115 research outputs found

    An RBF scheme for option pricing in exponential Levy models

    Get PDF
    We use Radial Basis Function (RBF) interpolation to price options in exponential Lévy models by numerically solving the fundamental pricing PIDE (Partial integro-differential equations). Our RBF scheme can handle arbitrary singularities of the Lévy measure in 0 without introducing further approximations, making it simpler to implement than competing methods. In numerical experiments using processes from the CGMY-KoBoL class, the scheme is found to be second order convergent in the number of interpolation points, including for processes of unbounded variation

    A Flexible Galerkin Scheme for Option Pricing in Lévy Models

    Get PDF

    Precise Error Bounds for Numerical Approximations of Fractional HJB Equations

    Full text link
    We prove precise rates of convergence for monotone approximation schemes of fractional and nonlocal Hamilton-Jacobi-Bellman (HJB) equations. We consider diffusion corrected difference-quadrature schemes from the literature and new approximations based on powers of discrete Laplacians, approximations which are (formally) fractional order and 2nd order methods. It is well-known in numerical analysis that convergence rates depend on the regularity of solutions, and here we consider cases with varying solution regularity: (i) Strongly degenerate problems with Lipschitz solutions, and (ii) weakly non-degenerate problems where we show that solutions have bounded fractional derivatives of order between 1 and 2. Our main results are optimal error estimates with convergence rates that capture precisely both the fractional order of the schemes and the fractional regularity of the solutions. For strongly degenerate equations, these rates improve earlier results. For weakly non-degenerate problems of order greater than one, the results are new. Here we show improved rates compared to the strongly degenerate case, rates that are always better than 1/2

    Valuation of Swing Options in Electricity Commodity Markets

    Get PDF
    Although electricity is considered to be a commodity, its price behavior is remarkably different from most other commodities or assets on the market. Since power can hardly be stored physically, the storage-based methodology, which is widely used for valuing commodity derivatives, is unsuitable for electricity. Therefore, new approaches are required to understand and reproduce its price dynamics. Concurrently, the demand for derivative instruments has grown and new types of contracts for energy markets have been introduced. Swing options, in particular, have attracted an increasing interest, offering more flexibility and reducing exposure to strong price fluctuations. In this thesis, we propose a mean-reverting model with seasonality and double exponential jumps. It is able to accurately reproduce the behavior and main peculiarities of electricity's spot prices. With this model, we can characterize the swing option value as a solution to a partial integro-differential complementarity problem, which we solve numerically. In the last part of the thesis, we present a more complex type of swing options, in which we also include variable electricity volumes in the contract. This formulation leads to a two-dimensional Hamilton-Jacobi-Bellman (HJB) equation. By applying the method of characteristics, this problem is simplified to a sequence of one dimensional HJB equations, which are solved numerically by using a similar approach as before

    Numerical Methods for Real Options in Telecommunications

    Get PDF
    This thesis applies modern financial option valuation methods to the problem of telecommunication network capacity investment decision timing. In particular, given a cluster of base stations (wireless network with a certain traffic capacity per base station), the objective of this thesis is to determine when it is optimal to increase capacity to each of the base stations of the cluster. Based on several time series taken from the wireless and bandwidth industry, it is argued that capacity usage is the major uncertain component in telecommunications. It is found that price has low volatility when compared to capacity usage. A real options approach is then applied to derive a two dimensional partial integro-differential equation (PIDE) to value investments in telecommunication infrastructure when capacity usage is uncertain and has temporary sudden large variations. This real options PIDE presents several numerical challenges. First, the integral term must be solved accurately and quickly enough such that the general PIDE solution is reasonably accurate. To deal with the integral term, an implicit method is suggested. Proofs of timestepping stability and convergence of a fixed point iteration scheme are presented. The correlation integral is computed using a fast Fourier transform (FFT) method. Techniques are developed to avoid wrap-around effects. This method is tested on option pricing problems where the underlying asset follows a jump diffusion process. Second, the absence of diffusion in one direction of the two dimensional PIDE creates numerical challenges regarding accuracy and timestep selection. A semi-Lagrangian method is presented to alleviate these issues. At each timestep, a set of one dimensional PIDEs is solved and the solution of each PIDE is updated using semi-Lagrangian timestepping. Crank-Nicolson and second order backward differencing timestepping schemes are studied. Monotonicity and stability results are derived. This method is tested on continuously observed Asian options. Finally, a five factor algorithm that captures many of the constraints of the wireless network capacity investment decision timing problem is developed. The upgrade decision for different upgrade decision intervals (e. g. monthly, quarterly, etc. ) is studied, and the effect of a safety level (i. e. the maximum allowed capacity used in practice on a daily basis—which differs from the theoretical maximum) is investigated

    Linear and Non-linear Monotone Methods for Valuing Financial Options Under Two-Factor, Jump-Diffusion Models

    Get PDF
    The evolution of the price of two financial assets may be modeled by correlated geometric Brownian motion with additional, independent, finite activity jumps. Similarly, the evolution of the price of one financial asset may be modeled by a stochastic volatility process and finite activity jumps. The value of a contingent claim, written on assets where the underlying evolves by either of these two-factor processes, is given by the solution of a linear, two-dimensional, parabolic, partial integro-differential equation (PIDE). The focus of this thesis is the development of new, efficient numerical solution approaches for these PIDE's for both linear and non-linear cases. A localization scheme approximates the initial-value problem on an infinite spatial domain by an initial-boundary value problem on a finite spatial domain. Convergence of the localization method is proved using a Green's function approach. An implicit, finite difference method discretizes the PIDE. The theoretical conditions for the stability of the discrete approximation are examined under both maximum and von Neumann analysis. Three linearly convergent, monotone variants of the approach are reviewed for the constant coefficient, two-asset case and reformulated for the non-constant coefficient, stochastic volatility case. Each monotone scheme satisfies the conditions which imply convergence to the viscosity solution of the localized PIDE. A fixed point iteration solves the discrete, algebraic equations at each time step. This iteration avoids solving a dense linear system through the use of a lagged integral evaluation. Dense matrix-vector multiplication is avoided by using an FFT method. By using Green's function analysis, von Neumann analysis and maximum analysis, the fixed point iteration is shown to be rapidly convergent under typical market parameters. Combined with a penalty iteration, the value of options with an American early exercise feature may be computed. The rapid convergence of the iteration is verified in numerical tests using European and American options with vanilla payoffs, and digital, one-touch option payoffs. These tests indicate that the localization method for the PIDE's is effective. Adaptations are developed for degenerate or extreme parameter sets. The three monotone approaches are compared by computational cost and resulting error. For the stochastic volatility case, grid rotation is found to be the preferred approach. Finally, a new algorithm is developed for the solution of option values in the non-linear case of a two-factor option where the jump parameters are known only to within a deterministic range. This case results in a Hamilton-Jacobi-Bellman style PIDE. A monotone discretization is used and a new fixed point, policy iteration developed for time step solution. Analysis proves that the new iteration is globally convergent under a mild time step restriction. Numerical tests demonstrate the overall convergence of the method and investigate the financial implications of uncertain parameters on the option value

    The 2nd International Conference on Mathematical Modelling in Applied Sciences, ICMMAS’19, Belgorod, Russia, August 20-24, 2019 : book of abstracts

    Get PDF
    The proposed Scientific Program of the conference is including plenary lectures, contributed oral talks, poster sessions and listeners. Five suggested special sessions / mini-symposium are also considered by the scientific committe

    Applications of Stochastic Control in Energy Real Options and Market Illiquidity

    Get PDF
    We present three interesting applications of stochastic control in finance. The first is a real option model that considers the optimal entry into and subsequent operation of a biofuel production facility. We derive the associated Hamilton Jacobi Bellman (HJB) equation for the entry and operating decisions along with the econometric analysis of the stochastic price inputs. We follow with a Monte Carlo analysis of the risk profile for the facility. The second application expands on the analysis of the biofuel facility to account for the associated regulatory and taxation uncertainty experienced by players in the renewables and energy industries. A federal biofuel production subsidy per gallon has been available to producers for many years but the subsidy price level has changed repeatedly. We model this uncertain price as a jump process. We present and solve the HJB equations for the associated multidimensional jump diffusion problem which also addresses the model uncertainty pervasive in real option problems such as these. The novel real option framework we present has many applications for industry practitioners and policy makers dealing with country risk or regulatory uncertainty---which is a very real problem in our current global environment. Our final application (which, although apparently different from the first two applications, uses the same tools) addresses the problem of producing reliable bid-ask spreads for derivatives in illiquid markets. We focus on the hedging of over the counter (OTC) equity derivatives where the underlying assets realistically have transaction costs and possible illiquidity which standard finance models such as Black-Scholes neglect. We present a model for hedging under market impact (such as bid-ask spreads, order book depth, liquidity) using temporary and permanent equity price impact functions and derive the associated HJB equations for the problem. This model transitions from continuous to impulse trading (control) with the introduction of fixed trading costs. We then price and hedge via the economically sound framework of utility indifference pricing. The problem of hedging under liquidity impact is an on-going concern of market makers following the Global Financial Crisis
    corecore