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Abstract

We present three interesting applications of stochastic control in finance. The first

is a real option model that considers the optimal entry into and subsequent operation

of a biofuel production facility. We derive the associated Hamilton Jacobi Bellman

(HJB) equation for the entry and operating decisions along with the econometric

analysis of the stochastic price inputs. We follow with a Monte Carlo analysis of

the risk profile for the facility. The second application expands on the analysis of

the biofuel facility to account for the associated regulatory and taxation uncertainty

experienced by players in the renewables and energy industries. A federal biofuel

production subsidy per gallon has been available to producers for many years but the

subsidy price level has changed repeatedly. We model this uncertain price as a jump

process. We present and solve the HJB equations for the associated multidimensional

jump diffusion problem which also addresses the model uncertainty pervasive in real

option problems such as these. The novel real option framework we present has

many applications for industry practitioners and policy makers dealing with country

risk or regulatory uncertainty—which is a very real problem in our current global

environment. Our final application (which, although apparently different from the

first two applications, uses the same tools) addresses the problem of producing reliable

bid-ask spreads for derivatives in illiquid markets. We focus on the hedging of over

the counter (OTC) equity derivatives where the underlying assets realistically have

transaction costs and possible illiquidity which standard finance models such as Black-

Scholes neglect. We present a model for hedging under market impact (such as bid-ask

spreads, order book depth, liquidity) using temporary and permanent equity price

impact functions and derive the associated HJB equations for the problem. This

model transitions from continuous to impulse trading (control) with the introduction

of fixed trading costs. We then price and hedge via the economically sound framework

of utility indifference pricing. The problem of hedging under liquidity impact is an

on-going concern of market makers following the Global Financial Crisis.

Keywords: Stochastic control, Financial mathematics, Hamilton Jacobi Bellman

equations, Ethanol, Real options, Policy, Crush spread, Optimal switching, Optimal

stopping, Renewable energy, Regulatory uncertainty, Country risk, Jump diffusions,

Partial integro differential equations, Quasivariational inequalities, Numerical meth-

ods, Finite differences, Market impact, Illiquidity, Derivatives, Transaction costs,

Utility indifference, Market Incompleteness
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Chapter 1

Introduction

This thesis contains three distinct but related applications of modeling real world

problems of decision making under uncertainty, and seeking solutions and the related

optimal decision strategies for those problems using optimal control. The models

considered here use stochastic processes to model future uncertainty. This chap-

ter begins with some motivating problems from engineering and finance for which

stochastic control may provide some insights and solutions. We follow with a very

intuitive introduction to the topic of stochastic optimal control and review of stochas-

tic processes. The chapter concludes by introducing the three papers which together

comprise the novel contribution of this thesis, and explaining how they relate to

stochastic control and each other.

1.1 Optimal Control: A Motivation

Consider the example of a plant manager operating a facility that produces electricity

from natural gas. The manager is tasked with maximizing her expected profit. The

price of electricity and natural gas may be known today, but their future prices are

uncertain and subject to price volatility. She knows the fixed running costs associated

both with operating the plant at capacity or with idling. The profits over the day

while operating can be characterized as

profit = volume produced× (electricity price− natural gas and fixed running costs).

The problem becomes more complicated by the fact there is a large fixed cost asso-

ciated with changing operating status from on/off to off/on. Given uncertain future

price outcomes, she must decide whether to incur the cost of turning production off if

the plant is running at a loss today. Will the prices bounce back favourably tomorrow
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or are the expected future losses enough to overcome the cost of changing the plant’s

production state?

Phrased mathematically, we are given some known operating costs while running

in regime α, and the prices of electricity and gas Xt, Yt. Since prices are uncertain

we will model them with stochastic processes. Her instantaneous profit rate is given

by f(Xt, Yt, α, t)dt and is a function of price, cost and whichever operating regime

she chooses for the plant (e.g. on, off, half capacity). The income over the life of the

plant is J

J(Xt, Yt, t) =

∫ T

t

f(Xs, Ys, α, s)ds−
∑

switching costs.

The manager may seek a control α that maximizes her expected earnings over the

life of the plant V while minimizing the accrued switching costs.

Another example is a fund manager who wishes to liquidate his position in a

certain stock. If his position were sufficiently large that selling his entire inventory at

once would cause a significant drop in price due to market impact, the manager might

seek an optimal selling rate α to minimize the expected losses from the liquidation.

Since stock prices are challenging to predict and appear random, we model the price

as a stochastic process St. The optimal rate α may be a function of the stock price,

his inventory level and target position, and the time remaining until the trade must

be closed out T . When buying or selling, there is a temporary market impact on the

price because of the bid-ask spread1

realized execution price = bid-ask impact× stock price.

This is because market makers offer a lower price to traders seeking to sell stocks and

vice versa. In other words, the

bid impact ≤ 1 and the ask impact ≥ 1.

There may additionally be a fixed brokerage cost associated with executing any trade.

The problem becomes more complicated when the liquidation rate also has a per-

manent impact on the stock price. This may occur in especially illiquid markets

(i.e. markets with little trading activity).

1The ask is the price one might expect to pay for a stock, whereas the bid is the price one might
expect to receive for selling a stock.
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The total income J from liquidating is given by

realized income = bid factor× stock price× volume sold

or mathematically, if f(St, α, t)dt is the instantaneous revenue

J(St, t) =

∫ T

t

f(Ss, α, s)ds.

Similar to the plant manager, the trader may seek a liquidation strategy that maxi-

mizes his expected income.

In both cases, we can write the total optimal value V realized over the lifetime of

the plant (or trade) as a functional

V (Xt, t) = max
α

E[J(Xt, t)].

In some cases, simply seeking a strategy that maximizes the expected payoffs may

result in too much potential risk. For example, the trader seeking to liquidate his

portfolio by strictly minimizing his market impact may trade too slowly and expose

himself to excess market risk. He should then seek a balance between minimizing

his market impact costs and market exposure over time. The trade-off between mar-

ket impact and market risk can be modeled using a penalty term for example that

penalizes excess risk.

In the following section, we aim to find a method of maximizing or minimizing the

functional above, which we will accomplish by using dynamic programming to find

the associated Hamilton-Jacobi-Bellman (HJB) equation for the maximum.

1.1.1 Real Options versus Financial Options

The application of Ito calculus and arbitrage free pricing of financial options was

pioneered by [4, 15], both published in 1973, and later codified in terms of martingale

pricing in [12]. In the years following, many papers and books have been published

in the field of financial mathematics. Financial derivatives are written on market

underlyings such as stocks, bonds, rates, indexes and the like. Examples include

equity call options, interest rate swaps, commodity futures and many other exotic

derivative contracts traded on financial exchanges or over the counter.

Later the same mathematical tools developed in the study of financial options

were applied to “real” or more tangible assets such as mines, lumber fields, energy
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plants, and other areas. Since the assets and problems considered were more “real,”

the framework is called “real options” in contrast with financial options written on

intangibles such as rates or stocks.

This real options method of modeling resource project management decisions was

introduced in the 1980s by [6] in a seminal paper which considered the problem

of optimally starting and stopping production to maximize the profits of a natural

resource project. The optimal entry and exit from investment projects was also

considered by [8] in another influential real options paper. A classical text on real

options was introduced in [9]. Typically the early applications were limited to natural

resource and energy projects as the projects were still contingent upon underlyings

that may trade in financial markets (e.g. oil futures). Later applications, however,

can be found on a wide variety of topics ranging from capital budgeting, corporate

strategic planning and competition [20], patents, pharmaceuticals, and R&D project

and portfolio management [14, 19, 22], and in a much darker application, suicide [11].

To see how real options relate to financial options, we consider an analogy between

an oil field and a call option. A call option allows the holder the right but not the

obligation to purchase a stock in the future for some predetermined amount called

the strike. If the stock price is worth more than the strike price at the expiry date of

the financial contract, the holder may exercise it for a profit. If the stock price is less

than the strike, the holder would allow it to expire unexercised as the stock could be

had for less on the exchange. Thus the payoff is

call option payoff = max(stock price− strike price, 0).

Now consider a firm that holds an undeveloped oil field with some known oil reserves.

The firm has the option but not the obligation to develop the field by drilling a well

and building a rig. The cost to develop the field is known, and is analogous to the

strike price. The value of the oil reserves in terms of reserve volume and price today

is known. Its future price, however, is uncertain like the stock price in the call option

example. The value of the option to expand and develop the oil field has a payoff

very similar to the call option. The real option payoff is

real option payoff = max(reserve volume× oil price− development costs, 0).

Using the same financial mathematics tools from option pricing, it is possible to value

an oil field.

Real options along with financial options are complicated by market incomplete-
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ness. In fact, examining real options often requires the issue of market incompleteness

to be confronted head on. Incompleteness is the case when not all the underlying

sources of risk can be traded or adequately hedged (e.g. electricity, trading restric-

tions or blackouts, etc.). Incompleteness may also follow from model uncertainty,

transaction costs, or basis risk (say, we have an ethanol biofuel plant and can trade

gasoline futures but not ethanol biofuel; gasoline is a similar asset but not a perfect

substitute for hedging ethanol price risk). In this case, there is no unique no arbi-

trage price or hedging strategy for the option. We treat market incompleteness in

later chapters (primarily 3 and 4).

1.2 Deterministic Optimal Control

To introduce the ideas of stochastic control in a simpler setting, we begin by con-

sidering a deterministic optimal control problem. We seek to maximize a functional

J of a dynamical system xt via a control function α(xt, t). We may drop the argu-

ments from α for notational simplicity and occasionally refer to its output as simply

αt = α(xt, t). If the profit function is f(xt, α, t) and the value of the system in its end

state is g(xT , T ), the total profit from the system is

J(x0, α, 0) =

∫ T

0

f(xt, αt, t)dt+ g(xT , T )

where α is any admissible control and the dynamics of xt are governed by

ẋt = F (xt, αt)

given some initial condition x0.

If the optimum is defined as V (xt, t) = supα J(xt, α, t), then

V (x0, 0) = sup
α

{∫ T

0

f(xt, αt, t)dt+ g(xT , T )

}
. (1.1)

A powerful method of deriving a PDE for the evolution of V (xt, t) is to use the

dynamic programming principle (DPP) and Bellman’s principle of optimality. The

dynamic programming method takes this problem on [0, T ] and breaks it down into

smaller subproblems, each defined on a subinterval of [0, T ].
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Bellman’s Principle of Optimality:

An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision

[2].

By Bellman’s principle of optimality splitting V from time t to t+ dt yields

V (xt, t) = sup
αt

{f(xt, αt, t)dt+ V (xt+dt, t+ dt)} . (1.2)

This is a dynamic algorithm because we have broken the problem down into two

smaller subproblems on the subintervals [t, t+dt) and [t+dt, T ]. Intuitively, assuming

we know the optimum function V at some time t+ dt and for all time into the future

to T , we only need to solve the optimal αt at an instant (xt, t) to complete the solution

for all [t, T ]. Since the end state V (xT , T ) = g(xT , T ) is known, the equation is then

solved backward in time to t = 0 (i.e. V (xT , T )→ V (xT−dt, T −dt)→ ...→ V (x0, 0)).

The Taylor expansion of V (xt+dt, t+ dt) is

V (xt+dt, t+ dt) = V (xt, t) +
∂V

∂t
dt+∇V · ẋtdt+O(dt2)

where ∇ denotes the gradient operator with respect to xt. By combining the two

equations above and taking the limit as dt→ 0, we obtain the HJB equation for V ,

∂V

∂t
+ sup

αt

{∇V · F (xt, αt, t) + f(xt, αt, t)} = 0, (1.3)

subject to the final condition V (xT , T ) = g(xT , T ). If we solve over the entire state

space, xt, and all admissible controls α(xt, t) we obtain a necessary and sufficient

condition for the maximum [3].

For example, if J is some energy functional, then this becomes similar to the

Hamiltonian and action of the dynamical system, which could then potentially be

solved using variational calculus [1]. The resulting first variation and associated non-

linear PDE is the Hamilton-Jacobi equation or a statement of the principle of mini-

mum energy. The Hamilton-Jacobi-Bellman equation (1.3) is in essence an extension

of the Hamilton-Jacobi equation.

In the next section we investigate the topic of stochastic optimal control, but see a

similar structure to Equation 1.3, albeit with the addition of a Laplacian term which

accounts for the randomness.
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1.3 Stochastic Optimal Control

We now consider the problem of deriving an optimal control strategy in a stochastic

setting. An excellent reference on stochastic control can be found in [18]. Say the

state process xt evolves stochastically. We rename xt as Xt to conform to the typical

convention for denoting a stochastic process. The dynamics of Xt are governed by

the stochastic differential equations (SDE)

dXt = µ(Xt, αt, t)dt+ σ(Xt, αt, t)dWt (1.4)

X0 = x, (1.5)

for which there exists a solution where Wt is a Brownian motion defined on a fil-

tered probability space (Ω,F , {Ft}t≥0, P ) satisfying the usual conditions [16]. In

other words, every singular outcome or possible collection of events has an associated

probability and the process history is known. (See [16] for a review of stochastic

differential equations.) Our control αt is progressively measurable with respect to

our filtration and is in the set of all admissible controls A. That is, we know αt at

time t and it only depends on the information up until t. In particular, we assume

αt is non-anticipating and Markovian (i.e. a function of only the information at time

t, αt = α(Xt, t)).

Ito’s Lemma

Ito’s lemma is one of the main tools used in stochastic analysis and control [16]. It

gives the evolution of a function u(Xt, t) of an SDE Xt through time. It follows from

a Taylor expansion and the finite quadratic variation of Brownian motion. Then for

the SDE of Equation 1.52

u(XT , T )− u(x, 0) =

∫ T

0

(
∂u

∂t
+ µ(Xt, αt, t)

∂u

∂X
+

1

2
σ2(Xt, αt, t)

∂2u

∂X2

)
dt

+

∫ T

0

σ(Xt, αt, t)
∂u

∂X
dWt. (1.6)

2For an n-dimensional SDE with d-dimensional Brownian motion, the generator is of the form
du =

(
∂u
∂t + µT∇u+ 1

2TrσσT∇2u
)
dt+∇uTσdWt where ∇ is the gradient with respect to Xt, ∇2 is

the Hessian, Tr denotes the matrix trace and superscript T is the matrix transpose.
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Taking expectations of both sides with respect to t = 0, X0 = x yields

E[u(XT , T )]− u(x, 0) = E

[∫ T

0

(
∂u

∂t
+ µ(Xt, αt, t)

∂u

∂X
+

1

2
σ2(Xt, αt, t)

∂2u

∂X2

)
dt

]
(1.7)

since E[u(x, 0)] = u(x, 0) is known and the expectation of the Ito integral of a smooth

function h(·) is zero E[
∫ T

0
hdWt] = 0 (specifically h need only be square integrable).

Moreover, if this PDE is satisfied

∂u

∂t
+ µ(Xt, αt, t)

∂u

∂X
+

1

2
σ2(Xt, αt, t)

∂2u

∂X2
= 0 (1.8)

with final condition

u(XT , T ) = g(XT ) (1.9)

then its solution is

u(x, 0) = E[u(XT , T )] = E[g(XT )]. (1.10)

This result is known as the Feynman-Kac theorem and can be considered as an

application of Green’s function methods to solving the PDE equations 1.8–1.9.

The Stochastic Optimization Problem

Assume our running payoff function f(Xt, αt, t) and our final condition g(XT ) satisfy

some mild growth conditions and g is also bounded below. Then our total expected

controlled payoff or profit is

J(x, α, 0) = E

[∫ T

0

f(Xt, αt, t)dt+ g(XT )

]
(1.11)

where E is the expectation given the information today X0. Now we seek to find an

optimal control and associated value function V

V (x, 0) = sup
α
J(x, α, 0). (1.12)

Hence if J(x, α∗, 0) = V (x, 0), we say that the function α∗ is an optimal control.

Example controlled diffusion

To build some intuition, we briefly investigate a simple example of a controlled dif-

fusion. Consider a stochastic dynamical process Xt that one wishes to steer to some

final end target B at time T . If XT 6= B, some penalty function is applied g(XT , B).
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Figure 1.1: The controlled (α = 1) contrasted with the uncontrolled diffusion (α = 0).
The target is B = 1 and the other parameters are X0 = 0, T = 1, σ = 0.5. The solid
blue lines are different possible walks while the thick solid black line is the expected
value E[Xt]. The black dashed lines are the 90% confidence limits.

We consider a possible drift control α that steers the walk Xt to some target B

dXt = −αt(Xt −B)dt+ σdWt (1.13)

X0 = 0. (1.14)

When αt = 0, this becomes an uncontrolled diffusion which freely evolves as a contin-

uous random walk. When αt > 0, depending on the intensity of αt, the walk targets

B and any deviation from B is always corrected by the drift; the larger the deviation,

the stronger the correction. See Figure 1.1 for an illustration.

Say a cost is incurred by correcting the drift f(Xt, αt), then we may seek a control

strategy function αt = α(Xt, B, t) that minimizes our total cost V given our current

state, target and time remaining

V (X0, 0) = inf
α
E

[∫ T

0

f(Xt, αt)dt+ g(XT , B)

]
. (1.15)

Not every stochastic optimization problem necessarily has diffusion parameters

that can themselves be controlled. In Chapter 2, we consider a stochastic control
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problem where an agent seeks to maximize his profit by switching production on

and off given a stochastic price processes in his operating revenues. The decisions

have no effect on the price diffusion parameters. Chapter 3 includes an example

where the diffusion parameters are “controlled” in the sense that the operator of the

facility of Chapter 2 assumes the econometric parameter estimates come from some

worst case distribution. The parameters for the stochastic profit process are still not

affected by the decisions. Finally we consider a situation in Chapter 4 where the

price process parameters are adversely affected by the agent’s decision making. The

agent of Chapter 4 is a trader trying to hedge his portfolio position but every buy/sell

pushes the price up/down (generally adversely) for the trader.

1.3.1 The Dynamic Programming Principle

As with its deterministic counterpart, the fundamental tool of stochastic optimal

control is the DPP and Bellman optimality. The DPP can be stated in a stochastic

setting as

V (x, 0) = sup
α∈A

E

[∫ θ

0

f(Xt, αt, t)dt+ V (Xθ, θ)

]
(1.16)

where θ ∈ (0, T ) is any stopping time. As we are now considering stochastic un-

certain quantities, we use expectations to arrive at a result otherwise similar to the

deterministic Bellman statement Equation 1.2.

As in the previous section, we can intuitively interpret the stochastic DPP as

follows: Divide the problem into two subintervals (hence it is “dynamic”), [0, θ) and

[θ, T ]. Provided we have already solved for the optimal control from time T working

back to θ, we need only to optimize the controls over the region [0, θ). We begin at

the known end condition t = T and then incrementally work back in time to t = 0.

1.3.2 The HJB Equation in Stochastic Control

Consider if we start from an initial condition X0 = x and take θ = ∆t and αt = a

where a is any constant (possibly suboptimal) control in A. Then by the DPP (1.16),

V (x, 0) ≥ E

[∫ ∆t

0

f(Xt, a, t)dt+ V (X∆t,∆t)

]
(1.17)
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since, again, a may be a suboptimal control. If V is C1,2 continuous, we may apply

Ito’s lemma (1.7) through ∆t and cancel both V (x, 0) and V (X∆t,∆t) to obtain

0 ≥ E

[∫ ∆t

0

f(Xt, a, t)dt+

∫ ∆t

0

(
∂V

∂t
+ La[V (Xt, t)]

)
dt

]
. (1.18)

where La is the generator associated with the controlled diffusion Xt with αt = a

La[V (x, t)] = µ(x, a)
∂V

∂x
+

1

2
σ2(x, a)

∂2V

∂x2
. (1.19)

Then if we divide by ∆t and let ∆t→ 0, we arrive at the inequality

∂V

∂t
+ La[V (Xt, t)] + f(Xt, a, t) ≤ 0 (1.20)

using the mean value theorem. Further, assume now that a = α∗t , the local optimal

control, then by comparing the above inequality with the DPP (1.17), it is intuitively

reasonable that there must be equality

∂V

∂t
+ Lα∗

t
[V (X∗t , t)] + f(X∗t , α

∗
t , t) = 0. (1.21)

Comparing the PDE (1.21) with the Bellman statement (1.16), we claim that

∂V

∂t
+ sup

αt

{Lαt [V (Xt, t)] + f(Xt, αt, t)} = 0. (1.22)

This is the associated HJB equation for the stochastic control problem which must

be solved for all Xt, t to recover the globally optimal control function α where αt =

α(Xt, t). Thus if we can find a supremum function α(x, t) = α∗(x, t) as defined in

Equation 1.22, then by the Feynman-Kac theorem

V (x, 0) = E

[∫ T

0

f(X∗t , α
∗
t , t)dt+ g(X∗T )

∣∣∣∣X0 = x

]
(1.23)

where X∗t is the solution to the controlled diffusion using the optimal control α∗.

This simplifies the problem of finding the global optimal control and associated

value function V . One must find the local maximizing argument αt of Equation 1.22

and solve the associated PDE at this argument. The PDE then yields the value

function and the optimal control.
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Verification Theorem

The verification theorem states that a smooth solution to the HJB equation coincides

with the value function. The version we state below is taken from [18]. Suppose

that u is a sufficiently smooth function that satisfies certain conditions and suppose

further that
∂u

∂t
+ sup

αt∈A
{Lαt [u(x, t)] + f(x, αt, t)} ≤ 0 (1.24)

and that u(x, T ) ≥ g(x). Then u ≥ V of Equation 1.22 ∀ (x, t). To illustrate why

this is true, consider if we were to rearrange the above and apply a time reversal

transformation, τ = T − t,

∂u

∂τ
≥ sup

αt∈A
{Lαt [u(x, t)] + f(x, αt, t)} . (1.25)

Hence, as we work back in time ∂u
∂τ
≥ ∂V

∂τ
due to the inequality above and, if u(x, T ) ≥

g(x), the result u ≥ V is guaranteed.

Assume now that u(x, T ) = g(x) and we can find a measurable function α∗(x, t)

such that

∂u

∂t
+ sup

αt∈A
{Lαt [u(x, t)] + f(x, αt, t)} =

∂u

∂t
+ Lα∗

t
[u(x, t)] + f(x, α∗t , t) = 0. (1.26)

Then by uniqueness u = V and α∗ is an optimal control.

1.4 Stochastic Control and Optimal Switching

Consider a situation where the diffusion and running profit function can be controlled

by switching states or regimes via an impulse. Suppose there are m possible states

denoted as Im = {1, 2, . . . ,m} where 1 < m < ∞. The control then consists of a

sequence of stopping times α = (τn, in) with n ≥ 0. Here, 0 ≤ τn ≤ T denotes an

increasing sequence of stopping times (when to switch) with corresponding states in

(where to switch).

Each regime is characterized by its own running payoff function fi(Xt, t) (which

is assumed to satisfy some mild growth conditions [18]) and the cost to switch from

regime i to j, Dij. A “triangular” cost inequality is required that Dij ≥ 0 and

Diq +Dqj > Dij to ensure that no strategies instantaneously switch via intermediate

states. The triangular inequality ensures that trying to reach state j from i via state

q is more costly than simply going directly from i to j. This also ensures that the
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continuation regions are non-empty and the switching boundaries are “regular” which

are conditions required for existence of impulse control solutions [16]. The diffusion

satisfies

dXt = µ(Xt, It, t)dt+ σ(Xt, It, t)dWt (1.27)

X0 = x (1.28)

where It =
∑

0≤k≤n ik1{τk≤t<τk+1} given τ0 = 0 and i0 = i.

The gain functional is then

Ji(x, 0, α) = E

[∫ T

0

fIt(Xt, t)dt+
n∑
k=1

Dik−1,ik

]
(1.29)

where the expectation is taken with respect to the initial state x, i at t = 0. Hence,

the value function follows from the optimal control

Vi(x, 0) = sup
α
Ji(x, 0, α). (1.30)

For simplicity, we assume here that g(x) = 0 and hence Vi(x, T ) = 0 (although we

later relax this assumption to include more general forms of g(·) in our articles).

1.4.1 Dynamic Programming Principle and Variational In-

equalities

In the optimal switching case, the dynamic programming principle leads to a system

of free boundary problem PDEs with interconnected obstacles or quasi-variational

inequalities [18]. Then following the DPP

Vi(x, 0) = sup
τ
E

[∫ τ

0

fi(Xt, t)dt+ max
j∈Im
{Vj(Xτ , τ)−Dij} 1{τ<T}

]
(1.31)

with Vi(x, T ) = 0 and j 6= i.

As an intuitive derivation, consider the evolution of V from 0 to ∆t with reference

to Equation 1.31.

Vi(x, 0) = E

[∫ ∆t

0

fIt(Xt, t)dt+ VI∆t(X∆t,∆t)

]
. (1.32)

If it is optimal not to switch over 0 ≤ t < ∆t (i.e. τ 6∈ [0,∆t)), then by Ito’s lemma
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(1.7) and canceling Vi on both sides

0 = E

[∫ ∆t

0

fi(Xt, t)dt+

∫ ∆t

0

∂Vi
∂t

+ Li[Vi(Xt, t)]dt

]
. (1.33)

By dividing by ∆t, letting ∆t go to zero, and having noted that the expectation of

an Ito integral is zero, we see that Vi(Xt, t) satisfies the PDE

∂Vi
∂t

+ Li[Vi(Xt, t)] + fi(Xt, t) = 0. (1.34)

The implication, given that it is not optimal to switch, is that

Vi(Xt, t) > Vj(Xt, t)−Dij ∀ j 6= i. (1.35)

On the other hand, in the limit that ∆t → 0 and if τ ∈ [0,∆t), then the integral

vanishes and

Vi(x, t) = E

[∫ τ

0

fi(Xt, t)dt+ max
j∈Im
{Vj(Xτ , τ)−Dij}

]
= Vj(x, t)−Dij, j 6= i. (1.36)

Given that it is optimal to switch and τ ∈ [0,∆t), then the strategy of continuing in

the current state (It = i) is suboptimal and using (1.32) we obtain

Vi(x, 0) > E

[∫ ∆t

0

fi(Xt, t)dt+ VI∆t(X∆t,∆t)

]
.

Hence it must be that

∂Vi
∂t

+ Li[Vi(Xt, t)] + fi(Xt, t) < 0 (1.37)

when it is optimal to switch.

Thus the problem can be restated as a system of variational inequalities

max

{
∂Vi
∂t

+ Li[Vi(Xt, t)] + fi(Xt, t), max
j∈Im

[(Vj(Xt, t)−Dij)]− Vi(Xt, t)

}
= 0

(1.38)

for i = {1, . . . ,m} and j 6= i where Li is the infinitesimal generator associated with

regime i.
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1.4.2 Switching Regions

The variational inequality yields a set of regions in space. We define the continuation

region Ci where it is both optimal to continue (i.e. not to switch) and the PDE is

satisfied. Hence,

Ci =

{
x, t :

∂Vi
∂t

+ Li[Vi(x, t)] + fi(x, t) = 0

}
(1.39)

= {x, t : Vi(x, t) > Vj(x, t)−Dij ∀ j} . (1.40)

Similarly, the switching region from i to j, Sij is

Sij = {x, t : Vi(x, t) = Vj(x, t)−Dij} . (1.41)

Further, we can say that:

• Si, the general switching region from i to any alternative state is Si = ∪i 6=jSij.

• Sij ⊆ Cj (following from “triangle” inequality).

• Ci = Sc
i , that is Si is the complement of Ci; Si∪Ci = [0, T ]×Rn; and Si∩Ci = ∅.

Continuity of Classical Solutions

Classical solutions Vi are C1,2 continuous on Ci and C1,1 continuous along the switch-

ing boundary ∂Si [16, 18]. For a solution of the above obstacle problem to be optimal,

the so-called “smooth pasting” or “high contact” [15] condition must hold along the

exercise (switching) boundary ∂Sij

∇Vi(x, t) = ∇Vj(x, t). (1.42)

For example, see [5, 21].

Intuitively, the smooth-pasting condition is just the first order optimality condi-

tion. As a simpler example, consider an American put option written on a stock St

struck at K expiring at time T . We follow an exercise strategy αt = α(t) where we

exercise the put when St = αt. Thus we seek an optimal exercise price boundary α∗

that maximizes the put option’s value. The payoff g is

g(St) = K − St
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The expected value function v following any exercise strategy α(t) is

v(S0, α0) = E[g(Sτ )].

where τ = inf{t ∈ [0, T ] : St = αt} upon exercise St = αt, v(St, αt) = g(St). The

smooth pasting principle can be verified by differentiating with respect to αt at St = αt

d

dαt
v(St = αt, αt) =

d

dαt
g(St = αt)

∂v

∂St
+

∂v

∂αt
=

∂g

∂St

since dSt
dαt

= 1 at St = αt. If αt = α∗t is the optimum, then by the first order optimality

condition
∂v

∂αt

∣∣∣∣
α∗
t

= 0

and thus the smooth pasting condition holds

∂v

∂St

∣∣∣∣
α∗
t

=
∂g

∂St

∣∣∣∣
α∗
t

.

This is a special case of the switching case above.

1.5 The Mixed Case

In two of the articles, we present a stochastic control model with a mixed case where

the controlled diffusion is subject to both impulse and stopping controls. Consider a

value function with optimal control

V (x, 0) = sup
α,τ

E

[∫ τ

0

f(Xt, αt, t)dt+ h(Xτ , τ)1{τ<T}

]
. (1.43)

Following the DPP and the pattern before, the associated HJB variational inequality

is

max

{
∂V

∂t
+ sup

αt

(Lαt [V (x, t)] + f(x, αt, t)), h(x, t)− V (x, t)

}
= 0. (1.44)

We briefly note that in many cases, the HJB equation does not have smooth classical

solutions [10]. In these cases, we must interpret the solutions in a viscosity sense [7].
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Viscosity Solutions

For the highly nonlinear partial integro differential variational inequalities (HJB equa-

tions) considered in the chapters that follow, classical smooth solutions may not exist.

This begs the question of how to interpret nonsmooth solutions to differential equa-

tions that may not be differentiable everywhere. Crandall and Lions [7] provide an

insightful way to interpret weak solutions to these HJB equations called “viscosity”

solutions. The definition of viscosity solutions presented here below follows [17].

We say that V is a viscosity supersolution of

max

{
∂V

∂t
+ sup

αt

(Lαt [V (x, t)] + f(x, αt, t)), h(x, t)− V (x, t)

}
= 0 (1.45)

V (x, T ) = g(x) (1.46)

if for every test function φ ∈ C2,1 and any (x∗, t∗) such that V (x, t) ≤ φ(x, t) ∀ (x, t)

and V (x∗, t∗) = φ(x∗, t∗) (so V − φ achieves its maximum, zero, at (x∗, t∗)), the

condition holds

max

{
∂φ

∂t
+ sup

αt

(Lαt [φ(x, t)] + f(x, αt, t)), h(x, t)− V (x, t)

}
≤ 0. (1.47)

Note that the differential operator L should satisfy an ellipticity condition (i.e. non-

negative volatility).

Similarly we say that V is a viscosity subsolution of 1.45 if V satisfies the terminal

condition g and for every test function φ ∈ C2,1 and any (x∗, t∗) such that φ ≥ V and

V (x∗, t∗) = φ(x∗, t∗), the condition is satisfied

max

{
∂φ

∂t
+ sup

αt

(Lαt [φ(x, t)] + f(x, αt, t)), h(x, t)− V (x, t)

}
≥ 0. (1.48)

If V is both a viscosity subsolution and supersolution, then we say V is a viscosity

solution of 1.45–1.46.

Loosely speaking, if we cannot differentiate the optimal solution V itself, we can

see it as a limiting sequence of a sufficiently differentiable family of (possibly subop-

timal) test functions at (x∗, t∗). Its limit is the optimal control solution to the HJB

equation which was verified by derivation

V (x, t) = sup
α,τ

E

[∫ τ

t

f(Xs)ds+ h(Xτ )1{τ<T} + g(XT )1{τ 6<T}

∣∣∣∣Xt = x

]
.
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(Of course, this definition does not require V to belong to this or any family of test

functions or to be differentiable at all. It need only satisfy the conditions above.) For

additional reading and resources on stochastic control, see [10, 13, 16, 17, 18, 23].

Discounting

When the model includes discounted cash flows, a reaction term is added to the

parabolic PDEs. For example, with continuously compounded discounting at rate r

in the switching problem, the DPP statement is

Vi(x, 0) = sup
τ
E

[∫ τ

0

e−rtfi(Xt, t)dt+ max
j∈Im

e−rτ {Vj(Xτ , τ)−Dij} 1{τ<T}

]
, (1.49)

and the variational inequalities become

max

{
∂Vi
∂t

+ Li[Vi(x, t)] + fi(x, t)− rVi(x, t), max
j∈Im

[(Vj(x, t)−Dij)]− Vi(x, t)
}

= 0

(1.50)

where i 6= j.

1.6 The Relationship Among the Three Integrated

Articles

All three articles presented herein are applications of stochastic control. In Chapter

2, we first consider the example of a biofuel production plant which produces ethanol

from corn. Both commodities are traded on financial markets and are subject to spot

price uncertainty, hence we model both as stochastic processes. The plant manager

has several layered exercise decisions: She may build the biofuel plant given its ex-

pected future income (optimal starting—a variant of optimal stopping) and second,

given the price and profitability conditions, the manager may switch production on

or off (optimal switching).

Our second (Chapter 3) article considers the same biofuel plant but with some

added complexity in addition to the optimal operating (switching) problem. First,

an additional stochastic factor is introduced by means of a jump process representing

the biofuel subsidy offered to the producer. This increases the dimensionality of

the problem. Further, the parameters of that jump process are uncertain. The

manager assumes a worst case pricing scenario and adjusts the parameters accordingly

(controlled jump diffusion).
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The final application in Chapter 4 is related to the first two in that the numerical

tools and associated HJB equations are very similar. We consider a market maker

attempting to hedge his equity derivative position in the presence of market impact

and transaction costs. His rate of trading affects the stock price (controlled diffusion)

and if fixed costs are associated with every trade, he must make finite block trades

(impulse control).

All three applications utilize the DPP, stochastic optimal control and similar nu-

merical methods via finite differences to obtain solutions.
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Chapter 2

Using Real Option Analysis to

Quantify Ethanol Policy Impact on

the Firm’s Entry into and Optimal

Operation of Corn Ethanol

Facilities

Chapter Summary:

Ethanol crush spreads are used to model the value of a facility which produces

ethanol from corn. A real option analysis is used to investigate the effects of

model parameters on the related managerial decisions of (i) how to operate the

facility through optimal switching from idled to operational status and (ii) the

decision to enter into the project given its expected real option net present value.

We present evidence of increased correlation between corn and ethanol prices,

perhaps as a result of government policy which has induced more players to enter

into the market. This paper investigates the subsequent negative effects on firms.

Further, this paper illustrates the impact of an abrupt change in government

policy, as happened in January 2012, on a firm’s decision to enter the business.

Published: Christian Maxwell and Matt Davison, Using real option analysis to

quantify ethanol policy impact on the firm’s entry into and optimal operation of corn

ethanol facilities, Energy Economics, Volume 42, March 2014, Pages 140–151.
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2.1 Introduction

In recent decades, efforts to promote US energy independence from foreign oil [24, 50]

and initiatives to obtain more fuel from environmentally friendly sources have led to

increased subsidies to the production of ethanol from corn. These projects have been

subsidized via policies such as the volumetric ethanol excise tax credit provided to

domestic ethanol biofuel blenders and the small ethanol producer tax credit. The

amount of subsidy for blenders has changed from $0.40/gallon in 1978 (Energy Tax

Act) to $0.60/gallon at its peak in 1984 (Tax Reform Act) [35]. With the introduction

of the 2008 Farm Bill, the subsidy was reduced to $0.45/gallon and many subsidies

expired at the beginning of 2012. Before its December 2011 expiry, the small ethanol

producer tax credit was $0.10/gallon. This credit applied to the first 15 million gallons

of annual production for a producer whose capacity did not exceed 60 million gallons

[34].

The corn ethanol process has been criticized on several grounds. Environmental

critics claim that the process is energy negative in that more carbon-based energy

is used to grow and convert the corn into ethanol than is produced through the

process [47, 45]. Public choice critics claim that the ethanol subsidies may be a result

of seeking rents and lobbying [51, 55] or that production must receive subsidies to

become sufficiently economically attractive (a point discussed in this paper). Other

critics claim that diverting corn from food or feed consumption has caused an increase

in food prices and price variability [36, 39, 40] and that ethanol subsidies have other

effects on social welfare [31]. A year following the lapse of these subsidies, about

one quarter of Nebraska’s ethanol plants were in idle status [42]. It is possible that

reduction in ethanol policy was a contributing factor.

In this paper, real option analysis is used to assess the optimal operating strategy

for an ethanol production facility from management’s perspective. In addition, the

firm’s decision of when to optimally enter the business of ethanol production is also

analyzed. The model aims to realistically capture the flexibility inherent in the full

life of the project through the ability to switch production on and off. There is a cost

associated with switching production which means management faces a “wait and

see” period before making a decision to change production. This resulting decision is

non-trivial and must be modelled as a stochastic optimal control problem.

This real option method of modelling resource project management decisions was

introduced by [28] in a seminal paper which considered the problem of optimally

starting and stopping production to maximize the profits of a natural resource project.



23

The optimal entry and exit from investment projects was also considered by [32] in

another classical real option paper.

Our paper also investigates the effects of increased price correlation between

ethanol and corn resulting from the diversion of corn from feedstock to fuel [36, 39, 40].

Investigating correlation is expedient because it follows from straightforward economic

arguments reducible to a single parameter. Earlier work in this area has focused on

changes in correlation over time. [37] suggest it may have increased; [49] present ev-

idence it may have decreased. In either scenario, investigating its impact on pricing

and operating decisions is important. Further, the effects of policy subsidy on project

value are also investigated.

This paper represents a direct extension of the analysis in [37] and uses similar

methods to those presented in [49]. [37] use a bootstrap Monte Carlo analysis to

estimate the value of an ethanol production facility modeled as a strip of exchange

options. Our paper expands the analysis in [37] to capture the rational operator’s

optimal strategy which hinges on the “wait and see” phenomenon. [49] investigate the

effects of ethanol policy on prices and the firm’s decision to enter into and divest itself

from the business on an infinite time horizon. This paper adds to their analysis by

(1) using a finite time horizon for entry into the project in keeping with for instance a

private equity firm’s finite investment horizon requirements; and (2) investigating its

subsequent optimal operation once initiated. The effect of ethanol policies on prices

are investigated using increases in a simple ethanol-corn correlation metric designed

to capture the increased linkage between the two markets.

Section 2.2 assembles a framework including price models, parameters for man-

agement flexibility and rules for optimal operation. Section 2.3 illustrates concepts

and heuristic results from similar closed-form models while Section 2.4 contains the

numerical results from the full analysis. Finally, Section 2.5 presents insights and

conclusions from the investigation.

2.2 Assembling the Model

Firms have the flexibility to begin or defer projects given current economic and price

environments, a flexibility not captured by net present value (NPV) or discounted

cash flow (DCF) analyses, as described in [33].

After entering into an ethanol project, management has the ability to pause and

resume production given price conditions and their profits. This enables management

to capitalize on the upside profits while mitigating the downside losses. Again a simple
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NPV DCF analysis would fail to capture the true value of flexibility given uncertain

(stochastic) future prices.

The goal of this paper is to examine how ethanol policy affects producers busi-

ness entry and subsequent facility operation decisions given price conditions, subsidy

expectations, and the remaining facility life.

To develop a model, the following inputs are required:

1. Equations representing the plant economics including capitalized costs to con-

struct the facility, costs to pause and resume production, and instantaneous

profit as a function of ethanol and corn prices; and

2. A stochastic model for corn and ethanol prices including econometric analysis

of the relevant parameters.

Throughout this paper, all currency units are United States dollars (USD); all

liquid volume units are gallons (1 US gal = 3.785 L); all solid volume units are

bushels (1 US bushel = 0.0352 m3); all weight units are in tons (1 short ton =

2000 pounds = 907.185 kg); and all interest rates are percent per year and appropriate

to USD deposits.

2.2.1 A Model for the Plant

The plant produces ethanol (priced in USD/gallon) from corn (priced in USD/bushel).

Reaction models and instantaneous running profits

The running profit from the corn-ethanol crush spread is developed on a per bushel

per year ($/bushel-year). Our analysis uses the standard reaction from [26] for the

popular dry grind process of producing ethanol

corn→ ethanol + byproducts, (2.1)

which implies the profit function

f(Lt, Ct) = κ(Lt −K) + ωAt − Ct, (2.2)

The net running cost K may further be decomposed into the fixed running cost p less

any government volumetric subsidy s,

K = p− s. (2.3)
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Ct is the price of corn per bushel; Lt is the price of ethanol per gallon; and At is the

price of byproduct distillers dried grains in dollars per ton. The process produces

17 lbs of distillers dried grains per bushel of corn and consequently ω = 17/2000.1

The conversion factor, κ = 2.8, represents how many gallons of ethanol are pro-

duced per bushel of corn; taken from [26] and is consistent with the CME Group’s

references on ethanol crush spreads [29]. A subsidy of $0.10/gallon was used along

with a fixed running cost of $0.68/gallon for facilities with nameplate capacities of

40, 000, 000 gallons/year [48].

The analysis is simplified by considering two stochastic factors, ethanol and corn,

independently; while accounting for each additional factor with affine terms. This

yields a simple instantaneous running profit function

f1(Lt, Ct) = κ(Lt −K1)− Ct (2.4)

on a per bushel consumed per year basis. Average distillers dried grains, Āt, is one

constituent of the parameter K1

K1 = p− ω

κ
Āt − s. (2.5)

While production is idle, [48] estimated that fixed running costs are roughly 1%

of capitalized cost per gallon of capacity, B, or roughly 20% of fixed running cost

while in production. Our analysis takes the average of these two fixed running cost

estimates. While production is halted there is no subsidy since no ethanol is being

produced. The profit function while off is

f0(Lt, Ct) = −κK0 (2.6)

where

K0 =

(
0.20p+ 0.01B

2

)
(2.7)

is the midpoint of the two possible estimates of K0.

Switching and Capitalized Construction Costs

For a medium-sized facility (40, 000, 000 gallons/year) [49] estimated a capitalized cost

of $1.40/gallon is required to construct a turn-key facility from a green field (while

maintenance costs are included in the fixed running costs K). The medium-sized

1There are 2000 lbs in a ton and distillers dried grain prices are quoted in USD/ton
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Figure 2.1: Historical ethanol-corn price series from Jan/02-Dec/11.

facility is taken as the representative model which also qualifies for the small ethanol

producer subsidy being less than 60, 000, 000 gallons in capacity. Costs to resume

production from an idle state are estimated by [48] to be 10% of capitalized cost per

gallon of capacity; costs to pause production from an active state are estimated to

be 5% of capitalized cost; finally the liquidation value at the end of facility life is

estimated to be 10% of capitalized cost.

2.2.2 Models of the Prices

Ethanol and corn prices are modeled as stochastic geometric Brownian motion (GBM)

processes in this analysis. Despite some well-known drawbacks, GBM is very popular

in mathematical finance and financial economics due to its simplicity and desirable

properties for modeling financial time series (e.g. nonnegativity, volatility proportional

to price level, etc.). The historical price series from Dec/02–Jan/11 is shown in Figure

2.1.

A GBM random process Xt follows the stochastic differential equation (SDE):

dXt = µXtdt+ σXtdWt,

where µ is its drift (average rate of continuously compounded growth) and σ is its

volatility. The differential increment of Brownian motion dWt corresponding to the
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interval between t and t+dt is drawn from the normal random variable with zero mean

and variance dt, independent of other such draws on non-overlapping time intervals.

Although intuitively one might expect commodity prices to be mean-reverting to

some equilibrium price, it is generally hard to observe statistically. Accordingly, our

model choice is reasonable since statistical tests on the time series in [37] rejected

mean-reversion and seasonality. It was found however that the data exhibit serial

autocorrelation. The effects of autocorrelation in the drift of the lagged process was

found to be statistically zero in [49] and hence serial correlation is ignored in our

paper’s analysis; the time series were also subjected to augmented Dickey-Fuller tests

which found weak evidence against the presence of unit roots and hence the time

series can be treated as stationary. This also allows the use of well-developed theory

of Markov processes and Ito calculus in the analysis that follows.

The logarithm of a GBM process lnXt follows an even simpler constant volatility

arithmetic Brownian motion (ABM) process

d lnXt =

(
µ− 1

2
σ2

)
dt+ σdWt.

The econometric parameters are estimated by ordinary least-squares regression.

The differenced ABM series ∆ lnXt = ln Xt
Xt−1

has representation

∆ lnXt =

(
µ− 1

2
σ2

)
∆t+ σ

√
∆tξ.

where ∆t = ti − ti−1 and ξ ∼ N(0, 1). Thus the parameters may now be estimated

via

∆ lnXt = β0 + εξ,

where the constant term is the drift of the series and the volatility is read directly

from the root mean squared error of the innovation εξ

β0 =

(
µ− 1

2
σ2

)
∆t,

RMSE =
√
ε =
√

∆tσ.

Estimates of the correlation, ρ, between two time series are obtained via the

sample correlation of the residuals.

Prices for the no. 2 Omaha, Nebraska yellow corn used to underpin the stan-

dard CME contract were obtained from the US department of agriculture feed grains
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Parameter estimate Value t-test

µ̂ 0 P
(
µ̂−µ
s.e.

> |t|
∣∣µ = 0

)
= 0.409

σ̂ 0.156 -
â 0 P

(
â−a
s.e.

> |t|
∣∣ a = 0

)
= 0.202

b̂ 0.123 -
ρ̂ 0.105 -

Table 2.1: Parameter estimation results.

database [52]. Average rack price freight on board Ethanol prices were obtained from

the Nebraska Energy Office [43]. Nebraska data was selected to reflect the size of Ne-

braska in US corn and ethanol markets and to be reflective of national prices [41]. To

be consistent with [37], 10 years of monthly historical price data was used spanning

the period between Jan/02–Dec/11.

For simplicity, the relatively small inflation adjustment for prices over this 10 year

period were ignored. Note that inflation enters into the price dynamics via the drift,

the specification of which does not affect the estimates for volatility and correlation.

Ethanol and corn are modeled by correlated GBMs with SDEs

dLt = µLtdt+ σLtdW1t, (2.8)

dCt = aCtdt+ bCtdW2t, (2.9)

Corr[W1t,W2t] = ρ. (2.10)

The drifts of both ethanol and corn did not reject the null hypothesis of zero drift

at the 95% confidence interval. The annualized results are summarized in Table 2.1.

The estimate for the average distillers dried grains price Āt was estimated by

regressing the time series against a constant. The result was ˆ̄At = 115.6 with a

standard error of the estimator (s.e.) of 3.6. At the 95% student-t percentile with 119

degrees of freedom, t0.975,119 = 1.9801, the confidence interval is Āt ∈ [108.4, 122.8].

2.2.3 The Real Option Model

Now a model is developed for the optimal operating strategy and expected earnings

of the plant. All earnings are discounted using an annualized interest rate of r = 8%

which aims to capture the credit risk associated with ethanol projects [48]. We note

that it is possible to “hedge” this real option with futures contracts in which case r

should be set to the risk free rate. There may be incentives to hedge or in fact not

to hedge at all depending on the market dynamics and management’s risk appetite.
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Variable Description Value Source
B Capitalized cost of construc-

tion
$1.40/gallon [48, 49]

Q Liquidation value at end of
life

0.1B = $0.14/gallon [48]

D01 Cost to switch production on 0.1B = $0.14/gallon [48]
D10 Cost to switch production off 0.05B = $0.07/gallon [48]
r Discount rate 8% per annum [49]
p Fixed running cost $0.68/gallon [48]
s Subsidy $0.10/gallon [35]
Āt Average price of distiller’s

dried grains per ton
$115.58/ton [52]

κ Gallons of ethanol produced
per bushel of corn

2.8 gallons/bushel [26]

ω Tons of distillers dried grains
produced per bushel of corn

17
2000

tons/bushel [26]

K1 Net running costs while in
production

0.23/gallon [48]

K0 Net running costs while idle 0.07/gallon [48]
f1(Lt, Ct) Running profits while in pro-

duction
κ(Lt − K1) − Ct = 2.8(Lt +
0.12)− Ct/bushel-year

f0(Lt, Ct) Running profits (losses) while
production is idle

−K0 = −0.07/bushel-year

Table 2.2: Real option model parameters.

We discuss this briefly in the appendix.

The plant has two operating modes or states: 1, denoting “on” or in production,

and 0, denoting “off” or production temporarily suspended. The instantaneous run-

ning profit while on is given by f1; while off by f0. The cost of switching production

back on after being temporarily suspended is D01 and the cost of switching production

off from an active state is D10.

The capitalized cost of construction of the facility is given by B and its liquidation

value at the end of its normal useful life is Q. All parameter and function values are

listed in Table 2.2.

The total expected earnings over the life of the project is given by the value

function Vi where i = {1, 0}

Vi(l, c, t) = sup
τ,u

E

[∫ T

t

e−r(s−t)fIs(Ls, Cs)ds+
n∑
k=1

e−r(τk−t)Duk−1,uk

∣∣∣∣∣ (Lt, Ct, u0) = (l, c, i)

]
.

(2.11)
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The pair (τ, u) is the control that the manager has over the facility in his ability to

toggle production on and off. It consists of a set of switching times τk and states to be

switched into uk with It = uk, t ∈ [τk, τk+1). Thus τk is an increasing set of switching

times with τk ∈ [t, T ] and τk < τk+1.

From the dynamic programming principle, it is known that

Vi(l, c, t) = sup
τ
E

[∫ τ

t

e−r(s−t)fi(Ls, Cs)ds+ e−r(τ−t) {Vj(Lτ , Cτ , τ)−Dij}
∣∣∣∣ (Lt, Ct) = (l, c)

]
.

(2.12)

where τ is the optimal time switch production on from off (0 → 1) or off from on

(1→ 0).

This problem can be reduced to a question of finding the optimal price boundaries

for ethanol and corn (Lt, Ct) at which to switch production. Now the problem is to

solve for the sets of prices at which the operator should:

• continue production if production is currently on, H1;

• pause production if the state is currently on, S10;

• keep production halted if the state is currently idle, H0; and

• resume production if the state is currently idle, S01.

Thus given the production is in state i at time t only one of two decisions is possible.

(1) If it is optimal to keep production in its current state, then by Ito’s lemma the

value function evolves by the partial differential equation (PDE) on Hi

∂Vi
∂t

+ L[Vi] + fi(l, c, t)− rVi = 0, (2.13)

where L is the generator of the joint processes (Lt, Ct)

L = µl
∂

∂l
+ ac

∂

∂c
+

1

2
σ2l2

∂2

∂l2
+ ρσblc

∂2

∂l∂c
+

1

2
b2c2 ∂

2

∂c2
. (2.14)

Similarly (2) if it is optimal to switch (if the value of the i-state were to fall below

the j-state less switching costs Vi(l, c, t) ≤ Vj(l, c, t)−Dij) then immediately

Vi(l, c, t) = Vj(l, c, t)−Dij (2.15)

on Sij and the operator switches to receive the profits in state j, fj.

This leads to the set of free boundary PDEs for the optimal switching problem.

The free boundary ∂Hi gives the optimal set of prices at which to toggle production.
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In order to solve the PDE, the moving free boundary must be determined; it is not

known a priori. Along the free boundary, there is continuity of the value functions

and its first spatial derivatives, the so-called “high contact” principle [27]. By writing

the free boundary problem in complementary form below (noting that either the

PDE holds or the constraint is saturated), it is no longer necessary to track the free

boundary as the equation is extended to the whole space.

max

[
∂V1

∂t
+ L[V1] + f1(l, c, t)− rV1, (V0 −D10)− V1

]
= 0, (2.16)

max

[
∂V0

∂t
+ L[V0] + f0(l, c, t)− rV0, (V1 −D01)− V0

]
= 0 (2.17)

with final conditions V1(l, c, T ) = V0(l, c, T ) = Q.

These equations may be solved numerically using methods similar to those de-

scribed in [54]. The PDE is solved using standard centred finite differences for accu-

racy along with an implicit Crank-Nicholson time stepping discretization. With the

parameters considered (i.e. ρ � 1), this leads to a stable monotone scheme. How-

ever, as ρ becomes larger, care must be taken with the cross derivative difference to

ensure the M -matrix property is conserved in order for the scheme to be stable. The

complimentarity condition for the optimal switching is enforced using a fixed point

value iteration method. Conceptually, the technique is similar to projected successive

over-relaxation [30] and can be accelerated with multigrid or Krylov methods. Each

system V1, V2 is iterated simultaneously until convergence. For additional information

on optimal switching problems and stochastic calculus, see [25, 27, 46, 44].

Suppose the firm has a lease over a finite time horizon on the green field site

on which they plan to build the production facility. If prices are particularly un-

favourable, it would be naive to immediately enter into the project. A rational in-

vestor that seeks to maximize his expected earnings P should wait at least until the

expected earnings of the optimally managed facility exceed the capital cost of invest-

ment. This is analogous to an American call option on the facility struck at B with

payoff (max[V1(l, c, t), V0(l, c, t)]−B)+ over the remaining horizon T − t. (Note that

X+ = max(X, 0)). The free boundary problem for this option (following a similar

dynamic programming optimal stopping argument) is

max

[
∂P

∂t
+ L[P ]− rP, (max{V1(l, c, t), V0(l, c, t)} −B)− P

]
= 0 (2.18)

with final condition P (l, c, T ) = max[0, max{V1(l, c, T ), V0(l, c, T )}−B]. Again, this
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is reduced to finding a set on which it is optimal to wait, H, and set at which it

is optimal to enter into the investment, S. The free boundary between these two

sets is the set of prices at which it is optimal to make the decision. See [53] for

additional details. Generally, one would not build the plant if it was expected to

be idled immediately after construction and so we can drop V0 in Equation 2.18

(e.g. P (l, c, T ) = max[0, V1(l, c, t) − B]). This model assumes that the construction

is immediate. In realty, there is some delay between when the project is initiated

and the facility is complete and ready for operation. To model this, accurately an

extra time variable would be needed in the PDE to track the time to completion of

the facility resulting in an “ultraparabolic” 4-dimensional PDE (l, c, t and time to

completion).

As the green field project is quite expensive to initiate relative to its salvage

value upon abandonment, the option to abandon adds little value and for financially

reasonable parameters does not materially alter the decision to enter the investment.

A thorough argument is presented in 2.6.

2.3 Lessons from Exchange Options

In this section, two simplifications of the above model are presented to predict the

effects of increased correlation on the complete model.

2.3.1 A Running Margrabe Exchange Option

Assume that switching costs and fixed running costs are both zero. This makes

it possible to find an analytic solution for the expected earnings of the facility. If

switching costs are zero, the problem reduces to the simple PDE

∂V

∂t
+ L[V ] + (κl − c)+ − rV = 0, (2.19)

where V1 = V0 = V . This is the running payoff analogue of the classical Margrabe

European exchange option [38].

The solution to this problem follows from the Feynman-Kac representation theo-

rem

V (l, c, t) = E

[∫ T

t

e−r(s−t) (κLs − Cs)+ ds

∣∣∣∣ (Lt, Ct) = (l, c)

]
. (2.20)

After some reflection, it is apparent Equation 2.20 is similar to a running Margrabe

exchange option or a Black-Scholes call on ethanol struck at the corn price. Following
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Figure 2.2: V/Vref as a function of Ct is approximately semilinear. All parameters
are as in Table 2.2 except K = 0, D01 = D10 = 0, and κ = 1.

the Black-Scholes analogy, Equation 2.20 is reduced to

V (l, c, t) =

∫ T

t

e−r(s−t)
[
κleµ(s−t)Φ(d+)− cea(s−t)Φ(d−)

]
ds (2.21)

where

ν2 = σ2 − 2ρσb+ b2, (2.22)

d+ =
ln κleµ(s−t)

cea(s−t)

ν
√
s− t

+
1

2
ν
√
s− t, (2.23)

d− =
ln κleµ(s−t)

cea(s−t)

ν
√
s− t

− 1

2
ν
√
s− t. (2.24)

From (2.21) to (2.24) above, it apparent that ν is decreasing in ρ. Since this is

akin to a Black-Scholes option, its value is accordingly decreasing in ρ. Similarly it is

approximately semilinear in c, the operating cost, deep into or out of the money. This

is illustrated in Figure 2.2 for a generic-parameter option in the risk neutral measure

(where κ = 1, Lt = 1). Therefore, as a rough approximation, V can be considered

almost semilinear and decreasing in K.

The value of the facility is also strongly linked to its achievable yield of ethanol

per bushel of corn. As before, the value is almost linear in κ.

Figure 2.3 shows the percent decrease in V at the money as a function of increasing
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Figure 2.3: V/Vref as a function of ρ is decreasing. Parameters are as in Table 2.2
except K = 0, D01 = D10 = 0.

ρ normalized by the reference value Vref = V (ρ = 0).

2.3.2 An Infinite Horizon Model

Using a clever dimensional reduction to obtain coupled differential equations, [49] were

able to solve an infinite time horizon problem in closed form. Changing notation to

that used in the current paper, their solution can be represented as the system of

nonlinear equations

v0(z) = Azλ− , (2.25)

v1(z) = Bzλ+ +
z

r − µ
− 1

r − a
, (2.26)

λ± =

(
1

2
− µ− a

ν2

)
±

√(
µ− a
ν2
− 1

2

)2

+
2(r − a)

ν2
, (2.27)

where V (l, c) = cv
(
l
c

)
= cv(z), f0(l, c) = 0 and f1(l, c) = l − c.

The remaining four unknowns A and B, and z01 and z10—which represent the z at

which production should be switched on or off respectively—derive from continuity of

the value functions and the smooth-pasting optimality condition (i.e. 1st derivatives)

at the switching boundary which constitutes a system of four nonlinear equations in

four unknowns.
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Figure 2.4: Baseline results for v0 and v1. Note the value is increasing in l/c and the
presence of a hysteresis zone in the value functions. Parameters are as in Table 2.2
except T =∞.

The value function for the parameters calculated is shown in Figure 2.4. The

switching boundaries z01, z10 as a function of ρ are shown in Figure 2.5.

As can be seen from the figures, the effect of increasing ρ tightens the “wait-

and-see” gap resulting in shorter periods of operation before making the decision to

switch. In particular, the plant manager is less optimistic about prices rebounding

in making the decision to switch production off. This is accompanied by decreased

value and potentially riskier cash flows since production is started and stopped more

often.

A technical term describing this gap phenomenon is hysteresis. It represents a

“sticky” region where it is not definitively optimal to be in either state (on or off)

but rather to remain operating as is. Once prices reach the switching boundaries S01

and S10, it is definitively optimal to be in either the on or off state respectively and

switching occurs as required. Stated precisely, the hysteresis zone is given by the set

H0 ∩H1 which is also equivalent to H1 \ S10 = H0 \ S01.

2.4 Numerical Results

The analysis begins with a retrospective look at the profits that would have been

realized by the model facility given historical prices from Jan/02 to Dec/11. As a

baseline, 10 year model values at the Jan/02 price of Lt = $0.94/gallon for ethanol
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Figure 2.5: Switching boundaries z01 and z10 as a function of ρ where z = l/c. Note
that as ρ increases, the boundaries at which production is started z01 and stopped
z10 converge indicating reduced “optimism” in prices rebounding. Parameters are as
in Table 2.2 except T =∞.

Baseline result Description Value
V1(0.94, 1.90, 0) Model income value started “on” $2.10/bushel-year
V0(0.94, 1.90, 0) Model income value started “off” $1.77/bushel-year
P (0.94, 1.90, 0) Model plant value after construction $0.84/bushel-year
V1|realized time series Retrospective realized income $10.73/bushel-year
V0|realized time series Retrospective realized income $10.27/bushel-year

Table 2.3: Expected income value as Jan/02 and retrospective historical realized
income during the period Jan/02 through Dec/11.

and Ct = $1.90/bushel for corn are listed in Table 2.3 ignoring the value of liquidating

the plant at the end of its life (i.e. Q = 0). As before, Vi(l, c, t) refers to the expected

value of income generated by the facility from time t, given production begins in state

i, with Lt = l and Ct = c.

The actual profits given the past 10 year time series from Jan/02–Dec/11 realized

from optimal operation are also recorded in Table 2.3, noted as Vi|realized time series.
The higher than expected realized profits do not reflect negatively on the model’s va-

lidity but rather represent one of many possible realized outcomes from the stochastic

model.

The retrospective plant operating status from Jan/02-Dec/11 as determined by
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Figure 2.6: Baseline income valuation results for V1 (solid) and V0 (dashed) for given
levels of l. Note that l and c are the initial ethanol and corn prices given the 10 year
period respectively. The y-axis is the income value. Parameters are as in Table 2.2.

following the optimal operating scheme indicates that the facility should always be

in production regardless of price conditions (see Figure 2.1). The results suggest that

the ethanol subsidy policy may be higher than necessary to ensure NPV positivity

and may in fact be reduced with minimal effects on producers.

2.4.1 Baseline Value

The baseline valuation results are shown in Figures 2.6 which include the liquidation

value at the end of facility life on a per bushel basis.

The baseline switching (S01, S10) and continuation sets (H0, H1) are shown in

Figure 2.7.

2.4.2 Effects of Increased Correlation on Value

As expected from the Margrabe option results presented in Section 2.3, increasing

correlation significantly reduces option value. There is evidence for increased correla-

tion in recent years. Figure 2.8 shows the rolling correlation over the previous 3 year

period on the price series data from Jan/02–Dec/11 calculated using the correlation

of the log monthly returns.

Figure 2.9 shows the percent loss in income value as the correlation ρ increases,
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Figure 2.7: Baseline switching, Sij, and continuation sets, Cij. Parameters are as in
Table 2.2.

Figure 2.8: The 3 year rolling correlation, ρ, over the 7 year period Jan/04–Dec/11
from the 10 year monthly price data, Jan/02–Dec/11. There is evidence of increased
correlation in recent years which may be related to increased production and demand
in corn ethanol.
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Figure 2.9: V1(l, c)/V1,ref and V0(l, c)/V0,ref versus ρ. The initial ethanol l and corn
c prices are (l, c) = (0.94, 1.90) and the reference value Vi,ref is taken at ρ = 0. The
value is decreasing in ρ. All other parameters are as in Table 2.2.

shown for 10 years of income without liquidation given the Jan/02 average monthly

prices of (l, c) = (0.94, 1.90) with Vi,ref = Vi(ρ = 0). It is no coincidence that V0

appears more sensitive to changes in ρ at the chosen reference point: The point is

close to ∂S10 and therefore more sensitive to the decision to “turn on” (0→ 1) rather

than “stay on” (1→ 1).

Pushing ρ away from zero correlation results in changes in ±50% of income option

value. The concavity of the graph indicates that the option is very sensitive to ρ.

Figure 2.10 shows ∂V1

∂ρ
evaluated at the estimated value of ρ = 0.105 along with

the switching boundaries overlayed on the plot. (The result for ∂V0

∂ρ
is very similar.)

The effects of increasing ρ are strongest near the switching regions (i.e. in the

hysteresis zone). The most significant losses in the hysteresis zone are near −0.50.

Thus in these price regions for a 10% increase in ρ, there is a loss of nearly $0.05 of

value following the Taylor approximation, V (ρ0 + ∆ρ) = V (ρ0) + dV
dρ

∆ρ + O(∆ρ2).

Outside the hysteresis zone, all partials become equal since Vi = Vj −Dij only differs

by an additive constant. The hysteresis zone is the result of uncertainty as to which

decision or operating status is optimal. Intuitively, the option value would be most

sensitive to changes in variance (via correlation) in this uncertainty or hysteresis zone

which is observed in Figure 2.10.

The loss in value associated with increasing ρ becomes more persistent and pro-
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Figure 2.10: The sensitivity ∂V1

∂ρ
as a contour plot. Note that V1 is most sensitive to

changes in ρ near the hysteresis zone. All parameters are as in Table 2.2.

nounced as T − t increases. This is a financially intuitive result since there is more

time for the losses related to ρ accrue. But more importantly, the longer increased

correlation persists the more damaging the effect becomes. To illustrate, Figure 2.11

shows the relevant option “Greek,” ∂2V1

∂t∂ρ
, taken at Jan/02 price levels (0.94, 1.90) (note

that similar results hold for V0).

2.4.3 Effects of Subsidy Policy on Value

The loss in value from removing the subsidy is shown in Figure 2.12. As the subsidy

s is lowered, the facility is expected to lose value at a near linear rate when deep in

the money and at a lower rate as the value moves further out of the money. This

behaviour is illustrated in Figure 2.12 which plots Vi(s) at (l, c) = (0.94, 1.90). It can

also be seen from the plot that, across all s ∈ [0, 10] ¢/gallon, the point (l, c) remains

in the hysteresis zone. The distance between the two values remains less than the

switching cost V1(l, c)− V0(l, c) < D01, a characteristic feature of the hysteresis zone.

2.4.4 NPV Positivity and the Value of Waiting to Invest

Since both increasing ρ and decreasing the subsidy have the effect of reducing the

value of the income option, it is natural to expect that the value of waiting to invest,

P , is also reduced. If the value is reduced, it is expected that the optimal price
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Figure 2.11: The second-order sensitivity ∂2V1

∂t∂ρ
as a function of t. Note that V0 becomes

more sensitive to changes in ρ as t increases. All parameters are as in Table 2.2.

Figure 2.12: V1(l, c) and V0(l, c) as a function of s. The value is increasing in s. All
other parameters are as in Table 2.2.
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Figure 2.13: NPV positivity regions at ρ = 0.9 and ρ = −0.9. The boundaries denote
the area over which projects are NPV positive. It is largest when ρ approaches −1
and smallest when ρ approaches +1. The area bounded between the two regions
indicates how the boundary (NPV positive set) decreases as ρ increases which implies
that fewer projects are NPV positive. All other parameters are as in Table 2.2.

levels to begin the project, ∂S, should be closer to the NPV positive region2. This

reflects the lowered optimism of entry into the investment. This is illustrated with

exaggeration in Figures 2.13, 2.14 and 2.15.

As is apparent from Figure 2.15, the subsidy policy results in some otherwise

economically unattractive projects being initiated. The net effect of this is to reduce

the productive activity of firms contemplating entry into the investment project.

2.4.5 Retrospective Analysis without Subsidy

The investigation closes with a retrospective look at the performance of the optimal

operating schedule without a subsidy; this gives an indication of the kind of per-

formance one might expect in the future given many ethanol subsidies have been

discontinued. Due to high realized ethanol prices, even a non-subsidized facility has

a productive run and is nearly always in operation.

Contrast that operating result with Figure 2.16 which indicates when the facility

is operating at a profit, 1, or at a loss, 0. That is, Figure 2.16 is a graph of 1f1(l,c)>0

2The NPV positive region is given by the set at t = 0 {(l, c) : (max[V1, V0]−B) > 0} over 10
years including liquidation proceeds.
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Figure 2.14: The entry boundary ∂S as ρ increases. Note that the region over which
we wait to invest, H, decreases as ρ increases. Compared with Figure 2.13, the
distance between deciding to invest and the region of NPV positivity shrinks as ρ
increases. All other parameters are as in Table 2.2.

Figure 2.15: The entry set boundary ∂S as K1 increases. Note that the region over
which we wait to invest, H, increases as K1 increases. All other parameters are as in
Table 2.2.
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Figure 2.16: 1f1(l,c)>0 with and without subsidy. Note that despite that there are
moments when the facility is operating at a loss, the presence of switching costs
filters the operating signal to be almost always on.

with and without subsidy. In the absence of a subsidy, it is still optimal to always

remain in operation given the historical time series; despite the fact that on several

occasions the profits become negative. The presence of switching costs acts like a

low pass filter on the zero-cost switching signal and accordingly switching occurs less

frequently.

Historical information regarding the operating status of about 215 plants across

the United States is available from [42]. Figure 2.17 shows the number of plants

that were historically idled in the 5 years 2008–2012. There is an increase in idled

plants consistent with the decrease in profitability observed in 2011–2012 apparent in

Figures 2.16 and 2.1. The decrease in profitability is not only due to a tightening in

the crush spread but also the loss of subsidy in 2012 which partly explains the sudden

rise in idle plants observed in 2012. Note that the tightening of the spreads and loss

in profitability does not immediately equate in plants idling which is consistent with

our model predictions. This is due to the cost of ramping down production which

acts as a filter inducing managers to continue operating until prices revert or crush

spreads become too tight or negative.

It may appear that the facility is profitable even in the absence of subsidy, but

part of the story is missing. Figure 2.18 indicates when it is optimal to enter into

the investment over the 10 year horizon. As can be seen, for most of the time it is
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Figure 2.17: Historical count of idled plants in the 5 years from 2008–2012 inclusive
of a sample population with approximately 215 plants. Note the increase in idled
plants beginning 2011 and sharp rise in 2012. Source: [42].

in fact not optimal to initiate the project even though the retrospective operating

status advises to be in production. This means that while the operator of an existing

facility would produce from it, the resulting profits would not be so large as to entice

the development of a new facility. It is in fact optimal to wait nearly 2 years before

initiating the project even in spite of low corn prices and the otherwise continuous

production signal. In addition, it is apparent that the presence of the subsidy does

not greatly influence the historical decision to enter into the project.

The assumption that the facility is able to easily market and sell its distillers dried

grains may not always hold. An investigation of the historical operating status given

Āt = 0 is shown in Figure 2.19. The upper indicator assumes the state is initially

on, V1, i = 1; the lower status assumes it begins in the off state V0, i = 0. The

investigation shows that the economic viability of an existing facility is sensitive to

its ability to market its byproducts in addition to ethanol.

2.4.6 Future Risk Profile

In the next few figures, the distribution of profits, 95% value-at-risk (VaR) and condi-

tional value-at-risk (CVaR) are provided followed by an investigation of the amount
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Figure 2.18: Retrospective decision status whether to enter into the investment with
and without subsidy. Note that it is optimal to wait nearly 2 years before initiating
the projects. All other parameters are as in Table 2.2.

Figure 2.19: Retrospective operating status of a facility with no marketable grains,
Āt = 0. Note that it is only optimal to be in production for roughly 60% of the time
over the 10 year period. All other parameters are as in Table 2.2.
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Figure 2.20: Monte Carlo simulations of Z given i = 1 following the optimal operating
strategy. (Lt, Ct) = (2.49, 6.02) and all parameters are as in Table 2.2 with 100, 000
simulations.

of time spent idle and operating at a loss. The V aRα of a project at given confi-

dence level α ∈ (0, 1) is the smallest number γ such that the probability that the

loss Γ exceeds γ is at most (1 − α). The CV aRα is the expectation of this tail,

i.e. CV aRα = E[X|X ≤ V aRα]. The subsidy is taken to be zero, s = 0, for the

investigation as it aims to investigate the cash flows going forward on a 10 year

horizon.

The probability density function (PDF) of income assuming the project is imme-

diately started,

Z =

∫ T

t

e−r(s−t)fIsds−
T∑
k=0

e−r(τk−t)Duk−1,uk , (2.28)

is shown in Figures 2.20 and 2.21. The investigation is performed at the Dec/11 price

(Lt, Ct) = (2.49, 6.02).

The large peaks in the distributions of incomes indicate that many simulated

project outcomes remain idle for extended periods of time.

The simulated cumulative distribution function (CDF) of income and capitalized

costs assuming the site is available on a 10 year horizon given the operator must first
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Figure 2.21: Monte Carlo simulations of Z given i = 0 following the optimal operating
strategy. (Lt, Ct) = (2.49, 6.02) and all parameters are as in Table 2.2 with 100, 000
simulations.

decide to initiate the project at optimal time τ ,

M =

{
−e−r(τ−t)B +

∫ T

τ

e−r(s−t)fIsds−
T∑
k=0

e−r(τk−t)Duk−1,uk +Qe−r(T−t)

}
1{τ<T},

(2.29)

is shown in Figure 2.22. The jump in the CDF Prob(M ≤ m) at zero indicates that

a large number of simulated outcomes where projects are never optimally initiated.

The large point mass at zero in Figures 2.20–2.22 show that many projects wait a

very long time to begin or are in fact never initiated.

The section concludes by investigating how increased correlation affects the follow-

ing factors: V aR0.05, CV aR0.05, fraction of time spent idle tidle, the fraction of time

spent operating at a loss top loss, and the fraction time spent waiting to enter into

the project τ/T . These are summarized in Figures 2.23 and 2.24 given the project is

initiated optimally from a green field site.

It can be observed from Figures 2.23 and 2.24 that, as ρ increases, the value

at risk of the project typically decreases. However, the project value also decreases

supporting our earlier assertion that the optimal operating strategy becomes “less

optimistic” in that the investor waits longer to enter. The amount of time spent

idle or operating at a loss tends to decrease. This is expected since the investor

has already waited until prices were more favourable before initially entering into
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Figure 2.22: Experimental CDF of M following the optimal operating strategy. Note
the large point mass of projects which are never started or begin very late in the
cycle. (Lt, Ct) = (2.49, 6.02) and all parameters are as in Table 2.2 with 100, 000
simulations.

Figure 2.23: Left: Expected value of investment P . Right: 5% VaR and CVaR of
investment as a function of ρ. (Lt, Ct) = (2.49, 6.02) and all parameters are as in
Table 2.2 with 50, 000 simulations. Error bars indicate 3 standard deviations of the
estimator.
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Figure 2.24: Time spent idle, operating at a loss and waiting for entry as a function
of ρ. (Lt, Ct) = (2.49, 6.02) and all parameters are as in Table 2.2 with 50, 000
simulations. Error bars indicate 3 standard deviations of the estimator.

the project. Increasing ρ reduces the standard distribution of Z and M (reduced

volatility). There is more certainty in the project, but this comes at a cost to option

value.

2.5 Discussion and Conclusion

Our paper investigated the economic viability of a corn ethanol production facility

using real option models. The results indicate that the viability of the project is

sensitive to changes in correlation and subsidy policy along with the ability to market

its byproducts.

Correlation

The investigations with the Margrabe exchange options showed that the option can

lose over 70% of its value as the correlation increases from uncorrelated to nearly

perfectly correlated, ρ ≈ 0.9 (Figure 2.3). Further the complete model showed that

given the deep in the money initial price at Jan/02, the facility can lose over 50%

of its value as the prices become more correlated (Figure 2.9). The contour plot of
∂V
∂ρ

(Figure 2.10) showed that in the hysteresis zone, the facility is most sensitive to

changes in correlation.

Our investigations using the infinite time horizon model indicated that as the
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correlation increased, the size of the hysteresis zone shrank (Figure 2.5). This may

indicate more certainty in the income cash flows but also indicates lowered expectation

for value or prices rebounding favourably for the operator (Figure 2.23). Addition-

ally, our risk profile analysis indicated that in most cases, as correlation increases,

the fraction of time spent waiting to start the project increases resulting in lowered

productivity (Figure 2.24).

From our investigation it is clear that, as correlation increases, the number of

projects that are economically viable decrease. That is, the sets of initial prices for

which the project is NPV positive shrinks as the prices become more correlated (Fig-

ures 2.13–2.14). Thus fewer projects may be NPV positive, and hence not initiated,

at any given time and price environment. Perhaps counterintuitively, the optimal

price trigger at which to enter the project is in fact lowered as correlation increases

but again this reflects lowered expectations for the project. The value of waiting to

invest is reduced since the optimal entry price trigger is moving closer to the region

at which it is first NPV positive.

The risk profile investigation also yielded additional insight about the viability of

the project. In particular, many of the projects are not NPV positive if the entry

decision is made suboptimally. The PDF of potential realized profits shows that there

is a large mass of risk-adjusted realizations that do not exceed the initial capitalized

costs of construction. However if the option to enter the project is exercised optimally,

the risk of losses is greatly reduced (Figures 2.20–2.22).

Subsidy Policy

As the Margrabe exchange option predicted, the value of the facility is semilinearly

decreasing in s, the subsidy policy. Thus, for example, when the investment is deep in

the money, the value of subsidy has a term proportional to s(T − t) in the absence of

discounting. When the subsidy is removed, our investigation showed that the number

of projects which were economically viable was reduced (Figures 2.12 and 2.15). This

was evidenced by a reduction in the set of prices for which the project was NPV

positive.

Our retrospective analysis revealed an interesting fact about the optimal operating

strategy for the facility: The subsidy had a minimal effect on the operating decisions

regarding when to pause/resume production and to enter into the investment. With

or without the subsidy, the decisions were nearly identical. Thus tax dollars are

subsidizing a project that may in any case have been economically attractive, and
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investment capital is misappropriated from other possible projects. These numerical

results indicate that the recent idling of many ethanol plants in 2013 may be the

result of market factors as opposed to subsidy policy.

On the other hand, the subsidy may be successful in inducing ethanol produc-

tion investment where none would otherwise exist. Although without the subsidy the

facility would have historically been in production, the subsidy also reduces the oper-

ating risk. This has the effect of smoothing the distribution of income over the life of

the project, reducing the presence of the distributional spike of simulated outcomes

which are never initiated. Thus a primary effect of the subsidy, and arguably a main

goal, is to ameliorate the apparent risk profile of entering into the ethanol business;

rather than to increase the value of the project or to influence operating decisions.

Efficiency of the Facility

In the retrospective analysis, our paper showed that the success of the facility is con-

tingent on its ability to market and sell its byproduct grains. It is possible that the

facility may have difficulty collecting and marketing its distillers dried grain byprod-

ucts due to factors including its proximity to principle markets, its ability to collect

and store the byproducts, and the grade or quality of the distillers dried grain byprod-

ucts. All of these factors will affect the price the operator can get and subsequently

the value of the facility is strongly linked to the firm’s ability to market its byprod-

ucts. In particular, the retrospective analysis showed that the facility would only be

in production approximately 60% of the time if it were unable to market its grain.

Our investigation with simple Margrabe options showed that the loss in value is

approximately semilinear in κ. Thus facility yield is also a key component to success

for an ethanol facility; particularly in the presence of high corn prices.

Conclusion

Our paper provided an in-depth investigation of the retrospective and future economic

viability of a typical North American corn ethanol production facility. It investigated

the effects of ethanol policy manifested as increased price correlation due to increased

demand for corn ethanol, as well as the direct effects of the subsidy on firms’ operating

decisions. Our results show that the future viability of these facilities without the

subsidy is still positive although with the subsidy, the effects of these risk factors are

greatly reduced.
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2.6 Appendix A: Abandonment and Hedging

Abandonment

In the above analysis the option to abandon was not considered. In this appendix

we present a formalism for incorporating the option to abandon. We show that this

omission is not material, at least in the parameter regimes considered in the current

paper. Empirically abandonments are rarely observed in reality compared to the

frequency of idling [42].

First, we observe that the option to abandon the facility can be considered an

effective floor on the income of the facility. Consider for example an idle facility in

the presence of very unfavourable ethanol and corn prices. It has the option to either

idle at a loss for the foreseeable future or cut its losses and abandon, assuming the

salvage value exceeds the expected accrued running costs or potential profits over the

remaining facility life.

A facility can be abandoned from idle in which case the operator gets a salvage

value F , or it can (in principle at least) be abandoned from the running state in which

case a cost D somewhat less than D10 will be incurred. The total expected earnings

over the life of the facility is

Vi(l, c, t) = sup
τ,u,θ

E

[∫ θ

t

e−r(s−t)fIs(Ls, Cs)ds+
n∑
k=1

e−r(τk−t)Duk−1,uk

+ 1{θ<T}e
−r(θ−t)(F − 1{un=1}D) + 1{θ≮T}e

−r(T−t)Q

∣∣∣∣∣(Lt, Ct, u0) = (l, c, i)

]

where all notation is as previously defined. Here θ is the optimal time to abandon

whereupon the abandonment value is received. Given the facility is not abandoned

before T , i.e. θ /∈ [t, T ), the salvage value Q is received at the end of the lease.

Dynamic programming reduces the problem to that of finding τ

Vi(l, c, t) = sup
τ
E

[∫ τ

t

e−r(s−t)fi(Ls, Cs)ds

+ e−r(τ−t) max
{

(Vj(Lτ , Cτ , τ)−Dij) , F − 1{i=1}D
}∣∣∣∣∣(Lt, Ct) = (l, c)

]

where τ < T . The associated free boundary system is
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Figure 2.25: V1(l, c, t) with and without the option to abandon as a function of
the spread κl − c. Near the lower limit value of NPV positive entry, V1 = B, the
difference is small. All parameters are as in Table 2.2 along with an abandonment
value of F = 0.5Q and D = 0.75D10.

max

[
∂V1

∂t
+ L[V1] + f1(l, c, t)− rV1, max {(V0 −D10)− V1, (F −D)− V1}

]
= 0,

max

[
∂V0

∂t
+ L[V0] + f0(l, c, t)− rV0, max {(V1 −D01)− V0, F − V0}

]
= 0

with final conditions V1(l, c, T ) = V0(l, c, T ) = Q. Note that Q need not be the same

as F , and in general will be larger, as Q incorporates the fact that the facility at the

end of the lease may potentially be renovated and then continue to operate as a going

concern. Accordingly it may have more value than just the scrapping and liquidation

of its constituent parts.

The capitalized construction cost is much larger than the abandonment value,

B > F , and thus the option to abandon does not materially affect the decision point

to enter ∂S. In particular, since P ≥ 0 and F −B < 0, the decision to enter is never

made at a point where abandonment would have occurred as per Equation 2.18. For

the parameters considered, at the lowest bound where entry to the investment may be

considered (i.e. where V1 = B), the difference between the values V1(l, c, t) with and

without abandonment is very small. Figure 2.25 numerically illustrates this feature.
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The Possibility of Hedging

In some cases it may be desirable to hedge the real option associated with the ethanol

facility. This could be achieved by trading in the front month future contract for

example as a proxy for spot ethanol and corn prices. These contracts trade on the

Chicago Mercantile Exchange [29]. An advantage of hedging is that the project value

becomes “certain” in that all the market risk can be hedged away. A disadvantage is

that the rate of return on the investment r is reduced to the risk free rate.

If the owner is very risk averse, he may hedge the facility income. On the other

hand, a risk-loving investor in search of higher returns may opt to leave the project

unhedged. A large agricultural, energy, or investment firm might be sufficiently di-

versified that hedging the option is not necessary. Some private equity or alternative

investment funds may use this option in combination with other energy trades as part

of a strategic fund. In practice, management may choose the middle ground, partially

hedging some of the risk.

We briefly point out how this affects the option pricing free boundary PDE. Say

FL(t, T ) and FC(t, T ) are the ethanol and corn future contract prices at time t expiring

at T . If there is no cost of carry or convenience yield, the forward/future price of X

is given by

FX(t, T ) = Xer(T−t)

where r the risk free rate is constant. If X has risk neutral dynamics dX = rXdt +

ηXdWt, the dynamics of FX(t, T ) is then

dFX(t, T ) = ηFX(t, T )dWt.

The governing free boundary PDE can then be derived for corn and ethanol

max

[
∂Vi
∂t

+ L[Vi] + fi(l, c, t)− rVi, (Vj −Dij)− Vi
]

= 0

where now

L =
1

2
F 2
Lσ

2 ∂2

∂F 2
L

+ ρσbFLFC
∂2

∂FL∂FC
+

1

2
F 2
Cb

2 ∂2

∂F 2
C

.

Note that the form of the equation effectively reduces to physical measure case since

a = µ = 0 (however here r is the risk free rate).
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Chapter 3

Real Options with Regulatory
Policy Uncertainty

Chapter Summary:

Energy Finance as a field is particularly bedeviled by regulatory uncertainty.

This is notably the case for the real option analysis of long-lived energy infrastruc-

ture. How can one decide optimal build times on a 50 year project horizon when

regulations regarding pricing and costs change on a much shorter time scale? In

this paper we present a quantitative framework for modelling and interpreting

regulatory changes for energy real options as a Poisson jump process, in a context

where other relevant prices follow diffusion processes. We illustrate this concep-

tual framework with a case study involving the US corn ethanol market for which

subsidy levels have experienced frequent changes. Subsidy levels have an easily

quantified impact on operations and profitability, making this a nice arena to

introduce ideas which might later be extended to less easily quantified regulatory

changes. Numerical techniques are presented to solve the resulting partial inte-

gro differential variational inequalities. These solution techniques are deployed to

solve instructive numerical examples, and conclusions for public policy are drawn.

Accepted: Christian Maxwell and Matt Davison, Real Options with Regulatory Pol-

icy Uncertainty, Fields Special Volume on Commodity Risk and Energy Finance,

2014.

3.1 Introduction

All large energy and natural resource projects are subject to government policy or

regulation of some kind. These regulations are intended to achieve public policy
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goals and their effects should be taken into account by firms planning to enter into

energy or resource investments. Energy and resource projects often have long project

horizons and operating life spans on the order of decades. Consider the example of a

firm deciding to enter into a 50 year energy production investment. Policy in terms

of taxation, environmental regulations and other laws may materially affect project

cash flows. These policies have been known to change at various time scales. Some

policy amendments are well broadcast and announced while others are not. Although

policy changes may appear “predictable” in the short term, forecasting onto a 50 year

project horizon renders the policy changes apparently random, and hence requiring

models of policy uncertainty.

Policy uncertainty is characterized by changes in taxation, legal and other reg-

ulatory policies that affect a business’ operations and profitability. The uncertainty

derives from the inability to predict policy in the long term; uncertainty about forth-

coming policy or announcements of policy changes; or sudden and abrupt changes in

policy. Some anecdotal examples of policy uncertainty in energy and resource markets

from recent North American news headlines follow:

Ontario looks set to cut green energy subsidies: Solar rates expected to

be cut substantially. Industry has six weeks to provide input. [87]

Ontario drops plan for TransCanada power plant: Ontario cancels planned

TransCanada power plant with province to discuss compensation with TransCanada.

Costs may exceed $1 billion CAD and affect off peak pricing. [80, 86]

Ivanhoe ‘surprised’ by new Mongolian windfall tax: Mongolia sets surprise

windfall tax on (among possibly others) Ivanhoe’s Oyu Tolgoi mine of 68% when gold

hits $500 per ounce. [62]

This does not by any means represent an exhaustive list. Attempts have been

made to quantify and measure policy uncertainty (e.g. [58]). In [58] and [72] the

authors also note that policy uncertainty can make firms hesitate or delay to enter

into long term projects as they wait for more policy certainty before making decisions.

This has caught the eye of Canadian and American macroeconomic policy makers

noting both that firms appear to accumulate cash and hesitate to make business

decisions amid regulatory uncertainty [71, 91].

In this paper we present a quantitative framework for modeling and interpreting

regulatory changes for energy real options as a jump diffusion process, in a context

where other relevant prices follow pure diffusion processes. Policy uncertainty by its

nature is very difficult to hedge, at best, and leads to market incompleteness even if

the remaining underlying prices could otherwise be traded.
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This real option method of modeling resource project management decisions was

introduced by [61] in a seminal paper that considered the problem of optimally start-

ing and stopping production to maximize the profits of a natural resource project.

The optimal entry and exit from investment projects was also considered by [66] in

another classical real option paper. A collection of illustrative real option papers can

be found in [67].

In particular, we consider a firm contemplating the option to invest in an ethanol

from corn production plant. We build on the analysis of our past work [79] which

intended to quantify the impact (both intended and unintended consequences) of

ethanol policy on production. This current work adds the complication of policy

uncertainty deriving from a volumetric production tax subsidy which has changed

several times over the past 35 years. We aim to understand the effects of ethanol

policy uncertainty on production from the producer’s perspective. An example of

the application of real option analysis to understand the effects of windfall taxes on

mining operations can be found in [89]. A complementary and interesting analysis

on policy uncertainty and real options can be found in [72]. The authors of [72]

use empirical data to determine how regulatory uncertainty in American electricity

markets affects start up and shut down decisions for power plants; their evidence

supports the anecdotal claims mentioned above that uncertainty leads management

to defer decision making. Our real option model sets out to design a framework

to quantitatively model this added uncertainty and capture its effects on decision

making.

3.1.1 Corn Ethanol Production and Subsidy Policy

The ethanol market in the US is large, estimated at 13.3 billion gallons produced in

2012 by over 209 plants [88]. Efforts to promote US energy independence and initia-

tives to obtain fuel from environmentally friendly sources have led to the subsidization

of the production of ethanol biofuel from corn. Subsidies have historically been pro-

vided to ethanol producers by means of a volumetric ethanol excise tax credit for

blenders and a small ethanol producer tax credit. The subsidy amount has changed

from $0.40/gallon at its introduction in 1978 (Energy Tax Act) and been adjusted

several times until its final level $0.45/gallon in the 2008 Farm Bill followed by ter-

mination (by non-renewal) at the end of 2012 [68, 70]. Table 3.1 shows the history of

ethanol subsidy policy changes and amendments since its inception.

A year following the lapse of many of the energy subsidies, about one quarter



61

Act Year Subsidy ($/gallon)
Energy Tax Act 1978 0.40
Surface Transportation Assistance Act of 1982 1983 0.50
Tax Reform Act 1984 0.60
Omnibus Budget Reconciliation Act 1990 0.54
1998 policy adjustment effective 2001 2001 0.53
1998 policy adjustment effective 2003 2003 0.52
Extension of policy with adjustment 2005 0.51
Farm Bill 2008 0.45
Expiration of tax credit 2012 –

Table 3.1: Historical ethanol subsidies. Source: [70]

of Nebraska’s ethanol plants were in idle status [83]. The loss of the subsidy was

a possible contributing factor to the shut downs as [77] note that without subsidies

ethanol plants may lose their economic viability.

3.1.2 Outline

Our paper uses a crush spread analysis to value a facility which produces ethanol

from corn using a real options analysis following our framework in [79]. The outline

is as follows: Section 3.2 specifies the plant characteristics, management decisions,

and associated costs and profits. Section 3.3 derives the stochastic optimal control

problem for the optimal plant operating rule. Section 3.4 illustrates the numerical

results. Finally Section 3.5 draws conclusions about policy uncertainty and its effects

on ethanol production, closing off with some policy recommendations.

3.2 The Real Option Model

Management contemplating the decision to invest in an ethanol production plant

has the flexibility to enter or defer the project given price conditions and expected

future profitability [67]. After initiating and building the ethanol plant, management

again has the flexibility to switch production on (1) and off (0) given prevailing

economic conditions. The goal of this paper is to examine how ethanol price and policy

uncertainty affects a producer’s business entry and subsequent operating decisions

given price conditions, subsidy policy expectations, and the remaining project life.

Following our analysis [79], throughout this paper all currency is in United States

dollars (USD); liquid volume is in gallons; solid volume is in bushels; weight is in
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tons; and interest is percent per year appropriate to USD deposits continuously com-

pounded.

3.2.1 Plant Specification and Operating Costs

The following costs are scaled in terms of gallon of production capacity per year

and were estimated by [90]. The model is based on our detailed ethanol real option

analysis in [79].

The capitalized construction cost B is estimated at $1.40/gallon for a “typical”

sized facility with nameplate capacity of 40,000,000 gallons/year. The plant salvage

value Q is estimated at 10% of capitalized cost. The switching cost D01 to resume

production from an idle state is estimated at 10% of capitalized cost per gallon of

annual production capacity. Similarly, the switching cost D10 to pause production

from an active operating state is estimated at 5% of capitalized cost per gallon of

annual production capacity.

3.2.2 Running Profits

The plant produces ethanol Lt (priced in USD/gallon) from corn Ct (priced in USD/bushel).

The running profit from the corn ethanol crush spread is developed in [79] on a per

bushel per year basis assuming the popular dry grind process for producing ethanol

[59].

corn→ ethanol + by-products (3.1)

The profit function while operating, f1, is given by

f1(Lt, Ct, Zt) = κ(Lt + Zt −K1)− Ct (3.2)

where Zt is the government volumetric subsidy (USD/gallon). The conversion factor

κ = 2.8 is the yield in terms of gallons of ethanol produced per bushel of corn [59]

and is consistent with the CME Group’s references on trading ethanol crush spreads

[63].

The net running cost while on can be decomposed in terms of the fixed running

cost p of $0.68/gallon, less the average by-product distillers dried grains G (USD/ton)

produced per bushel of corn [77, 79, 90]

K1 = p− ω

κ
G. (3.3)
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The process produces 17 lbs of by-product per bushel and hence the yield factor

ω = 17/20001.

While production is idle, [90] estimated that fixed running costs K0 are roughly

1% of capitalized construction costs per gallon of production capacity or 20% of fixed

running cost while in production (note that, while idle, no ethanol is produced and

consequently no subsidy is applied). The profit function while off, f0, is

f0(Lt, Ct, Zt) = −κK0 (3.4)

where the midpoint between the two estimates is used [79]

K0 =
0.01B + 0.20p

2
. (3.5)

Finally, the interest rate r is taken to be a target return of 8% per annum contin-

uously compounded to account for the risk associated with the ethanol project cash

flows [79, 90]. Our analysis uses only the physical measure for the stochastic assets.

We note however that the price risk associated with corn and ethanol can be hedged

using futures and the arbitrage free return can be determined by assuming that the

jumps are not correlated with the market following an argument popularized in [81].

3.2.3 Stochastic Price Models

Following our analysis in [79], ethanol Lt and corn Ct are modelled by a joint geometric

Brownian motion (GBM) diffusion

dLt = µLtdt+ σLtdW1t (3.6)

dCt = aCtdt+ bCtdW2t (3.7)

Corr[W1t,W2t] = ρ (3.8)

where (W1t,W2t) is a 2-dimensional Brownian motion defined on a filtered probability

space (Ω,Ft, P ) which satisfies the usual conditions [84].

The econometric model parameters are estimated by ordinary least-squares re-

gression of the log time series ln Xt
Xt−1

using the 10 year monthly historical price series

from Dec/02-Jan/11 capitalizing on earlier work in [79]. Prices for no. 2 yellow corn

Omaha, NE underlying the CME corn futures contract were obtained from [92]. Av-

erage rack prices freight on board for ethanol were obtained from [82]. The correlation

1There are 2000 lbs in a ton.
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Parameter estimate Value t-test

µ̂ 0 P
(
µ̂−µ
s.e.

> t
∣∣µ = 0

)
= 0.409

σ̂ 0.156 -
â 0 P

(
â−a
s.e.

> t
∣∣µ = 0

)
= 0.202

b̂ 0.123 -
ρ̂ 0.105 -

Ĝ $115.6 G ∈ [108.4, 122.8]a

Table 3.2: Regression estimation results. abased on 95% confidence interval Student-t
with 119 degrees of freedom.

estimate ρ was obtained via the sample correlation of the residuals. Parameter esti-

mation results are in Table 3.2. Note that both ethanol and corn were found not to

reject the null hypothesis of zero drift the 95% confidence interval. The estimate for

the average distillers dried grains price Ĝ was estimated by regressing the time series

against a constant.

The stochastic subsidy Zt is modeled as a pure Poisson arrival time jump process

with arrival rate λ with jumps of size J .

dZt = (J − Zt−)dNt (3.9)

where dNt, defined on the probability space, is a continuous-time counting process

{Nt, t ≥ 0} that counts the number of jumps over time dt and

dNt =

1 with probability λdt

0 otherwise.
(3.10)

It is assumed in our model that J and Nt are independent of each other, and inde-

pendent of W1t and W2t (which are correlated by ρ).

The times between jumps ti− ti−1 are seen to be quite well modelled by indepen-

dently exponentially distributed Poisson arrivals (see Figure 3.1). The jumps J are

assumed to be drawn from a lognormal distribution with parameters LogN(α, β2).

The parameters are estimated via maximum likelihood using the data in Table 3.1.

The estimation results are summarized in Table 3.3.

Goodness of Fit of Subsidy Model The sample set for the subsidy policy is

small (8 observations) and requires a test of the goodness of fit. By our model

choice, the time between arrivals ∆t of subsidy changes is exponentially distributed
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Parameter estimate Estimator Value 95% confidence interval

λ̂
(

1
n

∑n
i=1 ti − ti−1

)−1
0.24 [0.10, 0.42]

α̂ 1
n

∑n
i=1 lnxi -0.69 [−0.79,−0.58]

β̂2 1
n−1

∑n
i=1(lnxi − α̂)2 0.015a [0.0066, 0.062]

Table 3.3: Maximum likelihood estimation results. aCorrected unbiased estimator.

with parameter λ (Exp(λ)) and the series lnZt−α̂
β̂

is a Student’s t-distribution with

n = 8 − 1 = 7 degrees of freedom (t7) since lnZt ∼ N(α, β2). The plots of the

estimated theoretical cumulative distribution functions (CDFs) versus the empirical

distributions are included in Figure 3.1 along with the QQ plots. By visual inspection,

both data appear to be reasonably suited to the proposed subsidy model.

Lilliefors tests (a nonparametric variant of the Kolmogorov-Smirnoff test) were

applied to test for normality in the log subsidy series and exponentiality in the subsidy

arrival times using Matlab’s lilliefors.m function. Both samples accepted the

null hypothesis of normality and exponentiality at the 5% significance level. This

statistical evidence further supports our proposed model. We note however that this

result is based on a small sample size.

3.2.4 Policy Uncertainty “at its Worst”

Since the policy uncertainty cannot be hedged and is presumably not strongly cor-

related with any market assets, there is cause for concern in terms of how to price

this ethanol real option. Not only is there risk in the randomness of the process, but

there is an added complexity of risk in the choice of model since it is truly uncertain,

so-called “Knightian” uncertainty. To account for this model risk, uncertainty around

the jump process parameters is included.

There are several possible ways to deal with model uncertainty and market incom-

pleteness including: (1) cautiously deploying assumptions to simplify the problem; (2)

utility indifference pricing with model uncertainty [75, 78]; and (3) best/worst case

pricing (similar to the idea of good deal bounds and super-replication) [57]. Our

analysis follows alternative (3) due to its financial intuition, transparency, and lack of

subjectivity around economic aversion parameters or choice utility functions associ-

ated with utility-based pricing (which produce a subjective “personal price”). There

is a connection between (2) and (3) however in that as the risk aversion parameter

tends to infinity, the utility indifference price tends to the worst-case price. Manage-

ment buying into an ethanol project can be considered “long” the real option. The
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Figure 3.1: The empirical CDF (solid black) vs the theoretical CDF (grey dashed)
of the time between arrivals ∆t ∼ Exp(λ̂) (upper left). The QQ plot of the time
between arrivals (upper right). The empirical CDF (solid black) vs the theoretical
CDF (grey dashed) of the normalized subsidy series lnZt−α̂

β̂
∼ t7 (lower left). The QQ

plot of the subsidy series (lower right).
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worst case price is what a strongly risk averse buyer may consider when purchasing

an option.

Management contemplating investment in an ethanol project may ask the ques-

tion: Given the uncertainty around subsidy policy over the past 35 years, what is the

expected case and worst case project value? To answer this question, the reference pol-

icy uncertainty distribution is adjusted within the following heuristically determined

parameter bounds to form best and worst case bounds for the project value.

Bounds on α Suppose management assumes V aR05 style bounds on α.2 In order

to choose a lower bound for α, management chooses a parameter αmin such that the

probability of observing a subsidy level J lower than the lowest historical subsidy

Zmin = 0.40 is 95%, i.e. P (J < Zmin) = 0.95. For a lognormal distribution with

variance β2 = 0.015, αmin = −1.118. An upper bound can be chosen as αmax such

that the probability of observing a lower subsidy J than the historical maximum

Zmax = 0.60 is also less than 5%, i.e. P (J < Zmax) = 0.05. In this case, the upper

bound is αmax = −0.309.3

Bounds on λ Similarly, the average arrival time of subsidy changes is bounded by

infinity (i.e. no changes at all) where λmin = 0. Reasoning that the US Farm Bill is

the primary means by which ethanol subsidy policies are amended and that a new

omnibus bill is passed every 5 years or so, λmax can be chosen such that the probability

of observing at least one jump in a 5 year cycle is at least 95%. Thus management

seeks λmax such that P (k = 0;λmax, t = 5) ≤ 0.05 (i.e. the probability of observing

zero jumps is at most 5%) where the probability of exactly k jumps occurring over

t is P (k;λ, t) = (λt)n

n!
e−λt. This is given by e−λmax5 ≤ 0.05 ⇒ λmax = ln(0.05)

5
or

λmax = 0.60.

The Best and Worst Case Bounds The best and worst case bounds can be

summarized by the following:

α ∈ [αmin, αmax] = [−1.118,−0.309] (3.11)

λ ∈ [λmin, λmax] = [0, 0.60]. (3.12)

2We note that management could use another technique to choose bounds such as the 95%
confidence intervals on the mean estimate for example in Table 3.3.

3We note that these bounds were chosen heuristically based on ethanol policy history and with
reference to political precedent of the subsidy level. They do not represent a rigourous mathematical
treatment of the small sample population time series.
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3.3 The Stochastic Control Problem

In this section, we develop the jump diffusion counterpart of our model in [79] which

leads to a system of interconnected obstacle problems, i.e. partial integro differential

(PID) variational inequalities.

The total expected earnings Vi over the life of the project is given by the sum of

its profits, plus the sum of any switching costs incurred over its operating life

Vi(l, c, z, t) = sup
τ,u

E

[∫ T

t

e−r(s−t)fIs(Ls, Cs, Zs)ds+
n∑
k=1

e−r(τk−t)Duk−1,uk∣∣∣∣∣(Lt, Ct, Zt, u0) = (l, c, z, i)

]
(3.13)

The pair (τ, u) is the control that the manager has over the facility in his ability to

toggle production on and off. It consists of a set of switching times τk and states to be

switched into uk with It = uk, t ∈ [τk, τk+1). Thus τk is an increasing set of switching

times with τk ∈ [t, T ] and τk < τk+1 given the initial operating state u0 = i.

If management assumes a worst case pricing scenario for the policy parameters

(λ, α), then

Vi(l, c, z, t) = sup
τ,u

inf
λ,α

E

[∫ T

t

e−r(s−t)fIs(Ls, Cs, Zs)ds+
n∑
k=1

e−r(τk−t)Duk−1,uk∣∣∣∣∣(Lt, Ct, Zt, u0) = (l, c, z, i)

]
(3.14)

where λ ∈ [λmin, λmax] and α ∈ [αmin, αmax]. The limits on λ and α prevent the

optimization argument from growing unbounded and becoming singular [85]. The

controls (u, τ, α, λ) come from an admissible set of non-anticipating controls (i.e. Ft-
measurable and Markovian).

3.3.1 An Intuition Building 1-dimensional Simplified Model

To make the full model exposition easier and to develop intuition, consider for the

time being a simplified 1-dimensional approximation of the spread less fixed running

costs

Xt = κLt − Ct −K (3.15)
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where Xt follows a simple Brownian stochastic differential equation

dXt = adt+ bdWt (3.16)

where a and b are naively chosen to fit the model. To further simplify the process,

assume now that Zt has normally distributed jumps such that

dZt = JdNt (3.17)

where J ∼ N(α, β2). The two (Xt+Zt) can be combined into a jump diffusion process

Yt

dYt = adt+ bdWt + JdNt (3.18)

with solution

Yt = Y0 + at+ bWt +
Nt∑
k=1

Jk (3.19)

where
∑n

k=1 Jk ∼ N(nα, nβ2).

The expected income of the facility over its lifespan is

Vi(y, t) = sup
τ,u

inf
λ,α

E

[∫ T

t

e−r(s−t)fIs(Ys)ds+
n∑
k=1

e−r(τk−t)Duk−1,uk

∣∣∣∣∣ (Yt, u0) = (y, i)

]
(3.20)

By application of dynamic programming (see [60] or [85]) for optimal switching prob-

lems, the value function can be written as

Vi(y, t) = sup
τ

inf
λ,α

E

[∫ τ

t

e−r(s−t)fi(Ys)ds+ e−r(τ−t) {Vj(Yτ , τ)−Dij}
]

(3.21)

where i, j ∈ {0, 1} and τ is the first time it is optimal to switch production regimes.

Now the problem consists of finding the optimal sets of prices and times to either

• hold production in its current state i, denoting this continuation or (hold) set

as Hi, or

• switch production into the other state j, denoting this switching set as Sij.

By another application of dynamic programming and Ito’s lemma for jump diffusions,

this equation leads to a coupled system of free boundary PID equations (PIDEs). The

free boundary problem can be written in complementary form by noting that either

it is optimal to switch and Vi = Vj − Dij or it is optimal to hold and Vi satisfies a
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PIDE subject to Vi ≥ Vj −Dij. Thus the equation extends on the whole space easing

the need to track the switching boundary as a PID variational inequality (see [84] for

an excellent reference on controlled jump diffusions). Thus the system of equations

may be expressed as

max

∂Vi∂t + L[Vi] + inf
λ,α
I[Vi] + fi − rVi︸ ︷︷ ︸

Hi

, (Vj −Dij)− Vi︸ ︷︷ ︸
Sij

 = 0. (3.22)

where the spatial differential part of the generator is

L[V ] = a
∂V

∂y
+

1

2
b2∂

2V

∂y2
(3.23)

and the integro part is

I[V ] = λ(E[V (y + J)]− V (y)). (3.24)

The expectation E is taken with respect to a normal N(α, β2) kernel gN

E[V (y + J)] =

∫ ∞
−∞

V (y + J)gN(J)dJ. (3.25)

Theorem 1 (Worst Case Price). The minimal optimal control is given by

α = αmin, λ =

λmin if E[V (y + J)]− V (y) ≥ 0,

λmax if E[V (y + J)]− V (y) < 0
(3.26)

Theorem 2 (Best Case Price). The maximal optimal control is given by

α = αmax, λ =

λmax if E[V (y + J)]− V (y) ≥ 0,

λmin if E[V (y + J)]− V (y) < 0
(3.27)

Theorem 3 (Worst and Best Case Price if α = 0). The minimal optimal control is

given by

λ = λmin, (3.28)
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and the maximal optimal control is given by

λ = λmax, (3.29)

if α = 0 for all y.

See Appendix B for proofs of the above.

An interpretation of the maximal (respectively minimal) optimal control is as

follows: (1) If the expected value post-jump E[V (y+J)] is better than its current value

V (y), assume that the jump arrives as (in)frequently as possible 1/λmax (1/λmin). (2)

Assume that the jumps are in general as (un)favourable as possible αmax (αmin).

Lessons from Merton

In the simplification where (1) the policy parameters (λ, α) are constant and (2)

switching costs Dij are zero, the problem reduces to a PIDE which yields the option

price

∂V

∂t
+ a

∂V

∂y
+

1

2
b2∂

2V

∂y2
+ λ(E[V (y + J)]− V (y))− rV + f(y) = 0 (3.30)

where f(y) = y+ = max(y, 0).

Using the Feynman-Kac Formula [84] and following Merton’s classical paper on

jump diffusions [81], the solution to the PIDE is

V (y, t) = E

[∫ T

t

e−r(s−t)f(Ys)ds

∣∣∣∣Yt = y

]
. (3.31)

Theorem 4 (Constant Coefficient Option Price). The option price V (y, t) satisfies

V (y, t) =
∞∑
n=0

∫ T

t

e−λ(s−t)λ
n(s− t)n

n!
e−r(s−t)

(
As,nΦ(d) +

Bs,n√
2π
e−

d2

2

)
ds (3.32)

where As,n = y+ a(s− t) +nα, B2
s,n = b2(s− t) +nβ2, d = As,n/Bs,n and Φ(x) is the

standard normal cumulative distribution function.

See Appendix B for the derivation of the governing PIDE and option price.
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3.3.2 The Complete Problem

Return now to the stochastic control problem for the real option

Vi(l, c, z, t) = sup
τ,u

inf
λ,α

E

[∫ T

t

e−r(s−t)fIs(Ls, Cs, Zs)ds+
n∑
k=1

e−r(τk−t)Duk−1,uk∣∣∣∣∣(Lt, Ct, Zt, u0) = (l, c, z, i)

]
(3.33)

where λ ∈ [λmin, λmax] and α ∈ [αmin, αmax]. We follow a similar argument as before

using dynamic programming reducing the switching problem to a single decision τ

Vi(l, c, z, t) = sup
τ

inf
λ,α

E

[∫ τ

t

e−r(s−t)fi(Ls, Cs, Zs)ds+ e−r(τ−t){Vj(Lτ , Cτ , Zτ , τ)−Dij}
]
.

(3.34)

Using Ito’s lemma for jump diffusions and noting as in [60, 85, 93] that the problem

can be written in complementary form as a variational inequality

max

∂Vi∂t + L[Vi] + inf
λ,α
I[Vi] + fi − rVi︸ ︷︷ ︸

Hi

, (Vj −Dij)− Vi︸ ︷︷ ︸
Sij

 = 0. (3.35)

where the spatial differential part of the generator is

L[V ] = µl
∂V

∂l
+ ac

∂V

∂c
+

1

2
σ2l2

∂2V

∂l2
+ ρσlbc

∂2V

∂l∂c
+

1

2
b2c2∂

2V

∂c2
(3.36)

and the integro part is

I[V ] = λ(E[V (l, c, J)]− V (l, c, z)). (3.37)

Theorem 5 (Worst Case Price). The minimal optimal control is given by

α = αmin, λ =

λmin if E[V (l, c, J)]− V (l, c, z) ≥ 0,

λmax if E[V (l, c, J)]− V (l, c, z) < 0
(3.38)
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Theorem 6 (Best Case Price). The maximal optimal control is given by

α = αmax, λ =

λmax if E[V (l, c, J)]− V (l, c, z) ≥ 0,

λmin if E[V (l, c, J)]− V (l, c, z) < 0
(3.39)

See Appendix B for proofs of the above.

3.3.3 The Decision to Enter

Management’s optimal decision time to enter into the business τ maximizes the ex-

pected value

V (l, c, z, t) = sup
τ

inf
λ,α

E
[
e−r(τ−t) max{V1, V0}(Lτ , Cτ , Zτ , τ)−B

∣∣ (Lt, Ct, Zt) = (l, c, z)
]

(3.40)

and is a classical “American” style exercise call option. By dynamic programming,

the optimal stopping problem satisfies the PID variational inequality

max

∂V∂t + L[V ] + inf
λ,α
I[V ]− rV︸ ︷︷ ︸

H

, (max(V1, V0)−B)− V︸ ︷︷ ︸
S

 = 0. (3.41)

This completes the jump diffusion analogue of [79] and represents the optimal entry

strategy for investment into a corn-ethanol biofuel production plant.

3.4 Numerical Results

This section begins with a numerical investigation of the behaviour of the constant

coefficient analytical model. The section then proceeds with an investigation of the

effects of policy uncertainty on the 1-dimensional model including (i) the loss in value

and (ii) the effects on switching decisions (which is also a proxy investigation of the

effects on the entry decision). Finally, the section concludes with an investigation of

the change in value between the full model with both policy uncertainty and model

certainty or uncertainty.
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Figure 3.2: The option value V (y, t) at various levels of α (expected jump level)
given standard parameters of λ = 1 (Poisson arrival rate of jumps), β = 1 (volatility
of jump distribution), a = 0 and b = 1 (drift and volatility of diffusion), r = 0.01
(discount rate), and T − t = 1 (remaining option tenor).

3.4.1 The Constant Coefficient Model

Consider V (y, t) in Equation 3.32. Its behaviour is monotone increasing in y. Figure

3.2 shows that the function is increasing in α. This is as expected since if the jumps

tend to be more positive (α > 0), the spread tends to jump non-locally to a higher

value of y (recall the option is monotone increasing in y), and vice versa if α tends to

be more negative.

Figure 3.3 indicates V is an increasing function of λ (although it is generally in-

sensitive to λ). This makes sense intuitively since as the frequency of jumps increases,

more volatility is added to the option in terms of Bs,n, and Black-Scholes style options

are increasing functions in volatility.

Figure 3.4 shows that V is sensitive to λ when there is an expected direction with

the jumps (i.e. α 6= 0).



75

Figure 3.3: The option value V (y, t) at various levels of λ (Poisson arrival rate of
jumps) given standard parameters of α = 0 (expected jump level), β = 1 (volatility
of jump distribution), a = 0 and b = 1 (drift and volatility of diffusion), r = 0.01
(discount rate), and T − t = 1 (remaining option tenor).

Figure 3.4: The option value V (y, t) at various levels of λ (Poisson arrival rate of
jumps) and α (expected jump level) given standard parameters of β = 1 (volatility
of jump distribution), a = 0 and b = 1 (drift and volatility of diffusion), r = 0.01
(discount rate), and T − t = 1 (remaining option tenor). On the left, α = 1 and on
the right α = −1.
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Impact on Value The parameters λ and α can be interpreted as measures of how

infrequently policy changes occur and where management expects the subsidy to level

move to, respectively. If the subsidy is expected to move up in value α > 0, the jumps

make the project more favourable. The opposite occurs if α < 0: The future policy

outlook is negative, and the project/option loses value.

As λ increases, policy changes occur more frequently which adds project/option

value by means of the increased volatility associated with each jump. As the option

to switch production off mitigates downside jumps on value V , the upside value of the

jump volatility disproportionately increases the option’s value. Figure 3.3 also reveals

that the option is very insensitive to λ when there is no expected “directionality” in

the jumps, i.e. when α = 0.

3.4.2 The 1-dimensional Model

We now turn to an investigation of the effects of model uncertainty for a risk averse

investor into the real option ethanol project. In this analysis, f1(y) = y and f0(y) = 0

while D01 = 0.2 and D10 = 0.1.

Figure 3.5 shows the project valuation results for the expected price with policy

uncertainty, best and worst case prices given policy uncertainty where α = 0 is fixed

and λ ∈ [0, 1]. The underlay shows the switching boundaries Sij in y. Figure 3.6

shows the same information as Figure 3.5 but in this case there is model uncertainty

α ∈ [−0.2, 0.2] with expected parameter α = 0.

Impact on Value The gap between the best and worst case prices can be signifi-

cantly large if α is allowed to vary as indicated in Figure 3.6; otherwise the difference

is small (Figure 3.5) as expected from our results with the constant coefficient model.

Since this function is convex, the integral operator is single-signed and the parameter

λ assumes either λmin in the worst case or λmax in the best case when α = 0 in the

example in Figure 3.5 by Jensen’s inequality. The constant coefficient expected case

model will always be bounded by the best and worst case project prices. In these

examples, the expected case is nearer to the worst case since λ = 0.1 is closer to

λmin = 0 than λmax = 1.

Impact on Switching Decision Although the effects are not very pronounced on

the 1 year time horizon, model uncertainty has an impact on switching decisions. The

lower charts in Figures 3.5 and 3.6 represent the switching boundaries
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Figure 3.5: The option value V (y, t) at an “expected case” of λ = 0.1 (Poisson arrival
rate of jumps) and (λmin, λmax) = (0, 1) (parameter boundaries), α = 0 and β2 = 0.1
(mean and variance of jump distribution), a = 0 and b = 1 (drift and volatility of
diffusion), r = 0.01 (disount rate), and T − t = 1 (option tenor). Switching costs are
D01 = 0.2 and D10 = 0.1.

Figure 3.6: The option value V (y, t) at an “expected case” of λ = 0.1 (Poisson
arrival rate of jumps) and α = 0 (expected mean jump size), but where λ ∈ [0, 1]
and α ∈ [−0.2, 0.2] (parameter boundaries). The remaining parameters are β2 = 0.1
(variance of jump distribution), a = 0 and b = 1 (drift and volatility of diffusion),
r = 0.01 (disount rate), and T − t = 1 (option tenor). Switching costs are D01 = 0.2
and D10 = 0.1.
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• S01 = {y : V0(y, 0) = V1(y, 0) − D01}, the set of prices where the operating

status is optimally switched on from idle, and

• S10 = {y : V1(y, 0) = V0(y, 0) − D10}, the set of prices where the operating

status is optimally switched off from running.

It can be seen that in the...

...worst case scenario: The operator switches production on later than in the ex-

pected case (i.e. at y > y∗ if y∗ is where the operator would switch production

on in the expected case). Similarly, the operator switches production off earlier

compared to the expected case (i.e. at y < y∗ if y∗ is where the operator would

switch production off in the expected case).

...best case scenario: The operator switches production on earlier and switches

production off later compared to the expected case.

In the example where α = 0 is fixed, the differences in switching boundaries between

the best, worst and expected cases are almost negligible (Figure 3.5). However in the

other example where −0.2 ≤ α ≤ 0.2 can vary, the differences in switching boundaries

between the best, worst and expected cases can deviate a great deal. Thus it is not

so much when management thinks a change in policy might occur (i.e. λ-driven) but

rather how management expects that policy to change with respect to its current

policy conditions—that is, α-driven.

3.4.3 The Complete Model

This section concludes with a numerical investigation of the ethanol plant value in

the presence or absence of policy uncertainty and model uncertainty. The ethanol

plant is assumed to have a 10 year investment horizon, T − t = 10.

With and without Policy Uncertainty

We compare the real option project valuation of the ethanol plant in two cases where:

• Management ignores the uncertainty in the ethanol subsidy policy and assumes

Zt = Z (constant) to take its Jan/2011 value (Table 3.1),

– in this case, f1(Ls, Cs, Z) = κ(Ls −K1 + Z)− Cs where Z = $0.45/gallon

is constant (also λ = 0); and
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Figure 3.7: V (Lt, Ct, Z, t) without policy uncertainty vs V (Lt, Ct, Zt, t) with policy
uncertainty. Parameters (from Tables 3.2 and 3.3) are µ = 0 and σ = 0.156 (drift
and volatility of ethanol), a = 0 and b = 0.123 (drift and volatility of corn), Z = 0.45
without policy uncertainty and Zt = 0.45, λ = 0.24, α = −0.69 and β2 = 0.015
(arrival rate, mean and variance of jumps) with policy uncertainty.

• Management considers the uncertainty in the ethanol subsidy policy with known

parameters (model certainty) and assumes the model parameters in Table 3.3

subject to the initial subsidy level being its Jan/2011 value as above,

– in this case, f1(Ls, Cs, Zs) = κ(Ls−K1 +Zs)−Cs where Zt = $0.45/gallon.

Figure 3.7 shows the value functions at various levels of Ct in the presence and

absence of policy uncertainty. Figure 3.8 shows the switching boundaries in both

cases.

Impact of Policy Uncertainty on Value As inferred from our 1-dimensional

analysis in Section 3.3.1, policy uncertainty adds more value to the real option due

to two distinct factors: (1) Given Zt = 0.45 < 0.51 = eα+ 1
2
β2

= E[J ], it is likely

that the subsidy policy will jump to a higher level giving the option more value in

the presence of policy uncertainty. (2) The extra volatility provided by the jump

process adds volatility value to the option. The downside of policy switches on an

ethanol plant can be mitigated by switching production off, while the upside value is
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Figure 3.8: The switching boundaries ∂S01 and ∂S10 in the presence and absence of
policy uncertainty. Parameters (from Tables 3.2 and 3.3) are µ = 0 and σ = 0.156
(drift and volatility of ethanol), a = 0 and b = 0.123 (drift and volatility of corn),
Z = 0.45 without policy uncertainty and Zt = 0.45, λ = 0.24, α = −0.69 and
β2 = 0.015 (arrival rate, mean and variance of jumps) with policy uncertainty.
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maintained by keeping (or switching) production on when prices favourably allow for

it. The capitalized cost of construction on a per bushel basis κB is also included in

Figure 3.8.

Impact of Policy Uncertainty on Switching Decisions The boundary at which

production is switched on from an idle state is ∂S01 and the boundary at which pro-

duction is turned off from a running state is ∂S10. In this case, the initial subsidy level

Zt is less than the long run average E[J ] = eα+ 1
2
β2

, Zt = 0.45 < 0.51 = e−0.69+ 1
2

0.015.

Thus, the operator generally waits longer before turning production off, due to a

positive outlook that the subsidy might jump up to its long term average. Similarly,

the operator generally turns production on sooner in hope that the subsidy might

again jump to its (higher) long run average. More precisely, given a point (c, l) on

∂S01 in the absence of policy uncertainty, if (c, l∗) is on ∂S∗01 in the presence of policy

uncertainty, then l∗ < l (respectively l∗ > l) when production is shut down earlier

(later).

Changes in z shift value and switching decisions up or down non-locally as Zt

jumps. The general direction of the jumps is illustrated in Figure 3.8 by the arrow

Zt
J−→ Zt+dt.

It should be noted that if management were expecting the subsidy to jump to

a lower level, the opposite situation as described above would occur. Management

would switch production off earlier and turn production on later for fear that the

subsidy might fall.

Policy Uncertainty with Model Uncertainty

In the likely event that the distribution and parameters of the regulatory uncertainty

process are unknown, management may choose a worst case valuation for the ethanol

plant project value. The assumed boundaries for policy change arrival rate are λ ∈
[0, 0.60] and expected mean subsidy policy α ∈ [−1.118,−0.309].

Figure 3.9 illustrates the worst case value compared to the expected case given by

the model parameters in Tables 3.2 and 3.3. The switching boundaries are illustrated

in Figure 3.10 comparing the worst case operating decisions to the expected case.

For completeness, Figure 3.11 shows the envelope of best case, worst case and

expected project values in the presence of policy and model uncertainty. The bounds

can be quite large between the best and worst project values even for “seemingly

small” parameter boundaries. The switching boundaries are illustrated in Figure

3.12 comparing the best case operating decisions to the expected case.
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Figure 3.9: V (Lt, Ct, Zt, t) vs infλ,α V (Lt, Ct, Zt, t) with policy (and model) uncer-
tainty. Constant parameters (from Tables 3.2 and 3.3) are µ = 0 and σ = 0.156
(drift and volatility of ethanol), a = 0 and b = 0.123 (drift and volatility of corn),
and Zt = 0.45, λ = 0.24, α = −0.69 and β2 = 0.015 (arrival rate, mean and variance
of jumps). Non-constant parameters for model uncertainty are α ∈ [−1.118,−0.309]
and λ ∈ [0, 0.60].
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Figure 3.10: The switching boundaries ∂S01 and ∂S10 in the presence of policy uncer-
tainty and model uncertainty in the worst case. Constant parameters (from Tables
3.2 and 3.3) are µ = 0 and σ = 0.156 (drift and volatility of ethanol), a = 0 and
b = 0.123 (drift and volatility of corn), and Zt = 0.45, λ = 0.24, α = −0.69 and
β2 = 0.015 (arrival rate, mean and variance of jumps). Non-constant parameters for
model uncertainty are α ∈ [−1.118,−0.309] and λ ∈ [0, 0.60].
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Figure 3.11: V1(Lt, Ct, Zt, t) vs infλ,α V1(Lt, Ct, Zt, t) vs supλ,α V1(Lt, Ct, Zt, t) with
policy uncertainty. Constant parameters (from Tables 3.2 and 3.3) are µ = 0 and
σ = 0.156 (drift and volatility of ethanol), a = 0 and b = 0.123 (drift and volatility
of corn), and Zt = 0.45, λ = 0.24, α = −0.69 and β2 = 0.015 (arrival rate, mean
and variance of jumps). Non-constant parameters for model uncertainty are α ∈
[−1.118,−0.309] and λ ∈ [0, 0.60].



85

Figure 3.12: The switching boundaries ∂S01 and ∂S10 in the presence of policy un-
certainty and model uncertainty in the best case. Constant parameters (from Tables
3.2 and 3.3) are µ = 0 and σ = 0.156 (drift and volatility of ethanol), a = 0 and
b = 0.123 (drift and volatility of corn), and Zt = 0.45, λ = 0.24, α = −0.69 and
β2 = 0.015 (arrival rate, mean and variance of jumps). Non-constant parameters for
model uncertainty are α ∈ [−1.118,−0.309] and λ ∈ [0, 0.60].



86

Impact of Worst Case Model Uncertainty on Value The worst case real

option ethanol plant value represents a lower bound in project value. Figure 3.9 also

includes the capitalized cost of construction on a per bushel of capacity basis κB.

As expected, fewer projects are net present value positive in the worst case project

value compared to the expected case. That is, given the two sets of prices at a time

t the set of prices that are “Net Present Value (NPV) positive” for entering into the

project are

NPV = {(l, c) : max(V1, V0)−B > 0} and NPV ∗ = {(l, c) : inf
λ,α

max(V1, V0)−B > 0},
(3.42)

then

NPV ∗ ⊆ NPV (3.43)

This means that fewer investments are entered into during times of high policy

uncertainty if management is risk averse.

The converse to the above statement is that firms that are risk-loving may prefer a

project with more policy uncertainty. These types of options tend to increase in value

with volatility which may be more appealing to investors with a higher risk appetite.

Further, risk-loving investors may tend to weight the better case model parameters

higher than the worse case model parameters again resulting in higher valuations.

In certain cases, the integral operator may be I[V ] = E[V (l, c, J)]−V (l, c, 0.45) >

0 and accordingly λ = λmin = 0 in the minimization. This is similar to the case with

zero policy uncertainty. Thus, the worst case option value may at times approach the

option value in the absence of policy uncertainty.

Impact of Worst Case Model Uncertainty on Operating Decisions The

possible subsidy outcomes in the worst case scenario have a much more negative

outlook than the expected case. Thus in the worst case scenario, the optimal strategy

tends to be conservative when making switching decisions (Figure 3.10). The net

result is that management switches production on much later and switches production

off much earlier compared to the expected case operating strategy.

Comments on the Best Case Model Figure 3.11 shows that the gap between

the best and worst case prices can be quite large. This is an artifact of the stochastic

optimization problem that leads to very large arbitrage free price good deal bounds
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in practice with financial derivatives. Similar to before, management switches pro-

duction on earlier and switches production off later compared to the expected case

operating strategy (Figure 3.12).

3.5 Conclusions

The goal of our paper is to develop a quantitative model for managing and pricing

regulatory risk. The accomplishments and overall theme of our paper are summarized

in what follows.

3.5.1 Summary

Our paper laid out several research goals to contribute to the existing real options

literature and the less developed body of research in policy uncertainty.

We presented a real option model to attempt to quantitatively model policy un-

certainty using a jump diffusion process. This model allows for the valuation of long

term energy projects in the presence of policy uncertainty. For a corn-ethanol case

study (following [79]), we presented a real option model involving both standard price

uncertainty modelled using a simplified one dimensional jump diffusion process for

the relevant price spread and stochastic subsidy. We followed this with a more so-

phisticated multivariate model which independently modeled both the input and the

output price. In addition, this model included the impact of policy uncertainty using

a randomly fluctuating subsidy level. This fluctuating subsidy was quantified using a

pure jump process. Given that there may be model uncertainty for the subsidy policy

process, our proposed model includes a “worst case” (modelled using a V aR level)

policy uncertainty scenario which allows the project investor to quantify and manage

his worst case regulatory downside risk. This work allowed us to draw some general

conclusions with policy level implications, as summarized and described in the next

section.

3.5.2 Policy Conclusions

We outline the policy effects and numerical conclusions from our analysis in Section

3.4.

Policy Uncertainty In the case of policy certainty versus uncertainty, for the

convex (or “long vol”) real options considered here, the effects of policy uncertainty
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always increase the value of the option when there is no directionality in the subsidy

jumps.

More generally, the effects of policy uncertainty may be positive or negative for

the project valuation. For example, if the subsidy is currently low and the future

subsidy level is expected to be higher, the possibility of a jump in policy increases

the overall value of the option. The opposite holds when the subsidy is high and the

future subsidy is expected to be lower than today.

Model Uncertainty Typically, the effect of ambiguity in policy uncertainty models

on project valuation is negative: A strongly risk averse manager taking a long position

in the option should price the project using the worst case of possible parameters.

The optimal operating strategy in terms of the sets of prices, times, and sub-

sidy levels to switch production vary based on the scenario. The strategy however

generally obeys the following rules: (1) If the scenario is a worst case (respectively

best case), then production is switched off earlier (later) compared to the constant

parameter expected case, and production is switched on later (earlier) compared to

the expected case. This represents an pessimistic (optimistic) outlook on regulatory

policy changes. (2) If the scenario is a constant parameter case with policy uncer-

tainty, then production is switched on earlier (later) if the current policy regime is

lower (higher) than the expected long run trend. Similarly production is switched off

later (earlier) if the current policy regime is lower (higher) than the expected long

run trend.
The anecdotal evidence that suggests businesses delay investment longer in peri-

ods of high policy uncertainty is seen to be consistent with our model, supporting

those claims [58, 72, 91]. In particular, given the tendency is generally to delay

during periods of policy uncertainty suggests that investors use pessimistic model

outlooks when making investment decisions. Given that fewer projects were net

present value positive in the model uncertainty case versus the policy uncertainty

with known parameters case, our model supports the claim that fewer investments

are entered into during periods of high policy uncertainty.

3.5.3 Possible Extensions

The lognormal distribution for the policy subsidy jump process was chosen for several

reasons: (1) subsidies cannot become negative; (2) model familiarity since geometric

Brownian motion itself leads to a lognormal distribution and Merton’s seminal jump
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Figure 3.13: The probability distribution functions dP (J) of the jumps J of
the expected case LogN(−0.69, 0.015), worst case LogN(−1.118, 0.015), best case
LogN(−0.309, 0.015), and a referece case LogN(−0.7, 0.1) highlight the skew.

diffusion paper [81]; (3) analytical tractability; and (4) its second moments exist. The

distribution however has large positive skew with a fat tail. This choice of distribution

can lead to results which are relatively indifferent toward downside risk in the subsidy

process, as the probability of observing very low subsidies is much smaller than the

probability of observing very high subsidies. For reference, plots of the expected,

worst and best case subsidy jump probability distribution functions are shown in

Figure 3.13 along with a reference case to better illustrate the positive skew and fat

tail.

To improve the model, more classes of jump distributions or non-constant Poisson

arrival rates could be considered for future work. Another possible improvement to

the expected subsidy jump model would be to incorporate management’s views on the

probability of possible policy outcomes or cases, each with an associated probability

determined by management (an idea motivated by [76] but here simplified). This is

both easier to justify to industry practitioners and greatly simplifies the analysis as

it effectively removes the continuous variable J and replaces it with a discrete vari-

able Ji. This reduces the dimensionality of the PID variational inequality system,
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which greatly reduces the computational time by reducing the problem to solving

discrete weighted probabilities for each outcome Ji. For completeness, the integro

operator would be replaced with I[V ] = λ(
∑

i ViPi − V ) and a PID variational in-

equality solved for each outcome i with associated value function Vi and management

probability estimate Pi. This method can be particularly helpful in situations where

little historical time series information is available regarding policy uncertainty. The

modeler can defer to management’s views and experience.

3.6 Appendix A: Numerical Method

A brief exposition of the numerical method used to solve this PID variational in-

equality system is presented below. We refer the reader to [64, 69, 73, 84] for a more

detailed analysis of the finite difference solutions to stochastic control problems and

PIDEs.

The general PID variational inequality is of the form

max

[
∂V

∂t
+ L[V ] + I[V ] + f − rV, h− V

]
= 0.

where the differential operator is (occasionally suppressing any l, c, z dependence of

µ, σ, a, b)

L[V ] = µ
∂V

∂l
+ a

∂V

∂c
+

1

2
σ2∂

2V

∂l2
+ ρσb

∂2V

∂l∂c
+

1

2
b2∂

2V

∂c2

and the integro operator is

I[V ] = λ(E[V (l, c, J)]− V (l, c, z))

and the constraint is

h = Vu −Du

The numerical solution is obtained via finite differences at grid points V (li, cj, zp, tk) =

V k
i,j,p usually using second order centred differences except possibly at the boundary

conditions. The stencils are chosen to ensure the discretization matrix retains the
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M -matrix property for stability [74]. The grid points are

tk = t0 + k∆t

li = l0 + i∆l

cj = c0 + j∆c

zp = z0 + p∆z

where the increments ∆ need not necessarily be uniform. Divided differences are used

to approximate the derivatives. Two are shown below for reference

∂V

∂l
≈

V k
i+1,j,p − V k

i−1,j,p

2∆l

∂V

∂t
≈

V k+1
i,j,p − V k

i,j,p

∆t

The integral E[V (l, c, J)] is simply truncated and approximated along a grid as well

E[V (l, c, J)] ≈
∫ Jmax

0

V (l, c, J)P (J)dJ ≈
P∑
p=0

V k
i,j,pg(zp)∆z

where the expectation is truncated by a point Jmax = zP at which the error in the

approximation is small. Note any kind of quadrature rule can be used along with

non-uniform grid spacing besides the rule shown above.

A fitted scheme is used to write out a system of equations for V k
i,j,p at the grid

points

V k+1 − V k

∆t
+ θLV k+1 + (1− θ)LV k + φIV k+1 + (1− φ)IV k + f ≤ 0

where L is the differentiation matrix associated with the partial differential operator

L including the source term −rV and I is the integration matrix associated with the

integro operator I. The parameters θ and φ blend averages of the discretized PIDE at

time steps k and k+ 1 (e.g. θ = 0 is fully implicit and θ = 1
2

yields a Crank-Nicholson

scheme). A small abuse of notation V k refers to the entire collection of grid points

i, j, p at time step k. The running profit function at all grid points is simply f . The

differentiation matrix L tends to be stiff whereas the integration matrix I tends to be

non-stiff allowing for the use of IMEX style time marching schemes.4 A fully implicit

scheme can be used in order to have a L-stable method. When the correlation ρ is

4We note that using a Crank-Nicholson scheme in both L and I appeared to deliver good results.
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small, centred differences may deliver a stable M -matrix. As ρ grows, however, care

must be taken to choose the stencils for the cross derivative term (e.g. 7-point stencils

[74]). For nonuniform grid points, one-sided differences may be required for the first

order derivatives to maintain stability [74].

For reference, L can be considered a tensor that operates on a square Vi,j at all p.

In tensor notation, at the interior points L is for example

Li,j,i,j = − 2

∆l2
1

2
σ2
i,j −

2

∆c2

1

2
b2
i,j − r

Li,j,i,j−1 = − 1

2∆c
ai,j +

1

∆c2

1

2
b2
i,j

Li,j,i−1,j−1 =
1

4∆l∆c
ρσi,jbi,j

where Li,j,i+i∗,j+j∗ = 0 if |i∗|, |j∗| ≥ 2. Conditions must be applied along the boundary

(e.g. linearity at far field). The integration matrix I is applied to a column Vi,j,p across

all p at a point (i, j), like a matrix in p constant across all i, j. For example,

Ip,p = λ

[
1

2
g(zp)(zp+1 − zp)− 1

]
Ip,q = λ

1

2
g(zq)(zq+1 − zq−1).

using a trapezoidal quadrature rule.

The system is solved subject to a known final condition V (l, c, z, T ) = Q(l, c, z)

(being a backward Kolmogorov type equation). If there is no salvage value at the end

of the facility life V K
i,j,p = Qi,j,p = 0 (where T = t0 +K∆t) but in general the salvage

value should satisfy some inequalities around the switching costs Dij.

This is a complementary problem

MV k − b ≤ 0, h ≤ V k,
(
MV k − b

)T
(V k − h) = 0

where superscript T denotes the matrix transpose. The matrix M is an aggrega-

tion of the integration and differentiation matrix pre-multipliers of V k while b is

a vector of collected knowns at time k (from k + 1). This matrix system is then

solved using an value iteration fixed point method similar to projected successive

over-relaxation. Several iterative schemes for non-linear control problems are de-

scribed in [56, 65, 64, 69, 73, 84, 93]. The method is consistent following a Taylor

series and Riemann sum definition of the integral argument. If fully implicit methods

are used, the discretization is stable if M is itself an M -matrix as M -matrices have
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the monotone property. Following [64] this discretization converges to the viscosity

solution of the HJB PID variational inequality.

3.7 Appendix B: Optimal Control

The intuition behind the proofs of the theorems in Section 3.3 are presented in this

appendix.

Regarding the 1-dimensional Model Optimal Stochastic Con-

trol 3.3.1

Proof of Theorems 2 and 2. Consider the optimization with respect to λ

inf
λmin≤λ≤λmax

I[V ].

Due to the boundedness of λ, this problem is nonsingular. Since I[V ] = λ(E[V (y +

J)] − V (y)) is linear in λ, it achieves its critical values at the endpoints [λmin, λmax]

and the optimal λ satisfies

λ =

λmin if E[V (y + J)]− V (y) ≥ 0,

λmax if E[V (y + J)]− V (y) < 0.

Turning now to the optimization with respect to α,

inf
αmin≤α≤αmax

λ(E[V (y + J)]− V (y))⇒ inf
α
E[V (y + J)]

where we drop the α bounds for notational brevity. The expectation can be written

as

inf
α
E[V (y + J)] = inf

α

∫ ∞
−∞

V (y + J)gN(J)dJ, gN is the normal kernel N(α, β2)

=

∫ ∞
−∞

inf
α
{V (y + α + z)}g∗z(z)dz, g∗N is the kernel N(0, β2)

=

∫ ∞
−∞

V (y + αmin + z)g∗z(z)dz

if V (y) is monotone increasing in y which is true of the class of profit functions f(y)

considered in this analysis. (This result follows from the Feynman-Kac or Green’s
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formula for V (y) given f(y) is monotone increasing.)

A similar argument applies for deriving the maximal optimal control (Theorem 2)

but applied in the opposite direction.

Summarizing, the worst case project value is given by the minimal optimal control

and the best case is given by the maximal optimal control subject to certain regularity

conditions on V and f (namely monotonicity).

Proof of Theorem 3. Note that the integro operator I is single-signed almost every-

where if f is such that V (y) is convex and α = 0. The justification follows from

Jensen’s inequality V (E[y+ J ]) ≤ E[V (y+ J)] and that E[y+ J ] = y+α = y. Thus

E[V (y + J)]− V (E[y + J ]) =

E[V (y + J)]− V (y) =
1

λ
I[V ] ≥ 0

and accordingly λ = λmin for all y (and vice versa for the maximal control).

Regarding the Constant Coefficient Option Price 3.3.1

Proof of Theorem 4. For a function u(Yt = y, t), applying Itos lemma for jump diffu-

sions results in

u(YT , T )− u(y, t) =

∫ T

t

b
∂u

∂y
dWs +

∫ T

t

(
∂u

∂t
+ a

∂u

∂y
+

1

2
b2∂

2u

∂y2

)
ds

+

∫ T

t

[u(Ys + J, s)− u(Ys, s)]dNt.

Taking the expectation causes the Ito integral to become zero (since E[
∫ T
t
udWs|Ft] =

0 for smooth functions u). The expectation of the jump term becomes

E

[∫ T

t

[u(Ys + J, s)− u(Ys, s)]dNt

]
=

∫ T

t

EJ [u(Ys + J, s)− u(Ys, s)]λds

since the Poisson arrivals dNt and Brownian motion dWt are independent, and dNt =

1 with probability λds or 0 otherwise. Here EJ denotes an expectation with respect

to J only (recall J⊥Wt).

When u(·, T ) = 0, and the jumps J and Brownian motion are independent, the
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expectation is

E[u(YT , T )− u(y, t)] = −u(y, t) =

E

[∫ T

t

(
∂u

∂t
+ a

∂u

∂y
+

1

2
b2∂

2u

∂y2
+ λ(EJ [u(Ys + J, s)]− u(Ys, s))

)
ds

]
If u(y, t) satisfies the nonhomogeneous PIDE

∂u

∂t
+ a

∂u

∂y
+

1

2
b2∂

2u

∂y2
+ λ(EJ [u(y + J, t)]− u(y, t)) = −f(y),

the solution has the probabilistic (Feynman-Kac) representation

u(y, t) = E

[∫ T

t

f(Ys)ds

∣∣∣∣Yt = y

]
The discounted value function V (Ys, s) = e−r(s−t)u(Ys, s) satisfies the PIDE of

Theorem 4 and has probabilistic representation

V (y, t) = E

[∫ T

t

e−r(s−t)f(Ys)ds

∣∣∣∣Yt = y

]
.

The key to solving this expectation is to condition Y on n, the number of jumps

so far, denoted Ys,n|n. Note that the probability of observing n Poisson jumps over a

time period s− t is P (n, s− t) = e−λ(s−t) λn(s−t)n
n!

. Thus

V = E

(
E

[∫ T

t

f(Ys,n)ds

∣∣∣∣n])
=

∞∑
n=0

∫ ∞
−∞

∫ T

t

e−λ(s−t)λ
n(s− t)n

n!
e−r(s−t)y+

s,n

1√
2πB2

s,n

e
− (ys,n−As,n)2

2B2
s,n dsdys,n

where As,n = y + a(s− t) + nα and B2
s,n = b2(s− t) + nβ2.

V =
∞∑
n=0

∫ ∞
−∞

∫ T

t

e−λ(s−t)λ
n(s− t)n

n!
e−r(s−t)(As,n +Bs,nz)+ 1√

2π
e−

z2

2 dsdz

=
∞∑
n=0

∫ T

t

∫ ∞
−d

e−λ(s−t)λ
n(s− t)n

n!
e−r(s−t)(As,n +Bs,nz)

1√
2π
e−

z2

2 dzds

where d = As,n/Bs,n. Changing variables x = −z and flipping the limits of integration
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yields V =

∞∑
n=0

∫ T

t

e−λ(s−t)λ
n(s− t)n

n!
e−r(s−t)

(∫ d

−∞
As,n

1√
2π
e−

x2

2 dx−
∫ d

−∞
Bs,nx

1√
2π
e−

x2

2 dx

)
ds

and so

V (y, t) =
∞∑
n=0

∫ T

t

e−λ(s−t)λ
n(s− t)n

n!
e−r(s−t)

(
As,nΦ(d) +

Bs,n√
2π
e−

d2

2

)
ds

where Φ(x) is the standard normal cumulative distribution function.

Regarding the Complete Stochastic Control Problem 3.3.2

Proof of Theorems 5 and 6. The argument for obtaining the optimal λ is identical to

the 1-dimensional case. Determining the optimal α is similar to the previous case,

but slightly more delicate. Again, it rests on the monotonicity of f . Recall

f1(l, c, z) = κ(l + z −K1)− c, f0(l, c, z) = −κK0

and thus f1 is monotone increasing in z and f0 is unaffected by z. By the Feynman-

Kac representation for V1 in Equation 3.34, V1 is monotone increasing in z. Similarly

V0, via the free boundary condition V0 = V1 − D01 in Equation 3.35, is monotone

increasing in z by virtue of the boundary condition and regularity results along the

free boundary [84, 85]. Now it remains to show that the expectation has a minimum

inf
α
E[V (l, c, J)] = inf

α

∫ ∞
0

V (l, c, J)gLN(J)dJ, gLN is the lognormal kernel LogN(α, β2)

=

∫ ∞
0

inf
α
{V (l, c, xeα)}g∗LN(x)dx, gLN is the kernel LogN(0, β2)

=

∫ ∞
0

V (l, c, xeαmin)g∗LN(x)dx

Summarizing, the PID variational inequality yields the worst case project value

(minimal optimal control) when

α = αmin, λ =

λmin if E[V (l, c, J)]− V (l, c, z) ≥ 0,

λmax if E[V (l, c, J)]− V (l, c, z) < 0

and following a similar argument as above yields the best case value (maximal optimal
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control) when

α = αmax, λ =

λmax if E[V (l, c, J)]− V (l, c, z) ≥ 0,

λmin if E[V (l, c, J)]− V (l, c, z) < 0
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Chapter 4

Optimal Hedging in Illiquid
Markets

Chapter Summary:

In a complete market with zero market frictions, classical finance theory states

that there is a unique no arbitrage price for every derivative contract. However,

all markets are incomplete to some degree, if only because transaction costs and

market impact costs apply for all trades. We propose a model of market impact

and transaction costs to reflect order book liquidity. Using this model, we illus-

trate how liquidity impacts derivative value when hedging with the asset under

the proposed market frictions. We develop a mathematical formulation to com-

pute bid and ask prices along with optimal hedging strategies for market makers

in OTC derivative markets using a utility indifference framework. By numeri-

cally solving the associated Hamilton Jacobi Bellman equations, we develop some

market intuition from the resulting prices and hedge ratios.

Working Paper: Christian Maxwell and Matt Davison, Optimal Hedging in Illiquid

Markets, 2014.

4.1 Introduction

In a complete market with model certainty, a complete set of spanning assets, and

zero market frictions, classical finance theory states that there is a unique no arbitrage

price for every derivative contract [107]. In reality, nearly all markets are incomplete

to some extent. This is not necessarily a negative characteristic of financial markets:

Market incompleteness makes the world go ’round. If all risks were known and hedge-

able, there would be little incentive to do any trading at all since market makers could
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not justify charging spreads, nor could buy side investors hope to make any profit

from instruments they deem mispriced. For an insightful treatment and overview of

market incompleteness, see [124].

A market maker in an incomplete over the counter (OTC) market seeks to es-

tablish reasonable bid and ask prices for derivative securities f based on a mar-

keted asset St. In a Black-Scholes complete market setting, there is a unique price

which is the discounted expected future payoff under a martingale measure Q, pBS =

EQ[e−r(T−t)f(ST )]. With market incompleteness there exists a range of possible equiv-

alent martingale measures Q, and one candidate set of bid and ask prices are the

no-arbitrage bounds(
inf
Q∈Q

EQ[e−r(T−t)f(ST )], sup
Q∈Q

EQ[e−r(T−t)f(ST )]

)
(4.1)

inside of which no arbitrage is guaranteed. These bounds are generally too large to

act as useful bid-ask prices as observed in our earlier work [117], and noted by many

authors, e.g. [124].

Another alternative is quadratic or variance hedging where the market maker seeks

to minimize his expected hedging error. Strategies can be local such as described in

[94] or global where all strategies over a time interval are considered and an efficient

frontier of execution prices is developed as outlined in [121].

Another promising strategy, and the one considered in this paper, is to embed

the pricing and hedging problem within a portfolio optimization problem. We seek a

global strategy where the market maker tries to optimize the utility of his terminal

wealth with and without the derivative security, otherwise known as utility indiffer-

ence pricing [98, 101, 109]. He may hedge with several underlying assets in the utility

maximization. The utility ask price is the amount of cash the market maker would

need to accept at the outset to make him indifferent between his optimal terminal

wealth short the option and without the option, or the amount a trader may be willing

to pay to buy the derivative; and vice versa for the bid price. If his optimal terminal

utility value function is U , then with an initial endowment Bt the utility indifference

ask price pa is

E[U(BT )] = E[U(BT − f(ST ) + pae
r(T−t))].

The utility indifference bid and ask prices form a possible set of bid-ask prices for the

derivative security

(pb, pa).
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We prefer the utility indifference framework as it has a sound economic interpretation

as a personal replacement price at which the agent is indifferent between his feasible

alternative investments. We are aware that the “personal” nature of these prices, the

need to consider holistic portfolios (including initial endowment), and the specifica-

tions of a utility function and statistical probability measure to value any projects

have all been identified as possible shortcomings with this approach [99].

We consider the problem of hedging and pricing derivatives in incomplete markets

caused by market frictions or transaction costs. In a case where a market maker is

hedging a large option position, it is possible his hedging strategy may consume deep

into the order book and incur large bid ask spreads. If there is market illiquidity,

there may not only be a temporary price impact incurred from market orders going

deep into the order book, but a permanent price impact as well. This creates a

sort of feedback effect from hedging which almost always moves the value of the

underlying in a direction unfavourable to the derivative holder (as will be shown

later). Additionally, there is almost always some fixed cost associated with executing

any trade (including at the very least, the value of the trader’s time spent considering

and executing the trade decision). This is the case for all market making: The trader

must consider the trade-off between execution risk and market risk when deciding at

what rate to hedge his position or manage his inventory. Shares are traded by means

of an order book. Market makers post volumes of shares they are willing to sell (ask)

or buy (bid). When, say, a portfolio manager sends a market order to buy, he will

be transferred shares at the best ask price. If his order amount is sufficiently large, it

may exhaust all the shares available at the best ask price. His order is then cleared

at the second best ask price (which will be slightly more expensive) and so on as his

order “walks through the book.” It is also possible to trade more “slowly” at smaller

amounts via limit orders. A limit buy order placed at X dollars will only execute if

the best bid price is less than or equal to X. It is possible that this trade may not be

executed if the bid never reaches X, or if not enough volume is available at X, then

the order may only be partially filled. This is the trade-off between execution and

market risk. (An example order book is shown in Figure 4.1.)

Some early work on transaction cost modeling can be found in [113, 126]. These are

locally optimal models which consider proportional transaction costs (i.e. modeling

the bid-ask spread). The globally optimal utility indifference hedge in the presence

of proportional transaction costs was first introduced by [109] and then improved by

[101]. Our transaction cost model considers market impact from large trades and is

similar to the models presented in [95, 101, 104, 108, 116], which consist mostly of
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Volume Bid Ask Volume

100 14.99 15.01 150

200 14.98 15.02 250

350 14.97 15.03 400

500 14.96 15.04 600

Figure 4.1: A typical limit order book with bid-ask spreadss and a mid-price of
$15.00. At each price level there is a volume of shares available. This amount is not
cumulative (e.g. up to an ask price level of $15.02, there are 400 shares available for
sale).

portfolio optimization and optimal liquidation applications. We have translated these

models into the utility indifference pricing setting.

We will present a very general framework to model the depth, spread and liquidity

of the order book using simple functions meant to capture the temporary and per-

manent price impacts based on the intensity of trading, along with possibly a fixed

cost associated with each trade. The first contribution to the literature of this pa-

per is to present a general framework that can be easily adapted to various market

impact and transaction cost models which can transition between continuous trad-

ing rate controls and impulse control market orders. Our remaining contributions

are to incorporate this framework into the utility indifference hedging and pricing

approach and to present a numerical finite difference scheme to solve the associated

equations. We note our framework is sufficiently general that it can be applied not

only to hedging OTC derivatives but more daily aspects of market making such as

inventory management or inventory quantile risk for example.

The problem was originally motivated by market makers seeking to price Asian

style options in the presence of transaction costs, market impact or illiquidity. Asian

options are typically sold OTC and accordingly useful bid-ask prices need to be estab-

lished, and may be preferred in illiquid markets since average prices are more stable

than market prices. Another possible situation is if the market impact is introduced

by the hedger making large trades in an already relatively liquid market such as an

accelerated share repurchase agreement. In these Asian style equity derivatives, the

hedger may have to trade over short time horizons (days to weeks) and buy a signifi-

cant amount of shares relative to the number of shares outstanding (market impact)
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[111].

We discovered however that even simple European options in the presence of

market impact yield a sufficiently rich example against which to study our model.

This is the primary example of our paper which is outlined as follows: Section 4.2

presents our model of market impact and utility indifference pricing; Section 4.3

presents the utility indifference pricing equations for a simple European call option;

Section 4.4 contains our numerical investigation where the results which include some

very interesting intuition are also discussed; and finally in Section 4.5 we discuss other

possible applications of this model and extensions.

The Asian option application is discussed in Appendix A (4.6) along with our

numerical scheme in Appendix B (4.7).

4.2 The Model

This section begins with an exposition of the market impact model for the trader

with a large position in the underlying. The trader’s utility objective is introduced

and then we consider the utility indifference pricing problem. Following a dynamic

programming argument, the Hamilton Jacobi Bellman (HJB) partial differential quasi

variational inequality (PDQVI) is derived.

4.2.1 Market Impact Model with Transaction Costs

We present a model of the market where the agent’s hedging decisions have an impact

on the market. The model aims to capture the effects of the trading rate ẋt on the

stock price St. There is no non-trivial hedging strategy for option pricing even with

much simpler transaction costs [123].

We aim to present a model that can transition smoothly from a continuous to a

discrete trading framework. While continuous trading is only an approximation to

reality, as trades are generally performed discretely, the continuous trading model

has the advantage of being able to straightforwardly map intuitive feedback laws into

the price impact. If any sort of fixed cost is incurred per trade, continuous trading

becomes obsolete, since at each instantaneous trade, a nonproportional fixed cost is

incurred. These accrued fixed costs become unbounded.

The derivative contract is hedged by holding a portfolio of the underlying shares.

The total number of shares held at time t is Xt and the trading rate may be denoted
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as dXt = ẋtdt, so

XT = X0 +

∫ t

0

ẋtdt. (4.2)

By definition, X0− = 0 (i.e. we begin with zero shares) and Xt ∈ R (i.e. the trader

can take long or short positions in the share).

The stock price is assumed to follow a geometric Brownian motion (GBM) with

drift that is affected by the trading rate

dSt = (µ+ g(ẋt))Stdt+ σStdWt (4.3)

where dWt is an increment of a standard Brownian motion satisfying the usual con-

ditions on a filtered probability space (Ω,F ,Ft, P ) [119]. (Of course, every traders’

actions have an effect on the stock price, which is another contributor to the apparent

randomness observed in market prices.) In the literature, g is the permanent price

impact function [95] which should be chosen so as to not admit round trip quasi-

arbitrage [104, 106, 110]. Thus in what follows we choose g to be symmetric such

that ∮ T

0

g(ẋt)dt = 0, if XT = X0

for any closed loop (i.e. round-trip trade). The presence of multiple agents in the

market place all seeking profit precludes the prospect of round trip quasi-arbitrage.

An intuitive form satisfying this condition is

g(ẋt) = γẋt. (4.4)

Another advantage of this form is that it can also model discrete trading with the

choice ẋt = λδ(t) where δ is the Dirac delta function and λ = Xt − Xt− is the net

change in position. At these discrete trade times, a change in the price occurs of

St = St−e
γλ. (4.5)

We note briefly that manipulating prices favourably is not possible. Round trip arbi-

trage trades are not profitable since the money earned pushing the price favourably

will generally be lost while attempting to take profits closing out the position. Fur-

ther if other market players became aware of a single player taking on a large enough

position to attempt the manipulate prices, they would trade against the player with

the large position. In this way, favourable manipulation is also generally not possible

for option positions. After writing a put option, it may appear desirable to run up
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the share price so the put becomes worthless by purchasing a large position. This

one-side view overlooks that the put holder may attempt the opposite trade and that

other players in the market would trade against a player attempting to take on such

a large position.

While trading, a temporary price impact of h(ẋt) is experienced by the stock price.

This price impact reflects the bid-ask spread on the exchange order book. We assume

a form that is symmetric1 and simple

h(ẋt) = (1 + η tanh(kẋt)) (4.6)

rather than the more traditional power forms (e.g. h(ẋt) = sgn(ẋ)|ẋ|k) as suggested

in [96]. Here k > 0 is a constant that reflects the rate at which continuous trading

approaches the market order bid-ask spread or in other words, the depth of the order

book. Small trading rates do not consume deep into (walk through) the order book

and can be interpreted as slower limit orders executed nearer the mid price. As the

trade rate become instantaneous and discrete, the temporary price impact function

approaches the standard proportional trading cost form as in [101]

lim
ẋt→±∞

h(ẋt) = (1 + η sgn(ẋt))

which is not the case with power forms which become unbounded. (We drop the k

above since k > 0.)

Slower trading rates minimize the temporary market impact, but leave the agent

exposed to more market risk. Faster trading rates quickly walk through the order

book, and therefore incur a higher spread (i.e. execution/liquidity risk), but reduce

the market risk. This is illustrated in Figure 4.2 .

The trader hedging the option position also holds cash in a risk-free bank account

Bt earning a constant interest rate r such that

dBt = rBtdt− ẋtSth(ẋt)dt. (4.7)

1The assumption of symmetry simplifies the problem although it may not be reflective of reality.
For some market players it is easier to buy, and for others to sell. Thus the form h could depend
explicitly on the sign of ẋt, e.g. h(ẋt) = (1 + ξ(ẋt)) where ξ(x) = η+1x≥0−η−1x<0. The parameters
(η+, η−) could then be chosen to reflect the relative ease/difficulty of buying relative to selling.



107

Volume Bid Ask Volume

100 14.99 15.01 0

200 14.98 15.02 200

350 14.97 15.03 400

500 14.96 15.04 600

Figure 4.2: The order book of Figure 4.1 after a market order to buy 200 shares. The
order has walked into the second layer of ask prices. A limit order with a smaller lot
could be placed nearer to the mid-price but would take time to fill. Limit orders rely
on the volatility of bid-ask prices in a sideway market to execute and may suffer from
execution risk in a trending market.

4.2.2 The Trader’s Utility Objective

The trader is aiming to maximize the utility of his terminal wealth at the end of

the time horizon T . In the classical Merton portfolio optimization problem [118], the

agent invests a proportion y of his total wealth in the stock St and the remainder

1− y in a risk free account Bt. His wealth process Rt evolves according to the SDE

dRt = yRt
dSt
St

+ (1− y)Rt
dBt

Bt

.

If the stock is a GBM with zero permanent or temporary price impact, using the

SDEs above for dSt and dBt, the wealth process is simply

dRt = (yµ+ (1− y)r)Rtdt+ yσRtdWt.

The wealth process is self-financing and the trader chooses a portfolio strategy to

optimize his terminal utility of wealth. The value function v is

v(R, t) = sup
y
E[U(RT )|Ft]

where Rt = R. By the dynamic programming principle and Ito’s lemma, the value

function satisfies the HJB equation

∂tv + sup
y

[
(yµ+ (1− y)r)R∂Rv + y2σ2R2∂RRv

]
= 0.
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Returning to our trader hedging an option in the presence of market impact, he

may choose to hold an option position that pays f(ST ) at expiry. His terminal wealth

with n units of the option position is given by Rn,T

Rn,T = BT + c(XT , ST , nf(ST )) (4.8)

where c(X,S, nf(S)) is the cost to liquidate the X shares of stock S net of receiving

his payout nf(S) from holding the options. (The number of contracts n can be in R
or restricted to market contract conventions.) For example, if he holds long one call

struck at K which expires in the money, his net liquidation position consists of X+ 1

shares with BT −K cash.2 His portfolio optimization problem in the absence of an

option position is simply

R0,T = BT + c(XT , ST , 0). (4.9)

Note if µ > r, it may be desirable to invest in the stock regardless of whether or not

the trader holds an option position.

It is important that if the trader’s net stock position at expiry is zero, there should

be no liquidation costs, i.e.

c(XT = 0, ST , 0) = 0 (4.10)

when no contracts are held; and

c(XT = X∗, ST , nf(ST )) = 0 (4.11)

where X∗ is our stock position after fulfilling our obligations under the option con-

tract. For example X∗ = n if we hold n put options which expire in the money and we

are fully hedged. This condition ensures our pricing rule stands on solid foundations

as will be shown later.

The trader chooses a utility function U(·) satisfying the Inada conditions. (The

most important of which for us are that U is smooth, concave, and strictly increasing.)

He then considers the Merton style portfolio optimization problem with and without

the option position. Call v the value function from the portfolio optimization problem.

Then

vn(Bt, Xt, St, t) = vn(B,X, S, t) = sup
ẋt

E[U(Rn,T )|Ft] (4.12)

is the portfolio optimization where the trader holds n options with initial endowment

Bt = B, position Xt = X, and share price St = S. Similarly his portfolio problem in

2If he is hedged perfectly (no market frictions) then XT = −1 and BT −K = 0.
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the absence of an option position is

v0(B,X, S, t) = sup
ẋt

E[U(R0,T )|Ft]. (4.13)

The indifference price for the trader is the initial cash amount where he is indif-

ferent between entering the option position and simply optimizing his portfolio as is3

and has been proposed as early as [109] for models with trading costs and again in

[101]. See [98] for an excellent reference on indifference pricing.

The utility indifference bid price pbn (i.e. the price a trader would be willing to

pay) for n options is given by

vn(B − pbn, 0, S, t) = v0(B, 0, S, t) (4.14)

where the trader initially holds zero shares. Similarly the indifference ask price pan is

given by

v−n(B + pan, 0, S, t) = v0(B, 0, S, t). (4.15)

It can be inferred from the above that pbn = −pa−n.

The pricing pair [pbn, p
a
n] form a good deal bound for the trader and accordingly

induces a risk measure for pricing [112, 124]. Further, if psup and psub represent the

super and sub-hedging prices respectively (the no arbitrage bounds of Equation 4.1),

then

psub ≤ pbn ≤ pan ≤ psup (4.16)

with equivalence when markets are complete [98, 124].

Convergence to the Risk Neutral Price

The condition that there be no liquidation costs when our net stock position is zero

ensures that the utility indifference price reduces to the risk neutral price in the

absence of trading frictions. Following [101], suppose there is a replicating portfolio

ẋBS (the Fundamental Theorem of Asset Pricing guarantees this under certain mild

conditions [107]) that results in XBS,T = −X∗ and BBS,T = −K where X∗ is our stock

position after fulfilling our obligations under the contract (i.e. the Black-Scholes ∆)

and K is the cash we obtain on termination. For example, K = K∗1{K∗>S} for the

case of a call option struck at K∗. Here 1{A} denotes the indicator variable that

3There is no need for the investment horizon to terminate at T coinciding with the option expiry.
Nor is the trader restricted to only trading in the underlying security of the derivative. These two
assumptions, however, greatly simplify the problem.
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event A has occurred. Suppose −pBS is the minimum endowment required to obtain

the replicating strategy given Xt = 0, and accordingly pBS is the Black-Scholes (risk

neutral) price. Suppose further that an arbitrary trading strategy ẋ is linear and can

be decomposed as ẋ = ẋBS + ẋq, attainable given B = −pBS + Bq and X = 0. Then

without loss of generality consider the case of holding one option

v1(Bq − pBS, 0, S, t) = sup
ẋ
E[U(R1,T )]

= sup
ẋ
E[U(BT + c(XT , ST , f(ST )))]

= sup
ẋq

E[U(Bq,T +BBS,T + c(Xq,T +XBS,T , ST , f(ST )))]

= sup
ẋq

E[U(Bq,T −K1{ST>K} + c(Xq,T +X∗, ST , f(ST )))]

= sup
ẋq

E[U(Bq,T + c(Xq,T , ST , 0))]

= v0(Bq, 0, S, t) (4.17)

which coincides with our definition of the utility bid price pbn = pBS. By multiplying

the relevant coefficients by −1, we could follow the same logic used above to show

that pan = pBS.

4.2.3 The HJB Equation

Following the definition of the value functions vn and v0, we use a dynamic program-

ming argument to derive the HJB PDQVIs for the portfolio optimization problem

associated with the indifference price. Since the partial differential equations for

both problems are equivalent except for the terminal conditions, in a slight abuse of

notation we use v to describe both variants.

Theorem 7. By the dynamic programming principle, the HJB equation for the port-

folio optimization problem is given by

∂tv + sup
ẋt∈A
{∂Bv (rB − ẋtSh(ẋt)) + ẋt∂Xv + g(ẋt)S∂Sv}+ L[v] = 0 (4.18)

where L = µS∂S + 1
2
σ2S2∂SS and A is the set of non-anticipating (Markovian) ad-

missible controls.

The final form of the governing HJB equation rests largely on the specifications

of the market impact model and whether or not there are fixed costs for trading. We

derive the HJB equation for several special cases of the model presented in Section
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4.2.

Fixed short term price impact If the short term price impact function h(ẋ) is

fixed at

h(ẋ) = (1 + η sgn(ẋ)) (4.19)

then the HJB equation becomes an HJB PDQVI in the limit that the set of admissible

controls becomes unbounded A→ [−∞,∞] [122].

If ẋmin ≤ ẋ ≤ ẋmax, then following similar arguments as in [101] the HJB equation

becomes

∂tv + sup
ẋmin≤ẋt≤ẋmax

ẋt {−S(1 + η sgn(ẋt))∂Bv + ∂Xv + γS∂Sv}+ rB∂Bv + L[v] = 0.

(4.20)

Theorem 8. The optimal control is given by considering the following three cases:

• −S(1 + η)∂Bv+ ∂Xv+ γS∂Sv ≥ 0 and −S(1− η)∂Bv+ ∂Xv+ γS∂Sv > 0, then

the agent buys at ẋt = ẋmax;

• −S(1 + η)∂Bv+ ∂Xv+ γS∂Sv < 0 and −S(1− η)∂Bv+ ∂Xv+ γS∂Sv ≤ 0, then

the agent sells at ẋt = ẋmin; and

• −S(1 + η)∂Bv+ ∂Xv+ γS∂Sv ≤ 0 and −S(1− η)∂Bv+ ∂Xv+ γS∂Sv ≥ 0, then

the agent does nothing and ẋt = 0.

Note that the 4th permutation of inequalities:

• −S(1 + η)∂Bv + ∂Xv + γS∂Sv > 0 and −S(1− η)∂Bv + ∂Xv + γS∂Sv < 0

implies 2η∂Bv < 0 which is not possible as v is increasing in B (∂Bv ≥ 0) and η is

nonnegative.

Note that the block of terms maximized in Equation 4.20 can be grouped as H
(intuitively “H” for “HJB”)

H[v] = ẋt [−S(1 + η sgn(ẋt))∂Bv + ∂Xv + γS∂Sv]

which gives the change in portfolio value arising from continuously trading shares at

rate ẋt. Then the first case corresponds to a situation where the incremental value

of the portfolio is increased by buying more shares. This incremental increase is

maximized by buying at the maximum rate ẋmaxdt. The increase in value by adding
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to our share position ∂Xv overcomes the cost of purchasing shares in addition to

paying the ask spread −S(1 + η)∂Bv along with any permanent price impact effects

γS∂Sv. In the second case, selling at the bid price increases the value of the portfolio

−S(1 − η)∂Bv and overcomes any loss in value by lowering our share position ∂Xv

and driving down the stock price γS∂Sv. The third case is a situation where either

buying or selling decreases the overall portfolio value so it is optimal to do neither

(i.e. ẋt = 0).

There is another possible case where

∂Bv = ∂Xv = ∂Sv = 0.

In this situation any possible control ẋt can satisfy the conditions above for optimality

and therefore the optimal control becomes nonunique. By choosing any control at

that instant, the state space is pushed into a new region where a unique optimal

control is defined. The nonuniqueness can be removed by noting a financially intuitive

condition: If no net benefit occurs from trading, it is not worth the trader’s time and

effort to make a trade (i.e. ẋt = 0).

In the case that the trader can make impulse trades (i.e. ẋ → ±∞), then the

above equations reduce to an HJB PDQVI. See [120] for a helpful reference on impulse

control problems.

Theorem 9. The optimal trading policy follows from the HJB PDQVI

max

{
−S(1 + η)∂Bv + ∂Xv + γS∂Sv︸ ︷︷ ︸

buy

, ∂tv + rB∂Bv + L[v]︸ ︷︷ ︸
wait

,

− (−S(1− η)∂Bv + ∂Xv + γS∂Sv)︸ ︷︷ ︸
sell

}
= 0 (4.21)

As before, there are three regions of space (B, S,X): One region where it is

optimal to buy shares via an impulse trade to push the state space vector onto the

border of the wait region; a second region where it is optimal to sell via an impulse

trade back to the border of the wait region; the wait region where the agent does not

need to rebalance his portfolio at all (until the diffusion vector (B, S,X) exits the

wait region) [101].

Following [101], if the solution at the wait boundary is known v∗(Bw, Sw, Xw, t),

the function in the buy or sell regions can be determined. At a point (B, S,X) outside

of the wait region (for example the buy region), the HJB PDQVI is governed by a
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X

S

(X,S)

(Xw, Sw)

λ

buy

wait

Figure 4.3: In the buy region, we execute a trade of λ to bring us back to the border
of the wait region.

first-order PDE ẋt(−S(1 + η)∂Bv + ∂Xv + γS∂Sv). Taking the total derivative

dv

dt
=
dB

dt
∂Bv +

dx

dt
∂Xv +

dS

dt
∂Sv = 0

and solving yields

v(B − λSeγλ(1 + η), Seγλ, X + λ, t) = v∗(Bw, Sw, Xw, t) (4.22)

where ẋt = λδ(t) and λ = Xw−X. That is, an impulse trade of λ is made at time t. In

other words, at any (B, S,X) there is a characteristic impulse jump to (Bw, Sw, Xw),

or (B, S,X)
λ−→ (Bw, Sw, Xw). The intuition here is that, within the buy/sell region,

the solution v derives directly from the solution v∗ along the boundary of the wait

region at some characteristic point.4 This is illustrated in Figure 4.3.

Continuous short term price impact If the short term price impact h is the

continuous function previously described in Section 4.2, then the control problem is

∂tv + sup
ẋt∈A

ẋt {−S(1 + η tanh(kẋt))∂Bv + ∂Xv + γS∂Sv}+ rB∂Bv +L[v] = 0. (4.23)

Theorem 10. If the set of admissible controls is unbounded, then the optimal control

4If the boundary surface can be written as a function Xw = f(Bw, Sw), then along with λ, any
point in space (B,S,X) can be spanned along these characteristic impulses.
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is as follows:

max

{
−S(1 + η)∂Bv + ∂Xv + γS∂Sv︸ ︷︷ ︸

buy

, ∂tv +H[v] + rB∂Bv + L[v]︸ ︷︷ ︸
wait

,

− (−S(1− η)∂Bv + ∂Xv + γS∂Sv)︸ ︷︷ ︸
sell

}
= 0. (4.24)

The operator H is defined as

H[v] = ẋ {−S(1 + η tanh(kẋ))∂Bv + ∂Xv + γS∂Sv} (4.25)

where ẋ is given by

H′[v] = 0 (4.26)

where H′ denotes differentiation with respect to ẋ.

Remark 4.2.1. The optimal trade rate while in the continuous trading region is

satisfies the equation

H′[v] = 0

tanh(kẋ) + ẋ tanh(kẋ)′ =
∂Xv + γS∂Sv − S∂Bv

Sη∂Bv

and has a solution which is satisfied within the continuous trading region . Although

max
ẋ

tanh(kẋ) + ẋ tanh(kẋ)′ = A ≈ 1.2 > 1

min
ẋ

tanh(kẋ) + ẋ tanh(kẋ)′ = −A ≈ −1.2,−1

(which occurs where ẋ > 0 and ẋ < 0 respectively) is bounded, within the continuous

trading region −S(1 + η)∂Bv + ∂Xv + γS∂Sv ≤ 0 we have

∂Xv + γS∂Sv − S∂Bv
Sη∂Bv

≤ 1.

∂Xv + γS∂Sv − S∂Bv
Sη∂Bv

≥ −1.

Thus, there exists a solution ẋ.

Moreover, there may exist two solutions to the problem of Equations 4.24–4.26,

particularly approaching the impulse region ∂Xv+γS∂Sv−S∂Bv
Sη∂Bv

→ 1. The optimal ẋ then
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follows from the second derivative condition

H′′ = −2 tanh(kẋ)′ − ẋ tanh(kẋ)′′ < 0.

Remark 4.2.2. It is interesting that the sign of second derivative is independent of

η. This is because the group H is almost linear in x except for one term

H[v] = −ηẋ tanh(kẋ) + ẋ {−S∂Bv + ∂Xv + γS∂Sv} .

Thus in the above all the curvature derives from the first term only. The η factors

out when considering the optimal trading rate for the points where multiple solutions

exist to the first derivative condition H′[v] = 0.

Furthermore, there exists a point at which it is no longer most economical to trade

continuously but rather to make impulse trades. Consider for example a point in the

buy region where it is not optimal to make an impulse trade 0 < ẋ < ∞. By the

inequalities above, there is an ε = tanh(kẋ)

−S(1 + η)∂Bv + ∂Xv + γS∂Sv < 0

−S(1 + εη)∂Bv + ∂Xv + γS∂Sv ≥ 0 =
1

ẋ
H[v]

where ẋ optimizes H. (A similar argument holds where −∞ < ẋ < 0.) After removing

the constant terms −S∂Bv + ∂Xv + γS∂Sv, scaling out the factor η∂Bv considered

along with the second derivative condition, we see that the point at which it becomes

optimal to impulse trade is dependent on k (the rate at which we consume into the

order book—i.e. depth) rather than η (the spread in the order book).

Where there are fixed costs associated with each trade If there is a fixed

cost D > 0 associated with each infinitesimal trade, then it is no longer optimal

to trade continuously. The trader must make impulse trades leading to a PDQVI.

Accordingly, the number of shares held becomes a jump process affected by an impulse

control strategy. Following [116], the trader must choose an optimal sequence of

impulse controls ẋ = (τn, λn) where τn is an increasing sequence of stopping (trading)

times and λn are the amount of shares to be bought or sold at each time. The set

of admissible controls is non-anticipating (Markovian), Fτn-measurable and is such

that the value function is bounded from below (e.g. finite number of trades, position

limits, etc.).

This control sequence can be interpreted as ẋt =
∑

n λnδ(t− τn), thus the state
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variable Xt becomes

Xt = Xτn , τn ≤ t < τn+1 (4.27)

Xt = Xτn + λn+1, t = τn+1. (4.28)

Specifically, dXt = 0 except at times t = τn.

As stated in Section 4.2, the permanent price impact after a trade occurs at t = τn

is

Sτn = Sτn−e
γλn

and evolves by the regular GBM SDE dSt = µStdt+ σStdWt otherwise, so

St = S0e
(µ− 1

2
σ2)t+γ

∑
n λn+σWt . (4.29)

The cash holdings evolve by the process

dBt = rBtdt, τn ≤ t < τn+1 (4.30)

Bt = Bt− − λn+1Ste
γλn+1(1 + η sgn(λn+1))−D, t = τn+1. (4.31)

The value function vn is as defined before

vn(B,X, S, t) = sup
ẋ
E[U(Rn,T )|Ft].

Following a dynamic programming argument as in [116],

vn(B,X, S, t) = sup
τ,λ

E[vn(Bτ , Xτ , Sτ , τ)|Ft] (4.32)

which leads to a HJB PDQVI.

Theorem 11. The value function v and optimal control satisfy

max

∂tv + rB∂Bv + L[v]︸ ︷︷ ︸
wait

, H[v]− v︸ ︷︷ ︸
trade

 = 0 (4.33)

where

H[v] = sup
λ
v(B − λSeγλ(1 + η sgn(λ))−D,X + λ, Seγλ, t). (4.34)

As in the earlier model iterations (Theorems 8–10), there are three regions: A

trade region where it is optimal to buy (λ > 0); a second trade region where it is
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optimal to sell (λ < 0); and a final “wait” region where it is optimal to make no trades

at all (λ = 0) and the PDE evolves under the uncontrolled diffusion dSt. Intuitively,

the singular control problem described earlier is a special case of the impulse control

problem in that the limit as D → 0, Equation 4.33 reduces to 4.21.

The trade (buy/sell) and no-trade/wait regions are given by the sets

trade = {(B, S,X, t) : v(B, S,X, t) = H[v(B, S,X, t)]} (4.35)

wait = {(B, S,X, t) : v(B, S,X, t) > H[v(B, S,X, t)]}. (4.36)

In [116], it is shown that the control set is non-empty along with the wait region.

Uniqueness and continuity of the solution are also verified. Given the presence of

the permanent price impact, it is possible that net wealth can increase after exe-

cuting some transactions, however the solution is still shown to be bounded [116].

Boundedness of our solution follows from the imposition of position limits on the

trader.

4.2.4 Under Exponential Utility

Assume the trader has an exponential utility with risk aversion parameter β

U(R) = 1− e−βR. (4.37)

The parameter β is called the risk aversion because as β grows, the downside risk

is weighted much more heavily than the upside gains, hence more aversion to any

residual risk. As β → 0+, the agent tends to weight downside losses and upside gains

equally as U(R) ∼ βR. With the choice of exponential utility, the value function is

vn(B,X, S, t) = 1− inf
ẋ
E
[
eβBT−βc(XT ,ST ,nf(ST ))

∣∣Ft] . (4.38)

Since BT has the integral form

BT = Ber(T−t) −
∫ T

t

er(T−s)ẋsSsh(ẋs)ds, (4.39)

following a similar argument to [101] the value function can be rewritten as

vn(B,X, S, t) = 1− e−βBer(T−t)
Gn(X,S, t) (4.40)

where Gn is convex decreasing in (X,S).
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The indifference bid and ask prices for n units of the option are given by the

nonlinear pricing rule

pbn = −e
−r(T−t)

β
ln

(
Gn(0, S, t)

G0(0, S, t)

)
(4.41)

pan =
e−r(T−t)

β
ln

(
G−n(0, S, t)

G0(0, S, t)

)
. (4.42)

Note that these prices are independent of initial wealth B.

The HJB equation for v becomes

∂tG+ inf
ẋt∈A

{
βer(T−t)ẋtSh(ẋt)G+ ẋt∂XG+ g(ẋt)S∂SG

}
+ L[G] = 0. (4.43)

This choice of utility has the advantage of reducing the dimensionality of the HJB

equation by one (removing ∂B). In fact, the initial wealth B factors out entirely

thereby eliminating the pricing dependence on initial cash. Depending on the agent’s

opinion, this may be a more attractive feature. Further, by using the impulse control

with fixed trading costs, the differential dimensionality is reduced yet again (effec-

tively removing ∂X from the differential equation yielding a relatively stable parabolic

PDE rather than a numerically more dangerous hyperbolic PDE).

4.2.5 The Simplified Deterministic Problem

To build some intuition around when trade decisions are made, we will take a slight

departure to consider the deterministic optimal control equivalent to the model above.

We consider the case of optimizing terminal wealth utility in the absence of holding

any derivative contracts. The stock price is assumed to follow an ordinary differential

equation
dSt
dt

= (µ+ γẋt)St (4.44)

and so ST = Ste
µ(T−t)+γ

∫ T
t ẋsds.

We observe some facts about the deterministic control problem: If there is no

uncertainty, all our future decisions are known with certainty today. There is no value

in waiting or deferring decisions. The fixed trading cost D precludes any intermediate

trading between today and the end horizon. It would be suboptimal to accrue any

extra trading costs D since we know what the price and portfolio outcomes will be

at T . If we do in fact trade today (time t), our known gains must overcome any

liquidation costs at terminal time T .
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Under exponential utility as before, the optimal control is

v(B,X, S, t) = sup
ẋ

1− exp [−β(BT + c(XT , ST ))] .

By the assumptions above, the solution is

v(B,X, S, t) =1− exp
[
−β(Ber(T−t) + c(−X,ST ))

]
= no trade, if it is optimal not to trade

1− exp
[
−β(Ber(T−t) + c(−(X + λ), ST )) + c(λ, S)er(T−t)

]
= trade, otherwise

(4.45)

where λ maximizes the value of trading. At time t, the value function and associated

strategy is

v(B,X, S, t) = max(trade, no trade).

If it optimal to trade, then

1− exp
[
−β(Ber(T−t) + c(−X,ST ))

]
<

1− exp
[
−β(Ber(T−t) + c(−(X + λ), ST )) + c(λ, S)er(T−t)

]
c(−X,ST ) < c(−(X + λ), ST )) + c(λ, S)er(T−t).

Using the temporary and permanent price impact and fixed cost model from earlier,

X(1+η sgn(−X))Seµ(T−t)−γX−D1X 6=0 < (X+λ)(1+η sgn(−(X+λ)))Seµ(T−t)−γX

−D1λ 6=−X − λ(1 + η sgn(λ))Seγλ+r(T−t) −Der(T−t)

noting that ST = Seµ(T−t)−γ(X+λ)+γλ = Seµ(T−t)−γX reflects the cumulative perma-

nent trade impact if any trading occurs at t.

We now consider some simplifications to arrive at a special case which will use to

build some intuition. We also use this special case as a benchmark against which to

test our stochastic HJB numerical solutions. Assume γ = r = 0. Then the simplified

problem reduces to

X(1+η sgn(−X))Seµ(T−t)−D1X 6=0 < (X+λ)(1+η sgn(−(X+λ)))Seµ(T−t)−D1λ 6=−X

− λ(1 + η sgn(λ))S −D.
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It may be challenging to glean much information from the above, so consider the

assumption that markets are very liquid and η � 1

XSeµ(T−t) −D1X 6=0 < (X + λ)Seµ(T−t) −D1λ6=−X − λS −D

−D1X 6=0 < λS
(
eµ(T−t) − 1

)
−D1λ 6=−X −D.

Two cases can occur: (1) X 6= 0 and so

D1λ 6=−X ≤ λS
(
eµ(T−t) − 1

)
(4.46)

or (2) X = 0 (noting that, if a trade in fact occurs, λ 6= −X) and so

2D ≤ λS
(
eµ(T−t) − 1

)
. (4.47)

That is, we must overcome two trades 2D without the counterbalance of liquidating

the portfolio D when X 6= 0; otherwise we need only overcome the cost of trading D

from our expected gains λS(er(T−t) − 1).

To determine the optimal λ, consider the case β � 1 and accordingly

1− e−βy = 1− (1 +−βy +O(β2)) ≈ βy.

Including all our earlier simplifying assumptions, λ satisfies

max
λ

β
(
(X + λ)Seµ(T−t) −D1λ6=−X − λS −D

)
. (4.48)

Again, there are two cases: (1) If λ 6= −X, then ignoring β and collecting terms

max
λ

λS
(
eµ(T−t) − 1

)
+XSeµ(T−t) − 2D

which is linear in λ and so the maximum occurs at the endpoint

λ = Xmax −X (4.49)

where Xmax is the maximum allowed long position.5 (2) It is also possible that

λ = −X where the earlier argument (4.48) reduces to simply XS −D. In this case,

5Here it is assumed that µ > 0 otherwise there would be no incentive at all to trade in the stock.
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it must be that

XS −D ≥ (Xmax −X)S
(
eµ(T−t) − 1

)
+XSeµ(T−t) − 2D

XS −D ≥ XmaxS
(
eµ(T−t) − 1

)
+XS − 2D

0 ≥ XmaxS
(
eµ(T−t) − 1

)
−D. (4.50)

That is, given our best terminal wealth after trading, we are still worse off than having

never traded.

This exercise allows us to develop some excellent intuition:

• If our risk aversion is small β � 1, our optimal strategy is to buy as many

shares as possible.

• If the stock price is low, it may not be worth it to buy any additional shares given

the expected return may not overcome our additional fixed costs associated with

the trade.

• If we start in a position where we are already long the share, even with a high

stock price, the additional gains from taking a maximal long position may not

overcome the additional fixed trading costs.

• There is a tendency toward having a net zero position at the end horizon T

since there is zero transaction cost associated with closing out that position.

We must overcome the cost of two fixed costs when starting from a position of

X = 0. This is as opposed to when X 6= 0, where there is only one extra fixed

cost since a sunk costs already exists at T due to closing out the position.

These phenomena are illustrated in Figure 4.4.

4.3 A Call Option Example

As a first case study, we consider the optimal replication strategy for a European call

option in the presence of market impact. At expiry T , a call option struck at K pays

V (ST , T ) = (ST −K)+. In the complete (Black-Scholes) market model, the governing
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Figure 4.4: The optimal deterministic portfolio strategy. The colour map represents
the trade size λ. There are three regions: One where it is optimal not to trade; one
where it is optimal to trade to zero position; and a final where it is optimal to trade
to the maximum position Xmax = 1. Here η = 0.02, D = 1.0, µ = 0.30, T − t = 1.0.
We observe similar results in our finite difference code as we let σ, β → 0.

PDE is

∂tV + rS∂SV +
1

2
σ2S2∂SSV − rV = 0

V (S, T ) = (ST −K)+

lim
S→0

V (S, t) = 0

lim
S→∞

∂SV (S, t) = 1. (4.51)

The solution of this is

V (S, t) = SN(d+)−Ke−r(T−t)N(d−)

d± =
ln
(
S
K

)
+
(
r ± 1

2
σ2
)

(T − t)
σ
√
T − t

N(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy. (4.52)

In the Black-Scholes setting, the optimal hedging strategy is the so-called ∆ hedge,

where at any time one should hold ∆ = ∂SV shares of the stock. In our notation,

this is λ(X = 0, S) = ∂SV = N(d+).
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When there is market impact as described in Section 4.2, we refer to our indiffer-

ence model. The value function under exponential utility satisfies

vn(B,X, S, t) = sup
ẋ∈A

E
[
1− e−βRn,T

∣∣Ft] = 1− inf
ẋ
E
[
e−βRn,T

∣∣Ft] .
Following a dynamic programming argument, we derive the HJB equation for the

personal valuation of the call option under exponential utility

vn(B,X, S, t) = 1− inf
ẋ
E
[
e−βBe

r(T−t)+β
∫ T
t er(T−s)ẋsSsh(ẋs)ds−βc(XT ,ST ,nf(ST ))

∣∣∣Ft]
= 1− e−βBer(T−t)

G(X,S, t)

G(X,S, t) = inf
λ,τ
E
[
eβe

r(T−τ)(λ(1+η sgn(λ))Sτ eγλ+D)G(Xτ , Sτ , τ)
∣∣∣Ft] . (4.53)

The associated HJB equation to the dynamic programming problem follows from Ito’s

lemma.

Theorem 12. The optimal terminal portfolio utility and trading strategy satisfy

min {∂tG+ L[G], H[G]−G} = 0 (4.54)

where the operator H is given by

H[G] = inf
λ
eβe

r(T−t)(λ(1+η sgn(λ))Seγλ+D)G(X + λ, Seγλ, t). (4.55)

The final condition is given by the cost to liquidate the portfolio at T

Gn(XT , ST , T ) = exp [−βc(XT , ST , nf(ST ))] .

In the case of holding (shorting) n options, when the option expires in the money,

we receive (sell) n stocks and pay (receive) the strike nK. We must close out our

position of X + n shares (λ = −(X + n)). Thus, the final condition is

Gn(X,S, T ) =exp
[
−β
(
X(1 + η sgn(−X))Se−γX −D1{X 6=0}

)]
if S ≤ K

exp
[
−β
(
(X + n)(1 + η sgn[−(X + n)])Se−γ(X+n) −D1{X 6=−n} − nK

)]
if S > K.

(4.56)
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The associated boundary conditions are

lim
S→0

∂tGn(X,S, t) = 0 (4.57)

lim
S→∞

∂SGn(X,S, t)

Gn(X,S, t)
= β(X + n)(1 + sgn(−(X + n)))e−γ(X+n) (4.58)

For completeness, the optimization problem in the absence of holding the option

is given by

min {∂tG0 + L[G0], H[G0]−G0} = 0

where the operator H is given by

H[G0] = inf
λ
eβe

r(T−t)(λ(1+η sgn(λ))Seγλ+D)G0(X + λ, Seγλ, t).

subject to final condition

G0(X,S, T ) = exp
[
−β
[
X(1 + η sgn(−X))Se−γX −D1{X 6=0}

]]
(4.59)

with similar boundary conditions as above (i.e. n = 0).

The indifference bid and ask prices for n units of the call option are given by

pbn = −e
−r(T−t)

β
ln

(
Gn(0, S, t)

G0(0, S, t)

)
pan =

e−r(T−t)

β
ln

(
G−n(0, S, t)

G0(0, S, t)

)
.

4.4 Results

The numerical investigation is split into three subsections: The first is a thorough

numerical investigation into the effects of transaction costs and liquidity on the hedg-

ing and pricing of a European call. The second subsection illustrates how this model

yields some financially intuitive but atypical results. The third subsection discusses

the results in more depth and explains the effects in financial terms. We summarize

the pricing results in Table 4.1.
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Associated Figure Parameter Investigated Bid Ask
4.6 β = 0.5 0.34 0.45

β = 2.0 0.26 0.47
4.8 D = 0.05 0.32 0.47

D = 0.50 0.11 0.89
4.10 η = 0.01 0.29 0.53

η = 0.05 0.19 0.70
4.12 γ = 0.01 0.22 0.68

γ = 0.05 0.12 0.85

Table 4.1: At the money bid and ask prices ($) for various parameter regimes. The
Black-Scholes price is $0.42.

4.4.1 The Effects of Temporary and Permanent Price Impact

and Transaction Costs

We begin by investigating the effects of fixed transaction costs D (e.g. brokerage

costs), temporary price impact η (e.g. bid-ask spread, order book depth and liquidity),

and permanent price impact γ (e.g. feedback effects). Unless stated otherwise, the

risk aversion parameter is β = 1.0. The risk free interest rate is r = 1% per annum

on dollar deposits. The expected return and volatility of the stock are µ = 1.5% and

σ = 20% annualized respectively. The option tenor and investment time horizon are

T − t = 1.

Exponential Utility and Risk Aversion β We begin with a numerical illustra-

tion of the effects of risk aversion β on the price and hedging strategy, often referred

to as ∆. In our notation, ∆ = λ at X = 0. The results are displayed in Figures

4.5–4.6.

Fixed Costs D We begin the investigation of the market impact parameters with

a numerical illustration of the effects of fixed transaction costs D on the price and

hedging strategy. The results are displayed in Figures 4.7–4.8.

Bid-Ask Spread η We follow with a numerical illustration of the effects of bid-ask

spread or temporary price impact η on the price and hedging strategy. The results

are displayed in Figures 4.9–4.10.

Permanent Impact γ We follow with a numerical illustration of the effects of

liquidity or permanent price impact γ on the price and hedging strategy. The results
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Figure 4.5: The optimal hedging strategy for a long and short European call. The
solid black line is the Black-Scholes strategy (delta ∆). The solid grey (dashed black)
line is with risk aversion β = 0.5 (β = 2.0). The fixed cost is D = 0.05 while
the temporary and permanent price impacts are zero (η = γ = 0). The remaining
parameters are T − t = 1, µ = 1.5%, σ = 20%, and r = 1%.

are displayed in Figures 4.11–4.12.

Incentives to Break up the Order Some very interesting behaviour occurs as

the magnitude of the permanent price impact γ increases relative to the fixed costs

D and spread η. There is an incentive to break up the hedging order into several

smaller subtrades. This phenomenon is illustrated in Figures 4.13–4.14. As S grows,

the fully long hedge first moves to one half (1/2) then, as S increases further, to one

third (1/3).

4.4.2 Discussion

We explain and discuss the effects of each parameter in what follows. First, note

the strategies in Figures 4.5–4.14 show the optimal trading/hedging strategy λ as a

function of S along the line X = 0 at t. The policy λ is dependent on both S and

X as is apparent in Figure 4.4. Thus for example in Figure 4.7, the strategy does

not suffer from “pin risk” where any time the stock is greater than the strike K we

fully hedge and as soon as S dips below K, we fully divest the share. This would

result in very high transaction costs. The strategy is contingent on the entire space
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Figure 4.6: The Black-Scholes and utility indifference bid and ask prices for the
European call. The solid black line is the Black-Scholes price. The solid grey (dashed
black) line is with risk aversion β = 0.5 (β = 2.0). The fixed cost is D = 0.05 with
temporary impact (bid-ask spread) η = 0.005. The permanent price impact is zero
(γ = 0). The remaining parameters are T − t = 1, µ = 1.5%, σ = 20%, and r = 1%.

(X,S). Thus once S exceeds K (say S = K+ ε) and we have fully hedged λ = ∆ = 1

(assuming we are short the call), we are at a new state X = 1. The trading strategy

λ at S = K − ε and X = 1 is not to sell the stock λ = −1 but rather to do nothing

at all λ = 0. We wait until we are deeper out of the money before accruing the extra

trading cost. This eliminates the “pin risk” or rapidly repeated rebalancing.

Exponential Utility and Risk Aversion β In all the hedging strategies (Figures

4.5–4.14), it is always optimal to hedge sooner (i.e. at lower S) due to the asymmetry

of the payoff. When short the option, our downside risk is unlimited, whereas long the

option, our downside risk is limited. The choice of exponential utility U(x) = 1−e−βx

weights downside losses more heavily than upside gains. Hence, the higher residual

downside risk at terminal wealth from the short call is more likely to be hedged away.

This effect is illustrated clearly in Figure 4.5. As risk aversion β grows (c.f. the

β = 0.5 result to the corresponding β = 2.0 result), the hedging strategy becomes

more symmetric between the long and short call positions. In fact, we tend to hedge

more closely to the Black-Scholes hedge regardless of the extra trading costs we are

accruing. This is because the Black-Scholes ∆ eliminates all the residual risk with
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Figure 4.7: The optimal hedging strategy for a long and short European call. The
solid black line is the Black-Scholes strategy (delta ∆). The grey solid (black dashed)
line is with fixed cost D = 0.05 (D = 0.50). The temporary and permanent price
impacts are zero (η = γ = 0). The remaining parameters are T − t = 1, µ = 1.5%,
σ = 20%, and r = 1%.

the option, hence the higher the risk aversion, the closer we tend to track the Black-

Scholes hedge.

This result is also reflected in the pricing (Figure 4.6). The extra transaction costs

accrued by tracking the Black-Scholes hedge more closely (which relies on continuous,

i.e. frequent, trading) result in larger bid-ask spreads in the utility indifference price

as β, and hence the risk aversion, increases.

Fixed Costs D The effect of fixed transaction costs is to reduce the number of

rehedges. As apparent in Figure 4.7, the fixed costs D filter out some of the early and

late stage intermediate hedges relative to the Black-Scholes ∆. It appears like a step

function moving into and away from at the money S = K = $5. In the relatively low

cost case that D = 0.05, there is an intermediate area at the money where the optimal

hedge follows the Black-Scholes ∆. As we move deeper into (out of) the money with

the long call position, we become more certain of how the option will expire. Because

there is an additional transaction cost D at expiry if X 6= −1 (X 6= 0) when we

are in (out of) the money, it becomes optimal to just become fully short (divested

from) the stock. In the intermediate zone where the optimal trade tracks the ∆, the
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Figure 4.8: The Black-Scholes and utility indifference bid and ask prices for the
European call. The solid black line is the Black-Scholes price. The grey solid (black
dashed) line is with fixed cost D = 0.05 (D = 0.50). The temporary and permanent
price impacts are zero (η = γ = 0). The remaining parameters are T − t = 1,
µ = 1.5%, σ = 20%, and r = 1%.

exposure to market risk outweighs the potential (double) fixed trading costs, so the

trader makes an intermediate hedge immediately to avoid exposing himself to further

market risk.

At the high cost value of D = 0.50, the optimal hedging strategy becomes a binary

step function. The costs associated with additional intermediate trading far outweigh

any foreseeable market risk (volatility) and so the trader either goes fully short in

the stock when in the money, or fully divested from the stock when out of the money

(i.e. no position X = 0).

The behaviour is also as expected in Figure 4.8, which shows the price as a function

of S. Deep out of the money, the option approaches zero. There is no need to buy/sell

any stock to hedge as it is known the stock will expire worthless and thus no fixed

costs are accrued. Deep into the money, the story is similar. The spread between the

Black-Scholes price approaches D as the optimal hedge indicates that one should go

fully long/short the stock to cover the near certain obligations at expiry. Since only

one trade occurs (the settlement precludes any additional trades or fixed costs from

being incurred), the differences in price approach the singular fixed cost.

The “bulge” in the spread between the Black-Scholes and indifference prices at
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Figure 4.9: The optimal hedging strategy for a long and short European call. The
solid black line is the Black-Scholes strategy (delta ∆). The solid grey (black dashed)
line is with temporary impact η = 0.01 (η = 0.05). The permanent price impacts is
zero (γ = 0) with fixed cost D = 0.05. The remaining parameters are T − t = 1,
µ = 1.5%, σ = 20%, and r = 1%.

the money follow from the uncertainty. In the case where D is small and intermediate

trading occurs, two fixed costs are accrued. However, the expected gains in the upside

of the option cancel out some of the accrued fixed costs on average and so the spread

does not necessarily approach 2D. Similarly as D grows large and the optimal hedge

becomes a binary long/short or zero strategy, there is also a bulge. This is caused by

the tracking error in the hedge when the option expires in the wrong direction from

the hedge. Additional trading costs are accrued to rebalance the hedge at expiry.

Bid-ask Spread η The effects of η are more subtle (Figure 4.9). Since η is a

temporary impact, in some ways increasing the spread cost is akin to increasing D.

Thus as η increases, the optimal hedge approaches the binary decision.

On the other hand, since the costs scale with the stock price, there is a possibility

and an incentive to minimize the hedging costs. In the long call hedge, we make our

money from shorting the call. We make the most money from our hedge by shorting

at the highest price and hence there is a longer delay between when we hedge the

long call compared to the short call case or the case where η = 0 but with larger D.

We cannot affect the magnitude of the fixed costs but we can affect the magnitude
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Figure 4.10: The Black-Scholes and utility indifference bid and ask prices for the
European call. The solid black line is the Black-Scholes price. The solid grey (black
dashed) line is with temporary impact η = 0.01 (η = 0.05). The permanent price
impacts is zero (γ = 0) with fixed cost D = 0.05. The remaining parameters are
T − t = 1, µ = 1.5%, σ = 20%, and r = 1%.

of the spread costs. Similarly with the short call, we spend our option premium by

hedging the stock long. It is less costly to acquire the stock due to the transaction

spreads when it is cheaper. Hence, we tend to hedge earlier compared to the long

call hedge. In both the long or short call case, there is an incentive to wait before

hedging compared to the Black-Scholes hedge. For example if the short call is out of

the money, hedging by buying the stock with a spread premium to only close it out

in a sideway market guarantees a loss. Hence it is expedient to delay before making

any hedging decisions while out of the money.

In terms of pricing (Figure 4.10), the spread between the Black-Scholes price and

the indifference price grows with S since the transaction costs are proportional to the

stock price, unlike with increased D which tends to a constant spread.

Permanent Impact γ The effects of permanent impact γ are more complex (Figure

4.11). There still exists a band where it is optimal to track the Black-Scholes hedge

∆. In fact in the short call position, it is optimal to begin hedging earlier as γ grows

since the effect of hedging tends to push the stock against your favour deeper into

the money, creating yet more downside risk. There is a tendency to track the Black-



132

Figure 4.11: The optimal hedging strategy for a long and short European call. The
solid black line is the Black-Scholes strategy (delta ∆). The solid grey (black dashed)
line is with permanent impact γ = 0.01 (γ = 0.05). The temporary price impacts
is zero (η = 0) with fixed cost D = 0.20. The remaining parameters are T − t = 1,
µ = 1.5%, σ = 20%, and r = 1%.

Scholes hedge longer however since that is a smaller trade than going fully long the

stock. The larger the trade, the more likely the option is to be pushed into the money

and so there is an incentive to reduce the magnitude of the hedge. A similar strategy

occurs in the long call hedge. As γ increases, there is a tendency to delay hedging

as it is likely to push the stock out of the money. Further, there is a band where it

is optimal to track the Black-Scholes hedge and engage in some intermediate trading

when there is large γ, unlike the small γ case. The effects of γ compared to the fixed

cost D tend to make intermediate hedging not as appealing when γ is smaller. Again,

we tend to hedge later and differently between the long-short call position cases due

to the asymmetry of the exponential utility in terms of how much more strongly it

penalizes downside risk.

The effects of permanent impact on price are similar to the effects of temporary

impact (Figure 4.12) in that both scale with the stock price. The spread is asymmetric

since the scaling factor eγλ is asymmetric in λ.

Minimum Impact Trading: Breaking up the Order A very interesting phe-

nomenon occurs as γ grows in relation to the fixed cost D and spread η. We see
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Figure 4.12: The Black-Scholes and utility indifference bid and ask prices for the
European call. The solid black line is the Black-Scholes price. The solid grey (black
dashed) line is with permanent impact γ = 0.01 (γ = 0.05). The temporary price
impacts is zero (η = 0) with fixed cost D = 0.20. The remaining parameters are
T − t = 1, µ = 1.5%, σ = 20%, and r = 1%.

that an unusual hedging strategy arises from Figures 4.13–4.14. There exists a point

at which we appear to break away from the Black-Scholes hedge and approach some

midpoint hedge |λ(X = 0, S)| = 1/2. The reality is slightly different. The option is

still being fully hedged, i.e. |∆| = 1, but it is now optimal to break the hedge into

two subtrades to minimize the costs of the permanent price impact.

Recall from Figure 4.4 that the policy λ is a function of both X and S (and t).

Thus in the 1/2 case deep in the money while short the call, λ(X = 0, S) = 1
2

while

λ(X = 1
2
, S) = 1

2
. The net effect of this strategy is to hedge fully to X = 1 by X ⇒

0 → 1
2
→ 1. Similarly when λ(0, S) = 1

3
, then λ(1

3
, S) = λ(2

3
, S) = 1

3
. The combined

effect of this strategy is to hedge to X = 1 via three suborders X ⇒ 0→ 1
3
→ 2

3
→ 1.

An apparent geometric symmetry arises from this phenomenon.

To see why this is optimal, consider the accrued costs from trading. Say we are

deep in the money on a short call and wish to reach a position of X = 1 from initially

holding zero shares X = 0. Our accrued trading costs are

−λ(1 + η sgn(λ))Seγλ −D
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Figure 4.13: The optimal hedging strategy for a long and short European call. The
solid black line is the Black-Scholes strategy (delta ∆). The solid grey (black dashed)
line is with fixed cost D = 0.10 (D = 0.05). The temporary price impacts is zero
(η = 0) with permanent impact γ = 0.05. The remaining parameters are T − t = 1,
µ = 1.5%, σ = 20%, and r = 1%.

where λ = 1. If the permanent price impact costs begin to outweigh the additional

fixed costs D, there is an incentive to break the order into two or more possible subor-

ders. This could be accomplished by sending the suborders serially to the exchange,

or in parallel via multiple desks or brokers. The optimal subtrades minimize the

accrued trading costs

min
λi,N

N∑
i=1

[
λi(1 + η sgn(λi))Se

γ
∑i
j=1 λj −D

]
. (4.60)

In the single trade, we incur one fixed cost and λ = 1. With two trades, we incur two

fixed costs while the trades are 0 < λ1 < 1 and λ2 = 1 − λ1. If it optimal to make

three trades, then 0 < λ1 < 1, 0 < λ2 < 1− λ1 and λ3 = 1− λ1 − λ2. This problem

looks nearly symmetric and so one would expect the optimal strategy is to divide the

trades evenly (e.g. 1/2, 1/3, 1/4, etc.). That is,

λi ≈
1

N
. (4.61)

We verify this numerically for some typical parameters in the two and three subtrade
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Figure 4.14: The Black-Scholes and utility indifference bid and ask prices for the
European call. The solid black line is the Black-Scholes price. The solid grey (black
dashed) line is with fixed cost D = 0.10 (D = 0.10). The temporary price impacts
is zero (η = 0) with permanent impact γ = 0.05. The remaining parameters are
T − t = 1, µ = 1.5%, σ = 20%, and r = 1%.

cases in Figures 4.15 and 4.16.

In effect, a point exists where the permanent impact savings of splitting up the

order overcome the fixed costs associated with each order. We then move from one

trade to two subtrades to three subtrades and so on. This is why the hedging strategy

in Figure 4.13 has a step function appearance.

4.5 Conclusion

In this paper, we presented a framework to determine bid-ask prices for hedging

OTC equity derivatives with market frictions (e.g. transaction costs, bid-ask spreads,

illiquidity, etc.). The functional forms of the temporary and permanent impacts and

fixed costs can be customized according to the market scenario in which the trader will

be hedging. Further, the methodology can accommodate other forms of aversion or

hedging targets such as quadratic hedging, which may be more popular in industrial

applications.

We obtained some intuitive results from the bid-ask spread, along with some

intriguing hedging strategies following from the permanent price impact. Our model
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Figure 4.15: The total trading costs from two subtrades along with the optimal trade
(1/2) taken at typical parameters with stock price S = 15, fixed costs D = 0.05,
spread η = 0 and permanent impact γ = 0.05.

Figure 4.16: The total trading costs from three subtrades along with the optimal
trade (1/3) taken at typical parameters with stock price S = 15, fixed costs D = 0.05,
spread η = 0 and permanent impact γ = 0.05.
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recovers many of the strategies one may expect to employ in a situation with liquidity

risk. The fixed costs and spreads induce us to limit our total number of trades, which

creates a playoff between residual risk and accrued transaction costs. Further, as

the liquidity dries up, our model lets us know when it is optimal to begin breaking

down our hedging decisions into smaller subtrades to avoid moving the market too

unfavourably against our derivative position.

Areas for Further Investigation, i.e. price manipulation We would like to

investigate whether the presence of permanent price impact may allow the market

maker to manipulate the price and to what extent price manipulation may be possible

with share repurchase agreement style options. This investigation could be completed

by pricing the option with and without γ and examining the extent to which the price

changes. Is favourable price manipulation possible with certain product structures in

the presence of permanent price impact?

We identify the study of Asian options as another area of research interest. Al-

though the volume or time weighted average prices (VWAP or TWAP) are less af-

fected by the temporary price impact and fixed trading costs, it is still affected by

the permanent price impact. The average is unaffected immediately but eventually

the effects are felt as time progresses. If a trade of size λ is executed at time τ , then

ZT = S0 +

∫ τ−

0

Stdt+

∫ T

τ

eγλStdt

dZt = Stdt1{τ 6=t} + Ste
γλdt1{τ=t}

and so limt→τ− Zt = Zτ . Accordingly our trading decisions may impact the average

nonlinearly and there may be interesting strategies to “manipulate” the average. Of

course, it is much harder to manipulate the average in this setting than to manipulate

the spot price.

Applications in Stressed Markets Our market impact model has useful ap-

plications, especially when hedging in distressed markets. For example, during the

financial crisis of 2007, the 1987 market crash or the 1997 Asian financial crisis, liq-

uidity in the markets dried up dramatically. This resulted in large bid-ask spreads

and transaction costs. Derivative positions in equity and credit instruments for large

institutions however still had to be hedged. Our model provides a globally optimal

hedging strategy during times of market stress and illiquidity.

At other times, it is possible a single institution might take a derivative position so



138

large that their hedging strategies end up moving the market, such as the infamous

“London Whale” [114] or, worse still, a combination of a market crash and large

positions as with Long Term Capital Management [115]. It is possible a derivative

may be written on an underlying that was originally liquid but later becomes illiquid.

Perhaps it becomes undesirable after some regulatory or market change like an on the

run Government of Canada bond losing liquidity after a new debt issue. Our model

allows us to account for illiquidity in terms of bid-ask spreads and permanent price

impact, which again is very useful for situations such as these.

Rather than building the impact parameters (η, γ,D) on a single current snapshot

in time, to reflect future liquidity risk, one might use a “term structure of illiquidity.”

This could be based on an index, futures, or analyst estimates. The parameters could

be time varying and stochastic such as the Hull-White model, fitted to some forward

curve or deterministic and fitted similarly to a local volatility style model based on

some liquidity index.

Applications in Market Microstructure It is possible to choose impact func-

tions (particularly the bid-ask spread η) that better reflect the order book structure.

The magnitude of the bid-ask spread could grow with the size of the order to reflect

how market order consume deeper into the order book. A buy order for example first

consumes all the order lots at the best price level (nearest the mid price), then all the

order at the next best price level and so on. Thus the larger the order the larger the

average (effective) weighted bid-ask spread.

Inventory Risk Management and Optimal Liquidation Our framework is

sufficiently general that by adjusting the utility function and goal from say terminal

wealth, it can be incorporated into a more general market making framework such as

managing inventory risk or optimal liquidation.

Extensions to American Style Exercise It is possible to price American style

options within our framework. In the model with no fixed trading costs, it is a simple

question of adding an additional obstacle besides the hyperbolic exercise obstacle in

Section 4.2. The pricing equation is similar to [102]. For the impulse control model

with fixed costs, there is a new constraint. In the case of a put option, after exercising

n puts, we then have zero positions in any put options. We can use the same notation

as before, and state the exercise constraint

vn(B,X, S, t) ≥ v0(B + nK,X − n, S, t) (4.62)
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since no trade occurs in the transfer of the stocks from the settlement of the call (from

the perspective of the agent). Thus the HJB equation for holding n options becomes

max {∂tvn + rB∂Bvn + L[vn],H[vn]− vn, I[vn]− vn} = 0 (4.63)

where

I[vn] = v0(B + nK,X − n, S, t). (4.64)

We note it is possible to also exercise the option while simultaneously making a trade.

In this case, I becomes

I[vn] = sup
λ
v0(B + nK + λ(1 + η sgn(λ))Seγλ, X − n+ λ, Seγλ, t) (4.65)

or alternatively I[vn] = H[v0(B + nK,X − n, S, t)].

Multiple Assets and Opportunity Cost Lastly we suggest the relatively simple

extension of multi-asset options, which is a straightforward extension of the HJB

equation. Additionally, we believe a sound pricing framework should better account

for opportunity cost in the indifference price. We suggest for future research the

consideration that the agent in his portfolio optimization without the option may

also be allowed to hedge with some sort of market index ETF. This would possibly

cause the agent to be less willing to buy or sell the option since his opportunity cost

of investing with the stock and ETF alone becomes higher. It is also possible the

agent may wish to use the ETF in his option hedge as it may be correlated to the

stock and have lower transaction costs due to the general liquidity advantage of ETFs

over some single name stocks.

4.6 Appendix A: Asian Options with Market Im-

pact

Options based on averaging are referred to as “Asian.” The advantage of Asian

options in the context of equity derivatives with market impact is that the average

over time is harder to manipulate than a single price (at expiry for example). The

volatility of the average is lower than the volatility of the stock, which also results in

a lower up front option premium. Basing the payout on the average price has appeal

to firms with continuous predictable exposure to the underlying (i.e. a firm buying
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back a large amount of shares). Asian options may be based on TWAP or VWAP

and we denote both generally by S̄.

As a case study, we consider the optimal replication strategy for an average strike

Asian call, which at maturity T pays

f(ST , S̄T ) = (ST − S̄T )+ (4.66)

to the buyer. In this structure, the holder may possibly have an incentive to drive

the share price down early and run it back up later, if liquidity and residual risk

conditions allow.

4.6.1 Asian Options in the Risk Neutral Framework

In the risk neutral framework with no market frictions, the pricing PDE for an Asian

option is a 2-dimensional (plus time) hyperbolic PDE. To simplify the problem, we

assume the option is calculated on the arithmetic TWAP S̄ where

S̄T =
1

T

∫ T

0

Stdt. (4.67)

The option price p is

p = E[f(ST , S̄T )|Ft] (4.68)

with initial conditions St = S and S̄t = S̄ = S. It is easier however to consider the

state variable ZT where

ZT =

∫ T

0

Stdt (4.69)

and hence S̄T = 1
T
ZT .

By Ito’s lemma and the Feynman-Kac theorem, the pricing PDE with correspond-

ing terminal and boundary conditions are

∂tp+ S∂Zp+ rS∂Sp+
1

2
σ2S2∂SSp− rp = 0

V (S,Z, T ) = f

(
S,
Z

T

)
=

(
ST −

Z

T

)+

lim
S→0

V (S,Z, t) = 0

lim
S→∞

∂SSV (S,Z, t) = 0

lim
Z→∞

V (S,Z, t) = 0 (4.70)
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This problem admits a change of variables reduction of the form

y =
S

Z
. (4.71)

The final condition becomes

Z

(
S

Z
− 1

T

)+

= Zf

(
y,

1

T

)
(4.72)

and hence we write a new function

p(S,Z, t) = Zq(y, t) (4.73)

The PDE is reduced to a single spatial variable (plus time) and becomes

∂tq + y(r − y)∂yq +
1

2
σ2y2∂yyq + (y − r)q = 0, q(y, T ) =

(
y − 1

T

)+

. (4.74)

4.6.2 Asian Options in the Indifference Framework

In the presence of transaction costs, we resort to a utility-based framework. The

utility valuation HJB equation can become cumbersome as it is in 4 variables (plus

time)

∂tv + sup
ẋt∈A
{∂Bv (rB − ẋtSh(ẋt)) + ẋt∂Xv + g(ẋt)S∂Sv}+ S∂Zv + L[v] = 0. (4.75)

This HJB equation is both nonlinear and hyperbolic. Accordingly, numerical solutions

should be very careful to avoid instability. We can reduce the PDE by one variable

B by using exponential utility. Further, when trading incurs fixed costs, the trading

strategy reduces to an impulse problem which reduces the differential component in

X. At this point, the differential component is in only 2 dimensions (Z and S) and

admits a greatly simplified numerical solution.

The value function under exponential utility satisfies

vn(B,X, S, Z, t) = sup
ẋ∈A

E
[
1− e−βRn,T

∣∣Ft] = 1− inf
ẋ
E
[
e−βRn,T

∣∣Ft] . (4.76)

Following a dynamic programming argument, we derive the HJB equation for the
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personal valuation of an Asian option under exponential utility

vn(B,X, S, Z, t) = 1− inf
ẋ
E
[
e−βBe

r(T−t)+β
∫ T
t er(T−s)ẋsSsh(ẋs)ds−βc(XT ,ST ,nf(ST ,ZT ))

∣∣∣Ft]
= 1− e−βBer(T−t)

G(X,S, Z, t)

G(X,S, Z, t) = inf
λ,τ
E
[
eβe

r(T−τ)(λ(1+η sgn(λ))Sτ eγλ+D)G(Xτ , Sτ , Zτ , τ)
∣∣∣Ft] . (4.77)

The associated HJB equation to the dynamic programming problem follows from Ito’s

lemma.

Theorem 13. The optimal terminal portfolio utility and trading strategy satisfy

min

∂tG+ S∂ZG+ L[G]︸ ︷︷ ︸
wait

, H[G]−G︸ ︷︷ ︸
trade

 = 0 (4.78)

where the operator H is given by

H[G] = inf
λ
eβe

r(T−t)(λ(1+η sgn(λ))Seγλ+D)G(X + λ, Seγλ, Z, t). (4.79)

The final condition is given by the cost to liquidate the portfolio at T

Gn(XT , ST , ZT , T ) = exp [−βc(XT , ST , ZT , nf(ST , ZT ))] .

In the case of the Asian call described earlier, this is given by

Gn(X,S, Z, T ) =exp
[
−β
(
X(1 + η sgn(−X))Se−γX −D1{X 6=0}

)]
if S ≤ Z

T

exp
[
−β
(
(X + n)(1 + η sgn[−(X + n)])Se−γ(X+n) −D1{X 6=−n} − nZT

)]
if S > Z

T

(4.80)

where we recall the average strike payoff (Equation 4.66).

The boundary conditions are

lim
S→0

∂tGn(X,S, Z, t) = 0 (4.81)

lim
S→∞

∂SGn(X,S, Z, t)

Gn(X,S, Z, t)
= β(X + n)(1 + sgn(−(X + n)))e−γ(X+n) (4.82)

lim
Z→∞

G(X,S, Z, t) = G0(X,S, t) (4.83)
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where G0 is the utility value function with zero options. Since the call is so far out

of the money, its value is near zero.

For completeness, the optimization problem in the absence of holding the Asian

option is independent of Z and given by

min {∂tG0 + L[G0], H[G0]−G0} = 0

with similar terminal and boundary conditions as in Section 4.3.

The indifference bid and ask prices for n units of the Asian option are given by

pbn = −e
−r(T−t)

β
ln

(
Gn(0, S, S, t)

G0(0, S, t)

)
(4.84)

pan =
e−r(T−t)

β
ln

(
G−n(0, S, S, t)

G0(0, S, t)

)
(4.85)

since Zt = S̄t = S.

4.7 Appendix B: Numerical Method

We utilize an implicit finite difference scheme to solve the PDE component within

the wait region, along with an explicit projected successive over-relaxation (PSOR)

technique to determine the optimal impulse trade region. Particularly, an IMEX

scheme is used to solve the HJB PDQVI. The method used is very similar to the

numerical scheme used by the authors to solve a multidimensional impulse control

problem in a real option context [117]. We refer the reader to [103, 105] for a more

detailed analysis of the finite difference solutions to stochastic control problems in

finance.

4.7.1 The Main HJB Equation

The PD QVI is of the form

min {∂tG+ L[G], H[G]−G} = 0 (4.86)

where the differential operator L is in S only

L = µS∂S +
1

2
σ2S2∂SS (4.87)
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so X can be interpreted like a parameter.

The constraint H is itself an optimization problem

H[G] = inf
λ
eβe

r(T−t)(λ(1+ sgn(λ))Seγλ+D)G(X + λ, Seγλ, t) (4.88)

which adds significant non-locality to the problem. However, the nonlocality does not

affect the solution within the wait region (the partial differential component) since it

is distinct, non-empty, and evolves under the uncontrolled diffusion as discussed in

Section 4.2 and [101, 116].

The numerical solution is obtained via finite differences at (possibly nonuniform)

grid points G(Xi, Sj, tk) = Gk
i,j using second order centred differences except at the

boundary conditions where one-sided differences are used. To retain the M -matrix

property, one-sided differences may occasionally be used. The grid is truncated be-

tween [Smin, Smax] and [Xmin, Xmax] where Xmin, Xmax can be interpreted financially

as the trader’s position limits. The grid points increase such that Sj+1 > Sj and

S0 = Smin, as goes for Xi. The derivatives are approximated by divided differences;

two are shown below for reference

∂SG ≈
Gk
i,j+1 −Gk

i,j−1

Sj+1 − Sj−1

(4.89)

∂tG ≈
Gk+1
i,j −Gk

i,j

tk+1 − tk
. (4.90)

Using a stable implicit time stepping scheme, the finite difference method leads to a

matrix system of equations

Gk+1
i −Gk

i

tk+1 − tk
+ LGk

i ≥ 0, ∀i (4.91)

where L is the differentiation matrix associated with the partial differential operator

L and Gk
i refers to the whole vector of values G in Sj at a given k, i. It is possible to

take differently fitted schemes (e.g. Crank Nicholson or explicit).

The trading constraint H is nonstiff and can be handled explicitly using the func-

tion vector Gk+1 at all points i, j from a time step earlier than k. The constraint in

discrete form is

H[Gk
i,j] = min

λ=Xi∗−Xi
exp[βer(T−tk)(λ(1 + η sgn(λ))Sje

γλ +D)]G(Xi + λ, Sje
γλ, tk+1)

(4.92)
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where G(Xi+λ, Sje
γλ, tk+1) is approximated by interpolation. Note that Xi∗ = Xi+λ

and

G(Xi + λ, Sje
γλ, tk+1) = θGk+1

i∗,Sj∗
+ (1− θ)Gk+1

i∗,Sj∗
(4.93)

where Sj∗ ≤ Sje
γλ ≤ Sj∗ are two adjacent nodes and θ is the appropriate interpo-

lating weight. The constraint H[G] is maximized by a brute force search in order to

guarantee a global optimum is achieved along the grid points Xi. This is required for

convergence of the solution.

In the limit that maxi |Xi+1−Xi|,maxj |Sj+1−Sj|,maxk |tk+1− tk| → 0, a Taylor

series argument shows that this formulation is consistent.

By using an explicit formulation for the constraint (that is, using Gk+1), we can

treat it as an arbitrary function h(X,S). It is possible to use a penalization technique

to enforce the constraint [105], however we use the PSOR technique and cast the

matrix system as a complementary problem [127]:

MGk − b ≥ 0, Gk ≤ h,
(
MGk − b

)T
(Gk − h) = 0 (4.94)

where superscript T denotes the matrix transpose. The matrix M is an aggregation

of the differentiation and boundary condition matrix pre-multipliers of Gk while b

is a vector of collected solution values known at time k (from k + 1). This matrix

system is then solved using a fixed point value iteration (projected successive over-

relaxation). Several iterative schemes for non-linear control problems are described

in [97, 100, 103, 105, 120, 127]. Following the criteria in [105, 127], our scheme is

consistent, monotone (given uniform grid points) and stable (L-stability from the

implicit time marching scheme). Therefore the discrete approximation converges to

the (viscosity) solution of the HJB equation.

4.7.2 The Asian HJB Equation

The Asian option HJB equation is of the form

min {∂tG+ S∂ZG+ L[G], H[G]−G} = 0 (4.95)

which has a multidimensional differential component. The solution is approximated

along a grid via finite differences G(Xi, Sj, Zc, tk) = Gk
i,j,c. We name the differential

operator in Z as

LZ = S∂G (4.96)
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which has an associated differential matrix LZ,j which operates on Gk
i,j the vector of

values G in all Zc at time tk and Sj. We suggest a stable and consistent scheme using

operator splitting

∂tG+ L[G] ≥ 0, ∂tG+ LZ [G] ≥ 0 (4.97)

as illustrated in [103]. This reduces the multidimensional problem into a series of

one dimensional problems with familiar vector-matrix techniques. The matrix L is

as defined before but operates on a vector of values Gk
i,c at constant Xi, Zc in all Sj.

The scheme is simple and robust but incurs a splitting error as a cost

Gk+1
i,c −G

k+1/2
i,c

tk+1 − tk
+ LG

k+1/2
i,c ≥ 0, ∀i, c (4.98)

G
k+1/2
i,j −Gk

i,j

tk+1 − tk
+ LZ,iG

k
i,j ≥ 0, ∀i, j. (4.99)

For numerical stability and simplicity, we suggest a simple upwinding scheme

Sj∂ZG(Xi, Sj, Zc, tk) ≈ Sj
Gk
i,j,c+1 −Gk

i,j,c

zc+1 − zc
. (4.100)

At each step in the operator splitting scheme, we apply the PSOR algorithm as before

to enforce the constraintH[Gk
i,j,c] which is defined as before using Gk+1 following [125].

In effect,

MSG
k+1/2
i,c − bk+1 ≥ 0, G

k+1/2
i,c ≤ h,

(
MG

k+1/2
i,c − b

)T
(G

k+1/2
i,c − h) = 0 (4.101)

MZG
k
i,j − bk+1/2 ≥ 0, Gk

i,j ≤ h,
(
MGk

i,j − b
)T

(Gk
i,j − h) = 0 (4.102)

where MS,MZ are the aggregated matrix premultipliers from the L,LZ,j steps with

associated boundary conditions and bk+1, bk+1/2 are the collected knowns at time k.

We note it is possible to use symmetric operator (Strang) splitting

Gk+1
i,j −G

k+3/4
i,j

1
2
(tk+1 − tk)

+ LZ,jG
k+3/4
i,j ≥ 0, ∀i, j (4.103)

G
k+3/4
i,c −Gk+1/4

i,c

tk+1 − tk
+ LG

k+1/4
i,c ≥ 0, ∀i, c (4.104)

G
k+1/4
i,j −Gk

i,j

1
2
(tk+1 − tk)

+ LZ,jG
k
i,j ≥ 0, ∀i, j (4.105)
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and to update the constraint H[G] at each fractional step to achieve added accuracy

nearly O(∆t2) versus O(∆t) [125].
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Chapter 5

Conclusion

Stochastic optimal control is a powerful tool. We have seen how it can provide insight,

guidance and solutions to many problems encountered in finance and engineering. Our

applications have shown how many complex problems in real life can be modeled by

a simple equation

value today = expected future profits + terminal project value

|given our information today

or, in integral form,

V (x, 0) = E

[∫ T

0

f(Xt, t)dt+ g(XT )

∣∣∣∣X0 = x

]
.

Decisions must be made and values computed in the face of future uncertainty

from multiple sources (e.g. price uncertainty, regulatory uncertainty, execution risk,

etc.). Whether one is

• seeking a profit maximizing operating and entry strategy for a biofuel produc-

tion plant in Chapter 2,

• attempting to account for regulatory and taxation uncertainty in an energy

project in Chapter 3, or

• trading to minimize the market impact and transaction costs of the hedging

strategy for an OTC equity derivative in Chapter 4,

the tools are identical. In these seemingly disparate examples (particularly Chapters

2–3 contrasted with Chapter 4), the key to solving these problems is stochastic control

and dynamic programming.
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In each article (Chapters 2–4) the strategy was the same:

1. Identify a problem of interest in engineering or finance,

2. Generate a mathematical model of the income or payoffs using stochastic pro-

cesses,

3. State the associated HJB equation for the problem using stochastic control and

the dynamic programming principle,

4. Where possible seek closed-form solutions or more generally employ robust finite

difference methods to reach the solution, and

5. Analyze and comment on the results.

5.1 Contributions to the Literature

In Chapter 2, we presented a detailed real option model to value the entry decision

and optimal operating strategy for an ethanol biofuel facility. In addition to the

numerical solutions, we also derived analytical solutions to the switching problem.

We investigated the effects of stronger correlation between corn and ethanol possibly

resulting from increased firm competition in the corn-ethanol market. Given our

optimal operating strategy, we considered the retrospective value of an ethanol project

given the historical prices of corn and ethanol. Finally, we investigated the effects

of the subsidy policy on the future profitability of ethanol projects along with its

risk profile via the profit distribution, value at risk, and expected shortfall via Monte

Carlo analysis. We derived interesting policy conclusions from our very complete and

in-depth green energy case study.

In Chapter 3, we presented a novel framework for studying and quantifying regu-

latory uncertainty and policy risk. We took as a case study the ethanol production

plant of Chapter 2. Looking back at the past 35 years of ethanol subsidy history

and noting how frequently it had changed, we developed a stochastic jump process to

model the subsidy level. Although in the near term, regulatory changes may appear

predictable, when planning for a long term energy infrastructure project, the inability

to forecast regulations 50 years out renders it apparently random. This is a topic of

much research interest at present, and our model is one of the only applications we are

aware of that treats regulatory uncertainty in this stochastic PIDE framework. This

technique may allow firms to better understand their future regulatory risk exposure
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and to value long-lived projects in infrastructure, energy, resources and elsewhere.

We developed a stochastic control PIDE model that accounts for model uncertainty

in the regulatory stochastic process and other economic considerations such as the

proper choice of discount rate. We also discussed alternative methods of addressing

model uncertainty and, as a possible remedy, developed a worst case valuation sce-

nario. We presented a detailed numerical method to solve the HJB PID QVI system

along with analytical solutions to the jump diffusion switching model. Based on our

results, we developed policy conclusions and investigated the effects of uncertainty on

project value and the firm’s entry and operational decisions. We also use our model

to support anecdotal and empirical evidence that increased uncertainty may result in

firms delaying investment.

In Chapter 4, we presented a general but novel framework for hedging equity

derivatives in the presence of market impact. We used a utility indifference approach

to develop bid and ask prices. Our framework can incorporate general market impact

models and can transition mathematically consistently from continuous to impulse

trading controls. We developed the HJB equations associated with several different

kinds of market impact structure subject to fairly general utility functions. We verified

our model framework was consistent with risk neutral pricing to ensure our bid and

ask prices stood on a sound theoretical footing. For our analysis, we chose the most

general case of market impact that included fixed transaction costs in addition to any

temporary or permanent price impact and then specialized our pricing results to the

case of exponential utility. In addition, we presented a convergent finite difference

method to calculate solutions. Our model solution produced prices and hedging

strategies that balanced the trade-off between execution and market risk. We also

discovered some interesting phenomena resulting from the permanent price impact

including incentives to split the trade orders to reduce market impact costs.

5.2 Future Work

My thesis (and the associated tools) naturally builds on itself as the chapters progress.

This is because each subsequent article was an extension of the previous. In Chapter

2, we identified regulatory and subsidy policy uncertainty as a primary area of future

research. This was the subject of our second article in Chapter 3. In the second

article, we identified the bandwidth of the best and worst case prices as being too

large and that perhaps utility indifference may be a better tool to address model

uncertainty. In our next article in Chapter 4, already aware of the shortcomings of
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the superhedging and subhedging prices, we employed a utility indifference approach

to generate the bid-ask prices. In Chapter 4, we also identify areas of future research

for ourselves and interested readers.

Our model in Chapter 3 can be extended on several fronts. To improve the model,

more classes of jump distributions or non-constant (in fact, possibly stochastic) Pois-

son arrival rates could be considered for future work. Another possible improvement

to the expected subsidy jump model would be to incorporate management’s views on

the probability of possible policy outcomes or cases, each with an associated proba-

bility determined by management. Beyond the worst case pricing scenario, we could

consider the whole space of equivalent martingale measures and seek a pricing measure

following the ambiguity aversion methods v(x, 0) = supα infQE[U(XT , T )+κh(Q|P )]

where U is the utility of terminal wealth XT , P is the estimated jump diffusion mea-

sure, Q is another possible measure from our uncertain parameter bounds, and h is a

penalty function that penalizes choices Q different from P , with associated ambigu-

ity aversion parameter κ. We note that the worst case measure and pricing equation

associated with our method follows from the aversion parameter approaching zero

κ = 0 and the risk neutral utility function U(X) = X. This would be an application

of utility based pricing. Further still, one could try to hedge the policy risk factor with

some sort of correlated asset using a utility indifference pricing approach. Different

possible hedging targets could be chosen such as exponential utility or a global mean

variance technique.

In Chapter 4, we identified many possible extensions and additional applications

of our model. One could investigate whether the presence of permanent price impact

may allow the market maker to manipulate the derivative price and to what extent

price manipulation may be mitigated with Asian style options. Our market impact

model can be used when hedging in distressed markets like, for example, during the

financial crisis of 2007 where liquidity in the markets dried up dramatically. Rather

than building the impact parameters on a single current snapshot in time, to reflect

future liquidity risk, one might use a “term structure of illiquidity.” This could be

based on an index, futures, or analyst estimates and the parameters could be time

varying and possibly stochastic. The model can also be applied in daily market mak-

ing such as market microstructure models. It is possible to choose impact functions

that better reflect the limit order book structure on exchanges or electronic broker-

dealer networks. Our framework is sufficiently general that it can be incorporated into

a more general market making framework such as managing inventory risk or optimal

liquidation. It is possible to price American style options within our framework and
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we presented the associated HJB equations for future research. Lastly we suggest the

relatively simple extension of multi-asset options, which is a straightforward exten-

sion of the HJB equation. Additionally, we believe a sound pricing framework should

better account for opportunity cost in the indifference price. We suggest for future

research the consideration that the agent in his portfolio optimization may also be

allowed to hedge with some sort of market index ETF.
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