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Abstract

Ongoing advances in semiconductor technology have enabled a multitude of portable,
low power devices like cellular phones and wireless sensors. Most recently, as tran-
sistor device geometries reach the nanometer scale, transistor characteristics have
changed so dramatically that many traditional circuits and architectures are no longer
optimal and/or feasible. As a solution, much research has focused on developing
'highly digital' circuits and architectures that are tolerant of the increased leakage,
variation and degraded voltage headrooms associated with advanced CMOS processes.

This thesis presents several highly digital, mixed-signal circuits and architectures
designed for energy constrained wireless applications. First, as a case study, a highly
digital, voltage scalable flash ADC is presented. The flash ADC, implemented in
0.18 pm CMOS, leverages redundancy and calibration to achieve robust operation at
supply voltages from 0.2 V to 0.9 V.

Next, the thesis expands in scope to describe a pulsed, noncoherent ultra-wideband
transceiver chipset, implemented in 90 nm CMOS and operating in the 3-to-5 GHz
band. The all-digital transmitter employs capacitive combining and pulse shaping in
the power amplifier to meet the FCC spectral mask without any off-chip filters. The
noncoherent receiver system-on-chip achieves both energy efficiency and high perfor-
mance by employing simple amplifier and ADC structures combined with extensive
digital calibration.

Finally, the transceiver chipset is integrated in a complete system for wireless
insect flight control. Through the use of a flexible PCB and 3D die stacking, the
total weight of the electronics is kept to 1 g, within the carrying capacity of an adult
Manduca sexta moth. Preliminary wireless flight control of a moth in a wind tunnel
is demonstrated.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
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Chapter 1

Introduction

Mobile, battery powered devices have for decades fueled growth in the semiconductor

industry. One of the defining moments in the semiconductor industry that kick-

started this rapid growth was the invention of the integrated circuit by Jack Kilby

in 1958 [5]. Whereas previous electronic circuits consisted of several discrete semi-

conductor devices, integrated circuits allowed for multiple semiconductor devices to

be manufactured within a single piece of material, resulting a significant reduction in

area and increased reliability. These benefits enabled many portable, battery pow-

ered devices beginning with the handheld calculator, which was designed by Texas

Instruments in the late 1960's and first sold by Canon in 1970 as the 'Pocketronic'

[6]. A second key invention that has contributed to the growth of portable electronic

devices was the invention of CMOS technology in 1963 [7], which allowed for a signifi-

cant improvement in the energy efficiency of digital and analog circuits. Early CMOS

powered mobile devices included low power wrist watches [8] and calculators [9]. Since

then, CMOS processes have continued to improve and scale, following Moore's law,

such that is now possible for a cellular phone to achieve comparable performance to

a supercomputer of 30 years ago.

Wireless connectivity has been a key feature of portable devices, resulting in the

exponential growth of cellular phones, now achieving annual sales of over one billion

units. Laptop sales are now outnumbering desktop computer sales, and the emer-

gence of the One Laptop per Child (OLPC) project and low cost 'sub-notebooks' will



1 mW
I I U 1-

Figure 1-1: Spectrum of existing mobile devices
micro-Watts to Watts.

that consume power ranging from

Table 1.1: Example existing and emerging applications for energy constrained mobile

devices
Application Sensors Wireless Power Battery

interfaces cons. lifetime
Wristwatch None None 1 pW Multiple years

[8]
Pacemaker Pacing leads Inductive link 10 AW 10 years

[10]
Vital signs ECG, heart rate, 900 MHz ISM 1-8 mW 24 hours

monitor temperature (intensive care)

[11, 12]
Bluetooth Acoustic mic. Bluetooth 70 mW 6 hours

headset [13] (talk time)

Smart phone Acoustic mic., Bluetooth, 1 W 3-5 hours
[14] accelerometer, WiFi, GSM, (talk time)

camera HSDA, GPS

allow even greater penetration of portable, mobile devices. The majority of mobile

devices consume power ranging from micro-Watts to tens of Watts, and a spectrum

of applications are shown in Figure 1-1 and detailed in Table 1.1. In these applica-

tions, energy is becoming more and more the limiting factor rather than performance.

This means that battery lifetime dictates performance specifications rather than per-

formance dictating battery lifetime. This is particularly true for emerging systems

such as implanted electronics. For example, roughly half the area of a pacemaker is

occupied by a battery to ensure it can achieve 10 years of battery lifetime [10].

A conceptual diagram for a generic mobile device appears in Figure 1-2. The core

components of the device include data conversion, signal processing, and commu-

1 pW 1W
I -%._



Figure 1-2: Conceptual diagram of a generic mobile device.

nication subsystems, and these interface with the environment through sensors and

actuators. Additionally, an energy subsystem is required to efficiently power the elec-

tronics. This thesis focuses on the core mixed-signal components of a mobile device,

namely the interface to the sensors, actuators and antenna via the analog-to-digital

converter (ADC) and the wireless communication subsystem.

Four decades of Moore's law and semiconductor process scaling have made it pos-

sible now to integrate billions of transistors on a single chip. With device geometries

on the order of nanometers, device characteristics have changed so dramatically that

many traditional circuits and architectures are no longer optimal and/or feasible.

For example, reduced device breakdown voltages have forced circuits to operate at

supply voltages near 1 V. As the number of dopant atoms per transistor decreases,

random dopant fluctuations (RDFs) are becoming increasingly problematic, resulting

in significant device variation. Subthreshold and gate leakage have increased relative

to device's 'on' conductance such that leakage can no longer be ignored. These ex-

amples are just a handful of the many challenges encountered with advanced CMOS

processes, which have forced circuit designers to develop entirely new circuit topolo-

gies and architectures.

An emerging trend in analog and mixed signal circuit design in nanometer-scale

CMOS processes is the use of highly digital circuit topologies. There is no exact

definition of what constitutes a highly digital circuit or architecture, but they can be

broadly defined as consisting of significant digital logic, using simple 'digital' struc-



tures like comparators, switches, and capacitors, and using techniques like digital

feedback. Such structures can be readily implemented in advanced CMOS processes

whereas it is becoming increasing challenging to design 'analog' components such as

op amps and employ techniques like analog feedback or analog offset storage.

This thesis is focused on developing highly digital, mixed signal circuits and ar-

chitectures for energy-constrained mobile applications. As the spectrum of energy

constrained devices is quite large, this thesis focuses specifically on the subset of de-

vices that consume on average only a few milli-Watts or less, significantly less power

than cellular phones. Typically, these low power devices require only a short-range

(<100 m), low data rate (<100 kb/s) wireless radio and do not include power hungry

components like an liquid crystal display (LCD).

To provide a broad perspective into highly digital circuits and architectures, this

thesis is structured to progressively expand in scope, moving from a component level

to a system-on-chip level and then finally to a full system demonstration. First, at

the component level, a voltage scalable ADC is presented that operates from 0.2 V

to 0.9 V and consists of almost entirely digital logic and comparators. Next, at the

system-on-chip level, a wireless ultra-wideband (UWB) transceiver chipset designed

in 90 nm CMOS is presented that achieves both high performance and low energy op-

eration. The chipset includes an all-digital transmitter that employs an inverter-based

power amplifier (PA) with capacitive combining to generate Federal Communications

Commission (FCC) compliant, large output swing signals while consuming very little

energy. Also included in the chipset is a fully integrated receiver system-on-chip (SoC)

that leverages a simple, differential inverter-based RF front end combined with exten-

sive digital calibration to realize robust operation in a miniature form factor system.

Finally, the UWB transceiver chipset is demonstrated in a full system for insect flight

control.
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1.1 Process Scaling: Benefits and Challenges

A key driving force behind the growth in mobile, battery powered devices has been

semiconductor process scaling. The world's first supercomputer, the Cray-1, which

was released in 1978, had a 16-bit processor that operated at 80 MHz, used 8 MB

of memory, weighed 5.5 tons and consumed about 115 kW of power [15]. Modern

embedded processors, like the Marvell PXA320 XScale processor used in the LG-KC1

smartphone, realize superior performance than the Cray-1 while occupying board

space equivalent to a credit card and require sub-1 W power consumption [16]. These

dramatic reductions in energy and volume along with increased functionality have led

to the emergence of highly complex mixed-signal SoCs.

A key challenge associated with semiconductor process scaling, however, is that

traditional circuit architectures are not compatible with nanometer-scale processes.

Traditional architectures are either inefficient, negating many advantages of scaling,

or cannot function properly. Circuit designers must overcome severe local and global

process variation, increased gate and subthreshold leakage currents, reduced supply

voltages, and reduced intrinsic gain of devices.
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Figure 1-3 shows three separate plots of how transistor properties fundamentally

change in advanced process nodes, each of which highlights a different challenge facing

nanometer-scale CMOS circuit design. In Figure 1-3(a), lon/Ioff is shown to rapidly

decrease in advanced CMOS processes, which can result in significant power consump-

tion when circuits are disabled and also making it challenging to hold analog voltages

on capacitors. In Figure 1-3(b), the ratio of device threshold voltage, Vth, to sup-

ply voltage, VDD, increases with scaling, which effectively reduces voltage headroom

and makes it difficult to stack multiple devices and employ techniques like cascod-

ing. Voltage headroom is also reduced due to the fact that Vdsat does not scale with

VDD. In Figure 1-3(c), the gm/gds of CMOS devices is shown to decrease in advanced

processes, making it difficult to obtain a large gain in single-stage amplifiers.

The data from Figure 1-3 is derived from Predictive Technology Models (PTMs)

[2, 3] for 16 nm to 180 nm processes, and from MOSIS provided models for 0.25 pm,

0.35 pm, and 0.5 pm processes [1]. For the 16 nm to 45 nm processes, both high per-

formance (HP) and low power (LP) device models are used. It is seen that a significant

reduction in leakage can be achieved by using the low power devices, but Vth/VDD

increases, reducing speed and decreasing voltage headroom. All simulations are with

minimum length NMOS devices with a width three times the minimum length. In

advanced processes, it is possible to increase gm/9ds by increasing the device length,

but this results in the transistor area and gate capacitance to increase, removing some

of the advantages of scaling. For leakage measurements in Figure 1-3(a), the NMOS

devices are operated at the nominal supply voltage, which increases with older pro-

cesses. The measurements in Figures 1-3(b) and 1-3(c) are based on diode-connected

NMOS devices each supplied 1 pA of current.

One additional problem associated with advanced CMOS processes that is not

shown in Figure 1-3 is increased device variation, due to RDF and processing variation

[17]. Both of these effects significantly change the resulting threshold voltage of

devices and in a 65 nm process it has been shown that a ±4u variation from RDF

alone can result in a change in drain-current by over three orders of magnitude [17].

Device variation most acutely affects digital circuits and memory, where devices are



typically minimum-sized to reduce area. In contrast, transistors in analog circuits

are typically not minimum-sized because the devices consume minimal area relative

to passive components such as capacitors and inductors, which are not subject to

RDF. Moreover, analog transistors are often sized for biasing and noise constraints

that result in relatively large devices.

1.2 Highly Digital Circuits

An emerging design approach that offers much promise to address many of the prob-

lems associated with advanced semiconductor processes is the use of highly digital,

variation-tolerant circuits and architectures. As described earlier in this chapter,

highly digital circuits and architectures can be broadly defined as consisting of sig-

nificant digital logic, using simple 'digital' structures like comparators, switches, and

capacitors, and using techniques like digital feedback.

Highly digital circuits and architectures are the subject of this thesis with a focus

on the design of highly digital ADCs and UWB wireless circuits for energy con-

strained applications. The circuits and systems presented are designed to leverage

the benefits of advanced nanometer-scale CMOS processes while overcoming the many

challenges faced. The following sub-sections briefly introduce both ADCs and wireless

transceivers, and provide some background into existing highly digital circuits and

architectures.

1.2.1 Analog to Digital Converters

In systems that interface with the physical world, such as sensors or wireless radios,

signals must be converted from the analog domain to the digital domain by an ADC

so that they can be processed digitally and take advantage of the sophisticated ca-

pabilities of a digital signal processor (DSP). Precisely how much processing is done

before and after the ADC is a matter of system level optimization. ADC requirements

depend on system characteristics, namely bandwidth and dynamic range, and system

optimization must consider ADC power, which can be a significant portion of the total



power. As one might expect, the energy per conversion, which is an important metric

for ADCs, increases as the dynamic range and sampling rate requirements increase.

An empirical figure of merit (FoM) for ADCs normalizes their power consumption,

P, to the input bandwidth, BW, and the dynamic range, expressed as 2ENOB (where

ENOB is the effective number of bits output) [18]:

FoM = (1.1)
2BW2ENOB

State-of-the-art converters today achieve an FoM as low as 4.4 fJ per conversion-

step [19]; however, generally, dynamic ranges beyond those yielded by eight-bit con-

verters have a steeper power increase due to device noise limitations in the ADC cir-

cuits; the same is true when sampling-rates exceed tens of megahertz because devices

must be biased further above their threshold voltage, VT, which results in degraded

energy efficiency. In advanced CMOS technologies, the observed empirical trend has

been that the FoM decreases by 1.8 times with each new process generation [20]. This

trend in energy reduction offers significant incentive to develop highly digital ADC

architectures customized for nanometer-scale CMOS processes. A few key emerging

ADC trends are highlighted below.

Variation-tolerant ADCs. Mismatch and variation ultimately limit performance

and yield of ADCs. There are several well known methods to reduce these effects,

including increasing device sizes, common-centroid layout, auto-zeroing, cancelling

offsets through feedback and redundancy. Of these, redundancy is a promising, emerg-

ing technique that is well suited for highly scaled processes where more traditional

methods are impractical and the selection of which devices to enable and disable can

be implemented with simple digital switches and logic. Redundancy has been applied

to SRAM sense-amplifiers to allow for reduced area and power compared to simply

increasing the device size of a single sense-amplifier [21]. Redundancy offers much

promise for highly-parallel systems, such as time-interleaved ADCs [22] or flash ADCs

[23].

Low-voltage ADCs. For low-resolution ADCs, thermal noise is not a challenging



design constraint and the supply voltage can be reduced to enable low energy opera-

tion. Traditional analog circuit blocks cannot easily operate at low-voltages; however,

a 0.5 V pipelined ADC has been demonstrated that uses operational transconduc-

tance amplifiers (OTAs) biased in weak-inversion and does not require any voltage

boosting [24]. A more prevalent way to realize low-voltage operation is through the

use of highly digital ADC structures such as successive approximation register (SAR)

ADCs. SAR is an excellent topology for micro-power low-voltage operation, as no lin-

ear amplifiers are required for conversion. A 0.5 V SAR ADC has been demonstrated

that achieves an FoM of 0.12 pJ per conversion step [25].

Comparator Based ADCs and Circuits. Comparator-based structures allow the

implementation of switched-capacitor ADCs and analog circuits without the need for

analog feedback - comparators replace the functionality of operational amplifiers by

controlling energy transfer through comparator switching events rather than forcing

a virtual ground through feedback. This approach offers potential for reduced power

consumption and to address scaling issues in emerging technologies [20].

This thesis presents two ADCs that use these emerging trends to maximize energy-

efficiency. A 6-bit flash ADC described in Chapter 2 leverages extensive comparator

redundancy and reconfigurability to enable operation down to 0.2 V. A separate, 5-

bit ADC described in Chapter 4, uses a multi-stage, dynamic integrator structure

similar to an integrating ADC to generate the two bits of coarse quantization while

a traditional flash ADC generates an additional three bits of fine quantization.

1.2.2 Wireless Transceivers

Wireless communication links found in energy constrained systems typically dominate

the system's overall energy consumption. To reduce energy consumption, an emerging

trend in radio design is to leverage highly digital architectures in advanced CMOS

processes. There are several advantages associated with designing radios in advanced

CMOS processes. One key advantage is that the radio can be integrated in a mixed-

signal chip along with digital circuit blocks, thereby allowing for a highly compact

implementation. A SoC radio, in which the RF, analog, and digital circuits are all



integrated on the same die offers the benefit of reduced parasitic capacitances between

the many sub-blocks, thereby resulting in lower power consumption than a multi-

chip solution. SoCs offer the additional opportunity for more flexible system-level

optimization.

Much like low resolution ADCs, radios benefit from process scaling, particularly

when the architecture is optimized for the process. Highly-digital radios offer sev-

eral compelling advantages over traditional radio architectures in nanometer-scale

processes. Nanometer-scale processes offer very low-impedance switches with low

parasitic capacitance, thereby enabling highly reconfigurable and scalable radio ar-

chitectures. Reconfigurability is becoming increasingly important as wireless devices

are now being required to support multiple standards and frequency bands on a

single-chip. This had led to a need for software-defined radios (SDRs), which can

be reprogrammed when necessary to support a wide range of wireless standards [261.

A separate benefit of process scaling is increasing device ft, which has resulted in

untuned, non-resonant circuits becoming increasingly energy efficient such that they

can be used in place of tuned, resonant circuits [271. These untuned circuits occupy

significantly smaller area than tuned circuits.

UWB communication, technology that was first demonstrated by Marconi with

spark gap transmitters, has recently gained traction in the research community in part

due to its compatibility with advanced CMOS processes. UWB technology is a form

of wireless communication in which signals occupy a wide bandwidth, greater than the

lesser of 500 MHz or 20% of the center frequency of the signal, according to the FCC.

There are several reasons why UWB communication is well suited to nanometer-scale

CMOS and highly digital architectures. For high data rate UWB communication,

operating at hundreds of Mb/s and above, only advanced CMOS processes are fast

enough and sufficiently low power to decode and process the received bits. Addition-

ally, due to the wide bandwidth of UWB signals, they can be efficiently amplified and

processed with wide-bandwidth, low Q resonant or non-resonant circuits, which can

be easily integrated on-chip with minimal area [28]. One specific method of UWB

communication, termed impulse radio ultra-wideband (IR-UWB), is to encode data



in short pulses, on the order of nanoseconds. IR-UWB signaling is highly compati-

ble with digital architectures, and very simple digital pulse transmitters consisting of

only digital logic and delay elements have been successfully demonstrated [29].

1.3 Thesis Contributions

This thesis broadly examines the design of highly digital, mixed-signal circuits and

architectures focusing on ADCs and UWB wireless transceivers. The scope of this

thesis slowly expands, moving from a component level to a system-on-chip level and

then finally to a full system demonstration. The main contributions of this thesis are

in the following five areas.

1. Voltage/frequency scalable ADC - This thesis presents a voltage scalable flash

ADC that can operate down to a supply voltage of 200 mV, which is the lowest

reported operating voltage for a Nyquist rate ADC [30]. To achieve such low

supply voltage operation requires a highly digital architecture that leverages

redundancy to improve linearity and yield. Several circuit techniques are used to

reduce the effects of leakage and the ADC implements common-mode feedback

digitally.

2. Analysis of stacking in subthreshold regime - Due to comparator redundancy in

the voltage scalable flash ADC, significant variation in the comparator's switch-

ing thresholds can be tolerate. This allows for the use of a non-traditional com-

parator, where the switching voltage is set through device stacking. This thesis

presents an analysis of device stacking in the subthreshold regime, demonstrat-

ing that stacking results in a quadratic change in effective device strength.

3. All-digital UWB transmitter - Two key problems inherent in many low power

UWB transmitters are that they either are not compliant with the FCC spectral

mask without off-chip filters [29] or the output pulse amplitude is extremely low,

fundamentally limiting range [31, 32]. A highly digital IR-UWB transmitter is



presented that employs capacitive combining to generate large pulse amplitudes

that are FCC compliant while being energy efficient [33].

4. Highly integrated, noncoherent UWB receiver SoC - UWB receivers are tradi-

tionally more complex than transmitters, and it is particularly challenging to

achieve low energy, high performance operation in a highly integrated form fac-

tor. This thesis presents the first fully integrated noncoherent UWB receiver

with embedded synchronization logic [34, 35]. The receiver employs several

highly digital amplifier and ADC structures, combined with extensive digital

calibration to realize robust, low-energy operation in a 90 nm CMOS process.

5. System demonstration of UWB chipset for moth flight control - Insect flight

control is an emerging area of research where electronics and microelectrome-

chanical systems (MEMS) are placed on and within insects to wirelessly control

their flight. This thesis presents the first high performance radio that has been

successfully demonstrated in wireless flight control of a moth. In this prelim-

inary demonstration, the receiver SoC is implemented on a miniature, battery

powered printed circuit board (PCB) weighing only 1 g and consuming only a

few milli-Watts of average power.

1.4 Thesis Outline

The topic of this thesis is on the design of highly digital mixed-signal circuits and

architectures. The thesis is structured to slowly expand in scope, moving from a

component level to a system-on-chip level and then finally to a full system demon-

stration. Chapter 2 focuses on a specific component, an ADC, describing a voltage

and frequency scalable flash ADC. While this specific ADC is not used in the re-

mainder of the thesis, the chapter highlights several highly digital design techniques,

some of which are used later. Next, the thesis moves to the SoC level, describing a

UWB transceiver chipset. Chapter 3 introduces the low data rate UWB architecture

and presents a highly digital transmitter. The receiver SoC circuits and measurement



results are presented in Chapters 4 and 5, respectively. Finally, the thesis presents

a system demonstration of the UWB transceiver chipset in Chapter 6, in an insect

flight control system. Conclusions and a discussion of future work are presented in

Chapter 7.
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Chapter 2

Highly Digital, Voltage Scalable

ADC

Microsensor wireless networks and implanted biomedical devices have emerged as

exciting new application domains. These applications are highly energy constrained

and require flexible, integrated, energy-efficient ADC modules that can ideally operate

at the same supply voltage as digital circuits. In many applications, the performance

requirements are quite modest (-100 kS/s). In systems with extensive digital signal

processing, an additional demand faced by these ADCs is that they be compatible with

advanced digital CMOS processes. As CMOS processes advance, digital switching

energy reduces and scaling allows for increasingly complex algorithms with minimal

energy overhead but key challenges such as increased leakage and device variation

emerge.

In recent years, highly digital ADC architectures like SAR and EA modulators

have gained popularity due to their compatibility with advanced CMOS processes.

In [36], a frequency-to-digital EA modulator is presented that uses only inverters and

digital logic gates, operating at a supply voltage of 0.2 V. In many of these ADCs, the

overall digital (CV2) power consumption is greater than analog power consumption,

allowing for significant digital energy savings through voltage scaling. Voltage scal-

ing can also be applied to analog circuits to reduce power consumption, particularly

in low-resolution ADCs where thermal noise is not a limiting constraint; however,
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Figure 2-1: Conceptual block-diagram of an inverter-based ADC.

care must be taken to minimize the impact of power supply noise. Moreover, when

operating analog circuits at low supply voltages, device leakage and variation, al-

ready serious concerns in advanced CMOS processes, become increasingly severe and

traditional circuits and architectures are often impractical. To overcome these chal-

lenges, highly digital architectures must be employed and combined with techniques

like redundancy and reconfigurability.

Inspired by the aforementioned scaling trends, much research has focused on re-

alizing highly digital ADCs with the ultimate goal of a synthesizable ADC. Imagine,

for instance, a highly digital flash ADC consisting solely of a sea of many redundant

and reconfigurable inverter-based comparators combined with digital backend logic

for calibration, as shown in Figure 2-1. Due to the redundancy, there are a very

large number of comparators, and during normal operation only a small subset of the

comparators are enabled. This extreme redundancy allows for the tolerance of large

comparator voltage offsets. In a flash ADC reconfigurability can be combined with

redundancy to allow any comparator to be assigned to any ADC threshold. If, after

calibration, only a subset of inverters are enabled such that their switching thresholds

are linearly spaced, an energy efficient, highly digital ADC can be realized.

This chapter presents a highly-digital, voltage scalable flash ADC implemented

in a 0.18 pm CMOS process, inspired by the vision of an inverter-based ADC [30].

Section 2.1 describes the ADC architecture highlighting how redundancy and recon-

figurability is used to improve linearity and how extensive processing is moved to the

digital domain. Section 2.2 presents the key ADC circuit blocks, including the front-



end sampling switch and the clocked comparator array. Transistor sizing and stacking

are used to vary comparator switching thresholds, and a mathematical analysis of the

relationship between transistor stacking and comparator switching thresholds in the

subthreshold regime is presented. Finally, measurement results are presented in Sec-

tion 2.3.

2.1 ADC Architecture

2.1.1 Background and Theory

To achieve energy efficiency, the ADC presented in this chapter is designed to operate

at low voltages, where the energy per conversion is minimized. This operating voltage

is akin to the minimum energy point for digital circuits [37] and is based on the

assumption that the ADC sample rate scales with varying supply voltages. For ADCs,

the energy per conversion is minimized when the sum of leakage energy and active

energy is minimized, which for the ADC presented in this chapter occurs at supply

voltages near MOSFET threshold voltages. Low voltage operation allows for improved

energy efficiency but limits the maximum operating frequency. If higher operating

frequencies and input bandwidths are required, interleaving and parallelism can be

used to recover performance [22]. Low voltage operation also causes many analog

design challenges that must be addressed. Two key architectural challenges are that

increased variation in the subthreshold regime causes significant comparators offsets,

and that traditional differential architectures are impractical.

A key block in flash ADCs is the comparator network, including the peripheral

circuitry that ensures each comparator has an appropriate switching threshold. In

traditional flash ADCs, where there is a 1:1 correspondence between comparator

and output code, the combined comparator and reference voltage offset must be

significantly less than 1 least significant bit (LSB) to ensure a reasonable linearity.

For example, assuming a Gaussian distribution, a 6-bit ADC requires an offset, aoffset

to be smaller than 0.2 LSB to achieve a 99% yield of INL < 1 LSB [38]. Maintaining
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Figure 2-2: (a) Nominal threshold voltage of comparators for a 6-level, flash ADC
with three redundant comparators at each threshold voltage. (b) Example of the
ADC with threshold variation. The comparators that are selected after calibration
are highlighted.

low offsets requires large transistors, resulting in significant parasitic capacitance

and area. Alternatively, offsets can be cancelled through analog and mixed-signal

techniques such as a feedback DAC [39, 40] or correlated double sampling (CDS)

[41]. In [40], large offsets in a flash ADC preamplifier are cancelled by embedding a

5-bit DAC within each preamplifier.

As it is difficult to realize analog offset compensation at low supply voltages, the

ADC architecture leverages digital calibration combined with redundancy [23]. Many

redundant digital regenerative comparators with large input-referred offset variation

are used in place of a small number of precise comparators and reference voltages.

Any comparator can be assigned to any specific threshold, and there are many more

comparators available than thresholds required. By increasing the number of redun-

dant comparators, the ADC can achieve the required yield even in the presence of

very large variation in each comparator's threshold, with a standard deviation, a,

much larger than one LSB.

Figure 2-2 graphically demonstrates how redundancy and reconfigurability are

used by the flash ADC. In the figure, the comparator threshold voltages of a 6-level

flash ADC are shown where three comparators are inserted for each threshold voltage.

Figure 2-2(a) shows the comparator thresholds when there is no comparator threshold

variation. In this situation, the redundancy and reconfigurability is not needed. Fig-



ure 2-2(b) shows the comparator thresholds in the presence of comparator threshold

variation. The comparators that are selected after calibration are highlighted. In the

example, comparator 2b has a significant voltage offset, but is selected to represent

the fourth switching threshold. There is no comparator that perfectly aligns with the

fifth switching threshold, so the closest comparator, 5c, is selected.

The concept of comparator redundancy and reconfigurability can be analyzed

numerically to gain a quantitative understanding of the relationship between redun-

dancy and yield. Whereas when a < 1 LSB, the probability distribution of indi-

vidual comparator thresholds are narrow around their respective mean thresholds;

when a > 1 LSB, the probability distribution of individual comparator thresholds

significantly overlaps those of comparators with nearby thresholds. In this scenario

(a > 1 LSB), the number of comparators within a given voltage range is proportional

to the size of the voltage range, ignoring edge effects at the boundaries of the input

range. Thus, the thresholds are Poisson distributed. If we assume N comparator

thresholds over an input range of Vdr, and a redundancy factor of R, the probability

that there are no thresholds within a voltage range of x can be calculated to be:

xNR

Probability = e Vdr (2.1)

From this equation, we can calculate the expected probability that INL < 1 LSB,

assuming no correction for gain and offset errors. Here, INL is defined as the maximum

difference between the ideal and actual code transition levels after correcting for gain

and offset [42]. When INL < 1 LSB, there cannot be a gap of +1 LSB around each

of the N ideal switching thresholds (or code transition levels) with no comparator

thresholds, and thus x = 2vr. Thus, the following approximation for INL is derived:

Probability (INL > 1 LSB) e Ne - 2 R (2.2)

This approximation is only valid when e- 2R < 1. The approximation is presented

in Figure 2-3 along with Monte Carlo results showing how redundancy and reconfig-

urability can be combined to achieve a required linearity and yield in the presence of
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Figure 2-3: Yield of ADC versus redundancy factor for ADCs with varying levels of
comparator reconfigurability. Redundancy factor refers to the number of comparators
assigned to a given threshold. Additional comparators are placed at the edges of the
input range to compensate for edge effects. INL values are not corrected for gain and
offset errors.

large comparator threshold variation (a >1 LSB). In the Monte Carlo simulations,

no offset error and no gain error are tolerated. The ADC yield can significantly

improve if offset and gain errors are tolerated. As edge effects reduce yield, addi-

tional comparators are inserted with switching thresholds at the edges of the input

range. Compared to increasing device sizes, redundancy and reconfigurability have

been shown to offer an improved trade-off between power/area and linearity [231.

2.1.2 Overview

Figure 2-4 shows a block diagram of the ADC. The ADC can be configured in

either a single-ended or pseudo-differential configuration. It consists of a sampling

network, two arrays of 127 dynamic digital clocked comparators and a digital backend.

Instead of a traditional reference ladder that draws static current, the ADC uses

dynamic comparators with static voltage offsets to generate comparator thresholds.

The digital dynamic comparators are based on a sense-amplifier flip-flop and are

described in detail in Section 2.2. The digital backend consists of two 127-bit Wallace
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Figure 2-4: Block diagram of the flash ADC.

tree adders, two on-chip 127 x 9b memories with calibration logic, and an infinite-

impulse response (IIR) common-mode rejection filter. The Wallace tree adders sum

the individual thermometer encoded comparator outputs and generate binary values.

The ADC is designed for a maximum of 6-bits of resolution, so in nominal mode

no more than 63 comparators are enabled, and 64 comparators are disabled. For this

implementation, a redundancy factor of 2 was used to reduce area overhead at the

cost of degraded linearity when compared to an ADC with higher redundancy factor.

Before nominal operation can commence, the ADC must be calibrated by applying

an input with known distribution such as a triangle wave. In single-ended mode,

calibration can be applied in a ping-pong process, whereas in pseudo-differential mode

calibration must be foreground. While calibrating, the Wallace tree adder is bypassed

and each comparator is assigned to a specific 9-bit accumulator. An estimate of the

CDF of the input is generated in on-chip memory, and the comparator thresholds

are back-calculated from this data off-chip. Based on these thresholds, an off-chip

algorithm determines which comparators to enable. Once the appropriate subset of

comparators are enabled, the ADC can operate in nominal mode with the output

code taken at the output of the Wallace tree adders.



As true differential architectures are not amenable to low-voltage operation, the

ADC attempts to mimic the advantages of differential circuits through digital sig-

nal processing. Low-frequency common-mode rejection is implemented in pseudo-

differential mode with an IIR filter and a 5-bit capacitive feedback DAC, which injects

charge on the sampling capacitor to cancel common-mode offsets. The two single-

ended ADC outputs are averaged and compared to the desired mid-scale code. This

technique is advantageous for full-swing inputs where common-mode offsets can re-

sult in clipping and reduced performance. In an integrated system with a differential

amplifier driving the ADC input, the feedback DAC can be removed and instead the

IIR filter output can directly vary the common-mode output of the amplifier.

An alternate architecture that does not require large on-chip memories or sig-

nificant calibration computation is described in [43], whereby the inherent Gaussian

variation in comparator thresholds is used to obtain linearity over an input-range.

The stochastic ADC in [43] is fundamentally different from this work, as variation is

leveraged in [43], whereas in this work variation is tolerated.

2.2 ADC Circuits

To achieve good ADC performance at low supply voltages, there are several circuit

challenges that must be addressed in the sampling network, comparator array and

digital backend. This section describes the ADC circuit blocks in detail.

2.2.1 Sampling Network

At low supply voltages, it becomes challenging to realize good sampling switches

due to the degraded ratio of 'on' conductance to 'off' current. The sampling switch

must have a sufficiently high 'on' conductance and/or linearity such that it does not

introduce distortion, and the 'off' current must not result in input-dependent ADC

errors. To improve the linearity of the 'on' conductance, one can use resistor-based

sampling techniques [44] and constant Vg, bootstrapping techniques [45]. As these

techniques can be challenging to implement in combination with extreme voltage and
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frequency scaling, in this work we focus on techniques solely to increase the 'on'

conductance.

To improve the ratio of 'on' conductance to 'off' current, device stacking [24],

voltage boosting [25], and leakage feedback cancellation can be employed. To compare

these techniques, Figure 2-5 presents four sampling switch circuit implementations.

The four implementations are all sized for equal 'on' conductance. Figure 2-5(a)

presents a simple, single transistor sampling switch. At low supply voltages, the

gate overdrive can be as low as a few hundred milli-Volts and thus the switch must

be sized very large, resulting in large 'off' leakage current and significant switching

energy. If the 'off' current is sufficiently large, it can result in ADC errors while the

comparators are resolving. Voltage boosting can be employed to increase the 'on'

conductance while not increasing the 'off' current, as shown in Figure 2-5(b), as long

as device reliability is not a problem. Additionally, connecting devices in series can be

employed to reduce leakage, as shown in Figure 2-5(c). Connecting devices in series

has been shown to result in significant leakage reduction compared to a single device

[46]. While this results in only a minimal improvement in the ratio of 'on' conductance

to 'off' current, when combined with a feedback amplifier as shown in Figure 2-5(d),

a substantial reduction in leakage can be achieved. The feedback amplifier serves to

actively drive the internal node to the same voltage as the sampling capacitor, thus

reducing the Vd, and Ids of the sampling switch closest to the sampling capacitor.

The feedback amplifier consists of self-biased NMOS and PMOS source followers and

consumes only leakage current. The transient plot in Figure 2-6 shows how these

techniques reduce the leakage on the sampling capacitor when the sampling switch

is open. Voltage boosting results in a dramatic decrease in leakage and the feedback

amplifier reduces leakage by an additional r40%.

In this work, the sampling switch of Figure 2-5(d) is implemented. In parallel

with the load capacitor CL is a 5-bit capacitive DAC used to cancel low frequency

common-mode offsets. Figure 2-7 presents the voltage boosting circuit that drives the

sampling switches. The final stage inverter of the voltage boosting circuit is designed

so that the clock output can never drop below VDD due to leakage when it should be
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Figure 2-7: Circuit schematic for voltage boosting circuit.

held high. Due to parasitic capacitances, the output voltage is simulated to reach a

maximum of 510 mV when VDD equals 300 mV.

2.2.2 Comparator Array

The digital dynamic comparators used in the ADC are based on a sense-amplifier flip-

flop [47]. A simplified schematic of the flip-flop is shown in Figure 2-8. The sampled

analog voltage is applied to one input of the flip-flop, and a reference voltage of 0 V

is applied to the other input. The reference voltage could potentially be adjusted to

cancel global voltage offsets. Alternatively, body biasing could be employed to cancel

global voltage offsets. Comparator thresholds are varied by adjusting the effective

strength of the input PMOS devices. A variable number of minimum sized PMOS

input devices are connected in parallel and series. To reduce kick-back, the gates

of dummy PMOS devices are connected to the sampling capacitor and their drain

and source nodes are driven in counterphase to the internal flip-flop voltages. The

single stage flip-flop uses positive feedback to achieve a superior power-delay product

compared to a linear amplifier. Even though regenerative amplifiers are subject to

large input-referred offsets, these offsets are acceptable given the redundancy and

reconfigurability.

The comparator structure is designed to operate at supply voltages both above

and below VT. At low supply voltages, the comparator threshold range decreases

and it becomes increasingly difficult to realize a large threshold range through device
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sizing. In the subthreshold regime, due to the exponential dependence of current on

gate voltage, to achieve a threshold range of 200 mV solely by varying device width,

a device must be varied in width by over 100 times. Stacking devices in series is

preferred to linear width scaling as the device strength decreases quadratically rather

than linearly in proportion to device area. This allows for a smaller comparator im-

plementation and consumes less power than setting comparator thresholds by scaling

device widths or by adding capacitors at the drain or source nodes of transistors M1

and M3 in Figure 2-8 [48]. For example, when the comparator operates at a supply

voltage of 300 mV, the switching threshold changes by 108 mV when increasing from

one device to six stacked series devices. Alternatively, if the width of a device is

increased or decreased by six times, the switching threshold changes by only 65 mV.

By using many instances of a single device of minimum size rather than varying its

width or length, the comparator thresholds can be estimated by only characterizing

a single device. A numerical proof of the quadratic relationship between stacking

and effective device strength in the subthreshold regime is presented in the following

sub-section.

2.2.3 Analysis of Device Stacking in the Subthreshold Regime

The effect of stacking transistors in digital CMOS logic has been well studied in

literature at supply voltages above VT. In this regime, transistors that are 'on' can

be modeled as resistors [49] and stacking transistors results in a quadratic increase in

propagation delay. However, in the subthreshold regime, transistors are not accurately

modeled by resistors, and this relationship must be re-evaluated.

For the comparator shown in Figure 2-8, the switching threshold is determined

by what input voltage causes the input pull-up network to be equal in strength to

the reference pull-up network. As an approximation, the switching threshold can

be estimated as when the two pull-up networks have equal propagation delay if the

positive feedback load is removed and the pull-up network is analyzed as if it were

a dynamic digital gate. Such a structure is shown in Figure 2-9, but with NMOS

input devices instead of PMOS devices. By characterizing the effect of input voltage,
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Figure 2-9: Multiple NMOS transistors stacked. All nodes are initially precharged to
VDD.

stacking, and device width on propagation delay, one can estimate the switching

threshold of the associated comparator.

For the mathematical analysis, we first assume that we have N stacked NMOS

devices as shown in Figure 2-9. All internal nodes are initially precharged to VDD.

Cp represents the parasitic capacitance seen at internal nodes, and CL represents the

capacitance at the load node.

We can represent the circuit in Figure 2-9 with the following set of differential

equations.

d = I (ID,M2 - ID,M1) (2.3a)dt Cp

dVN 1
dt - (ID,MN - ID,MN-1) (2.3b)

dV 1S (-ID,MN) (2.3c)
dt CL

In the subthreshold regime, these equations can be expanded by using the following
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for ten stacked NMOS transistors.

equation for subthreshold current [50]:

ID,Mi = Ise Vth h - e (2.4)

where Is is a process and geometry dependent parameter and n is a process

dependent parameter. For additional accuracy, Vtn can be modified to include the

body effect. Although equation (2.3) cannot be easily analyzed analytically, it can

be analyzed using an ordinary differential equation (ODE) numerical solver. As an

example, we examine the scenario with N = 10, when all NMOS devices are minimum

sized with a gate voltage of 300 mV, a Vt, of 400 mV, and a supply voltage of 400 mV.

Cp is assumed to be 1.5 fF and the load capacitance CL is assumed to be 5 fF, to

represent device and parasitic capacitance. The delay is calculated to be the time

when the load voltage, V10, equals half of the supply voltage (i.e. 200 mV).

A transient solution of the ODE is shown in Figure 2-10(a). An interesting char-

acteristic of the transient plot is that only one node appears to be discharging at

a time. Moreover, each node appears to be discharging at a different but constant

rate, with the rate decreasing as later nodes are discharged. To simplify analysis, this

system can be represented by a piecewise-linear (PWL) approximation as shown in

Figure 2-10(b) and derived in Appendix A. The PWL approximation achieves a very

good match to the ODE solution.



Based on the PWL mathematical model, the following expression for the total

propagation delay, td is derived in Appendix A:

ta l (n+i- 1 (-v '-Vtn)) (n ii n1 1)
td C Dn e -nVthln - i + 1 - -)) (2.5)

Equation (2.5) can be further simplified if we assume the effect of the logarithm

is negligible, meaning that the VDD - nVthln (i + 1 -) term can considered to

be constant over the entire range of i. Based on this assumption, the delay can be

represented with the following second-order equation:

Vi, n

td = e nVth (CN 2 + 2 N + C3) (2.6)

where C1, C2, and C3 are constants. This agrees with existing analysis of above-

threshold logic elements [49]. At the switching threshold of the flip-flop, the delay of

the input side of the flip-flop can be approximately assumed to equal the delay of the

reference side (Tref). Thus, one can calculate the relationship between comparator

switching threshold, V, and the amount of stacking, N, by setting td = Tref:

V = nVthln (C1N 2 + C2N + C3 (2.7)

As N increases, the N 2 term in Equation (2.7) will dominate the numerator of

the logarithm and thus the switching threshold will vary twice as quickly compared

to adjusting the input device width.

2.2.4 Wallace Tree Adder and Memory

The 127-bit thermometer output of each comparator array must be encoded to a

7-bit binary value to generate the digital output code. The encoder is realized with

a Wallace tree adder that allows any combination of comparators to be enabled and

guarantees ADC monotonicity. The Wallace tree adder consists of multiple full- and

half-adders arranged in a tree to allow for 127 one-bit values to be added together in
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Figure 2-11: Block diagram of 127 by 9-bit memory with embedded counters used for
calculating the estimated CDF of comparator thresholds.

minimal area and propagation delay. Comparators are not assigned to any specific

code and can be reassigned arbitrarily. When comparators are disabled, their output

to the Wallace tree adder is gated and held at GND.

The Wallace tree adder implements an energy efficient encoder; however, it is not

suitable for generating an estimated CDF as it breaks the link between comparators

and their associated thresholds. To generate the estimated CDF, the comparator

outputs are directly fed in parallel into a 127 by 9-bit memory (Figure 2-11). Nine

bits of memory are associated with each comparator to allow sufficient threshold

accuracy. Each block of memory has an associated counter that is used for CDF

generation. When the estimated CDF is being generated, each block of memory is

incremented by one whenever its associated comparator output is high. By the end

of the calibration period, the blocks of memory that are associated with comparators

that have low thresholds will have a high value stored in memory. The memory is

realized with CMOS latches to enable operation down to 0.2 V and operates off an

independent power supply so that it can be power gated when calibration is complete.
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Figure 2-12: Die micrograph of the ADC in 0.18 pm CMOS.

Active Die Area 1.4mm by 1.4mm

Supply Voltage 0.2 V to 0.9 V

Sampling Frequency 2 kS/s to 17.5 MS/s
Performance at 0.4 V, single-ended, post-calibration

Dynamic Performance 5.05-bit ENOB

Power Consumption 1.66 pW

FoM 125 fJ/conversion-step

DNL +1.23/-0.91 LSB

INL +0.72/-0.90 LSB

Table 2.1: Summary of Results for ADC.

2.3 Measurement Results

The ADC is fabricated in a 0.18 pm 5M2P CMOS process and occupies 2 mm2

(Figure 2-12). It was packaged in a 0.5 mm pitch TQFP package. The ADC can

operate above 0.9 V, but the voltage boosting circuit must be disabled, the ADC

speed plateaus and CV2 losses significantly degrade energy efficiency. The ADC

operates from 2 kS/s at 0.2 V to 17.5 MS/s at 0.9 V, as shown in Figure 2-13(a). The

remainder of this section describes how the prototype was tested and its measured

performance. A summary of results is presented in Table 2.1.
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2.3.1 Static and Dynamic Performance

Static linearity ADC measurements were conducted at a supply voltage of 400 mV

and a sampling frequency of 400 kS/s. The code density test was conducted us-

ing a full-swing, differential sinusoidal input with amplitude of 110 mV and fre-

quency of 1.52625 kHz [51]. In single-ended mode, the maximum DNL and INL

are +1.23/-0.91 LSB and +0.72/-0.90 LSB, respectively (Figure 2-14). In pseudo-

differential mode, the maximum DNL and INL are +0.98/-0.78 LSB and +0.73/-0.61 LSB,

DNL INL
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Digital Code Digital Code

(a) (b)

Figure 2-14: INL and DNL of ADC in single-ended 6-bit mode at VDD = 0.4 V.
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Figure 2-15: FFT of ADC in (a) single-ended and (b)
at VDD = 0.4 V.

pseudo-differential 6-bit mode

respectively. To improve the DNL and INL, additional redundancy is required.

The signal-to-noise-plus-distortion ratio (SNDR) and effective number of bits

(ENOB) of the ADC were derived using tone testing at supply voltages from 0.2 V

to 0.9 V. As the comparator thresholds vary at different supply voltages, the ADC

is recalibrated at each supply voltage. The FFT of the ADC in single-ended and

pseudo-differential mode at a supply voltage of 0.4 V is shown in Figure 2-15. An

ENOB of 5.05 and 5.56 are achieved in single-ended and pseudo-differential modes,

respectively. The THD in pseudo-differential mode is 6 dB better than in single-ended

mode, most likely due to the matching of the two signal paths and cancellation of

even order harmonics.
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Figure 2-16: Statistical variation of ENOB in (a) single-ended and (b) pseudo-
differential mode at VDD = 0.4 V before and after calibration.

2.3.2 Power Consumption

The total power consumption of the ADC at 0.4 V, 400 kS/s is 2.84 pW and 1.66 pW

in pseudo-differential and single-ended mode, respectively, of which 135 nW is leakage

power. Shown in Figure 2-13(b) is the energy per conversion of the ADC in single-

ended mode versus supply voltage. At low voltages, the leakage current degrades the

energy per conversion due to low sampling rates, whereas at high voltages, CV2 losses

degrade the energy per conversion, leading to the emergence of a minimum energy

per conversion supply voltage of 0.4 V [37]. A widely used FoM normalizes the ADC

power consumption to the input bandwidth it can digitize and its dynamic range:

FoM = (2.8)
2BW2ENOB

At 0.4 V, the ADC achieves an FoM of 125 fJ/conversion-step in single-ended mode

(5.05 ENOB) and 150 fJ/conversion-step in pseudo-differential mode (5.56 ENOB).

The highly digital flash ADC has no bias currents and thus energy is only dissipated

through switching events (CV 2) and by leakage currents.



2.3.3 Calibration and Common-Mode Rejection

The comparators have a measured offset standard-deviation of approximately 8 mV,

which is larger than 1 LSB. Figure 2-16 presents statistical measurements of the

ENOB for the ADC, before and after redundancy calibration. In pseudo-differential

mode with a total of 126 comparators enabled, the ADC nominally has an average

ENOB of 5.56 at 400 kS/s. If redundancy calibration is not used and the same com-

parators are enabled on all chips, the average ENOB reduces to 3.84. The comparator

thresholds vary with temperature and ADC recalibration is required to maintain lin-

earity. In single-ended 6-bit mode, the ADC ENOB degrades from 5.05 at 250 C to

4.28 at 75 0 C without recalibration. After recalibration the ENOB returns to 5.08.

When a full-scale sinusoid input is in the presence of a -12 dBFS common-mode

signal at 0.005 Fs, the ENOB degrades by 0.5-bit compared to a 1.3-bit degradation

when the common-mode rejection is disabled. Due to latency of the digital circuits,

the common-mode feedback is only capable of cancelling low-frequency components

and improving ENOB at frequencies less than approximately 0.04 Fs.

2.4 Future Directions

In a practical system, the calibration input and logic need to be integrated on chip,

and the hardware required for this is briefly highlighted below. To generate the

calibration input, a triangle wave can be implemented with a high impedance cur-

rent source, an op-amp based integrator, or a sigma delta modulator. As it can be

challenging to implement a highly linear triangle wave, it is possible to use a sinu-

soidal input instead, and through significant bandpass filtering the linearity can be

improved. Calibration logic is required to calculate comparator thresholds from the

estimated CDF and to select the appropriate comparators to enable. To calculate

comparator thresholds when a triangle wave calibration input is used, a digital mul-

tiplier and adder are required. When a sinusoidal calibration input is used, a look-up

table is also likely required to compensate for the non-uniform CDF. To select the

appropriate comparators to enable, a simple closest neighbor searching algorithm can



be employed [23].

As CMOS processes reduce in geometries, it is likely that the ADC architecture

will improve in energy efficiency and the die area will decrease. At the majority

of operating conditions, switching losses dominate power consumption, which are

proportional to fCVD. The ADC operates at a low supply voltage and thus there is

little remaining energy savings to be had from voltage scaling; however, energy savings

can be achieved by reducing total switching capacitance. It is challenging to predict

how switching losses will scale with device scaling, in large part due to the effects of

interconnect capacitance, but it is likely that capacitance (and switching loss) will

decrease at a linear to quadratic rate in relation to the minimum device length. As the

majority of ADC area is occupied by digital structures with minimum-sized devices,

the overall die area will likely decrease at a quadratic rate in relation to the minimum

device length.

2.5 Summary

A highly digital flash ADC has been presented that can operate from supply voltages

of 200 mV to 900 mV. The architecture can tolerate large comparator and reference

voltage offsets due to redundancy and reconfigurability of the comparator array. This

allows for the use of a sense-amplifier based flip-flop with embedded offsets intro-

duced through device stacking and sizing. Device stacking has been analyzed in the

subthreshold regime and shown to result in a quadratic change in effective device

strength.
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Chapter 3

Low Data Rate UWB Architecture,

Physical Layer, and Transmitter

This chapter describes the high level architecture and physical layer (PHY) specifica-

tions of the low data rate UWB system. In addition, key circuits and measurement

results of a fabricated UWB transmitter are presented. First, a brief history of UWB

technology is provided, focusing in particular on the low data rate, IEEE 802.15.4a

standard. This standard forms the core specifications of the UWB system presented

in this thesis, but some modifications have been made to reduce system power and

overall complexity. A discussion of the trade-offs between noncoherent and coherent

signaling is presented, and the transceiver architecture is described.

3.1 Background and History

UWB technology is a form of wireless communication in which signals occupy a wide

bandwidth, greater than the lesser of 500 MHz or 20% of the center frequency of

the signal, according to the FCC. First demonstrated by Marconi with spark gap

transmitters, commercial UWB research has flourished since 1998 when the FCC an-

nounced it would investigate the possibility of permitting UWB radio systems on an

unlicensed basis [52]. UWB communication is hoped to provide an improved method

for radar applications where precise distance resolution is required and for providing



Frequency Indoor Outdoor
(GHz) EIRP Limit EIRP Limit

(dBm/MHz) (dBm/MHz)
Below 0.96 At or below 15.209 limits [53]
0.96-1.61 -75.3 -75.3
1.61-1.90 -53.3 -63.3
1.90-3.10 -51.3 -61.3
3.10-10.60 -41.3 -41.3
Above 10.60 -61.3 -61.3

Table 3.1: FCC emissions limit for indoor and outdoor UWB communication.

covert voice or data communications that overcome multipath problems [52]. As data

is encoded in very short, wide bandwidth pulses rather than long duration narrow

bandwidth signals, UWB technology allows for alternate and potentially lower power

radio architectures. In 2002, the FCC published a Report and Order authorizing the

unlicensed use of UWB in the 3.1 to 10.6 GHz frequency band [531. Emissions limits

were set by the FCC to ensure co-existence with existing narrow-band communica-

tion devices, and these limits are presented in Table 3.1. Worldwide, these limits

vary significantly from country to country. For example, in Europe, the European

Commission is constraining UWB communication to the 6.0 to 8.5 GHz frequency

band, although other frequency bands can be used if specified interference mitigation

techniques are applied [54].

Based on the properties of UWB signals and regulatory emissions limits, UWB

communication standards have been developed for two key systems: a short range

(<10 m), high data rate system and a moderate range (<100 m), low data rate

system. The high data rate system, specified in the ECMA-368 standard, achieves

data rates up to 200 Mb/s and is envisioned as a wireless replacement for USB within

the home [55]. This standard is based on the work done by the now defunct IEEE

802.15.3a task group. The commercial success of the technology is still uncertain.

Most recently, the financial crisis and intense competition have resulted in several

high data rate UWB companies going out of business [56], and design efforts from

many large companies have ceased; however, several small and established companies



continue to compete in the high data rate space.

The low data rate system, specified in the IEEE 802.15.4a amendment to the

802.15.4 wireless personal area network (WPAN) standard, was approved in 2007

and adds UWB signaling as a physical layer option [57]. The 802.15.4a standard is

described in detail in the following section.

3.2 IEEE 802.15.4a Standard

IEEE 802.15.4a is an amendment to IEEE 802.15.4 that specifies two additional PHYs

to be added to the standard: a chirp spread spectrum (CSS) PHY operating in the

2.4 GHz band and a UWB PHY operating both in the sub-gigahertz band and the

3-10 GHz band. The key goals of the amendment were to add ranging support and

higher throughput capabilities to the 802.15.4 standard, while still maintaining low

power operation.

3.2.1 Chip spread spectrum PHY

A chirp is a linear frequency modulated pulse. Essentially, it involves sweeping the

transmitted frequency very rapidly while transmitting a pulse. Key advantages of CSS

over the 802.15.4 PHY are improved range and support for links with fast-moving

mobile devices.

In 802.15.4a, CSS communication operates at a center frequency of 2.45 GHz and a

nominal data rate of 1 Mb/s. The channel plan for the CSS PHY is identical to that of

IEEE 802.11 high rate direct sequence spread spectrum (DSSS) systems. Nominally,

a compliant receiver must have a sensitivity of -85 dBm or better for 1 Mb/s. This

thesis focuses on UWB communication, and thus CSS will not be described in more

detail.



3.2.2 Ultra-wideband PHY

The UWB PHY specifies three independent bands for operation: the sub-gigahertz

band (250-750 MHz), the low band (3.1-5 GHz) and the high band (6-10.6 GHz). Of

these three bands, the low band and high band are most commonly used for wireless

communication. Transmitted UWB signals are band limited pulses with bandwidths

of approximately 500 MHz or 1.5 GHz at a maximum pulse repetition frequency

(PRF) of 499.2 MHz. Any UWB pulse shape is supported, so long as it matches

sufficiently close to the provided reference pulse. Symbol rates from 0.12 Mb/s to

31.2 Mb/s are supported, and data is modulated with a combination of pulse-position

modulation (PPM) and binary phase-shift keying (BPSK).

The UWB PHY specifies forward error correction to be implemented with an outer

Reed-Solomon systematic block code and an inner half-rate systematic convolutional

code [58]. An interesting characteristic of the UWB PHY is that both coherent and

noncoherent signaling are supported. With noncoherent signaling, the receiver can

only demodulate the PPM modulated data and not the BPSK modulated data. Thus,

the overall data rate is lowered, but simpler, energy-detection receiver architectures

are supported.

Included in 802.15.4a is a packet structure and frame format for the UWB PHY.

The frame consists of a synchronization header, an start of frame delimiter (SFD),

a packet header and a data field. The synchronization header provides time for the

for the receiver to detect a signal, realize automatic gain control (AGC), synchronize

with the transmitter, and implement frequency tracking and several other functions.

Embedded in the synchronization header are length 31 or length 127 ternary codes

which are repeatedly sent by the transmitter.

3.3 Noncoherent Demodulation

The choice of noncoherent versus coherent signaling and demodulation is a key system

level trade-off. With coherent demodulation, the receiver must recover both the fre-

quency and phase of the received signal. In these systems, information is traditionally



encoded in the phase of transmitted waveforms through modulation techniques like

BPSK. Coherent demodulators typically require a phase locked loop (PLL) operat-

ing at the carrier frequency to maintain synchronization with the received carrier. In

contrast, for noncoherent receivers, the phase of the received carrier is not recovered,

and the receiver only needs to maintain synchronization with the bit period. As the

phase of the carrier is not recovered, information must be encoded in the frequency,

time or amplitude of the wireless signal and thus, frequency-shift keying (FSK), PPM,

or amplitude-shift keying (ASK) must be employed.

Noncoherent demodulators can tolerate significant RF frequency and phase offsets

because synchronizing to the bit period typically requires timing accuracies an order-

of-magnitude less stringent than synchronizing to the carrier. For example, the IEEE

802.15.4a standard specifies an RF frequency accuracy requirement of ±20 ppm for

coherent signaling, whereas noncoherent UWB signaling can tolerate RF frequency

accuracies over ±1000 ppm1 . Because of these relaxed RF frequency tolerances,

noncoherent receivers typically do not require an RF PLL or advanced phase tracking

hardware, and the overall system power consumption can be reduced. Indeed, many

noncoherent receivers do not need an RF clock at all.

3.4 Previous Work

As 802.15.4a is a recent standard, there are only a few if any commercial 802.15.4a

compliant parts; however, there has been extensive research published targeting low

data rate UWB systems. Published receivers include sub-gigahertz band receivers

[59, 60], and higher frequency noncoherent receivers [4, 61, 62, 63, 64, 65] and coherent

receivers [66, 67, 68]. In addition, several RF front ends have been presented [69, 32].

Complementing the UWB receiver research has been extensive transmitter re-

search. Several IR-UWB transmitter architectures have been shown to be amenable

to low-power solutions [70, 71]. In particular, transmitter signal generators and PAs,

1It is important to note, however, that it is still optimal for a noncoherent receiver to have
baseband, bit-period, clock accuracies of +20 ppm.



two blocks that typically dominate the power budget of narrowband systems, can be

replaced by simple digital pulse generators and CMOS buffers [72, 73, 71]. Further-

more, noncoherent communication relaxes center frequency tolerances, thus allowing

for reduced hardware complexity and enabling the use of highly digital transmitter

architectures [61, 29].

Energy/Bit Metric

Key advantages of coherent signaling are that bandwidth is utilized more efficiently

and coherent demodulators achieve better sensitivity than noncoherent demodula-

tors; however, these benefits often result in increased power consumption due to the

required phase tracking hardware and accurate RF clocks. For energy constrained

wireless links, the overall link energy efficiency must be considered when deciding

whether to employ coherent or noncoherent signaling and demodulation.

A key metric used to quantify the energy efficiency of wireless radios is energy/bit.

Energy/bit corresponds to the energy required by the receiver or transmitter elec-

tronics to transmit or receive a single bit of information. Most often, energy/bit is

calculated as the instantaneous power consumption divided by the instantaneous data

rate. Generally, modern 802.15.4 and Bluetooth radios consume tens of milli-Watts,

corresponding to 15-to-200 nJ/bit for data rates of 250 kb/s to 3 Mb/s [74] [75]. At

the system level, one effective approach to minimize energy/bit is by aggressively duty

cycling a radio operating at a fast instantaneous data rate. This results in energy

savings because high data rate radios typically consume less power per bit than low

data rate radios.

At high data rates and for short packets the simple energy/bit metric is less

meaningful as it does not account for two key sources of energy loss: the energy

overhead associated with turning on and off the receiver and transmitter, as well as

the energy overhead associated with synchronization. Thus, several improvements

to the energy/bit metric have been proposed, to account for both the radio turn-

on and turn-off time [76] and the synchronization energy [77]. In practical systems,

to maximize the energy per useful bit, optimizations must be made to reduce the



turn on/off time, the synchronization time, and the power consumption of the radio

while concurrently increasing the data rate and packet length. Even when accounting

for these additional sources of energy overhead, the energy/bit metric can be easily

manipulated, as it does not account for receiver sensitivity, transmit output power,

and many other specifications. Regardless, the metric still serves as a useful way to

compare similar radios with one another [78].

A key opportunity of UWB communication is that high instantaneous data rates

are inherent to the system due to the wide bandwidth signals. For low data rate

systems, this means that the high rate transceiver can be aggressively duty cycled. In

high instantaneous data rate radios, the fixed cost of analog and RF bias currents is

amortized over more bits/second as the data rate increases, resulting in a general trend

of improved energy efficiency compared to narrowband low rate radios. Figure 3-1

shows recently published receiver energy/bit values [4]. In Figure 3-1, there is an

approximate trend that noncoherent receivers attain better energy/bit than coherent

receivers. The one data point that is inconsistent with this trend is the coherent

receiver that requires only 0.159 nJ/bit [60]. This inconsistency is explained because

the receiver operates at a low carrier frequency of 500 MHz, and thus the RF and

clocking circuits require considerably less power consumption.

3.5 Transceiver Architecture and Packet Structure

For this thesis, a low data rate UWB transceiver chipset is developed that is designed

for the IEEE 802.15.4a standard. To minimize power consumption, noncoherent

signaling is employed. The radio communicates in one of three channels in the 3.1-

to-5 GHz band, as shown in Figure 3-2. The high band is not supported to reduce

transceiver complexity, as it is challenging to obtain a wide tuning range from 3.1-to-

10 GHz. Three channels are used to avoid potential in-band interferers and to add

frequency diversity for multiple users.

The packet structure for the wireless link is shown in Figure 3-3. The packet

consists of a combination of on-off keying (OOK) and binary PPM encoding. OOK is
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Figure 3-3: Packet structure and receiver states for the wireless link.

used to encode the synchronization preamble, and PPM is used to encode the payload

data. With OOK, the presence of pulses in a time slot indicates a '1', whereas the

absence of pulses indicates a '0'. In contrast, with binary PPM, pulses are sent in one

of two time slots. If pulses are sent in the first time slot, a '0' is sent, and if pulses

are sent in the second time slot, a '1' is sent. Thus, for binary PPM two time slots

correspond to a single bit of information.

The packet begins with a 32-bit, OOK modulated synchronization code that is

repeated 32 times. Each bit of this code corresponds to a 31.2 ns period, and the

bit value determines whether a burst of 16, 1.95 ns pulses is sent ('1') or whether

no pulses are sent ('0'). When receiving this synchronization code, the receiver first

detects and then synchronizes to the received signal. Following the synchronization

code in the packet is an SFD code, which consists of a 5-bit outer code applied to the

32-bit synchronization code, resulting in a 160b total SFD length. Finally, the packet

ends with PPM encoded payload data, which consists of an 8-bit header followed

by data. Each PPM period consists of two adjacent time slots, and whether greater

energy is received in the first or second slot determines whether a '0' or '1' is received,

respectively. The slot period is nominally 31.2 ns, corresponding to a PPM bit period

of 62.4 ns and a data rate of 16 Mb/s; however, the slot period can be increased

digitally.

A simplified block diagram of the transceiver chipset presented in this thesis is

shown in Figure 3-4. The receiver is a noncoherent, energy detector that squares the

incoming signal at RF; therefore no RF local oscillator or PLL is required for down-
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Figure 3-4: Simplified block diagram of (a) receiver and (b) transmitter that form
the custom low-data-rate transceiver system.

conversion. After the squaring operation, the baseband signal is integrated in a 31.2 ns

window, generating an analog representation of the amount of energy received within

that given time window. Next, the integrated analog value is converted to a digital

value by an ADC and processed by the baseband synchronizer and demodulator. The

receiver integrator, ADC and digital logic are clocked by a crystal resonator stabilized

oscillator. Clocking circuits are required to generate the appropriate clock phase for

the integrator and ADC.

The transmitter generates bursts of 2 ns UWB pulses centered at 3.5 GHz, 4.0 GHz

or 4.5 GHz. The RF signal is generated by a digital ring oscillator that is amplified

by an inverter-based PA. BPSK phase shifting is employed to reduce spectral lines.

To meet the FCC spectral mask without needing an off-chip filter, the transmitter

employs pulse shaping. Although the transmitter is not the focus of this thesis, it is

a key component of the system and is briefly summarized in the following section.



Figure 3-5: Transmitter expanded block diagram.

3.6 UWB Transmitter

There has been extensive literature published on UWB transmitters, in part due to the

potential for very simple, low power implementation. Two key problems inherent in

many previously published low power UWB transmitters are that they either are not

compliant with the FCC spectral mask without off-chip filters [29] or the output pulse

amplitude is extremely low, fundamentally limiting range [31, 32]. In a collaborative

research project, an all-digital UWB transmitter has been designed to address these

problems [33]. 2 The transmitter architecture, key circuit blocks, and measurement

results are presented in the following sub-sections.

3.6.1 Transmitter Architecture

An expanded block diagram of the transmitter is shown in Figure 3-5. The transmitter

is activated on the rising edge of the off-chip Start-TX signal. This edge enables a

digitally-controlled oscillator (DCO), whose output is synchronously divided to a

499.2 MHz clock as specified by the 802.15.4a standard. The divided DCO signal is

the transmitter's global clock, which activates a programmable counter to control the

number of pulses transmitted per burst. Pulses are generated by BPSK-scrambling

the DCO output via a run length limiting linear feedback shift register (LFSR),

2 Patrick Mercier led the design and test efforts, and I assisted with architecture design and did

design and layout of the oscillator and single-to-differential converter.

m-M



and buffering the resulting signal through dual single-ended digital PAs employing

capacitive combination. Several phases of the 499.2 MHz divided clock are used by

pulse shaping circuitry to dynamically shape the PA envelope to one of four discrete

levels. The DCO output frequency is calibrated and dynamically adjusted using an

early-late detector in a digital frequency-locked loop (FLL).

3.6.2 Dual-Digital Power Amplifiers

A key challenge in IR-UWB PA design is how to be energy efficient and spectrally

compliant while requiring as little chip or circuit board area as possible. Traditional

differential analog PAs can easily be spectrally compliant, but typically achieve poor

power efficiency [79]. Highly digital PAs can achieve much better power efficiency,

but often require off-chip filters or baluns to enable BPSK modulation and/or be

spectrally compliant [29, 73, 80]. The proposed digital power amplifier is both power

efficient and spectrally compliant while requiring minimal area through two key ap-

proaches:

* Dual-capacitively coupled digital power amplifiers allow for the nulling of common-

mode components that occur during turn-on and turn-off of the single-ended

PAs. This approach does not use any analog circuits and removes the need for

an area-expensive balun to interface with a single-ended antenna. Moreover,

this approach allows for BPSK modulation to be easily realized.

* The dual PAs each comprise several parallel drivers. Digital pulse shaping is re-

alized by dynamically switching drive strength, resulting in spectrally compliant

pulses.

The dual digital PAs generate pulses which are in-phase at RF but have counter-

phase common mode components. By capacitively combining the two paths, the

opposite common modes are cancelled and the zero-dc RF signal propagates to the

single-ended antenna. BPSK modulation is implemented by simply inverting the

oscillator signal while maintaining opposite common modes on the dual paths. The
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Figure 3-6: Digitally controlled oscillator schematic.

coupling capacitors also form a first order high-pass filter between the outputs of

the PAs and the antenna, thereby attenuating low frequency out-of-band spectral

components.

The dual PAs each comprise 30 parallel tri-state inverters. Individual inverters

are dynamically enabled and disabled by pulse shaping logic to adjust the PA drive

strength. Pre-charge and pre-discharge transistors set the PA output common mode

levels to VDD and GND when the PAs are tri-stated between pulses.

3.6.3 Digital Oscillator

Since the transmitter is designed for use in noncoherent UWB systems, precise phase

and frequency accuracy of an oscillator is not required. For example, receiving a non-

coherent 500 MHz signal whose center frequency is only accurate to within 6000 ppm

results in a maximum of 0.04 dB received power loss based on a MATLAB simulation.

What is required, however, is a frequency tuning range from 3.5 GHz to 4.5 GHz.

Thus, it is not possible to employ a fixed-frequency off-chip resonator like an Film

Bulk Acoustic Resonator (FBAR) [81]. Taking this into account, the resulting DCO

is a 3-stage current starved ring oscillator, shown in Figure 3-6. The highly digital,

single-ended structure is designed to have a fast turn-on time on the order of 2 ns

in the typical case to reduce energy consumption in duty-cycled operation. Com-

pared to a differential structure, the single-ended oscillator requires half of the power



consumption but is more susceptible to power supply noise.

Coarse DCO frequency tuning is provided by switchable load capacitors, while

fine frequency tuning is provided by NMOS and PMOS current starving DACs. To

simplify the frequency locking algorithm, all three current starving DACs are set to the

same digital value, except that the second and third stage DACs can be individually

incremented by one for increased resolution. This technique results in a resolution

of 7.5 bits from the DACs and 2 bits from the 3 thermometer encoded capacitors,

totaling 9.5 bits. This resolution of frequency control is sufficient to meet noncoherent

wideband receiver sensitivity requirements. The worst-case measured frequency step

size in the 3-to-5 GHz band is 10 MHz, corresponding to an accuracy of 2800 ppm.

Phase scrambling is implemented by passing the DCO output through a single-

ended to differential converter that contains delay-matched paths: the inverted path

consists of a static CMOS inverter, while the non-inverted path consists of a trans-

mission gate that is sized for equivalent delay [82]. Simulation results show that up

to 10 ps of delay mismatch is tolerated before spectral lines with 1 dB amplitude

above the regular spectrum begin to appear. Depending on the process corner, there

is a variation between the two paths of +2 ps/-i ps around the nominal 1800 phase

shift. Monte Carlo analysis of circuit variation indicates that the standard deviation

is 1.2 ps, which is sufficiently small to not have a noticeable impact on the resulting

spectrum.

3.6.4 Measurement Results

The transmitter was fabricated in 90 nm CMOS and operates on a 1 V supply. A die

photo is shown in Figure 3-7. Figure 3-8 presents a 3.5 GHz transient waveform with

five pulses concatenated into a single burst. The resulting bursts are both indoor and

outdoor FCC compliant in all three channels without the use of an off-chip filter, as

shown in Figure 3-9. The four-level pulse shaping results in nearly 20 dB of sidelobe

rejection. The dual digital PAs have a gain scalability of 13 dB and a maximum output

swing of 710 mVp,. The transmitter consumes 17.5 pJ/pulse including electrostatic

discharge (ESD) and input/output (I/O) supplies.
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Figure 3-7: Die photo of fabricated transmitter.
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Figure 3-8: Measured transient waveform of a burst of five individually BPSK-
modulated pulses.
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Figure 3-9: Overlaid power spectral densities of the three channels in the low-band
of the 802.15.4a proposal.

3.7 Summary

This chapter introduced the UWB architecture and PHY that forms the basis of

the remainder of this thesis. The architecture is designed for near compatibility

with IEEE 802.15.4a and employs noncoherent signaling to improve energy efficiency.

Through pulse-shaping and capacitive combining, the all-digital UWB transmitter

generates FCC compliant signals without requiring any off-chip filters.



Chapter 4

UWB Receiver SoC Circuits

This chapter describes the key circuit blocks in the UWB receiver SoC. Circuit design

decisions are driven by the goal to minimize power consumption while maximizing

performance, integration and robustness of the wireless receiver. The RF front end

consumes the majority of power in the receiver, and this chapter describes the steps

taken to minimize this power consumption. The receiver baseband analog, clocking

and ADC circuits are also described in detail.

4.1 Architecture

As described in Chapter 3, the receiver is a noncoherent, energy detection based

IR-UWB receiver that is designed for the 802.15.4a wireless standard. The receiver is

nearly compliant with 802.15.4a, but uses a modified packet structure to reduce power

consumption, reduce receiver complexity and allow for an improved synchronization

algorithm. Noncoherent signaling is employed to reduce power consumption on the

receiver as it allows for a simple architecture without any high frequency clocks and

also allows for the use of highly digital circuits due to relaxed frequency tolerances

and wide signal bandwidths. A detailed block diagram of the receiver SoC is shown

in Figure 4-1.

The first stage of the receiver signal chain is an RF front end, that amplifies

the received signal by up to 40 dB while attenuating out-of-band interferers. This
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Figure 4-1: Detailed block diagram of receiver SoC.

amplified RF signal is then squared, resulting in the RF signal being mixed to base-

band. Because of the squaring operation, the amplitude of this baseband signal is

proportional to the instantaneous received power in the input RF bandwidth. Thus,

by integrating the baseband signal over a period of time, the receiver generates a

signal proportional to the energy received over that period of time. Following the

squarer is a baseband amplifier, and then the amplified signal is integrated and quan-

tized by an ADC. The ADC values are passed to a digital backend, which performs

packet detection, synchronization and decoding.1 Also included in the receiver SoC

is crystal oscillator and a delay-locked loop (DLL). The entire receiver is clocked by

a fixed, 32 MHz clock. After synchronization, the appropriate DLL phase is selected

and is used by the windowed integrator and ADC. Each of the specific components

of the receiver SoC are described in the following subsections, except for the digital

synchronizer and demodulator [35}.

The receiver architecture shares many similarities with and was inspired by the

energy detection receiver presented in [4] and a block diagram of the receiver in [4]

is shown in Figure 4-2. The key differences between the receiver presented in this

thesis and [4] are briefly described below, and explained in more detail throughout

this chapter.

1The digital backend was designed by Patrick Mercier and Manish Bhardwaj
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Figure 4-2: Block diagram of noncoherent UWB receiver presented in [4].

* This work is a full SoC, including the necessary clocking circuits, digital cali-

bration, and digital synchronization algorithms.

* In this work, the supply voltage is fixed at 1 V and gain scalability is imple-

mented by disabling RF gain stages, whereas in [4], gain scalability is imple-

mented by scaling the supply voltage from 0.5 V to 0.65 V.

* In this work, a multi-bit ADC is used to measure the energy received in a given

time window, whereas in [4], a clocked comparator measures the difference in

energy received between two adjacent time windows and provides a single bit

of information.

4.2 RF Front End

For noncoherent receivers, significant gain is required prior to the squarer to obtain a

sufficient signal swing such that semiconductor device nonlinearity can be exploited

in the squaring element. Passive and active squarers require input voltages on the

order of milli-Volts whereas LNA input voltages can be on the order of tens of micro-

Volts, thus requiring voltage gain of approximately 40 dB. To realize such large gain,

noncoherent receivers typically employ one of two methods: a super-regenerative ar-

chitecture [64, 65] or a multi-stage linear amplifier [4, 63, 61]. Although a multi-stage

linear amplifier requires more power than a super-regenerative amplifier, it allows

for simple support of any arbitrary squaring and integration interval. Moreover, a

multi-stage linear amplifier is less subject to RF leakage out of the antenna, which

can potentially result in FCC spectrum violations or require the use of an RF isola-



tion amplifier. Based on these advantages, a multi-stage linear amplifier topology is

selected.

Given the design decision to use a multi-stage linear amplifier, the next choice is

whether to amplify the signal solely at RF prior to the squarer or whether to mix

the signal to baseband (or a low frequency) and amplify the signal both at RF and

baseband. In general, gain at baseband can be implemented at much less power

consumption than gain at RF; however, to mix the RF signal to baseband requires

a mixer and oscillator, both of which consume power comparable to that of an RF

gain stage. Moreover, after mixing to baseband, both in-phase and quadrature signal

paths are required [66], doubling the baseband amplifier power consumption and

potentially the ADC power consumption. An additional disadvantage of mixing the

signal to baseband is that dc offsets at baseband must be cancelled. These dc offsets

can degrade performance and are particularly challenging to cancel digitally, as the

nonlinear squaring element makes it difficult to measure the offsets.

Given the simplicity, reliability, and minimal power consumption overhead asso-

ciated with solely amplifying the signal at RF prior to the squarer, this topology is

selected. Thus, the RF front end consists of several RF gain stages and the output of

the RF front end is connected directly to the squarer. The key design decisions for

the RF front end include whether to have a single ended or differential architecture,

a resonant or non-resonant load, and what core amplifier structure to use.

4.2.1 Single ended vs. differential architecture

Previous research has demonstrated single-ended RF front ends [69], fully differential

RF front ends [71, 66], and hybrid RF front ends where the LNA input is single-ended

but the signal is internally converted to a differential signal at RF [4, 32]. As the RF

front end is integrated on the same chip as digital logic and baseband analog circuits,

a differential architecture offers significant advantages in terms of substrate noise and

power supply immunity. For example, harmonics of low-frequency signals can more

easily couple into single ended architectures, thereby swamping out signals of interest

and potentially resulting in instability. This potential for instability is particularly



worrisome due to the large RF gain associated with the chosen architecture.

As robustness is of paramount concern, a differential RF architecture is selected;

however, as all commercially available UWB antennas are single ended, the LNA has

a single ended input. Single-ended to differential conversion is realized by the LNA

and all later stages are differential. Employing a differential architecture results in

several additional benefits outlined below:

* Reduced VDD decoupling capacitance is required.

* Higher quality factor inductors are available.

* Virtual ground 'center-tap' can be exploited in both differential capacitors and

inductors.

* Unlike with single ended amplifiers, bias currents of differential amplifiers can

be set without requiring ac coupling or large decoupling capacitors.

Despite the many benefits associated with differential architectures, one key dis-

advantage of differential architectures is that both area and power consumption are

often doubled; however, given the many benefits previously mentioned, this disad-

vantage is acceptable.

4.2.2 Resonant vs. non-resonant load

In many RF amplifiers, resonant loads consisting of inductors, resistors, and capaci-

tors are used to match impedances, cancel parasitics, and filter out unwanted signals

[83]. For instance, a parallel RLC tank placed at the output of an amplifier results

in a second-order bandpass transfer function. While a bandpass transfer function can

be implemented using only capacitors and resistors, a key difference is that inductor

causes the tank to become resonant. At the resonant frequency, referred to as wo, the

admittance of the inductor and capacitor cancel.

By exploiting resonance of RLC networks, it is possible to obtain higher gain at

RF than would otherwise be possible with non-resonant circuits. Figure 4-3 shows
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Figure 4-3: Circuit schematic of (a) resonant and (b) non-resonant amplifiers with
equal power consumption. Simulation results comparing the gain of the amplifiers
are presented in Figure 4-4.

circuit schematics of simple resonant and non-resonant amplifiers, and Figure 4-4

presents the simulated gain of these two amplifiers versus frequency. To ensure a fair

comparison between the two amplifier structures, several steps were taken. First, as

the resonant amplifier requires less voltage headroom, its supply voltage is reduced to

0.6 V compared to 1 V for the non-resonant amplifier. Second, the power consump-

tion of the two amplifiers are matched. Finally, parasitic capacitances, Miller effect

capacitances, and RF device models are included in the schematics.

In the given 90 nm CMOS process, the resonant differential pair shown in Fig-

ure 4-3(a) achieves a gain of 3.2 at 4 GHz with a supply current of 5 mA (VDD =

0.6 V). The RLC load has a quality factor of 5.75, which results in a -3 dB band-

width of 695 MHz. In contrast, the differential pair with non-resonant load shown

in Figure 4-3(b) achieves a gain of 2.2 at 4 GHz with a supply current of 3 mA

(VDD = 1 V). Although the gain at dc is 3.1, the gain at 4 GHz is degraded due

to the low pass -3 dB frequency near 4.2 GHz. This low pass frequency is deter-

mined by the parasitic wiring capacitance as well as capacitances of loading devices.

At sub-GHz frequencies, these parasitic capacitances might be sufficiently small such

that an amplifier with non-resonant load can realize superior gain at the same power

consumption as an amplifier with a resonant load [27]; however, in this system the

resonant amplifier achieves superior gain.
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Figure 4-4: Gain of the resonant and non-resonant RF amplifiers presented in Fig-
ure 4-3.

In addition to the gain advantage offered by the resonant RLC load at 4 GHz, the

resonant amplifier has less total integrated output noise, due to the reduced output

bandwidth. For a self mixing based receiver, the total integrated output noise can

limit sensitivity and thus must be minimized. One disadvantage associated with

the resonant load is that the required inductors and capacitors can be quite large.

In addition, the resonant load must be able to be tuned to each of the frequency

channels or have sufficiently wide bandwidth to cover all of the frequency channels

simultaneously. In the given CMOS process, the area overhead of the resonant loads

are acceptable and the tuning range of 3.5 to 4.5 GHz is technically feasible. Thus, a

parallel LC resonant load is employed in each gain stage.

4.2.3 Core amplifier structure

Given the design choice of a differential amplifier with resonant load, the final key

design choice is what amplifier structure to use. One of the most common topolo-

gies is the differential pair, shown in Figure 4-5(a). The common-mode rejection

ratio (CMRR) of this amplifier can be improved by adding a source degeneration

inductor and capacitor [4]. This amplifier can operate at very low supply voltages,

and in fact, for maximum energy efficiency it needs to operate off very low supply
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Figure 4-5: Four possible implementations of an RF gain stage with a resonant load.



voltages. The amplifier shown in Figure 4-5(a), but with source degeneration, has

been demonstrated operating at a supply voltage as low as 0.5V [4]. In a practical

system, however, there are several reasons why such a low supply voltage is not ideal.

In mixed signal SoCs with RF, baseband analog and digital logic all on a single chip,

additional complexity is required to generate multiple supply voltages. Moreover,

there are voltage headroom advantages to operating both RF and baseband analog

circuits at higher voltages. For example, NMOS switches operating off a higher sup-

ply voltage have an improved I, to Ioff ratio. Thus, a key design goal is to design

an energy efficient RF gain topology that can operate off a 1 V supply.

Two popular approaches for RF amplifiers to take advantage of increased voltage

headroom are by cascoding [67] and current reuse [66]. Figure 4-5(b) shows an ex-

ample of an RF gain stage with cascoding, and Figure 4-5(c) shows an example of

current reuse by using PMOS input devices in tandem with NMOS input devices. In

Figure 4-5(c), two current sources are used to regulate the current as well as cancel

common-mode components, whereas in Figure 4-5(d) only one current source is used

to regulate current. When only a single current source is used, the power supply can

be reduced resulting in improved energy efficiency; however, this comes at the cost of

degraded common-mode and power supply rejection.

The circuits presented in Figures 4-5(a), 4-5(b) and 4-5(d) were simulated to de-

termine which topology has the maximum gain at a given power consumption, and

the simulated results are presented in Figure 4-6. To normalize power consumption,

the circuit of Figure 4-5(a) is supplied a voltage of 0.57 V and a current of 5.26 mA,

whereas the other two circuits are supplied a voltage of 1 V and a current of 3 mA.

All three topologies have similar performance, except that the cascode amplifier pro-

vides slightly less peak gain and has a narrower bandwidth. It might be somewhat

surprising that the inverter-based amplifier shown in Figure 4-5(d) has comparable

performance to the NMOS amplifier shown in Figure 4-5(a) considering that the

transconductance efficiency of PMOS devices is less than NMOS devices. While the

lower transconductance efficiency of PMOS devices does reduce performance, this is

offset by the lack of a current source above the PMOS input devices. Thus, the power
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Figure 4-6: Gain of an NMOS-based RF amplifier operating at 0.57 V (Fig. 4-5(a)),
an NMOS-based cascode RF amplifier operating at 1 V (Fig. 4-5(b)), and an inverter-
based, complementary RF amplifier operating at 1 V (Fig. 4-5(d)), with all amplifiers
consuming equal power.

consumption of the current source can be amortized by both the NMOS and PMOS

input devices.

As the inverter-based RF amplifier shown in Figure 4-5(d) achieves comparable

performance to the NMOS amplifier shown in Figure 4-5(a), but operates off a 1 V

supply rather than a 0.57 V supply, this topology is chosen as the core RF amplifier.

To obtain a sufficiently large tuning range, the load capacitor is implemented with

metal-oxide-metal (MOM) capacitors with 5 bits of tuning as shown in Figure 4-7.

This capacitor implementation results in a superior tuning range and higher qual-

ity factor than a varactor based load capacitor. The tuning structure leverages the

differential RF signals to reduce the size of the NMOS switches, thereby reducing

parasitic capacitance. Figure 4-8 shows graphically how differential signals are lever-

aged to reduce overall transistor size. The two circuits in Figure 4-8 have the same

RF impedance to GND, but in Figure 4-8(a), the overall transistor width is reduced

by four times. In the implemented circuit, additional NMOS switches to GND are

inserted to dc bias switches and tolerate mismatch. The capacitor tuning requires

only NMOS switches and thus consumes no subthreshold leakage as all internal nodes

are nominally biased at 0 V.
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Figure 4-7: Digitally tunable load capacitor of RF amplifier. All NMOS devices are
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Figure 4-8: Schematic showing how differential signals can be leveraged to reduce
transistor size. The two circuits shown have the same RF impedance, but by con-
necting a transistor between the positive and negative terminals, the overall transistor
width is reduced by four times.
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Figure 4-9: Schematic of low noise amplifier.

4.2.4 Low Noise Amplifier

The core RF amplifier described and motivated in the preceding sections serves as

the basis of the LNA, shown in Figure 4-9. The LNA is an inverter-based RF am-

plifier that performs single-ended to differential conversion. The LNA is essentially

a common-source, common-gate (CS-CG) amplifier [26], with wideband matching to

the 50 Q antenna through the PMOS common-gate amplifier. The LNA is designed

and laid out to be as symmetric as possible, so that noise on nodes like VCM is can-

celled. The LNA input is dc biased by Li, to VDD. Alternatively, if the input needs

to be dc biased to GND, the LNA can be designed with an NMOS common-gate

amplifier with no degradation in performance.

When the LNA is enabled, the switch en is closed, connecting the dc output of the

differential inverters with the dc input of the inverters. Through negative feedback,

the dc voltages at all of the nodes normalize to the same value, VCM. To allow the

LNA to turn on rapidly, switches are placed in parallel with Rs1 and Rs 2 and these

switches are briefly enabled while the LNA turns on. In normal operation, Rsl and

RS2 are sufficiently large that the negative feedback does not degrade gain. When

the LNA is disabled, the switch en is opened, IDC is set to 0 A, and VCM is actively

driven to VDD. This allows the output dc voltage to freely float, which is necessary

for proper calibration of the receiver (Described in Section 4.4).
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Figure 4-10: Schematic of 6-stage RF amplifier, including the LNA. A variable number
of stages can be enabled depending on the gain required.

4.2.5 Multi-stage RF amplifier

Following the LNA are five stages of RF gain, providing approximately 40 dB of gain

to amplify the received wireless signal from the micro-Volt to the milli-Volt level.

Figure 4-10 presents the schematic of the multi-stage RF amplifier, including the

LNA. The first stage of RF amplification is the LNA that is also shown in Figure 4-9.

Later stages of RF amplification are differential inverters with resonant loads as shown

in Figure 4-5(d).

To dc bias the RF gain stages, the center tap of each stage's inductor is connected

to the center taps of adjacent stages' inductors. Due to the differential voltage across

each inductor, these center tap nodes are virtual grounds. Moreover, as all RF am-

plifiers are biased with the same current density, these nodes are nominally at the

same dc voltage. By connecting these nodes together with a low impedance connec-

tion, the CMRR is superior to what is obtained with more traditional common-mode

feedback (CMFB) techniques like resistive feedback. The simulated common-mode

gain of the five stages of RF gain after the LNA is less than 3 dB over a wide input

bandwidth.

Each gain stage has a squarer at its output, although at any time only one squarer
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Figure 4-11: Schematic of differential, passive squarer.

is enabled. Depending on how much RF gain is needed, a variable number of RF gain

stages are enabled, as well as the appropriate squarer.

4.3 Squarer

A squarer serves two functions in the receiver: to frequency shift (or mix) the received

RF signal to baseband and to square its amplitude. Although these two functions

are typically implemented in a single circuit, the frequency shifting and squaring

operations can be de-embedded from one another. For example, a mixer can be used

to mix a signal to baseband, and then after several baseband gain stages, the signal

can be squared. This can be useful to reduce RF gain, as micro-Volt level signals can

be processed by a mixer, whereas squaring circuits typically rely on device nonlinearity

and require milli-Volt level signals.

Most noncoherent UWB receivers implement a squarer by mixing the signal with

itself [65, 62, 4]. It is possible to design an entirely passive squarer that consumes no

dc bias current; however, these passive squaring circuits are traditionally single ended

[4] or pseudo-differential [62]. In this work, a passive, differential squarer is employed

that uses transistors biased in the triode region (Figure 4-11). The differential squarer

is made possible by the inverter-based RF amplifier, as the output voltage of the RF
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Figure 4-12: Output amplitude magnitude of differential squarer versus amplitude of
4.5 GHz RF input.

amplifier is nominally mid-range, thereby allowing both NMOS and PMOS devices to

have sufficient gate overdrive. The squarer consumes no static bias current and has

near zero dc output voltage offset. A key advantage of this structure is that fairly well

matched differential outputs are generated. Due to its nonlinear transfer function,

the squarer requires RF inputs with amplitudes above approximately 10 mV. At a

10 mV RF input, the single-ended output voltage amplitude is ,0.7 mV, as shown

in Figure 4-12.

Figure 4-13 presents a transient simulation of the RF front end at its maximum

gain setting and squarer in response to a pulsed LNA RF input. The transient plot

shows how 80 [V input signals are amplified to the milli-Volt level, and then squared

at RF, mixing the signal to baseband.

4.4 Baseband Amplifier

Following the squarer is a baseband signal chain consisting of a three-stage amplifier

followed by an integrator and ADC (Figure 4-14). The baseband amplifiers are simple

differential pairs with resistive loads. The cumulative differential gain of the baseband

amplifier chain is simulated to be 83 V/V and the 3 dB bandwidth is 230 MHz. The
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Figure 4-14: Baseband signal chain, consisting of a baseband amplifier, an ADC and
digital calibration logic.

large baseband gain is required to amplify the squarer output from amplitudes as low

as 0.5 mV. Each differential pair operates off a 1 V supply, is supplied 320 pA of

current, and has resistive and capacitive loads of 2.5 kQ and 150 fF, respectively. A

multi-stage amplifier is used rather than an op amp due to the wide signal bandwidths

and because a high Q filter is not required.

Due to the small input levels and high gain, offset compensation is a critical

component of the baseband amplifier. An input referred offset of merely 10 mV

would saturate the baseband amplifier. Traditionally, the goal of offset compensation

is to establish a 0 V differential output voltage given a 0 V differential input voltage;

however, in this system a fixed offset at the output needs to be established to maximize

dynamic range. This fixed output offset is required because the baseband signal

generated by the squarer is monopolar, meaning that the positive squarer output only

increases from its 'zero-input' level and the negative squarer output only decreases.

Thus, the positive baseband amplifier output should nominally be biased near the

bottom of the amplifier's dynamic range.
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Figure 4-15: Examples of offset compensation approaches for the baseband ampli-
fier. (a) Discrete-time, analog offset compensation, (b) Continuous-time, analog offset
compensation, and (c) Discrete-time, digital offset compensation.



A variety of techniques can be employed to cancel offsets, including autozeroing

and chopper stabilization [41]. Given the wide signal bandwidth, autozeroing is pre-

ferred to chopper stabilization and can be implemented by analog or digital means,

and in a discrete time or continuous time process. In discrete time analog offset

storage (e.g. Figure 4-15(a)), the differential inputs are usually shorted together and

offsets are sampled onto capacitors at the input or output of amplifiers. Due to

leakage, the voltage stored on these capacitors must be periodically refreshed. In ad-

vanced CMOS processes where gate leakage is significant, the refresh period may need

to be less than 1 ps, making this form of offset cancellation impractical. Alternatively,

analog offset storage can be implemented with a continuous time, RC high pass filter

between stages (e.g. Figure 4-15(b)); however, this will cancel low-frequency inputs.

Again, due to leakage, the high pass corner frequency may need to be on the order

of 1 MHz. While 1 MHz is not significant relative to the 250 MHz signal, the key

problem associated with continuous-time filtering is that a long sequence of received

pulses (or noise) over time can result in an identical output as a zero-input signal.

This prevents accurate measurement of the absolute energy received, and thus only

relative measurements can be made.

Given the aforementioned considerations, offset compensation is implemented dig-

itally in a discrete time process, and a simplified block diagram of the offset compen-

sation is shown in Figure 4-15(c). During calibration, the LNA is disabled and the

baseband inputs are shorted to the same dc value. Next, the integrator and ADC

convert the baseband output to a digital value. The ADC output code is processed

by a slope tracking state machine to adjust a 5 bit DAC until the ADC output code

approaches the desired ADC value. In the slope tracking algorithm, the DAC value is

incremented or decremented by one codeword until the minimum difference between

the ADC value and the desired ADC value is observed. While this could potentially

require many more ADC samples than a binary search algorithm, in the majority

of situations, only a few ADC samples are required. The slope tracking algorithm

begins searching from the DAC value calculated previously, and in practice this DAC

value does not need to change much over time.
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Figure 4-16: Circuit of current-mode DAC that is used to cancel baseband amplifier
offsets.

Given the 83 V/V gain of the three-stage baseband amplifier and that input signals

can be as small as half a milli-Volt, input-referred offsets greater than -100 /pV must

be cancelled. A standard method to implement this offset compensation is to connect

a current-mode, multi-bit DAC to the output of the first baseband amplifier stage.

As each baseband amplifier stage has a gain of 4.3 V/V, a 100 pV input referred offset

corresponds to a 430 pV offset at the output of the first amplifier stage. Given an

amplifier load resistance of 2.5 kQ, this forces the current-mode DAC to have an LSB

of approximately 2 pA. Such a low current is challenging to generate from the 320 pA

current supplied to the amplifier stage. Two key challenges with generating the 2 pA

current are that extreme device ratios are required to step down from 320 [A to 2 pA

and that such small currents result in slow time constants, potentially switching

between 'on' and 'off' too slowly for either the radio calibration logic or the radio

turn-on sequence.

One possible solution to address this problem is to connect the current-mode

DAC to the output of a later baseband amplifier stage. This allows for the LSB

current source to increase by many times; however, this technique come at the cost

of increased power consumption. Additionally, this technique does not work if the

offset of the first amplifier stage is too large and later stages are saturated.

To try and address these problems, in this receiver a current-mode DAC is used



that can be connected to the output of all three baseband amplifier stages rather than

just a single baseband amplifier stage. The DAC consists of seven identical current

sources which can be independently routed to one of the three amplifier stages, or

none of them (Figure 4-16). To ensure monotonicity, as the DAC code increases, the

current sources transition from being unconnected, to being connected to the final

amplifier stage, to eventually being connected to earlier amplifier stages. For example,

if there is zero input-referred offset, the current sources are disconnected from the

baseband amplifier. If there is a small input-referred offset, the current sources are

only connected to the output of the final baseband amplifier stage. However, if there

is a large input-referred offset, the current sources are connected to the output of the

first and second baseband amplifier stages.

Depending on whether a positive or negative offset needs to be cancelled, the

current sources can connect to the positive or negative output nodes. This sign

control is set by the Plus/Minus control signal. A table showing how the DAC code

relates to current routing is shown in Figure 4-17. Based on the DAC code, the DAC

Enable[14:O] and Plus/Minus switches are opened or closed (Figure 4-16).

4.5 Integrator and ADC

Following the baseband amplifier is a windowed integrator and ADC. Both the inte-

grator and ADC are clocked at 32 MHz, resulting in an integration period of 31.25 ns.

The output of the ADC is a digital representation of the total RF energy received

within the 31.25 ns integration period. This absolute measurement of energy is pre-

ferred to a relative measurement of energy, because it allows for demodulation of both

PPM and OOK data.

Background and Motivation

An integrator can be represented as an analog filter, and the two most common

techniques to implement an analog filter are with a switched-capacitor filter or with

a continuous time filter. Due to the 250 MHz signal bandwidth, it is challenging to
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implement a low power switched capacitor filter and thus a continuous time filter is

preferred. One common approach to implement an integrator is to use an op amp

based integrator (Figure 4-18(a)). In an op amp integrator, feedback is used to create

a virtual ground node at the op amp's negative input terminal. This virtual ground

node in combination with resistor R allows for a highly linear conversion of voltage

Vi, to current. Alternatively, the resistor R can be replaced with a transconductor

to form a GM-C op amp integrator (also called a Miller integrator) [84]. For optimal

performance, a high gain op amp is required that has a unity gain bandwidth much

larger than the input signal bandwidth. This is particularly challenging for the UWB

system due to the 250 MHz baseband signal bandwidth. Moreover, it is difficult to

realize op amps in advanced CMOS processes.

As an alternative to op amp based integrators, it is possible to design a transcon-

ductor (GM) based integrator that does not require op amps (Figure 4-18(b)). The

transconductance element can be easily implemented with a differential pair [85], a

common-source amplifier, or even an inverter [4]. One limitation, however, is that the

transconductance element requires a high output impedance. To increase the output

impedance, positive feedback can be leveraged [85]. Alternatively, it is possible to

use a dynamic output node [62], which also provides a significant increase in head-

room. For example, an integrator can be realized with a single-transistor, NMOS

common-source amplifier that discharges a load capacitor from VDD. One disadvan-

tage with this approach is that without an active load device like a current source,

any dc bias current generated by the transconductance element is integrated on the

output capacitor along with the integrated signal of interest. Despite this drawback,

a dynamic, transconductor based integrator is selected owing to its simplicity.

A key design challenge is how to design the ADC that converts the analog, inte-

grator output to a multi-bit digital value. For maximum performance, the windowed

integrator must be able to integrate time periods of 31.2 ns that are immediately

after one another, which leaves no time for the integrator to reset its output between

integration windows and for the ADC to quantize the analog value. Although a dy-

namic, transconductor based integrator can reset its output sufficiently fast (< 1 ns)



-c ADCVin o -- --gm ClockA -

Select C2 ,0.
Clock B

Select

Clock A _I1i.
Clock B I _ I

S- ---

Select

Figure 4-19: An example implementation of a time interleaved integrator and ADC.
Shown below the circuit diagram is a timing diagram.

such that there is no significant degradation in performance, most practical ADCs

require multiple nano-seconds to quantize the analog value. To address this problem,

the ADC requires a sample-and-hold circuit or interleaving or pipelining is required.

For example, it is possible to time-interleave two integration capacitors and ADCs as

shown in Figure 4-19. When the input signal is being integrated onto capacitor C1,

an ADC quantizes the integrated value stored on capacitor C2, and vice versa. Imme-

diately after an ADC completes its quantization, the appropriate capacitor voltage is

reset to VDD in anticipation of the next integration period.

As mentioned earlier, in practical transconductor based integrators with dynamic

output nodes, the transconductor output current consists of both a dc current (Idc)

and an input-dependent current (gmvin). The dc current generates a fixed voltage

offset at the output of the integrator, which can compress the dynamic range of

the output. As a solution, it is possible to cascade multiple integrators back-to-

back as shown in Figure 4-20. In this integrator, the transconductor first discharges

the voltage on capacitor C1 until it is discharged past the switching threshold of

the comparator connected to capacitor C1. When the comparator's output flips,

the transconductor output current is switched to discharge the voltage on capacitor
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Figure 4-20: An example implementation of a cascaded integrator and ADC. Shown
below the circuit diagram is a timing diagram.

C2, until the end of the integration period. Capacitor C1 can be sized to cancel the

voltage offset introduced by Idc, such that only the signal of interest is integrated onto

capacitor 02. At the end of the integration period, only one ADC is required which

samples the integrated voltage on capacitor C2. The cascaded integrator and ADC is

similar to a zero-crossing based, pipeline ADC in that an asynchronous comparator

switching event indicates that a stage has completed [20]. The integrator and ADC

structure is also similar to a single-slope integrating ADC.

Compared to the time interleaved integrator shown in Figure 4-19, when a dynamic

integrator is used, the cascaded integrator and ADC requires comparable area but

increases the ADC dynamic range. Thus, the cascaded integrator and ADC is used

in this work. The following sub-section describes the actual implementation of the

integrator and ADC.

Implementation

The ADC consists of two single ended ADCs, operating on the positive and negative

integrator outputs and each generating 5 bits of information. The difference between
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Figure 4-21: Six stage cascaded integrator and ADC.

these ADC values generates a 6 bit output code, although if perfect matching is

assumed, only 5 bits of useful information is generated. Despite this limitation, the

pseudo-differential structure offers improved power supply rejection and common-

mode rejection compared to a single ended, 5 bit structure. Additionally, the pseudo-

differential outputs can allow for CMFB during normal operation, as described in

Chapter 2.

Having the integration output quantized to multiple bits is useful for gain control

and for accurate timing synchronization. Due to the 5 bits of ADC information

combined with coding on the transmitter, the receiver is able to synchronize with an

accuracy of +1 ns while being clocked with a period of 31.25 ns [35].

A detailed block diagram of the integrator and ADC are shown in Figure 4-21.

The differential inputs are first passed through a differential transconductor to convert

the input voltage to a current. This current discharges up to six stages from VDD in
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succession, similar to that of a dynamic inverter. The differential rate of discharge

between the positive and negative ADCs is based on the differential input voltage,

and thus an integration function is realized. Based on the number of stages that

are discharged in the integration period, 2 bits of coarse quantization are generated.

Only 2 bits of information are generated from the six stages because the first two

stages are not considered in the coarse quantization. The first two stages should

ideally always be discharged by the end of an integration period and thus do not

contribute information. These first two stages serve to cancel out the static, zero-

input dc current of the differential transconductor that is required to appropriately

bias the transconductor in a linear region. Additionally, the time while these first

two stages are being discharged is leveraged by the final four stages to evaluate the

previous integration value.

The ADC generates an additional 3 bits of fine quantization that are combined

with the 2 bits of coarse quantization. These 3 bits are generated by quantizing the

capacitor voltage of the stage that was being discharged at the end of the integration

period with a flash ADC. The capacitor voltages on stages three through six are

temporarily held constant while the appropriate flash ADC resolves. During this

time period, the next integration period has already begun by discharging stage one.

A simple flash ADC with a resistive ladder DAC is used to generate these 3 bits.

Thus, 5 bits of data are generated by the integrator and ADC. Both positive and

negative outputs of the transconductor are independently processed by this integrator

and ADC structure, and thus a pseudo-differential output is generated.

The integrator and ADC are designed to operate at 1 V and do not require any

op amps. The architecture is similar to a single-slope integrator, but with a few key

modifications. First, the single-slope is divided over multiple stages, so that back-

to-back integrations can occur on the same signal path. Second, the 5 bit ADC

output code is generated by combining the outputs of a 3 bit flash ADC with 2 bits

of information derived from the number of stages that are discharged.

To describe the operation of the integrator and ADC in more detail, an example

integration and conversion period is described below.

101



Before integration begins, the first stage is precharged to VDD. Next, the inte-

gration period begins, and stage 1 is discharged from VDD. The rate of discharge

depends on the input voltage. Simultaneously, stage 2 is precharged. Once stage 1

has discharged past a certain threshold, the comparator connected to stage 1 toggles.

This comparator triggers the next stage to begin discharging. While stage 2 is dis-

charging, stage 3 is precharged. This process again continues until the comparator

connected to stage 2 toggles, signaling the integrator to begin discharging stage 3.

This process continues until the end of the integration period. Depending on the

input voltage, a variable number of stages have been discharged by the end of the

integration period. This number will be later used to do coarse ADC quantization

of the integration value. Right before the end of the integration period, stage 1 is

precharged to VDD, in anticipation of the next integration period. Thus, once the

integration period is over, a new integration period can begin by discharging stage

1. Simultaneously, stages 2 through 6 are evaluated by flip-flops to implement the

coarse ADC quantization of the integration value. Next, the appropriate flash ADC

from stages 3 through 6 is enabled to do fine quantization of the ADC value. The 2

bits of coarse data and 3 bits of fine data are combined to generate a 5 bit output

code.

4.5.1 Integrator and ADC Clocking

The integrator and ADC are almost entirely self timed, in that each stage is discharged

immediately after the preceding stage has finished discharging. Due to this feature,

no high frequency clocks above 32 MHz are required; however, four clock phase and

level sensitive signals are required.

1. A level to control when to precharge or discharge stage 1.

2. A level to control when the voltages at the output of stages 3 through 6 need

to be held constant for flash ADC conversion.

3. A clock to enable the flip-flops at the output of each integration stage
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Figure 4-22: Integrator and ADC clocking circuit that generates the level sensitive
and clock phases. Each delay element has a nominal delay of 2 ns.

4. A clock to enable the appropriate flash ADC

Figure 4-22 shows how these clock phases and levels are derived from the master

clock provided to the ADC. In each of the six integrator stages, only continuous time,

boolean logic needs to be combined with these four signals to determine when each

stage should be discharged, precharged and evaluated. Some additional signal and

clock gating signals are not shown, specifically the logic that deals with the first and

last integration periods in a series of back-to-back integration periods. For example,

in the first integration period, there is no need to enable the flip-flip clock and the flash

ADC clock, as these would evaluate the result of the preceding integration period,

which does not exist.

Figure 4-23 presents a transient simulation of the integrator and ADC for two

integration periods. The first integration period begins at 10 ns and the positive

ADC output code is 3. This low ADC output code is expected when there are no

received pulses. The negative ADC output code is not shown, but its output code is

nominally 31 - ADCpl,,, so long as the positive and negative ADCs are well matched

and the differential transconductor is properly biased. The second integration period

begins at 42 ns and the ADC output code is 22. By the end of the second integration

period, four integrator stages are completely discharged and the fifth stage is being

discharged.
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Figure 4-23: Transient simulation of integrator and ADC for two integration periods.
The first integration period begins at 10 ns and the second integration period begins
at 42 ns.
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The average of the positive and negative ADC output codes represents the common-

mode of the integrator and ADC, and this average is used for CMFB by adjusting the

integrator current. The CMFB uses the same slope-tracking algorithm that is used

for offset compensation of the baseband amplifier. Typically, the CMFB is executed

prior to offset compensation.

4.6 Crystal Oscillator

The SoC is designed to be clocked off a fixed 32 MHz oscillator that is always en-

abled. Due to the noncoherent signaling, clock frequency and timing synchronization

accuracy requirements between transmitter and receiver are dramatically reduced.

The receiver does not need to track the phase of the RF carrier, as no information is

encoded in the phase. Instead, the receiver only needs to track the phase of the bit

periods, which are nominally 31.25 ns.

By stabilizing the frequency of an oscillator with a quartz crystal, it is possible to

achieve frequency accuracies on the order of ±20 ppm [86]. Such accurate frequencies

allow for the transmitter and receiver to require only one synchronization per packet,

without any phase tracking during the packet payload. For example, with a 32 MHz

oscillator, the transmitter and receiver have a worst-case offset frequency of 640 Hz.

If up to 2 ns of clock drift can be tolerated by the system, the receiver can operate for

100 ps after synchronization. At the maximum data rate of 16 Mbps, this corresponds

to a payload length of 1600 bits, which is more than sufficient for our application.

The receiver includes two Pierce crystal oscillators, although only one oscillator

can be enabled at any time. The two designs were included to compare a traditional,

single-transistor oscillator (Figure 4-24), with an inverter based, two-transistor oscil-

lator (Figure 4-25). Both circuits operate off a 1 V supply and nominally consume

150 pA of current. The single transistor oscillator includes an amplitude feedback

loop to prevent oscillation amplitudes from becoming too large [87]. A simple buffer

circuit, shown in Figure 4-26, is used to amplify the oscillator output.
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r----- 11----------I I

Figure 4-24: Pierce one-transistor crystal oscillator with amplitude control circuitry.

Osc. Out

Figure 4-25: Pierce two-transistor, inverter-based, crystal oscillator.

Oscillator_
Output

,Osc. Out

Figure 4-26: Crystal oscillator output buffer, to amplify
digital levels.

the oscillator output to full
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Figure 4-27: Delay-locked loop.

4.7 Delay-Locked Loop

For the receiver to successfully decode data, the integrator and ADC must be phase

aligned with the received data. Phase alignment is implemented with a digital syn-

chronization algorithm and a DLL. Based on the result of the digital synchronization,

an appropriate phase from the DLL is used to clock the integrator and ADC. During

synchronization, the DLL is bypassed and the integrator and ADC are provided the

same clock phase as the rest of the digital logic. As the DLL is not being used, the

DLL can be calibrated during this time by a SAR state machine.

The digital baseband achieves synchronization accuracy of +1 ns in an integration

window of 31.25 ns, and the DLL is designed to match these specifications. The DLL

has 16 outputs, each nominally spaced 1.95 ns apart from one another. Due to the

noncoherent signaling, the DLL does not need to have good linearity, and thus it is

possible to use simple delay elements and calibration logic. Figure 4-27 presents the

schematic of the DLL. The core delay element consists of a current starved inverter,

and a DAC is used to control the bias current of the inverter. All outputs of the DLL

are passed to a digital, synthesized state machine.

As the integrator and ADC operate off a different clock phase than the rest of

the digital logic, there is a potential for timing violations or clock offsets at the

interface. To address this problem, retiming registers connect to the ADC outputs.
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These retiming registers can be either positive or negative-edge triggered to ensure

sufficient setup and hold time.

4.8 Digital Shift Register

The receiver is digitally programmed and monitored through a digital serial peripheral

interface (SPI) bus. The receiver operates as a slave device and the SPI bus consists

of 5 wires: SPI clock, master-output slave-input (MOSI) data, master-input slave-

output (MISO) data, SPI enable, and reset. The SPI clock is separate from the

32 MHz system clock, and is retimed by system clock in the digital shift register

logic. Due to the retiming, the SPI clock must be a lower frequency than the system

clock.

The shift register consists of 3788 total bits, which are divided into 25 separate

sub-shift registers. Each sub-shift register is hard coded as a read/write, read-only,

or trigger shift register:

* Read/write shift registers are programmable based on MOSI data, and their

values can be read out through MISO. For example, the LNA bias current is

controlled by 6 bits in a read/write shift register.

* Read-only shift registers cannot be programmed, and instead are used to read

out internal states of the receiver through MISO. For example, the calibrated

integrator bias current is stored in a read-only shift register.

* Trigger shift registers are used to generate single pulse 'trigger' signals at the

32 MHz system clock. For example, a trigger can be generated to begin cali-

bration of the integrator bias current.

Of the 3788 total shift register bits, 343 bits are dedicated to the RF front end

and baseband analog circuits, including the ADC. In combination with a digital

state machine, these bits control which RF gain stages are enabled, default DLL bias

current settings, testability modes, etc.
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4.9 Digital State Machine

The receiver is designed to be duty cycled, where it periodically turns on and attempts

to receive a packet. Duty cycling allows for a reduction in average power consumption

at the cost of reduced data rates. This duty cycling capability is embedded within the

receiver through a digital state machine, consisting of a sleep counter and controllers

for the receiver and stimulator. In between packets, the radio and modem are disabled

and all digital logic is clock gated except for the sleep counter. This low power sleep

mode continues until the sleep counter reaches a programmable count value. At this

point, the receiver state machine is triggered, and the receiver attempts to receive a

packet.

Once the receiver is triggered, but before the receiver modem performs packet de-

tection, the receiver state machine performs calibration of the DLL, baseband ampli-

fier and integrator. This calibration only takes a few microseconds, and is performed

before every packet reception to account for any change in temperature or supply

voltage since the last packet reception attempt.

4.10 Test Circuits

For test purposes, additional circuitry is included in the receiver SoC. One key

circuit is the RF output buffer, which buffers the output of the RF gain chain off-

chip. The output buffer allows for noise figure and gain measurements of the RF

front end. The RF output buffer is shown in Figure 4-28 and consists of an NMOS

source follower with an NMOS common-source amplifier. As the majority of test

equipment is single-ended whereas the amplified RF signal is differential, the output

buffer converts the differential signal to a single-ended output. One advantage of this

circuit over a single-ended inverter-based amplifier or a simple source follower is that

to a first order, this circuit equally loads the positive and negative outputs of the RF

gain chain. Additionally, the circuit realizes greater gain than a source follower.

A second key circuit for testability is an output buffer for the baseband amplifier.
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Figure 4-28: RF output buffer to drive the amplified RF signal off-chip.

The baseband amplifier differential pairs are not designed to drive a 50 Q output

impedance or a large capacitive load, and thus an output buffer is required. Source

followers are used to drive both the positive and negative baseband amplifier outputs

off-chip. Finally, to allow the integrator and ADC to be characterized, the receiver

includes switches that allow off-chip signals to connect to the integrator inputs.

4.11 Summary

This chapter described the key RF and analog circuit blocks of the UWB receiver.

Highly digital, differential structures are used throughout the receiver to obtain good

performance and reject power supply and substrate noise. A differential inverter-

based amplifier with resonant load provides a good energy/gain trade-off while achiev-

ing comparable common-mode rejection to more traditional amplifier structures. The

cascaded integrator consists of a differential transconductor that discharges multiple

nodes from VDD in succession, and a flash ADC quantizes the integration result. To

improve system reliability and reduce off-chip components, the receiver SoC includes

extensive digital calibration logic.
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Chapter 5

UWB Receiver SoC Measurement

Results

This chapter describes the test setup and measurement results of the UWB receiver

SoC described in Chapter 4. The performance of the full UWB receiver SoC as well

as individual components are described in this chapter. In addition, the performance

of the receiver is compared with other state-of-the-art receivers. A key challenge in

testing a UWB chip is that the high frequency RF circuits are highly susceptible to

parasitic sources of loss. This chapter describes the steps taken to avoid such loss.

5.1 Layout, Packaging and PCBs

The receiver is implemented in a 90 nm CMOS process and a die photo of the chip is

shown in Figure 5-1. The die area is 2.6 mm by 2.1 mm, and the area is dominated

by digital logic, which occupies the right side of the die.

Due to the significant amount of digital logic integrated on the same die as the

RF front end, there is significant potential for digital supply and substrate noise

to result in degraded analog and RF performance. This motivated the use of a

differential receiver architecture, as explained in Chapter 4. Additionally, several

layout techniques are employed to mitigate the effects of digital noise.

* Guard rings are placed around each of the sensitive RF and analog blocks, and
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Figure 5-1: Die photograph of pulsed UWB receiver SoC.

# Pad Description
36 GND
34 VDD (RF, analog, digital, ...)
1 RF LNA input
1 RF test output
3 Analog test I/Os
2 Crystal resonator connection
12 Digital output pads
13 Digital input pads

Table 5.1: List of pad connections on receiver SoC.

a separate guard ring is placed around the digital logic.

* A guard ring barrier is placed between the digital logc and all other circuits.

* Analog and digital I/O pads have separate ESD devices.

* The analog and digital circuits have separate power supply domains on-chip.

The receiver has a total of 102 I/O pads, and a breakdown of the pad connections

are presented in Table 5.1. To reduce the impedance of the power supply network,

over half of the pads are dedicated to either GND or a VDD.

The chip is packaged in a quad flat no-lead (QFN) package with die attach pad

(DAP) for ground connections to limit the impact of bondwire inductance on the
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(a) (b)

Figure 5-2: Bare die packaged in (a) a 40-pin QFN package and (b) a 64-pin QFN

package. The 40-pin QFN package is 6mm x 6mm and the 64-pin QFN package is

9mm x 9mm. The two photos are equally scaled.

sensitive input and output RF pins. Two different packages are used: a QFN 64-

pin package for comprehensive characterization and a smaller 40-pin QFN package

optimized for RF measurements. Both packages have a pad pitch of 0.5 mm. When

the receiver is packaged in the 40-pin QFN package, many digital I/Os and VDD

pads on the die are left unconnected. Inside the QFN packages, the die is positioned

closer to one side to minimize the bondwire inductance of the RF input. Given that

bondwires have an inductance of approximately 1 nH/mm, positioning the die can

result in a significant improvement in performance. Photographs of the UWB receiver

bonded in the 40-pin and 64-pin packages are shown in Figure 5-2. In both die photos,

the ground downbonds to the DAP are visible.

Figure 5-3 shows a block diagram of the three FR4 PCBs used in the test setup.

The PCBs are stacked with the receiver mounted on top.

1. The bottom PCB (Figure 5-4) is an Opal Kelly XEM3001 integration mod-

ule based on a 400,000 gate Xilinx Spartan-3 field programmable gate array

(FPGA). The XEM3001 interfaces to a PC and is powered via a Universal Se-

rial Bus (USB) connection. In the test setup, the XEM3001 serves as a digital

pattern generator, a digital logic analyzer, and a power source.

2. The middle PCB (Figure 5-5) interfaces between the bottom XEM3001 and the
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Figure 5-3: Block diagram of the three PCBs used for testing the receiver.

receiver chip on the top PCB. It includes level converters to convert the 3.3 V

digital signals on the XEM3001 to and from the 2.5 V digital signals on the

UWB receiver. It also includes low frequency analog inputs and power supply

regulators.

3. The top PCB (Figure 5-6) is a daughterboard and includes the packaged re-

ceiver, decoupling capacitors, and a crystal resonator. SMA connectors on the

board connect to the RF input and RF test output of the receiver.

Given that the QFN package needs to be directly soldered to a PCB, it is challeng-

ing to rapidly test multiple chips. Sockets are available for QFN packages, but they

cost thousands of dollars and require clearance around the QFN package, resulting in

longer traces with increased parasitic RF losses. Without a socket, it is necessary to

completely populate a new PCB for every chip to test, or a chip must be unsoldered

and a new chip be soldered. Unfortunately, both of these options are time consuming.

As an alternative, by using a daughterboard for the radio chip, multiple chips can be

rapidly tested. For both the QFN 40-pin and 64-pin packages, the same middle PCB
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Figure 5-4: Opal Kelly XEM3001 FPGA module. (Actual size 3.5" by 2.0")

Figure 5-5: Middle PCB of three PCB stack. (Actual size 4.5" by 2.4")

Figure 5-6: Top PCB (daughterboard) of three PCB stack.
board is designed for the 40-pin QFN package. (Actual size

This specific daughter-
1.8" by 1.3")
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is used and only the daughterboard is different.

5.2 Bit Error Rate and Interference Measurements

The receiver sensitivity is perhaps the best measure of overall performance of the

receiver SoC. Here, sensitivity is defined as the average input power level that results

in a given bit error rate (BER) at a specified data rate. Testing sensitivity of the

receiver requires a UWB transmitter with power and frequency control. Figure 5-7

shows the test setup employed to measure the receiver BER. The test setup consists of

the UWB receiver, power supplies, a laptop, a spectrum analyzer, and an ideal UWB

transmitter consisting of an arbitrary waveform generator (AWG), a vector signal

generator (VSG), and an RF interference generator. The ideal UWB transmitter has

the following properties:

* The AWG (Tektronix AWG710) generates baseband pulse bursts that will be

upconverted to PPM data. The AWG is clocked at 512 MHz. Each pulse

burst consists of 12 back-to-back pulses of 1.95 ns. This 23.4 ns pulse burst was

found to result in maximum receiver sensitivity. To ensure a wideband frequency

spectrum, the individual baseband pulses are modulated with a pseudo-random

pattern, generating a BPSK modulated pulse burst.

* The VSG (Agilent E8267C) generates the PPM UWB signal. The baseband

pulse stream from the AWG is passed to the VSG wideband modulator input,

which upconverts the baseband signal to RF. The VSG includes precise output

power and frequency control.

* The RF interference generator (Agilent E8362B) generates an RF frequency

tone with programmable output power. For interference measurements, this

tone is combined with the VSG output.

Before BER tests begin, the laptop must program both the receiver chip and

the ideal transmitter. The laptop interfaces to the receiver PCB test boards via
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Figure 5-7: Test setup used to measure the BER of the receiver both with and without
narrowband interferers.
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Figure 5-8: BER of receiver (a) at its highest gain setting at the three center frequen-
cies, and (b) at the different gain settings with fe = 4.0 GHz.

a USB interface, sending commands to and receiving data from the FPGA on the

XEM3001 PCB. The receiver is first programmed through its digital shift register to

an appropriate gain and frequency setting. Next, the laptop configures the ideal UWB

transmitter to generate a packet of many thousand back-to-back PPM encoded UWB

signals. The FPGA provides a 10 MHz reference clock to the AWG to ensure there

is no clock drift during the duration of a packet. At the start of a packet, the FPGA

generates a pulse that triggers the AWG to begin sending the packet. Simultaneously,

the FPGA stores the receiver ADC outputs or baseband demodulator outputs. From

this data, the BER of the receiver is determined.

Figure 5-8 presents the BER of the receiver in different frequency channels at its

highest gain setting and at different gain settings with fe = 4.0 GHz. The receiver

achieves a maximum sensitivity of -76 dBm at a data rate of 16 Mbps and a BER of

10 - 3 . The sensitivity scales by 35 dB from the lowest to highest gain setting, allowing

for a trade-off of power consumption for sensitivity.

The BER of the receiver has been characterized in the presence of varying supply

voltages, to determine the resilience of the receiver to power supply variation. Fig-

ure 5-9 presents the sensitivity of the receiver versus core supply voltage at its highest

gain setting with fc = 4.0 GHz. A variation in the core supply voltage of +50 mV
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Figure 5-9: Sensitivity of the receiver versus core supply voltage at its highest gain

setting (f, = 4.0 GHz).

results in only a 2 dB degradation in sensitivity. Throughout these measurements,

none of the receiver components are recalibrated from the nominal values, includ-

ing the baseband offset compensation DAC, the RF front end capacitor tuning, and

the differential transconductor current. All BER measurements were conducted with

an I/O supply voltage of 1.2 V rather than the standard 2.5 V, to minimize digital

switching noise being coupled into the sensitive RF and analog circuits.

5.2.1 Interference Measurements

In a practical wireless system, the receiver must reject interfering signals, both in-

band, in the 3.5, 4.0, and 4.5 GHz channels and out-of-band. Key potential sources for

out-of-band interferers include 802.11 at 2.45 GHz and 5.25 GHz, as well as Bluetooth

at 2.45 GHz. Table 5.2 presents the maximum tolerable out-of-band interferer power

at 2.45 GHz and 5.25 GHz. In these measurements, the receiver is first set to its

maximum gain setting and the UWB input power is set such that the BER of the

receiver is 10- 6 . When f, = 4.0 GHz, this corresponds to an input power level

of -73 dBm. Next, the interferer tone is generated and combined with the UWB

signal. The maximum tolerable out-of-band power level corresponds to the maximum

interferer power level when the BER is less than 10- 3 . Similar measurements have
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Maximum Interferer Power (dBm)
fc = 3.5 GHz f, = 4.0 GHz f, = 4.5 GHz

2.45 GHz -22 dBm -19 dBm -23 dBm
5.25 GHz -30 dBm -30 dBm -41 dBm

Table 5.3: Receiver power consumption breakdown. In idle mode, the crystal oscilla-
tor is enabled.

Receiver component Power Consumption
Leakage 0.64 mW
Crystal oscillator 0.15 mW
Clock tree (idle) 0.13 mW
Delay locked loop 0.05 mW
Baseband amplifier & ADC 1.51 mW
LNA 5.90 mW
RF Amplifier 0 mW to 14.30 mW

Total idle power 0.92 mW
Total active power 8.38 mW to 22.69 mW

been taken with in-band interferers, and the maximum tolerable in-band interferer

power ranges from -1 dB to 3 dB relative to the UWB signal power.

5.3 Power Consumption & Energy/bit

As the receiver SoC is targeted for low power, highly energy constrained applications,

significant effort was spent to minimize overall power consumption and energy/bit.

A breakdown of power consumption is shown in Table 5.3. Due to the extensive

digital logic and the absence of power gating switches, the total leakage power is

0.64 mW. When the receiver is in idle mode, the clock tree is extensively gated;

however, 0.13 mW of power is still consumed. The overall receiver power consumption

is dominated by the LNA and the RF amplifiers that follow the LNA. Each individual

RF amplifier consumes approximately 2.85 mW of power consumption, and the five-

stage RF amplifier consumes a total of 14.30 mW of power when all five stages are

enabled. At the lowest gain setting, the entire receiver consumes 8.38 mW of power

and at the highest gain setting, the receiver consumes 22.69 mW of power. The power
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consumption is constant regardless of the RF center frequency and includes the power

of the digital backend when decoding data; however, these power measurements do

not account for the energy required for synchronization at the start of a packet.

As the receiver operates at an instantaneous data rate of 16 Mb/s, the energy/bit

of the receiver is 0.5-to-1.4 nJ/bit depending on the gain setting. Table 5.4 and

Figure 5-10 present the energy/bit of the receiver compared to previously published

receivers, both narrowband and wideband as well as coherent and noncoherent. The

receiver achieves one of the lowest energy/bit values; however, the energy/bit metric

is flawed in that it does not account for receiver sensitivity. Many radios that achieve

a low energy/bit achieve a very poor sensitivity and range, and thus have limited

utility in practical systems. As an attempt to better compare receivers of different

energy/bit, data rates, and sensitivities, it is possible to normalize receiver sensitivity

to a constant data rate. This normalized sensitivity is similar to noise figure, but offers

a measure of the entire receiver performance rather than just the noise performance

of the RF front end. The following tenet forms the basis of the normalized value:

A 10 dB improvement in receiver sensitivity is equivalent to a decrease in

data rate by 10x at a constant energy/bit.

This tenet is based on the fact that for a given modulation scheme and a fixed noise

figure, data rate scales linearly with bandwidth, and a 10x decrease in bandwidth

results in a 10 dB improvement in sensitivity based on the following equation:

dBc
P,,min = -174 + 10log(BWHz) + SNIin + NF (5.1)

Hz

In equation (5.1), Pr,min represents the sensitivity, BW represents the noise band-

width, SNRmin represents the minimum signal-to-noise ratio (SNR) required at the

output of the receiver, and NF represents the noise figure of the receiver. If NF

and SNRmin remain constant, then a 10x decrease in bandwidth results in a 10 dB

improvement in sensitivity.

The tenet is also based on the approximation that noise bandwidth should ideally

scale linearly with power consumption, resulting in a constant energy/bit. While this
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approximation is not fundamental, the following two examples provide some justifi-

cation. For example, if ten identical narrowband radios are operated simultaneously,

each in a different frequency band, the average data rate increases by 10x and the

average received power increases by 10 dB, but the energy/bit remains constant. Al-

ternatively, if a radio is duty cycled by 10x, both the average data rate decreases

by 10x and average received power decreases by 10 dB, but the energy/bit remains

constant.' In practice, increasing data rates usually results in a sub-linear increase in

power consumption, resulting in high data rate radios achieving a better energy/bit

at the same scaled sensitivity as low data rate radios. Despite these limitations, the

scaled sensitivity metric serves as an effective number (like noise figure) to compare

the performance of a wide variety of receivers, both coherent and noncoherent and of

varying data rates.

Normalized sensitivity is included as a column in Table 5.4 and Figure 5-10(b)

plots normalized sensitivity versus energy/bit for previously published receivers and

this work. Ideally a receiver is positioned at the lower-left corner of this plot, achieving

a good normalized sensitivity and a minimum energy/bit. The receiver presented in

this thesis compares favorably with previously published work. From the plot, there

is a definite trade-off between energy/bit and normalized sensitivity. Although it is

possible to introduce a single FoM that captures both energy/bit and normalized

sensitivity, determining a fair FoM is fraught with difficulty, due to the difficulty in

quantifying the trade-off between energy/bit and sensitivity. Receiver sensitivity can

be improved by increasing energy/bit through a variety of techniques including coding,

reducing receiver noise figure, and using multiple antennas. For coherent receivers,

averaging two received bits can produce a 3 dB improvement in sensitivity, whereas

using a rate 1 convolutional code can produce a 6 dB improvement in sensitivity.

For noncoherent receivers, averaging offers less than 3 dB improvement in sensitivity,

depending on the SNR.

1It is important to note that while duty cycling or through parallelism, the instantaneous sensi-
tivity (or minimum detectable signal) does not change, and thus it is misleading to imply that the
sensitivity of the receiver has improved or worsened.
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Table 5.4: Comparison of receiver with previously published work.

Author Data Rate Power E/bit Sens. at Sens. scaled
data rate to 100kbps

(kbps) (mW) (nJ/bit) (dBm) (dBm)

Porret [88] 24 1 41.6 -95 -89

Choi [89] 200 21 105 -82 -85

Emira [90] 11000 114 10.3 -86 -106

Otis [81] 5 0.4 80 -101 -88

Darabi [91] 11000 360 32.7 -88 -108

Chen [92] 500 2.8 5.6 -80 -87

Lee [4] 16700 42 2.5 -77 -99

Marholev [75] 3000 43 14.3 -83 -98

Pletcher [93] 100 0.052 0.5 -72 -72

Zheng [68] 15600 102 6.51 -75 -97

Weber [94] 2000 36 17.8 -90 -103

Bohorquez 120 0.4 3.3 -93 -94

[95]
Retz [96] 250 30.25 121 -96 -100

Verhelst [60] 20000 3.1 0.159 -65 -88

22.5 1.4 -76 -98
This work 16000-50 -72

11 0.7 -50 -72

* This work (lowest gain)
This work (highest gain)

... .. : ........ : ......... : ........ : .........
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Figure 5-10: Two comparison plots of receiver with previously published work: (a)

energy/bit versus data rate, and (b) normalized sensitivity versus energy/bit. In both

plots, a point is shown for the receiver at its highest and its lowest gain setting. Data

for these plots are found in Table 5.3.
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5.4 Wireless Demo of Transceiver Chipset

This UWB transceiver chipset has been demonstrated in a wireless image transmission

platform.2 A top level block diagram of the wireless image transmission system is

shown in Figure 5-11. The transmitter consists of a PC that generates packets, which

are processed by an FPGA module and wireless transmitted by the UWB transmitter

chip described in Chapter 3. The receiver consists of the UWB receiver chip described

in Chapter 4 that wirelessly receives packets, which are then processed by an FPGA

module and the received data is displayed on a PC.

A unidirectional wireless link is used to minimize system complexity as the UWB

receiver is not integrated on the same die as the transmitter. To improve the reliability

of the wireless link, a feedback path from receiver to transmitter is implemented

through an internet connection. Graphical user interfaces are setup in MATLAB

on both PCs. The wireless link communicates at a maximum instantaneous data

rate of 8 Mb/s; however, the actual data rate in the system is reduced by over an

order of magnitude due to delays in the MATLAB algorithms. The wireless platform

is able to transmit data reliably, with above 95% packet reception rate and below

2 x 10- 5 BER, for distances up to 16 m; however the transmitted waveform violates

the FCC spectral mask by a few dB. At 16 m distance, the wireless link communicates

at a maximum instantaneous data rate of 2.67 Mb/s. Further details on the image

transmission system are presented in [97].

Whereas the preceding sections in this chapter have presented high level system

measurements of the full receiver SoC, the following sections present detailed mea-

surement results of the many individual circuit components.

5.5 RF Front End

The RF front end is characterized by applying inputs to the LNA input and measur-

ing outputs at the RF output buffer. Additionally, s1l measurements are made by

2 The wireless image transmission platform was developed by Helen Liang as part of her Master

of Engineering thesis.
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Figure 5-12: Measured sil of the receiver, comparing results from the 40-pin and

64-pin QFN packages and comparing a microstrip transmission line to a grounded

coplanar waveguide transmission line. In all three configurations the receiver is tuned

to a frequency of 3.5 GHz.

connecting the LNA input to a network analyzer. As the LNA input is connected

on-chip to VDD by an inductor, it is necessary to ac couple test equipment to the

LNA input if the test equipment cannot tolerate dc voltage offsets. To implement the

ac coupling, a Pasternack PE8210 dc blocking sub-miniature A (SMA) male to SMA

female connector is used.

S-Parameter: sil

The sil of the receiver is characterized by connecting the LNA input to an Agilent

E8362B network analyzer. An s1i < -10 dB is desired for a good 50 Q match

to the antenna. If s1l > -10 dB, excess power is reflected from the LNA to the

antenna, degrading performance. sil measurements of the LNA are presented in

Figures 5-12 and 5-13. In Figure 5-12, the s11 of the receiver is measured in three

different configurations: a 64-pin QFN package with a microstrip transmission line, a

40-pin QFN package with a microstrip transmission line, and a 40-pin QFN package
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Figure 5-13: Measured sii of the receiver with a center frequency of 3.5, 4.0 and
4.5 GHz packaged in a 40-pin QFN package with grounded coplanar waveguide trans-
mission lines.

with a grounded coplanar waveguide (CPW) transmission line. For all three test

boards, the receiver is tuned to a center frequency of 3.5 GHz. The 64-pin QFN

receiver has an si < -5 dB only over an extremely narrow frequency range and an

average s1i of -2.14 dB in the 3.5 GHz band. In contrast, the receivers in 40-pin QFN

packages have s1i < -5 dB over a much wider frequency range. The 40-pin QFN

packaged receivers with microstrip and grounded CPW transmission lines have an

average s1l of -8.2 dB and -10.5 dB, respectively, in the 3.5 GHz band. From these

results, it is evident that the reduced bondwire lengths associated with the 40-pin

QFN package result in improved performance and the grounded CPW transmission

line is superior to the microstrip transmission line. Figure 5-13 presents the measured

si1 of the receiver tuned to a center frequency of 3.5, 4.0, and 4.5 GHz packaged in

a 40-pin QFN package with grounded CPW transmission lines. The receiver has an

average si1 of -10.5 dB, -9.8 dB, and -7.8 dB in the 3.5, 4.0, and 4.5 GHz bands,

respectively.
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Figure 5-14: Output spectrum of the RF front end when the LNA input is terminated
to 50 Q. The spectrum analyzer RBW and VBW are set to 3 MHz, and the detector
is set to average mode.

RF Gain

For any measurements that require two ports, including noise figure and P1dB, mea-

surements are constrained due to the fact that the RF output buffer requires all RF

gain stages to be enabled as it is connected to the output of the final RF gain stage.

Thus, it is not possible to measure the transfer function of an individual RF gain stage.

As the RF output buffer is single ended, and has amplitudes over 30 dB greater than

the single ended LNA input, there exists the potential for oscillations to occur due to

substrate and power supply coupling. Despite efforts to minimize the chance of these

oscillations, oscillations are observed when the receiver is tuned to a center frequency

4.0 GHz. These oscillations are not visible when the receiver is tuned to the other

two channels. It is important to note that these oscillations do not occur when the

RF test output is disabled during normal operation. Figure 5-14 presents the output

spectrum of the RF front end when the LNA input is terminated to 50 Q. For these

plots, the spectrum analyzer has an RBW and VBW of 3 MHz, and thus a thermal

noise power of -109 dBm is expected. From these plots, the maximum noise power

is approximately -65 dBm, corresponding to a cumulative gain and noise figure of

44 dB. When the receiver is tuned to a center frequency of 4.0 GHz, an oscillation

128



2 0 . -.... .... .. ............20 .. f = 3.5 GHz
0 r i 1 c

'i '='= f = 4.0 GHz
Z 0 s -f = 4.5 GHz

-20 ...

-40
2 3 4 5 6

Frequency (GHz)

Figure 5-15: Frequency dependent gain of the RF front end at its maximum gain
setting at the three channel frequencies.

tone nearby 3.7 GHz is visible.

The frequency dependent gain of the RF front end at its maximum gain setting

at the three channel frequencies is shown in Figure 5-15. In each of the three chan-

nel, a maximum gain of 33 dB to 35 dB is measured and the -3 dB bandwidth is

approximately 250 MHz. As will be described later, this measurement of gain likely

underestimates the actual gain by 5 dB due to attenuation caused by the output

buffer. The -6 dB bandwidth is approximately 500 MHz, and the bandwidth in-

creases at higher channel frequencies at a greater rate than the frequency increases,

indicating a degradation in the quality factor of the resonant tank at high frequencies.

Due to the oscillations at 3.7 GHz when the receiver is tuned to a center frequency of

4.0 GHz, the data between a frequency of 3.65 GHz and 3.8 GHz is removed from the

plot for fc = 4.0 GHz. The measured gain of the 4.0 GHz channel is likely reduced

compared to the other two channels due to non-linear behavior introduced by the

oscillation tone at 3.7 GHz.

Linearity: PldB

For extremely large input signals, the RF front end can saturate and synchronization

performance and BER can be degraded. The linearity of the RF front end is measured
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Figure 5-16: Output amplitude vs. input amplitude of the receiver RF front end at
its highest gain setting, with an input frequency of 4 GHz. From this plot, the PjdB
at the highest gain setting is measured to be -41 dBm.

by applying a frequency tone of varying amplitude to determine the P1db. Figure 5-16

presents the output amplitude of the complete RF gain chain versus LNA input

amplitude, with the RF front end tuned to the RF input frequency of 4 GHz. From

this plot, the measured P1dB is -41 dBm and the total gain is measured to be 32 dB.

In this measurement, the PldB is likely dominated by the final amplifier in the chain

of six RF amplifiers (including the LNA). In a later section, once off-chip losses

are accounted for, it is shown that the gain from LNA input to the input of the

final RF amplifier is approximately 31 dB. Based on this value, the expected PjdB

of each amplifier can be estimated to be -10 dBm. At the lowest gain setting,

assuming a 0 dBm transmit output power, the LNA input power will be -10 dBm at

a communication distance of approximately 3 cm. As the transceiver chipset is not

designed for such short distance communication, the linearity of the RF front end is

acceptable.

Noise Figure

The noise figure of the RF front end directly impacts the sensitivity of the receiver

and is ideally minimized; however, there is a trade-off between power consumption
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Figure 5-17: Noise figure of the RF front end when operating in each of three channels.

and noise figure. From Figures 5-14 and 5-15 it is possible to derive the noise figure

of the RF front end; however, precise noise figure measurements require the use of

a temperature calibrated noise source. Thus, noise figure measurements are made

with an Agilent N4002A noise source connected to an Agilent MXA N9020 Signal

Analyzer. Figure 5-17 presents the frequency dependent noise figure of the RF front

end when operating in each of the three channels. The minimum noise figure in the

3.5, 4.0, and 4.5 GHz channels is measured to be 7.7, 9.0, and 9.1 dB, respectively.

The average noise figure in the 3.5, 4.0, and 4.5 GHz channels is measured to be

8.3, 9.7 and 10.2 dB, respectively. Given that the receiver is targeted for energy

constrained applications where power consumption is as important as performance,

the measured RF front end noise figure is acceptable.

The noise figure measurements match what is expected based on the zero-input

measurements in Figure 5-14 and the gain measurements in Figure 5-15; however, the

noise figure measurements are significantly higher than simulated values, likely due

to the inability to run full RC extracted simulations that include the power supply

nodes, and also due to unaccounted for parasitic resistances, inductances and capac-

itances associated with PCB traces, on-die traces and bondwires. In an unextracted

simulation with no bondwires, the RF front end has a simulated noise figure of 3.1 dB

at 4 GHz. A significant degradation in noise figure is seen once on-die traces are in-
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Figure 5-18: Positive and negative output amplitudes of the squarer versus LNA
input power at its third of six RF gain settings (fc = 4.0 GHz).

cluded in simulations after RC extraction. The simulated noise figure of the RC

extracted RF front end is 4.8 dB, ignoring any RC losses on the power supply or

ground nodes. In the following section, additional measurements of RF gain provide

evidence that the difference between simulated and measured noise figure is due to

degraded LNA gain.

5.6 Squarer

The squarer is characterized by applying RF input signals to the LNA and directly

measuring the outputs of the differential squarers. On the chip are programmable

switches to connect the squarer outputs to the analog test pads.

The matching performance and transfer function of the squarer is characterized

over the desired differential output voltage range of 0-to-8 mV. Ideally, the output

voltage amplitude should linearly increase with power and the positive and negative

outputs should be identical. The measured results, shown in Figure 5-18, achieve

good power-voltage linearity and matching.

Figure 5-19 presents the differential output amplitude of the squarer versus LNA

input power for the six RF gain settings. From Figure 5-19, one can determine the
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Figure 5-19: Measured differential output amplitude of the squarer versus LNA input
power for the six RF gain settings.

absolute gain of each RF gain setting by using the simulation result that an RF

amplitude of 40 mV will generate a differential squarer output amplitude of 20 mV.

While the accuracy of this simulation result cannot be guaranteed, the squarer is less

subject to RF parasitics than the RF gain chain. Using this simulation result, the

single ended voltage gain of the RF front end is 39 dB at its highest gain setting and

0 dB at its lowest gain setting. As the LNA input is single-ended and all internal

signals are differential, the differential gain can be considered to be 6 dB greater than

the single ended gain, making the LNA voltage gain 6 dB. On average, the RF gain

increases by 8 dB when increasing the RF gain by one setting.

From Figure 5-19, the maximum RF gain is calculated to be 39 dB, which is

significantly larger than the gain of 33-to-35 dB measured in the preceding section.

These conflicting measurement results provide evidence that the RF output buffer

likely attenuates the RF output by approximately 5 dB. Moreover, the measured

LNA single ended gain of 0 dB is 4 dB below what is determined from RC extracted

simulations; however, the 8 dB gain of later gain stages closely matches simulation

results. Thus, there are likely unaccounted for parasitics in the LNA input network,

including the bondwire, bond pad, and PCB traces. These unaccounted for parasitics

would degrade both the noise figure and gain and explain the measured noise figure
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Figure 5-20: Differential output amplitude of the squarer versus LNA input power at
its third of six RF gain settings, demonstrating a linear relationship between input
power and output amplitude (f, = 4.0 GHz).

of 8-to-10 dB versus the simulated noise figure of 5 dB.

5.7 Baseband Amplifier

The baseband amplifier is characterized in a similar way to the squarer, by applying

RF input signals to the LNA and directly measuring the differential output of the

3-stage baseband amplifier. On the chip are programmable switches to connect the

baseband outputs to the analog test pads. Using the offset cancellation current DACs

and the digital calibration, the baseband amplifier is calibrated to nominally have an

output offset of -230 mV with no RF input. As described in Chapter 4 this fixed

offset maximizes the dynamic range of the baseband amplifier due to the monopolar

squarer output. The zero input voltage offset is visible in the transfer function of the

baseband amplifier, which is presented in Figure 5-20.

Figure 5-21 presents the differential output amplitude of the baseband amplifier

versus LNA input power for the six RF gain settings. By combining the results in

Figure 5-21 with the squarer results in Figure 5-19, the baseband differential gain is

measured to be 80 V/V, closely matching simulation results.
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Figure 5-21: Differential output amplitude of the baseband amplifier versus LNA
input power for the six RF gain settings (f, = 4.0 GHz).
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Figure 5-22: (a) DNL and (b) INL of integrator and ADC.

5.8 Integrator and ADC

To test the integrator and ADC, off-chip signals are applied to the input of the

differential transconductor through the analog I/O pads. ADC static and dynamic

measurements are complicated by the fact that the integrator cannot be de-embedded

from the ADC and that there is no sampling switch. Thus, inputs are effectively time

averaged, making it difficult to measure ADC performance by applying sinusoidal

inputs. Instead, to measure linearity, dc inputs need to be applied. Figure 5-22

presents the differential non-linearity (DNL) and integral non-linearity (INL) of the

ADC. The measured DNL is less than 1 LSB and the INL is less than 2 LSB. The

symmetric, non-linear nature of the INL is due to the differential transconductor.
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Figure 5-23: Linearity of ADC when provided a pulse input of varying duration.

Dynamic performance of the integrator and ADC is measured by applying pulses of

varying width, simulating the receiver in normal operation (Figure 5-23). By applying

pulse inputs rather than dc inputs, the bandwidth of the integrator is tested. The

measurement results indicate a monotonic response and fairly good linearity, with the

linearity likely limited by the differential transconductor.

5.9 Crystal Oscillator

The crystal oscillator consists of an off-chip, Abracon ABM10 crystal resonator [86]

and an on-chip Pierce oscillator. Two types of Pierce oscillators are included on the

receiver chip: a one-transistor, NMOS based oscillator and a two-transistor, inverter

based oscillator. Table 5.5 presents the measured oscillation frequency of the crystal

oscillator for these two topologies at varying supply voltages and multiple chips. The

measured oscillation frequency does not vary significantly over all of the different

chips, voltages, and topologies. The measured phase noise of the crystal oscillators is

shown in Table 5.6.
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Table 5.5: Crystal oscillator frequency for different chips, supply voltages and oscil-

lator topologies.
Oscillation Frequency (Hz)

Chip # Pierce Oscillator
VDD= 0. 9 5 V VDD = 1.0 V VDD = 1.05 V

1 2-Transistor 32,000,678 32,000,673 32,000,667

1 1-Transistor 32,000,719 32,000,720 32,000,722

2 2-Transistor 32,000,748 32,000,744 32,000,739

2 1-Transistor 32,000,776 32,000,778 32,000,780

Table 5.6: Crystal oscillator phase noise at various offset frequencies for both one-

transistor and two-transistor Pierce oscillator topologies.
Phase Noise

Offset Frequency Phase Noise
One-transistor Oscillator Two-transistor Oscillator

10 kHz -99 dBc/Hz -107 dBc/Hz

100 kHz -114 dBc/Hz -113 dBc/Hz

1 MHz -122 dBc/Hz -126 dBc/Hz
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Figure 5-24: (a) DNL and
DNL and INL shown in (c)

(b) INL of DLL based on an LSB of 1 x 31.25 ns. The

and (d) are based on an LSB of 2.04 ns.
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5.10 Delay Locked Loop

As the digital synchronization algorithm is only able to achieve accuracies to ±1 ns,
the DLL does not need to be extremely linear. Figure 5-24 presents the DNL and

INL of the DLL, and both DNL and INL are less than 1 LSB. The INL of the DLL,
shown in Figure 5-24(b) gradually increases with codeword, indicating that each delay

element has too large a delay. Whereas each output phase should nominally be spaced

by 1.95 ns, the average measured spacing is 2.04 ns. This difference is likely due to

the limited tuning resolution of the DLL combined with mismatch in timing paths

of the DLL logic. If the INL is normalized to an LSB of 2.04 ns, very good INL is

observed (Figure 5-24(d)).

5.11 Summary

This chapter presented measurements results of the UWB receiver and compared the

receiver performance to existing work. Several steps were taken in layout, packaging,

and board design to reduce parasitic sources of loss. By using a smaller package with

shorter bondwires and improving the RF PCB traces, a significant improvement in

sil was measured. The receiver operates at a 16 Mb/s instantaneous data rate and

achieves a sensitivity of -76 dBm at 10-3 BER. The receiver SoC instantaneous power

scales from 8-to-22.7 mW while demodulating data, yielding 0.5-to-1.4 nJ/bit. When

compared to receivers that achieve similar normalized sensitivities, the receiver has a

very good energy/bit. The receiver has been combined with a UWB transmitter in a

UWB image transmission demo, and reliable communication is observed at distances

up to 16 m.
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Chapter 6

UWB Receiver SoC System

Demonstration: Cyborg Moths

In 1964, Jose Delgado, a scientist at Yale, stood in a bullring in C6rdoba, Spain facing

a charging bull. Moments before it could gore him, Delgado pressed a button on a

radio transmitter that activated electrodes implanted in the bull's brain, braking it to

a halt [98]. Since that demonstration, scientists and engineers have been fascinated

by cybernetic organisms, or cyborgs, that fuse artificial and natural systems. Cyborgs

enable harnessing biological systems that have been honed by evolutionary forces over

millennia to achieve astounding feats. Male moths can detect a single pheromone

molecule, a sensitivity of roughly 10-21 grams. Swarms of cyborg insects could patrol

millions of acres of forest land, relay real-time traffic patterns, inspect bridges, and

conduct chemo- and nuclear surveillance over entire continents, all at extremely low

costs. Semiconductor technology is central to realizing this vision, and, despite a rate

of advance arguably unmatched in human endeavor, requires fundamental innovations

to catch up to the formidable capabilities of biological systems. Cyborg applications

are highly constrained in terms of energy, volume, and weight, demanding careful

system and circuit level engineering.

An emerging cyborg application is hybrid-insect flight control, where electron-

ics and MEMS devices are placed on and within insects to alter flight direction.

Compared to existing micro- and nano-air vehicles used by the military and other
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government agencies, insects are appealing because they are small, can travel signifi-

cant distances, and can carry relatively large payloads. Such a hybrid-insect system

would take the best qualities of biology: energy storage, efficient flight control, highly

adapted sensing - and combine them with the best qualities of electronics: low weight,

small size, deterministic control, and interfacing with computation. A critical com-

ponent of the hybrid-insect system is the communication link, which provides flight

control commands to the insect. A wireless communication link is required for maxi-

mum system range and versatility.

This chapter presents work on a hybrid-insect wireless system being developed

by engineers and scientists at the Massachusetts Institute of Technology, the Uni-

versity of Arizona, and the University of Washington. The UWB receiver that is

presented in the previous three chapters of this thesis is a key component of the

hybrid-insect system. The focus of this chapter is on the wireless transceiver and sys-

tem integration challenges, rather than the biological challenges. First, background

on hybrid-insect systems is provided and the Manduca sexta hawkmoth is introduced.

Next, an overview of the wireless test board and key circuits that interface with the

moth are presented. Finally, system results during untethered flight in a wind tunnel

are presented.

6.1 Previous Hybrid-Insect Flight Control Research

and Systems

For millennia, humans have been able to control the motion or flight of animals

through a variety of techniques. Horses are provided directional commands from hu-

mans by reins. Homing pigeons have been selectively bred to be able to find their way

home over extremely long distances and are used to deliver messages. Dogs, dolphins,

chimpanzees and many other animals can be trained to follow human instructions.

Hybrid-insect flight control systems are an example of these existing motion control

systems pushed to the micro-scale. A pivotal, early development leading to hybrid-
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insect systems was the discovery of electrophysiology by Luigi Galvani in the late

1700's; he discovered that electrical sparks caused leg motion in a dead frog. The

electrical properties of biological cells and tissues make it possible to interface elec-

tronic devices with cells and tissues to deliver electrical stimulation and to obtain

electrical recordings.

One of the most influential developments in electrophysiology has been the devel-

opment of the cardiac pacemaker and defibrillator, where the beating of the heart is

measured electrically, and electric pulses are sent to the heart, causing it to either

beat at a normal rate or restart beating if it has stopped. Pacemakers are implanted

within the human body and consist of a battery with ultra-low-power electronics, ca-

pable of achieving ten years of battery lifetime [10]. In 2005, approximately 800,000

pacemakers were implanted worldwide [99]. Pacemakers share many similarities with

hybrid-insect systems in that electronics must interface with an organism and power,

weight, and volume are all highly constrained.

In the last few decades, due to ongoing miniaturization of electronics, researchers

have developed 'backpacks' to place on animals, for both electrical stimulation and

recording. Demonstrated systems include a stimulator for cockroaches [100], a dis-

crete wireless transmitter for transmitting muscle potentials of a flying locust [101], a

discrete frequency modulation (FM) telemetry system for recording electromyogram

(EMG) signals from moths [102, 103], an integrated FM telemetry system for record-

ing neural activity of monkeys [104], and many other systems [105, 106, 107, 108, 109].

The majority of published work involves electrical recorders and wireless transmit-

ters rather than electrical stimulators and wireless receivers, because recording neural

activity has historically been more important than stimulating neurons.

As scientists have come to better understand the electrical properties of organisms,

it is becoming increasingly feasible to control motion through electrical stimulation. In

[100], directional locomotion control of a cockroach is implemented through electrical

stimulation of afferent nerve fibers on the antennae. Recent work has controlled the

wing flapping of a moth through electrical stimulation of muscle groups [110]. A

similar stimulation approach has been used to control the flight of a beetle [111]. An
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alternative to muscle stimulation is to directly stimulate the central nervous system

(CNS), which was demonstrated for moth flight control in [112].

From the aforementioned discussion, it is clear there are several possible insects

that can be used in flight control systems, and for each insect there are several pos-

sible ways to electrically control the flight direction through stimulation. For this

thesis, the Manduca sexta hawkmoth was chosen and preliminary flight control was

realized through direct stimulation of the CNS. The following section provides some

background on the Manduca sexta hawkmoth and introduces the flight-control sys-

tem.

6.2 Manduca sexta hawkmoth

In our research, we used the hawkmoth Manduca sexta, which is commonly found on

the American continent. During their lifespan, moths undergo complete metamor-

phosis, going from egg, to larva, to pupa, and then finally to adult moth, which can

live in captivity for up to two weeks. There are multiple reasons why moths are ideal

for insect flight control systems. First, moths are easily reared in laboratories; the

moth colonies at the University of Arizona and University of Washington have existed

for decades. Second, an adult hawkmoth has a wingspan of 10 cm and a carrying

capacity of approximately 1 g, which is large enough to carry the required electronics.

In addition, moths have been studied extensively by neurobiologists and physiologists

for decades, and thus there is extensive data on their flight control mechanisms. A

moth flaps its wings at 25 Hz, and subtle variations in the wing movement alter the

direction of flight.

6.2.1 Flight control through abdominal deflection

One of the most promising approaches to altering the flight direction of a moth is to

elicit abdominal movements via neural stimulation. The moth's abdomen plays an

important role in flight stabilization. For instance, when the moth flies upward, its

abdomen deflects downward. It has been shown that pulsed stimulation of the nervous
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Figure 6-1: Lateral view of Manduca sexta moth attempting to feed from an artificial

flower. (Photo courtesy of Armin Hinterwirth, University of Washington)

system can generate abdominal movements and thereby bias flight direction [112].

This is a fundamentally different process from stimulating muscles - by stimulating

the nervous system, the pulses consume negligible energy and do not need to be

synchronized with wing flapping.

In our system, stimulation pulses are delivered to the nervous system via a 4-

electrode tungsten probe (Figure 6-2). The electrodes are implanted at the ventral

junction between the abdomen and thorax, and interface with the nervous system.

Figure 6-2: Photograph of two, 4-electrode tungsten probes.
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Figure 6-3: Measured abdominal deflection of a moth in response to pulse stimuli of
varying voltage and frequency. In (a), the voltage of stimulation pulses is varied. T
represents the pulse period, N represents the number of pulses and D represents the
duty cycle. In (b), the frequency of stimulation pulses is varied, for a 0.5 s burst of
2.5 V, 1 ms pulses.

Tungsten wire is used because of its combination of tensile strength, resistance to
corrosion, and conductive properties.' The electrodes consist of -15 mm long, 0.004"

diameter tungsten tines electrically coupled to 0.002" diameter steel wire, which

in turn interfaces with the probe. The steel-tungsten junction is encapsulated in
hardened-resin epoxy which facilitates handling. The four stimulation sites of the
tungsten probe enable multi-directional flight control.

To elicit abdominal deflections, simple monopolar pulses with pulse duration of
1 ms are applied to the CNS via the tungsten probe. Of the four electrodes, at least
one electrode needs to be grounded and at least one electrode needs to be provided

pulses. Figure 6-3(a) plots the abdominal deflection of a moth versus pulse amplitude.
The direction of this abdominal deflection depends on the specific electrode which
is pulsed, and this varies from moth to moth. Generally, the maximum amount
of abdominal deflection that can be introduced is on the order of 7' to 100. A

'The electrodes are designed by Tom Daniel and Armin Hinterwirth, and produced by Susan
Loudon, all at the University of Washington.
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Figure 6-4: Transient measurement of current delivered through a tungsten electrode

when applying a 2.5 V pulse with pulse duration of 1 ms.

pulse amplitude of approximately 1.5 V or above is required to introduce abdominal

deflections. At pulse amplitudes above 5 V, the abdominal motions becomes less

smooth and would likely disrupt natural flight. Figure 6-3(b) plots the abdominal

deflection versus pulse frequency of a different moth. By varying the pulse frequency

from 2 Hz to 200 Hz, the amount of abdominal deflection can be varied from 00 to

70

Based on a transient current measurement (Figure 6-4), the CNS connection be-

tween two tungsten electrodes can be modeled as a resistor with impedance of ap-

proximately 25 kQ. For a 2.5 V pulse stimulus, the average current during the 1 ms

pulse period is approximately 100 pA. Thus, for a pulse duty cycle of 10%, the aver-

age power consumption is 25 pW. In addition to the 25 kQ resistive component is an

inductive or capacitive component that results in small current spikes at each pulse

edge. Figure 6-5 shows two photos of a moth, before and during pulse stimulus.

6.3 Hybrid-Insect Flight Control System

A block diagram of the hybrid-insect flight control system is presented in Figure 6-6.

The flight control system is motivated by a DARPA project with the goal to direct the

flight of an insect to a target 100 m away. A basestation wireless transmitter sends
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(a) (b)

Figure 6-5: Photos showing abdominal deflection of a moth in response to pulse
stimulus. The abdomen is shown (a) before pulse stimulus and (b) during a pulse
stimulus of 2.5 V, 100 Hz with duty cycle of 10%. The radial lines on the graph paper
are spaced 20, indicating a total abdominal deflection of 100.

Ic"

Transr

Tungsten Stimulator
Battery

To Stimulator
nitter Receiver SoC & Stim. Logic

Figure 6-6: Hybrid-insect flight control system.
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directional commands to the moth, and a wireless receiver on the moth decodes these

commands and sends pulses to the moth's CNS via tungsten probes to influence flight

direction. The electronics on the moth are powered by a miniature battery, although

the long term goal of the project is to harvest energy from the motion of the moth.

Given the extreme weight and volume constraints imposed by the moth, the elec-

tronics it is to carry need to be extremely lightweight, low power and to occupy

minimal volume. The total weight must be less than 1 g, the average power con-

sumption must be on the order of a few milli-Watts, and the volume needs to be on

the order of 1 cm3 or less. In addition, the receiver must have a range of 10-to-100 m.

To meet these stringent specifications requires a high performance, highly integrated,

energy efficient receiver SoC. Two factors that help to meet these constraints are that

low data rates (kb/s) are sufficient and that no data needs to be gathered on the moth

and transmitted back to the basestation. Thus, the system employs a unidirectional

wireless link to reduce the complexity and power consumption of the electronics on

the moth; however, by not having a reverse link from moth to basestation, no packet

acknowledgements can be sent, reducing the reliability of the wireless link. As a

workaround, the transmitter employs packet repetition, thus trading off transmitter

power consumption for receiver power consumption. In future work, it would be ad-

vantageous to employ a bidirectional wireless link, both to improve the reliability of

the link and to enable data collection from sensors attached to the moth.

6.3.1 Electronics

Although the receiver is highly integrated, in the hybrid-insect system, additional elec-

tronic components are required. Figure 6-7 shows a block diagram of the electronics

that are used. The key components include the receiver SoC, a microcontroller, 2.5 V

dc-dc converter, 1 V low drop-out (LDO) regulator, miniature coin cell battery, on-off

switch, crystal resonator, LED, antenna, and discrete inductors, resistors and capac-

itors. The electronic components are soldered to a flexible, 4-layer PCB. A flexible

PCB allows for a 60-70% reduction in weight and thickness compared to a rigid PCB.

The electronic components are described in more detail below and photos of the PCB
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Figure 6-7: Block diagram of electronics mounted on a flexible PCB and attached to
a moth.

(a) (b)

Figure 6-8: Flexible PCB (a) top, (b) bottom, and (c) side.
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are shown in Figure 6-8.

The electronics are powered by a 1.4-to-1.6 V Silver-Oxide, size 362 coin cell

battery. The battery has a typical capacity of 27 mAh, weighs 0.32 g, and has an

impedance at 40 Hz of 10-to-20 £. Several Zinc-Air and Silver-Oxide batteries were

tested, and this specific battery was found to be best suited to the high current

drawn by the electronics. At a given weight, thin-film batteries had significantly

worse energy capacity and impedance compared to Silver-Oxide batteries.

As the receiver SoC requires 1.0 V and 2.5 V supply voltages, dc-dc converters

are used to generate the required voltages from the Silver-Oxide battery. A Linear

Technologies LTC3526 boost dc-dc converter generates the 2.5 V supply and a Lin-

ear Technologies LTC3025 LDO linear regulator generates the 1.0 V supply. A key

advantage of the LDO is that its embedded linear regulator directly connects to the

battery voltage but the internal logic operates off the 2.5 V supply voltage, allowing

for high efficiencies and a very low drop-out on the order of tens of milli-Volts. Both

dc-dc converters are packaged in a 2 mm by 2 mm dual flat no-lead (DFN) package

to reduce form factor and weight. To further reduce form factor and weight, only a

single decoupling capacitor is used for each supply voltage. A miniature on-off power

switch is used to enable the dc-dc converters, so that the receiver does not consume

any static current when turned off.

A key limitation of the receiver SoC is that it has no embedded flash memory

and that on power-up it must be programmed to an appropriate state through its

digital shift register. After being programmed, the embedded controller within the

receiver SoC is able to autonomously receive packets periodically. A Texas Instru-

ments MSP430 microcontroller with embedded flash memory is included in the system

and serves as a power-up programmer. To reduce the form factor and weight, the

MSP430 microcontroller is combined in a single QFN package with the receiver SoC

by stacking the receiver bare die on top of the microcontroller bare die. A photo of

the stacked die is shown in Figure 6-9.

As the receiver cannot send an acknowledgement when a packet has been received,

it is not possible for the operator to determine that the receiver is successfully re-
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Figure 6-9: Photo of the UWB receiver SoC and a Texas Instruments microcontroller
vertically stacked in a single package. The UWB receiver SoC is placed on top of the
microcontroller.

Table 6.1: Weight breakdown of components attached to the moth.
System Component Weight
Packaged RX SoC & Microcontroller 161 mg
1.5 x 2.6 x 0.002 cm PCB 100 mg
Antenna 164 mg
Silver Oxide Battery 320 mg
Harness 85 mg
Other Components 170 mg

Total 1000 mg

ceiving packets and stimulating the moth. As a workaround, a miniature red LED is

attached to the PCB and is connected to one of the four stimulation channels. Thus,

when the moth is being stimulated, the LED rapidly turns on and off and is visible

to the naked eye. A red LED is used because moths cannot see the color and it does

not influence their flight.

A Fractus UWB antenna is mounted on the PCB to transduce the electrical RF

signals to electromagnetic waves. The antenna occupies 10 x 10 x 0.8 mm, has a

radiation efficiency > 60% and weighs 164 mg.

Table 6.1 presents a weight breakdown of the components attached to the moth.

The total weight of all components is 1 g, including the tungsten probe and a harness
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A key circuit block on the receiver SoC is V 2 5V es the stim-

ulator electroDividers. The stimulator logic consists of a frequency divider, a pulsewidth

Figure 6-10: Block diagram of stimulation logic included in the UWB receiver SoC.

that is used to attach the PCB to the moth. The Silver-Oxide battery consumes nearly

one-third of the total weight. Although lighter batteries exist, none were found that

could provide the peak2.5 V, a 1 verage current levels required by the receiver SoC.

6.3.2 Stimulation Logic

A key circuit block on the receiver SoC is the stimulator logic which drives the stim-

ulator electrodes. The stimulator logic consists of a frequency divider, a pulsewidth

modulation (PWM) generator and output logic. The clock divider divides the 32 MHz

system clock to a stimulator clock of approximately 1 kHz. This low frequency clock

serves as the master clock for the PWM generator, which generates a pulse burst with

programmable on time, off time, and number of pulses in a burst. The receiver offers

support for up to 8 output channels, and each output channel can be individually set

to ground, to the pulse signal, or to a high impedance state. Level converters convert

the output signals to 2.5 V, as 1 V is not sufficient to elicit abdominal deflection of

the moth.
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Figure 6-11: Photo of the moth with (a) dorsal PCB mounting and (b) ventral PCB
mounting.

6.4 Attaching PCB to Moth

As the average adult moth weighs only 2.5 g, it is a challenge for them to carry

the 1 g of hardware. In fact, previous literature has only demonstrated a carrying

capacity of 0.7 g [102j. For maximal carrying capacity, any weight attached to the

moth must be located near the moth's center of mass. Two alternatives for attaching

electronics to the moth are dorsal mounting by placing the board like a fin or mo-

hawk (Figure 6-11(a)), or ventral mounting by attaching the board with a harness

(Figure 6-11(b)).2 The harness is designed to stabilize and position the hardware

at the moth's center of gravity. Based on multiple tests, we determined that dorsal

mounting allows for a maximum carrying capacity of 0.5 g whereas ventral mounting

with the four-point harness allows for a maximum carrying capacity of 1 g, and thus

ventral mounting is used.

Several steps are required to attach the PCB to the moth and insert the tungsten

probe. It is particularly important not to damage the moth, either by damaging its

wings or by subjecting it to a level of trauma such that it no longer is interested

in flying. The first step of surgery is to remove scales from several locations on the

moth - if these scales are not removed, it is very difficult to attach the PCB and

insert the tungsten electrodes. Next, the moth is anaesthetized by submerging it in a

2For ventral mounting, a harness developed by Goggy Davidowitz at the University of Arizona
is used.
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ness

(a) (b)

Figure 6-12: Photos of the surgical procedure to attach the hardware to the moth.

In (a), the harness is attached to the moth and in (b), the tungsten probe is inserted

through the cuticle into the connective tissue adjacent to the nerve connectives.

container of ice to rapidly cool the moth. This allows for approximately 15 minutes

of surgical time before the moth wakes up. During this time, the PCB is attached

to the moth via a harness (Figure 6-12(a)). The harness is attached to the moth

by crimping little metal beads and gluing them to the dorsal surface. By this time,

the moth is usually waking up, so its wings are temporarily restrained with clips and

then the tungsten probe is inserted into the nervous connective tissue at the ventral

junction of thorax and abdomen (Figure 6-12(b)). Wax is used to keep the tungsten

probe in place. After surgery, the moth is placed in a humidified incubator with

constant light exposure and given at least 8 hours to recover from surgery prior to

flight testing.Several steps are required to attach the PCB to the moth and insert

the tungsten probe. It is particularly important not to damage the moth, either by

damaging its wings or by subjecting it to a level of trauma such that it no longer is

interested in flying. The first step of surgery is to remove scales from several locations

on the moth - if these scales are not removed, it is very difficult to attach the PCB

and insert the tungsten electrodes. Next, the moth is anaesthetized by submerging

it in a container of ice to rapidly cool the moth. This allows for approximately 15

minutes of surgical time before the moth wakes up. During this time, the PCB is

attached to the moth via a harness (Figure 6-12(a)). The harness is attached to the

moth by crimping little metal beads and gluing them to the dorsal surface. By this

point, the moth is usually waking up, so its wings are temporarily restrained with
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Figure 6-13: Photograph of wind tunnel where moth flight tests were conducted.

clips and then the tungsten probe is inserted into the nervous connective tissue at the

ventral junction of thorax and abdomen (Figure 6-12(b)). Wax is used to keep the

tungsten probe in place. After surgery, the moth is placed in a humidified incubator

with constant light exposure and given at least 8 hours to recover from surgery prior

to flight testing.

6.5 Flight Tests

Moth flight tests were conducted in a wind tunnel at the University of Arizona.3

Figure 6-13 presents a photo of the wind tunnel test setup. Multiple video cameras,
both high speed and regular speed, were used to capture moth movement. The UWB

transmitter [33] was placed on the top of the wind tunnel, and a reference receiver
3The flight tests were conducted in collaboration with Alice Stone, a senior research specialist

at the University of Arizona and Zane Aldworth, a postdoctoral researcher at the University of
Washington.
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was placed on the bottom of the wind tunnel in view of the cameras. The reference

receiver serves as a secondary LED indicator, to indicate when the moth is being

stimulated with pulses. To encourage flight, the wind tunnel was set up with a 30

cm/s wind flow, and all tests were conducted in the dark, as moths typically fly at

dusk in an upwind direction. In addition, a sex-pheromone lure was placed upwind

from the moth, so that the moth would be encouraged to fly to it. The stripes on

the walls of the wind tunnel are used to give the moth a normal visual flow, as if

flying past plants, rocks etc. The red spots are invisible to the moth, but are useful

for interpreting video sequences.

Multiple moths were tested in the wind tunnel, and a host of system problems were

initially encountered. For example, the zinc-air batteries that were used initially could

not tolerate the current consumption requirements, and the moth electronics would

only work for a few minutes. A second problem was that early surgeries subjected

moths to too much trauma, resulting in the moth being unwilling to fly. Through

practice, the surgical procedure became faster and the moths generally appeared

stronger and more willing to fly in the wind tunnel.

In a preliminary flight control experiment, a moth was able to fly while carry-

ing the electronics, and the moth's flight direction changed in response to a pulse

stimulus. The photo shown in Figure 6-14 present a time-lapsed view of one of two

consecutive flight trajectories of a moth while being stimulated. In the photos, the

moth is originally flying to the lower right hand corner. Next, the receiver receives

a wireless packet with a stimulation command and begins stimulating the moth.

Shortly after stimulation begins, the moth's direction of flight turns to the left. The

time between pulse stimulation and the change in flight direction is roughly 200 ms,

which corresponds with what is expected from prior tests [113]. In both of the flight

trajectories, the moth responds to the pulse stimulus with a leftward turn, with a

change of bearing of 1950 during 500 ms of stimulation in the first trajectory and a

change of 1620 during 350 ms of stimulation in the second trajectory.

It is important to note that these results are preliminary, and much work remains

to be done. Significant advances in understanding the neural control of flight in the
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Figure 6-14: Time-lapse photos of a moth in a wind tunnel responding to pulse stim-

ulus. Pulse stimulus is generated by the receiver SoC after the receiver successfully

decodes a transmitted packet. Photos of the moth are shown (a) prior to stimulation,
(b) at the moment when stimulation begins, (c) when the moth's flight path begins

to respond to the pulses, and (d) after having responded to the stimulation pulses.

In response to the stimulation pulses, the moth's flight path turns to the left.

moth are required before robust, multi-directional flight control can be achieved. For

this moth, only a single stimulation site was tested. What is significant in this work is

that it demonstrated successful operation of the receiver and stimulator on the moth.

Moreover, this is one of the first demonstrated wireless receivers on a tetherless, free-

flying moth that has enabled a wireless change in flight direction. Table 6.2 compares

the performance of the wireless receiver system with previously published transmitters

and receivers for miniature biological systems.
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6.6 Summary

This chapter described a hybrid-insect flight control system wherein electronics are

placed on a Manduca sexta moth and the flight direction of the moth is controlled

wirelessly. In the system, the UWB receiver described in previous chapters was

mounted on a miniature, flexible PCB and attached to a moth with a harness. As

adult moths have a maximum carrying capacity of 1 g, several steps were taken

to reduce overall system weight, including stacking dies and using a flexible PCB.

Preliminary flight control of a moth was demonstrated, with a battery powered UWB

receiver successfully receiving a packet and stimulating the moth, thereby changing

the moth's direction of flight.
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Table 6.2: Comparison between this work and previous published wireless transmitters and/or receivers for miniature biological

systems.
This Work [104] [105] [108] [114] [106]

Frequency 3-5 GHz 94-98 MHz 88-108 MHz 3.2 GHz 2.64 MHz/433 MHz 80-90 MHz

Comm. Scheme Noncoherent UWB TDM/Analog FM FM FM ASK/FSK FM

Tx/Rx? Rx Tx Tx Both Both Tx

Power Diss. 2 mW 1.5-2 mW - 5-8 mW 13.5 mW 10 mW

Weight 1.0 g 1.1 g >3.1 g - - 0.1g

Range <10 m 0.5 m A few meters 0.5 m Tens of centimeters 16 m

Process 90 nm CMOS 1.5 im CMOS - 0.35 pm CMOS 0.5 pm CMOS



Chapter 7

Conclusions

7.1 Thesis Summary

In low power, mobile devices, energy is becoming more and more the limiting factor

rather than performance. Additionally, due to decades of semiconductor process scal-

ing, device geometries are now on the order of nanometers and devices characteristics

have changed so dramatically that many traditional 'analog' circuits and architectures

are no longer optimal and/or feasible. To continue to improve energy efficiency while

leveraging advanced CMOS processes requires the use of highly digital circuits and

architectures. This thesis focused on developing highly digital, mixed signal circuits

and architectures for energy-constrained mobile applications. Several circuits and

architectures were presented in this thesis, progressively expanding in scope. First, a

single component, an ADC was described, and then the thesis moved to the system-

on-chip level, describing a UWB wireless transceiver chipset designed for the IEEE

802.15.4a standard. Finally, the transceiver chipset was presented in a full system

demonstration of wireless insect flight control.

Overall, highly digital circuit design is well suited to nanometer CMOS processes.

Through proper circuit- and system-level optimization, high performance, energy effi-

cient operation can be realized. Voltage scaling can be readily combined with digital

circuits to improve energy efficiency at the cost of reduced performance. This cost,

however, can be acceptable in systems with time varying performance requirements,
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such as sensor networks. A voltage scalable flash ADC was presented that can operate

down to a supply voltage of 200 mV, which is the lowest reported operating voltage

for a Nyquist rate ADC. To operate at such a low supply voltage operation required a

highly digital architecture that leveraged redundancy to improve linearity and yield.

In many high performance systems it can be advantageous to forgo voltage scaling

and instead operate off a fixed supply that maximizes voltage headroom and mini-

mizes system complexity. Both wireless transmitters and ADCs benefit from large

supply voltages to generate large output waveforms and increase dynamic range, re-

spectively. Simple, inverter-based amplifiers can be used to efficiently amplify both

small signals and to drive large signals off-chip. This thesis presented a highly dig-

ital IR-UWB transmitter that employs capacitive combining to generate large pulse

amplitudes that are FCC compliant while being energy efficient.

In SoCs where extensive digital logic is integrated on the same die as sensitive

analog and RF circuits, there is significant power supply and substrate noise which

can degrade performance. Differential circuit structures provide excellent rejection of

this noise but come at the cost of increased power consumption. Except at extremely

low voltages, differential structures can be readily implemented in advanced CMOS

processes and with digital structures. For example, this thesis presented the first fully

integrated noncoherent UWB receiver with embedded synchronization logic. The

receiver employs several highly digital, differential amplifier and ADC structures,

combined with extensive digital calibration to achieve robust, low-energy operation

in a 90 nm CMOS process.

Finally, circuit optimizations alone are not sufficient to achieve an order-of-magnitude

reduction in power consumption. Such a large reduction in power consumption re-

quires optimization at the system-level, by considering the interaction between differ-

ent circuit blocks and making high level trade-offs. For instance, noncoherent UWB

signaling allowed for the use of a low power DCO and FLL in the transmitter rather

than a PLL. Three dimensional device stacking is another technique that offers the

potential for dramatic reductions in area and/or energy consumption. Through these

system-level optimizations, the UWB receiver SoC was successfully demonstrated in
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a wireless flight control system for a moth.

7.2 Future Work

There are many exciting challenges that remain for highly digital mixed-signal circuit

and system design. CMOS process scaling is expected to continue for at least a decade

longer, and energy constrained mobile devices will become increasingly pervasive. To

maximize functionality while minimizing energy of mobile devices requires further

research and optimization at all levels.

7.2.1 Analog to Digital Converters

While this thesis presented an ADC that is able to scale voltage and frequency, it

would be advantageous for an ADC to also offer resolution scalability. Some prior

research has attempted to offer this functionality. In [115], a reconfigurable, op amp

based ADC is presented that can switch between pipeline and delta-sigma modes,

allowing for a bandwidth range of 0-10 MHz and a resolution range of 6-16 bits. In

[116], a SAR ADC supports both 8-bit and 12-bit modes, switching between resolution

modes by switching between two bit-resolution comparators. In systems like SDRs

and biomedical sensors, the required ADC resolution and frequency can change over

time. Voltage scaling has not yet been extensively leveraged in resolution scalable

ADCs, although it offers the potential to improve energy efficiency when scaling

resolution, particularly for low-resolution ADCs (<75 dB SNR) where thermal noise

does not limit performance [117].

One key limitation of the voltage scalable ADC described in this thesis is the

significant overhead associated with calibration. An area for future work is to de-

termine methods to rapidly calibrate similar ADC architectures, or perhaps modify

the architecture to remove the need for extensive calibration. For instance, in [43],

the stochastic ADC in designed to leverage variation and does not require extensive

calibration.
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7.2.2 Wireless Transceivers

While cellular phones have been the driving force in the wireless industry in the

past decade, it is likely that short range, low power radios will play a significant role

in the next decade. Short-range wireless standards such as Bluetooth and 802.15.4

have gained traction in the market, and there are emerging standards for implanted

devices, such as Medical Implant Communications Service (MICS), and also for body

area networks (BANs). The IEEE 802.15 Task Group 6 is developing a communication

standard optimized for communication on, in or around the human body. The growing

biomedical space in particular provides many new challenges and offers the potential

for significant innovation.

Although the UWB receiver SoC was demonstrated in a complete system, and

achieves one of the best reported energy/bit values while maintaining high perfor-

mance operation, several modifications would be required if it were released as a

commercial part. One key modification would be to add power gating switches on

the digital logic to reduce the subthreshold leakage when the receiver is turned off.

To reduce off-chip component count, it would be advantageous to integrate dc-dc

converters and LDOs on die, such that the receiver SoC can directly connect to a

battery.

The receiver SoC uses multiple resonant LC loads in the RF front end to amplify

the received signal approximately 40 dB. In this thesis, resonant loads were shown

to result in superior gain at a given power consumption that non-resonant loads.

Unfortunately, resonant loads occupy significant die area and have a limited tuning

range. For a commercial UWB transceiver with world-wide compliance, it is likely

that the entire 3.1 to 10.6 GHz frequency band needs to be supported. The receiver

architecture presented in this thesis would likely require parallel RF front ends to

support this entire frequency band, which would occupy excessive die are. To reduce

area, it may be possible to design a non-resonant, wideband RF amplifier structure

or to mix the RF signal to baseband after only one or two RF gain stages.
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7.2.3 Wireless Moth Flight Control

The moth flight control results presented in this thesis are preliminary, and much work

remains before reliable flight control can be demonstrated. The electronics themselves

need to be significantly reduced in weight from 1 g to less than 0.5 g. Although some

moths are capable of carrying a 1 g payload in flight, they need encouragement to fly

with such a large payload and their flying capabilities are degraded. A 0.5 g payload

can likely be carried by all adult moths without a significant degradation in their

flight capabilities.

The most significant contributor to weight in the presented system is the Silver

Oxide battery, which weighs 320 mg. Smaller, lighter batteries exist, but none were

able to deliver the milli-Amp currents required by the radio. Emerging battery tech-

nology like thin-film batteries offers much potential for reduced battery impedance

and increased capacity, ideally allowing for a weight reduction on the order of a few

hundred milli-grams. It is possible to further reduce the weight by 100-to-250 mg

by embedding power management and non-volatile memory within the receiver SoC,

thereby reducing overall component count and PCB size. By directly attaching the

receiver SoC die to the PCB, the weight of the QFN package can also be removed.

All of these modifications in combination would result in an overall system weight of

approximately 0.5 g. Finally, to further reduce the weight, a lighter antenna can be

designed, potentially directly on the PCB.

In combination with lighter electronics, significant advancements in understand-

ing moth electrophysiology, neurobiology and flight control are required before robust,

multi-direction flight control can be achieved. Indeed, even in a tethered, highly con-

trolled system, it is not possible to reliably control a moth's flight direction. Recently,

Jenna Atema, a biologist at Boston University, questioned whether the goal of reli-

able flight control is even feasible, in part due to the strong response of moths to

pheromones, which could override attempts at remote electronic control [118]. Dr.

Atema's questions are valid, and can only be answered through further research. As

part of this research, it would be useful to record EMG signals during stimulation and
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flight [102, 103]. This functionality can be added to the existing system by integrating

an analog front end, an ADC and a wireless transmitter on the SoC.
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Appendix A

Analysis of Device Stacking in

Subthreshold Regime

This appendix derives an analytical expression for total propagation delay of the

circuit shown in Figure 2-9 when biased in the subthreshold regime. This expression

is then used in Section 2.2 to estimate the switching threshold of a clocked comparator

depending on the amount of device stacking.

As discussed in Section 2.2, the ODE numerical solution (Figure 2-10(a)) can be

approximated with a piecewise-linear model (Figure 2-10(b)). A key observation is

that once V2 of Figure 2-9 has discharged, V1 is slightly reduced from the voltage it

originally discharged to. This is expected, as the current through M is assumed to

be equal to the discharge current, which decreases with time.

For the following analysis we consider the situation when the Lth node is dis-

charging (L < N). In this scenario, as only VL is being discharged, the current

through devices M1 through ML is equal and there is no current through devices

ML+1 through MN. We will refer to this current as IM,L. Thus, we have the following

set of equations:
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Initially VL is precharged to VDD. As VL-1 has already discharged, it is at a voltage

much less than VDD and thus we can assume that:

-1 (VL-VL--1)1-e Vh = 1 (A.2)

To simplify equation (A.1), we
-substitute a=e
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we are left with the following set of equations:
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We can manipulate the above equations as follows:
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As a- ~1 for i < L, we can use the approximation that (A )" 1 -n(1 - )i-1 i-1 ai1
Thus:
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- n(1 (aL-1))
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aL-1 aL-2

aL-2 aL-3
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n(1- (a2))
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We need to solve for aL-1 to determine IM,L. From Equation A.5, we can itera-

tively arrive at the solution aL-1 = n+ -1l Thus, IM,L = n Is V~n- Vt
nVth

Now that we have solved for the current as each node discharges, we can calculate

the total delay for all nodes to discharge:

ttot

N

i= ,ii= 1

N

i=1

(A.6)

(A.7)(VDD - Vio,l)

A good approximation for Vi,low is the source voltage of the top-most 'on' transistor

(i.e. VL-1). Thus:

Viow = VL-1 L=i (A.8)

-VL-1

As aL-1 = e nVth n- we obtain:

Vi,loj. nVhln -i + 1
(n

(A.9)

This can be substituted back into equation (A.6) to obtain an expression for the

total propagation delay:
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Figure A-1: Propagation delay versus number of stacked NMOS devices for ODE
simulation and mathematical approximation given in Equation A.10.

N Ci" n+i-1 ( 1.(0e + - A10i( n 1e V( VDD - nVthln i + 1 - )) (A.10)nI, n n

Figure A-i presents data based on this expression and comparing it to ODE sim-

ulation results. Equation A.10 closely matches the ODE simulation and can also be

accurately represented by a second-order equation. Thus, a quadratic relationship

exists between the amount of device stacking and the propagation delay in the sub-

threshold regime. The system was resimulated taking into account the body effect,

and results were found to be consistent.
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Appendix B

Acronyms

ADC analog-to-digital converter

AGC automatic gain control

ASK amplitude-shift keying

AWG arbitrary waveform generator

BAN body area network

BER bit error rate

BPSK binary phase-shift keying

CDF cumulative distribution function

CDS correlated double sampling

CS-CG common-source, common-gate

CMOS Complimentary Metal Oxide Semiconductor

CMRR common-mode rejection ratio

CMFB common-mode feedback

CNS central nervous system
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CPW coplanar waveguide

CSS chirp spread spectrum

DSSS direct sequence spread spectrum

DAC digital-to-analog converter

DAP die attach pad

DCO digitally-controlled oscillator

DFN dual flat no-lead

DLL delay-locked loop

DNL differential non-linearity

DSP digital signal processor

ENOB effective number of bits

EMG electromyogram

ESD electrostatic discharge

FCC Federal Communications Commission

FLL frequency-locked loop

FM frequency modulation

FoM figure of merit

FPGA field programmable gate array

FSK frequency-shift keying

IIR infinite-impulse response

INL integral non-linearity
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IR-UWB impulse radio ultra-wideband

I/O input/output

LCD liquid crystal display

LDO low drop-out

LFSR linear feedback shift register

LNA low noise amplifier

LSB least significant bit

MEMS microelectromechanical systems

MICS Medical Implant Communications Service

MISO master-input slave-output

MOSI master-output slave-input

MOM metal-oxide-metal

ODE ordinary differential equation

OLPC One Laptop per Child

OTA operational transconductance amplifier

OOK on-off keying

PA power amplifier

PCB printed circuit board

PLL phase locked loop

PPM pulse-position modulation

PRF pulse repetition frequency
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PHY physical layer

PWL piecewise-linear

PWM pulsewidth modulation

QFN quad flat no-lead

RDF random dopant fluctuation

RF radio-frequency

SAR successive approximation register

SDR software-defined radio

SMA sub-miniature A

SNDR signal-to-noise-plus-distortion ratio

SNR signal-to-noise ratio

SPI serial peripheral interface

SFD start of frame delimiter

SoC system-on-chip

USB Universal Serial Bus

UWB ultra-wideband

WPAN wireless personal area network

VSG vector signal generator
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