301 research outputs found

    A Secure Cluster-Based Multipath Routing Protocol for WMSNs

    Get PDF
    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption

    Wireless multimedia sensor networks, security and key management

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. These mentioned characteristics, challenges, and requirements of designing WMSNs open many research issues and future research directions to develop protocols, algorithms, architectures, devices, and testbeds to maximize the network lifetime while satisfying the quality of service requirements of the various applications. In this thesis dissertation, we outline the design challenges of WMSNs and we give a comprehensive discussion of the proposed architectures and protocols for the different layers of the communication protocol stack for WMSNs along with their open research issues. Also, we conduct a comparison among the existing WMSN hardware and testbeds based on their specifications and features along with complete classification based on their functionalities and capabilities. In addition, we introduce our complete classification for content security and contextual privacy in WSNs. Our focus in this field, after conducting a complete survey in WMSNs and event privacy in sensor networks, and earning the necessary knowledge of programming sensor motes such as Micaz and Stargate and running simulation using NS2, is to design suitable protocols meet the challenging requirements of WMSNs targeting especially the routing and MAC layers, secure the wirelessly exchange of data against external attacks using proper security algorithms: key management and secure routing, defend the network from internal attacks by using a light-weight intrusion detection technique, protect the contextual information from being leaked to unauthorized parties by adapting an event unobservability scheme, and evaluate the performance efficiency and energy consumption of employing the security algorithms over WMSNs

    Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis

    Get PDF
    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.https://doi.org/10.3390/s15092220

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research

    Wireless multimedia sensor network technology: a survey

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs) is comprised of small embedded video motes capable of extracting the surrounding environmental information, locally processing it and then wirelessly transmitting it to parent node or sink. It is comprised of video sensor, digital signal processing unit and digital radio interface. In this paper we have surveyed existing WMSN hardware and communicationprotocol layer technologies for achieving or fulfilling the objectives of WMSN. We have also listed the various technical challenges posed by this technology while discussing the communication protocol layer technologies. Sensor networking capabilities are urgently required for some of our most important scientific and societal problems like understanding the international carbon budget, monitoring water resources, monitoring vehicle emissions and safeguarding public health. This is a daunting research challenge requiring distributed sensor systems operating in complex environments while providing assurance of reliable and accurate sensing

    Enhanced delay-aware and reliable routing protocol for wireless sensor network

    Get PDF
    Wireless Sensor Networks (WSN) are distributed low-rate data networks, consist of small sensing nodes equipped with memory, processors and short range wireless communication. The performance of WSN is always measured by the Quality of Service (QoS) parameters that are time delay, reliability and throughput. These networks are dynamic in nature and affect the QoS parameters, especially when real time data delivery is needed. Additionally, in achieving end-to-end delay and reliability, link failures are the major causes that have not been given much attention. So, there is a demanding need of an efficient routing protocol to be developed in order to minimize the delay and provide on time delivery of data in real time WSN applications. An efficient Delay-Aware Path Selection Algorithm (DAPSA) is proposed to minimize the access end-to-end delay based on hop count, link quality and residual energy metrics considering the on time packets delivery. Furthermore, an Intelligent Service Classifier Queuing Model (ISCQM) is proposed to distinguish the real time and non-real time traffic by applying service discriminating theory to ensure delivery of real time data with acceptable delay. Moreover, an Efficient Data Delivery and Recovery Scheme (EDDRS) is proposed to achieve improved packet delivery ratio and control link failures in transmission. This will then improve the overall throughput. Based on the above mentioned approaches, an Enhanced Delay-Aware and Reliable Routing Protocol (EDARRP) is developed. Simulation experiments have been performed using NS2 simulator and multiple scenarios are considered in order to examine the performance parameters. The results are compared with the state-of-the-art routing protocols Stateless Protocol for Real-Time Communication (SPEED) and Distributed Adaptive Cooperative Routing Protocol (DACR) and found that on average the proposed protocol has improved the performance in terms of end-to-end delay (30.10%), packet delivery ratio (9.26%) and throughput (5.42%). The proposed EDARRP protocol has improved the performance of WSN

    Intelligent Routing Metric for Wireless Body Area Networks

    Get PDF
    Routing in Wireless Body Area Networks (WBANs) is a critical requirement due to its dynamic behaviour. This paper proposes an intelligent framework for link cost evaluation. A suitable Quality of Service (QoS) parameters based function has been proposed. The sensors in WBANs would be capable of computing the Link Cost (LC) function based upon the current values of QoS parameters: throughput, delay of the link and residual energy of the sensor. A fuzzy logic based system is proposed at the sensor to evaluate the LC. Nodes of architecture evaluate a set of possible paths between source-terminal pairs. This LC is then used to evaluate the suitable path for the routing

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field
    corecore