step resolution of 1ns over the entire symbol period and regulate the pulse generator center frequency. The transmitter outputs -31dBm (0.88pJ/pulse at 1Mpulse/s) with a dynamic (energy) efficiency of 16pJ/pulse. The transmit out pulse is FCC part 15 compliant over process voltage and temperature (PVT) variations. The transmitter is semi-compliant with IEEE 802.15.6 and IEEE 802.15.4 standards and will become completely compliant with minor modifications. The receiver presented in this work is a non-coherent energy detect IR UWB receiver. The receiver has an on-chip transformer preceding the LNA, which is followed by a super-regenerative amplifier (SRA), envelope detector, sample-and-holds, and a bank of comparators. The design is SRA based energy-detection receiver. Measured results show a receiver efficiency of 0.32nJ/bit at 20.8Mb/s and operation with inputs as low as -70dBm. The SRA based energy-detection receiver utilizes early/late detection for a two-step baseband synchronization algorithm. An integrated solution to the issue of synchronization is also proposed. The system proposed is capable of synchronization and tracking control. The system in this work utilizes early/late detection for a two-step baseband synchronization algorithm. The algorithm is implemented in Matlab and the time to synchronization is observed to be between 250us to a few couple of ms. Measurements have also been made using the receiver and manually implementing the algorithm. This work addresses all aspects time synchronization in an IR transceiver. The initial mismatch is addressed by two methods. Beyond the initial synchronization, the system presented in this system is also capable of tracking. This would mean that once the transceiver has been synchronized, the timing generation would continue to track the phase and the frequency changes depending upon crystal drift over time or movement between the receiver and the transmitter. A test was also performed on the complete transceiver system with two radios talking to each other over a highly attenuated wired channel

    LOW-POWER IMPULSE-RADIO ULTRA-WIDEBAND TECHNIQUES FOR BIOMEDICAL APPLICATIONS.

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Wireless wire - ultra-low-power and high-data-rate wireless communication systems

    Get PDF
    With the rapid development of communication technologies, wireless personal-area communication systems gain momentum and become increasingly important. When the market gets gradually saturated and the technology becomes much more mature, new demands on higher throughput push the wireless communication further into the high-frequency and high-data-rate direction. For example, in the IEEE 802.15.3c standard, a 60-GHz physical layer is specified, which occupies the unlicensed 57 to 64 GHz band and supports gigabit links for applications such as wireless downloading and data streaming. Along with the progress, however, both wireless protocols and physical systems and devices start to become very complex. Due to the limited cut-off frequency of the technology and high parasitic and noise levels at high frequency bands, the power consumption of these systems, especially of the RF front-ends, increases significantly. The reason behind this is that RF performance does not scale with technology at the same rate as digital baseband circuits. Based on the challenges encountered, the wireless-wire system is proposed for the millimeter wave high-data-rate communication. In this system, beamsteering directional communication front-ends are used, which confine the RF power within a narrow beam and increase the level of the equivalent isotropic radiation power by a factor equal to the number of antenna elements. Since extra gain is obtained from the antenna beamsteering, less front-end gain is required, which will reduce the power consumption accordingly. Besides, the narrow beam also reduces the interference level to other nodes. In order to minimize the system average power consumption, an ultra-low power asynchronous duty-cycled wake-up receiver is added to listen to the channel and control the communication modes. The main receiver is switched on by the wake-up receiver only when the communication is identified while in other cases it will always be in sleep mode with virtually no power consumed. Before transmitting the payload, the event-triggered transmitter will send a wake-up beacon to the wake-up receiver. As long as the wake-up beacon is longer than one cycle of the wake-up receiver, it can be captured and identified. Furthermore, by adopting a frequency-sweeping injection locking oscillator, the wake-up receiver is able to achieve good sensitivity, low latency and wide bandwidth simultaneously. In this way, high-data-rate communication can be achieved with ultra-low average power consumption. System power optimization is achieved by optimizing the antenna number, data rate, modulation scheme, transceiver architecture, and transceiver circuitries with regards to particular application scenarios. Cross-layer power optimization is performed as well. In order to verify the most critical elements of this new approach, a W-band injection-locked oscillator and the wake-up receiver have been designed and implemented in standard TSMC 65-nm CMOS technology. It can be seen from the measurement results that the wake-up receiver is able to achieve about -60 dBm sensitivity, 10 mW peak power consumption and 8.5 µs worst-case latency simultaneously. When applying a duty-cycling scheme, the average power of the wake-up receiver becomes lower than 10 µW if the event frequency is 1000 times/day, which matches battery-based or energy harvesting-based wireless applications. A 4-path phased-array main receiver is simulated working with 1 Gbps data rate and on-off-keying modulation. The average power consumption is 10 µW with 10 Gb communication data per day

    Design Automation of Low Power Circuits in Nano-Scale CMOS and Beyond-CMOS Technologies.

    Full text link
    Today’s integrated system on chips (SoCs) usually consist of billions of transistors accounting for both digital and analog blocks. Integrating such massive blocks on a single chip involves several challenges, especially when transferring analog blocks from an older technology to newer ones. Furthermore, the exponential growth for IoT devices necessitates small and low power circuits. Hence, new devices and architectures must be investigated to meet the power and area constraints for wireless sensor networks (WSNs). In such cases, design automation becomes an essential tool to reduce the time to market of the circuits. This dissertation focuses on automating the design process of analog designs in advanced CMOS technology nodes, as well as reciprocal quantum logic (RQL) superconducting circuits. For CMOS analog circuits, our design automation technique employs digital automatic placement and routing tools to synthesize and lay out analog blocks along with digital blocks in a cell-based design approach. This technique was demonstrated in the design of a digital-to-analog converter. In the domain of RQL circuits, the automated design of several functional units of a commercial Processor is presented. These automation techniques enable the design of VLSI-scale circuits in this technology. In addition to the investigation of new technologies, several new baseband signal processor architectures are presented in this dissertation. These architectures are suitable for low-power mm3-scale WSNs and enable high frequency transceivers to operate within the power constraints of standalone IoT nodes.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133177/1/elnaz_1.pd

    Digital ADCs and ultra-wideband RF circuits for energy constrained wireless applications by Denis Clarke Daly.

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 173-183).Ongoing advances in semiconductor technology have enabled a multitude of portable, low power devices like cellular phones and wireless sensors. Most recently, as transistor device geometries reach the nanometer scale, transistor characteristics have changed so dramatically that many traditional circuits and architectures are no longer optimal and/or feasible. As a solution, much research has focused on developing 'highly digital' circuits and architectures that are tolerant of the increased leakage, variation and degraded voltage headrooms associated with advanced CMOS processes. This thesis presents several highly digital, mixed-signal circuits and architectures designed for energy constrained wireless applications. First, as a case study, a highly digital, voltage scalable flash ADC is presented. The flash ADC, implemented in 0.18 [mu]m CMOS, leverages redundancy and calibration to achieve robust operation at supply voltages from 0.2 V to 0.9 V. Next, the thesis expands in scope to describe a pulsed, noncoherent ultra-wideband transceiver chipset, implemented in 90 nm CMOS and operating in the 3-to-5 GHz band. The all-digital transmitter employs capacitive combining and pulse shaping in the power amplifier to meet the FCC spectral mask without any off-chip filters. The noncoherent receiver system-on-chip achieves both energy efficiency and high performance by employing simple amplifier and ADC structures combined with extensive digital calibration. Finally, the transceiver chipset is integrated in a complete system for wireless insect flight control.(cont.) Through the use of a flexible PCB and 3D die stacking, the total weight of the electronics is kept to 1 g, within the carrying capacity of an adult Manduca sexta moth. Preliminary wireless flight control of a moth in a wind tunnel is demonstrated.Ph.D

    Ultra Low Power FM-UWB Transceiver for High-Density Wireless Sensor Networks

    Get PDF
    The WiseSkin project aims to provide a non-invasive solution for restoration of a natural sense of touch to persons using prosthetic limbs. By embedding sensor nodes into the silicone coating of the prosthesis, which acts as a sensory skin, WiseSkin targets to provide improved gripping, manipulation and mobility for amputees. Flexibility, freedom of movement and comfort demand unobtrusive, highly miniaturized, low-power sensing capabilities built into the artificial skin, which is then integrated with a sensory feedback system. Wireless communication between the sensor nodes provides more flexibility, better scalability and robustness compared to wired solution, and is therefore a preferred approach for WiseSkin. Design of an RF transceiver tailored for the specific needs of WiseSkin is the topic of this work. The properties of FM ultra-wide band (FM-UWB) modulation make it a good candidate for High-Density Wireless Sensor Networks (HD-WSN). The proposed FM-UWB receivers take advantage of short range to reduce power consumption, and exploit robustness of this wideband modulation scheme. The LNA, identified as the biggest consumer, is removed and signal is directly converted to dc, where amplification and demodulation are performed. Owing to 500 MHz bandwidth, frequency offset and phase noise can be tolerated, and a low-power, free-running ring oscillator can be used to generate the LO signal. The receiver is referred to as an approximate zero-IF receiver. Two receiver architectures are studied. The first one performs quadrature downconversion, and owing to the demodulator linearity, provides the multi-user capability. In the second receiver, quadrature demodulation is replaced by the single-ended one. Due to the nature of the demodulator, sensitivity degrades, and multiple FM-UWB signals cannot be resolved, but the consumption is almost halved compared to the first receiver. The proposed approach is verified through two integrations, both in a standard 65 nm bulk CMOS process. In the first run, a standalone quadrature receiver was integrated. Power consumption of 423 uW was measured, while achieving -70 dBm sensitivity. Good narrow-band interference rejection and multiuser capability with up to 4 FM-UWB channels could be achieved. In the second run, a full transceiver is integrated, with both quadrature and single-ended receivers and a transmitter, all sharing a single IO pad, without the need for any external passive components or switches. The quadrature receiver, with on-chip baseband processing and multi-user support, in this case consumes 550 uW, with a sesensitivity of -68 dBm. The low power receiver consumes 267 uW, and provides -57 dBm sensitivity, at a single FM-UWB channel. The implemented trantransmitter transmits a 100 kb/s FM-UWB signal at -11.4 dBm, while drawing 583 uW from the 1 V supply. The on-chip clock recovery allows reference frequency offset up to 8000 ppm. Since state of the art on-chip RC oscillators can provide below 2100 ppm across the temperature range of interest, the implemented transceiver demonstrates the feasibility of a fully integrated FM-UWB radio with no need for a quartz reference or any external components. In addition, the transceiver can tolerate up to 3 dBm narrow-band interferer at 2.4 GHz. Such a strong signal can be used to remotely power the sensor nodes inside the artificial skin and enable a truly wirelessWiseSkin solution

    Communication and energy delivery architectures for personal medical devices

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 219-232).Advances in sensor technologies and integrated electronics are revolutionizing how humans access and receive healthcare. However, many envisioned wearable or implantable systems are not deployable in practice due to high energy consumption and anatomically-limited size constraints, necessitating large form-factors for external devices, or eventual surgical re-implantation procedures for in-vivo applications. Since communication and energy-management sub-systems often dominate the power budgets of personal biomedical devices, this thesis explores alternative usecases, system architectures, and circuit solutions to reduce their energy burden. For wearable applications, a system-on-chip is designed that both communicates and delivers power over an eTextiles network. The transmitter and receiver front-ends are at least an order of magnitude more efficient than conventional body-area networks. For implantable applications, two separate systems are proposed that avoid reimplantation requirements. The first system extracts energy from the endocochlear potential, an electrochemical gradient found naturally within the inner-ear of mammals, in order to power a wireless sensor. Since extractable energy levels are limited, novel sensing, communication, and energy management solutions are proposed that leverage duty-cycling to achieve enabling power consumptions that are at least an order of magnitude lower than previous work. Clinical measurements show the first system demonstrated to sustain itself with a mammalian-generated electrochemical potential operating as the only source of energy into the system. The second system leverages the essentially unlimited number of re-charge cycles offered by ultracapacitors. To ease patient usability, a rapid wireless capacitor charging architecture is proposed that employs a multi-tapped secondary inductive coil to provide charging times that are significantly faster than conventional approaches.by Patrick Philip Mercier.Ph.D
    corecore