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Abstract

The evolution of the price of two financial assets may be modeled by correlated geometric Brow-
nian motion with additional, independent, finite activity jumps. Similarly, the evolution of the
price of one financial asset may be modeled by a stochastic volatility process and finite activity
jumps. The value of a contingent claim, written on assets where the underlying evolves by either
of these two-factor processes, is given by the solution of a linear, two-dimensional, parabolic,
partial integro-differential equation (PIDE). The focus of this thesis is the development of new,
efficient numerical solution approaches for these PIDE’s for both linear and non-linear cases.

A localization scheme approximates the initial-value problem on an infinite spatial domain
by an initial-boundary value problem on a finite spatial domain. Convergence of the localization
method is proved using a Green’s function approach. An implicit, finite difference method
discretizes the PIDE. The theoretical conditions for the stability of the discrete approximation
are examined under both maximum and von Neumann analysis. Three linearly convergent,
monotone variants of the approach are reviewed for the constant coefficient, two-asset case and
reformulated for the non-constant coefficient, stochastic volatility case. Each monotone scheme
satisfies the conditions which imply convergence to the viscosity solution of the localized PIDE.

A fixed point iteration solves the discrete, algebraic equations at each time step. This
iteration avoids solving a dense linear system through the use of a lagged integral evaluation.
Dense matrix-vector multiplication is avoided by using an FFT method. By using Green’s
function analysis, von Neumann analysis and maximum analysis, the fixed point iteration is
shown to be rapidly convergent under typical market parameters. Combined with a penalty
iteration, the value of options with an American early exercise feature may be computed.

The rapid convergence of the iteration is verified in numerical tests using European and
American options with vanilla payoffs, and digital, one-touch option payoffs. These tests in-
dicate that the localization method for the PIDE’s is effective. Adaptations are developed for
degenerate or extreme parameter sets. The three monotone approaches are compared by com-
putational cost and resulting error. For the stochastic volatility case, grid rotation is found to
be the preferred approach.

Finally, a new algorithm is developed for the solution of option values in the non-linear case
of a two-factor option where the jump parameters are known only to within a deterministic
range. This case results in a Hamilton-Jacobi-Bellman style PIDE. A monotone discretization
is used and a new fixed point, policy iteration developed for time step solution. Analysis proves
that the new iteration is globally convergent under a mild time step restriction. Numerical tests
demonstrate the overall convergence of the method and investigate the financial implications
of uncertain parameters on the option value.
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Chapter 1

Introduction

Originally, an option contract in the financial markets established a right, but not an obligation,
to buy or sell an asset for an agreed “exercise” price at a future date. Today, the term “option”
implies a wide class of financial contracts which have a value contingent on the evolution of
the uncertain price of some risky underlying asset. From the seller’s perspective, an option can
be an opportunity to create a valuable service, comparable to writing an insurance contract.
For the contract to have value to the seller, there must be a clear strategy to manage the risks
entailed in its obligations. From the buyer’s perspective, an option could be, for example, a
means of reducing risk or a vehicle for speculation.

The Black–Scholes model [13] for the valuation of financial options is a fundamental result
in the field and revolutionized how the financial community approached the contracts. This
model assumes that the future price of a single risky asset, which underlies an option, can
be described by geometric Brownian motion with drift. Brownian motion as an asset price
model was not new in itself, having first been proposed by Bachelier [7] along with methods for
estimating the present value of assets under this assumption. Black and Scholes showed, in this
idealized setting, how a seller could use a process called “delta hedging” to neutralize the risk
of an option by adding it to a portfolio containing a risk-free cash deposit and a dynamically
adjusted quantity of the underlying asset. This construction supplied a pricing model which
resulted in the same value for both buyer and seller, unifying the two perspectives.

Although it has many elegant theoretical properties and continues to serve as an important
benchmark, simple drift and diffusion is often viewed as unable to capture significant risks seen
in real markets. The Black–Scholes model must be extended to incorporate any additional risks,
such as possible shocks and surprises in the market. This raises the question of determining the
fair value of an option contract exposed to these new risks, which in turn leads to the focus of
this thesis: creating flexible, efficient algorithms with which to compute that value numerically.

The fair value of an option under the Black–Scholes model can be expressed as the solution
to a partial differential equation (PDE), where the asset price and the time to expiry are the
independent variables. The underlying asset can also be modeled to allow sudden changes,
which generate a finite number of jumps of a random magnitude from a known distribution and
which occur at random, Poisson-distributed points in time. When the underlying asset evolves

1



CHAPTER 1. INTRODUCTION 2

by such jumps as well as by diffusion, the option value may be expressed as the solution of a
parabolic, partial, integro-differential equation (PIDE).

The single asset underlying the option value in the Black-Scholes model may be replaced by
a pair of assets. An option may then pay out a value which is a function of the two assets, such
as the maximum or minimum price, as introduced by Stulz [103]. The assets may be modeled
with jumps, arriving at a finite rate, in addition to diffusion. The value of the option is then
given by the solution to a two-dimensional, parabolic PIDE.

Rather than the constant volatility Brownian motion of the Black-Scholes model, the price
an asset may be modeled with a magnitude of volatility which is itself a stochastic process.
Such “stochastic volatility” models are intended to capture more realistic market behaviour for
a single asset. An important example is that of Heston [60], where volatility follows a mean-
reverting diffusion. Again, a finite number of jumps in price as well as jumps in the volatility
may be added to the diffusion. In this case the value of the option is, again, the solution to a
two-dimensional, parabolic PIDE where the spatial dimensions are asset price and volatility.

This thesis formulates a numerical approach and supporting theory for solving the two-
dimensional PIDE’s arising from these two problems. The linear case, when the parameters of
the market model are fixed, is considered first and then a non-linear case, which arises when
parameters are known only to within a deterministic range.

1.1 Motivation

Many techniques have been developed to compute the fair value of an option contract and a
recent survey was published by Broadie and Detemple [21]. The ones that are particularly
relevant to this thesis are reviewed at the start of each main chapter. A semi-analytic solution
is available to value European options under many stochastic volatility models with jumps [41].
When a contract depends only on the final asset state and the option payoff, then an integration
may be used to determine the value of a single contract with a given exercise price, current
underlying asset state and expiry time. Monte Carlo methods integrate forward in time and
often have problems computing option values that depend on optimal decision making.

The finite difference approach studied in this thesis computes all option values over a finite,
discrete domain of expiry times and asset states. For even the minor, additional complications
of American options, which can be exercised for their payoff at any time, or for barrier options,
which pay when the underlying asset reaches a given barrier price at any time, the finite
difference approach has distinct advantages. A robust, efficient finite difference method is a
practical choice for many contracts where the value is not a simple function of the underlying
at the expiry time.

1.1.1 Two-Asset Jump Diffusion

Spread options [25], for example on the price difference between the input and product com-
modities of an industrial process, are traded on exchanges such as the New York Mercantile
Exchange (NYMEX). Such relatively simple, two-asset options allow industrial operations to
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Figure 1.1.1: Volatility parameter for a Black–Scholes model (implied volatility)
that generates the prices for options on the S&P 500 index quoted on April 14, 2005.
Note that this implied volatility surface shows a “smile” for the short-term options
and a “skew” for options with a longer expiry time. Such features are well replicated
by prices generated from stochastic volatility models which also permit jumps.

hedge their market risk, which is a factor beyond their control. Options on more complex
functions of two assets, such as the maximum of cash and two assets, are commonly known as
“rainbow options”. These are considered exotic and are not traded on exchanges, but rather
between interested parties directly. Such options are of interest when, for example, an investor
wishes to have or remove a risk on two related companies, such as two companies which form
a duopoly.

It is easy to motivate the extension of the two-asset, diffusion model to a jump diffusion
model: it is a generally accepted fact that financial markets do not evolve by perfect Brownian
motion. It is an intuitively appealing idea that markets respond to unexpected, discrete events
by sudden price changes. Consider, for example, weather events that affect electricity consump-
tion or natural gas prices: these are a motivation for the trade of spread options at NYMEX.
In the example of the duopoly, the awarding of a major contract to one company in favour of
another, or a general setback to an industry overall, are economic events that could generate a
price jump. Cont [33] provides an overview of how price jumps are an important factor in real
markets. The two-asset, jump-diffusion models used as working examples in this thesis extend
the one-asset, jump-diffusion processes of Merton [86] and Kou [72]. The resulting two-asset
model permits jump events to be correlated between the two prices, positively or negatively.
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1.1.2 Stochastic Volatility with Jumps

Numerous recent studies [8, 28, 55, 61, 99] justify the idea that stochastic volatility is an
important factor in the evolution of market prices. Again, this idea is intuitively appealing: a
sudden drop in the price of an equity asset may be associated with an increase in the uncertainty
about the price and hence with an increase in volatility. Similarly, an increase in the price of a
company’s stock may be associated with a more certain financial outlook and hence a decrease
in the volatility. Such effects manifest themselves in the surface of implied volatilities.

The implied volatility surface is formed by the Black–Scholes volatility parameter value
required to replicate a set of quoted option prices over a range of exercise prices and expiry
dates. The “smile” or “skew” of implied volatility refer to the tendency of this surface to have
a positive second derivative or (typically) negative first derivative with respect to the option
exercise price. Such a surface is shown in Figure 1.1.1 for the S&P 500 index, showing a smile in
the implied volatility for short-term options and a skew for long-term options. Mathematically,
these effects are well replicated using a stochastic volatility model, particularly when that
model permits jumps in price and variance as well as diffusion (e.g. [100]). Calibration studies
(e.g. [20, 24, 43, 44, 100]) confirm that such a process is a good description of the behaviour of
a number of financial markets for which options are traded, particularly in equity markets.

One might hypothesize that there are more independent variables simultaneously affecting
a market than those already noted, which may extend the numerical solution domain to higher
dimensions. Regime switching approaches (e.g. [39]) can fall into this category when they
introduce the notion of additional discrete or continuous states of market behaviour. Higher
dimensional stochastic volatility models exist which propose, for example, that the rate of jump
arrivals should be its own stochastic process [100]. Two drawbacks to the use of more dimensions
exist. The first is the difficulty of computing a solution: in higher dimensions finite-difference
methods lose their computational advantage over other methods of numerical integration such
as Monte Carlo methods. The second is the question of measuring the initial state: only the
asset price is considered directly observable in a market. Other state variables must be inferred.
A two-factor diffusion model extended with jump processes is less affected by these problems
yet provides a larger set of parameters and hence more flexibility with which to capture complex
market behaviour.

1.1.3 Uncertain Parameter Models

A calibration approach usually underlies the decision of which asset price model to use for a
particular market (e.g. [24]). Calibration determines the parameters for a given model and is a
process that can be affected by the choice of financial data, the measure of goodness of fit of a
model to that data and even by the initial guess used in the fitting algorithm [59]. Therefore,
no matter which model is selected, the parameters will always be uncertain to some degree.

This leads to a final, practical problem studied in this work: valuing an option in a hedge
portfolio when the actual market evolution follows the best-case or worst-case scenario allowed
by a deterministic range of parameters. This is of particular interest as one explanation of the
difference between the value of an option that a buyer will pay and that a seller will demand.
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Both will wish to trade using the value of the option under their own “worst-case” scenario,
which leads to the seller computing a higher, and the buyer a lower, option value. This problem
is an example of one that can be expressed as a non-linear, Hamilton-Jacobi-Bellman PIDE,
which is closely related to the form of the linear PIDE used to value options when parameters
are known.

1.2 Summary Contributions

The main contributions made in this thesis to the study of financial options may be summarized
as follows and focus on improving the algorithms by which options can be valued. The calibra-
tion techniques required to match models to markets are not addressed although, where such
studies have been done, some of the resulting models are used in the numerical demonstrations.
Detailed notes on the contributions are given in each main chapter.

• A method is presented for localizing the two-factor, jump-diffusion PIDE’s for option val-
uation from an initial-value problem on an infinite spatial domain to an initial–boundary
value problem on a finite domain. New theorems, based on Green’s function analysis, are
presented to bound the error due to this operation. The localized problem is discretized
with a finite-difference approach and the stability of the discrete problem analyzed. A
fixed point iteration algorithm which solves the discrete, algebraic equations at each time
step is extended from previous work in the one-dimensional case to the two-dimensional
case. The convergence of the fixed point iteration is proved analytically for a number of
key cases. Both the convergence of the overall approach and the fixed point iteration are
demonstrated numerically.

• Fully monotone variants of the discretization are formulated for the stochastic volatility
case, which has spatially dependent coefficients, by modifying the standard approach for
the constant coefficient, two-asset case. These satisfy the key conditions which imply con-
vergence to the viscosity solution of the problem. The cost and error of each is compared
under the fixed point solution algorithm to determine the most favourable approach for
valuing a variety of option contracts under real market conditions. Of the approaches
studied, grid rotation is the best in terms of cost and error.

• Using the two-asset case as a working example, a new fixed point, policy iteration is
formulated for the solution of the discrete, non-linear algebraic equations for a time step
of the Hamilton-Jacobi-Bellman PIDE for the case when the underlying process has jump
parameters which are known only within a deterministic range. The convergence of the
new algorithm is proved and shown to be faster than the existing approach. Numerical
demonstrations of the new algorithm compute the best-case and worst-case value of a two-
asset option under uncertain jump parameters, showing the method is robust, accurate
and converges at the rate predicted by theory.
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1.3 Outline and Overview

Chapters 2 through 4 contain the detailed development, theoretical proofs and numerical demon-
strations in the thesis. Each starts with an overview of its contents, a review of key pieces of
prior work, and a synopsis of the specific contributions of the chapter to the field of study.
Chapter 5 summarizes the conclusions and results of the thesis.

In Chapter 2 the basic theory and algorithms are developed for localizing the infinite do-
main problem, discretizing the PIDE and solving the discrete algebraic equations at each time
step. The problem of valuing options under two-asset, jump-diffusion is studied as the working
example. Numerical demonstrations confirming the theoretical results are presented, based on
realistic, but synthetic financial markets.

In Chapter 3 the Heston stochastic volatility model with finite-activity jumps is described.
The solution method is adapted from that used for two-asset options. This chapter emphasizes
monotone approaches, demonstrating that the methods reviewed for constant coefficient, two-
asset problems also apply to these stochastic volatility problems, which have spatially variable
coefficients. Numerical demonstrations compare the cost and error in each monotone method
under a set of market cases that are drawn from real financial studies. These market cases
demonstrate the numerical approach under some important cases where parameters approach
or take on limiting values.

Chapter 4 studies the case where the option parameters, specifically those governing the
jump portion of the asset price evolution, are known only within a deterministic range. The new
fixed point policy iteration is developed, which advances each time step of the resulting, dis-
cretized, Hamilton-Jacobi-Bellman PIDE. The convergence of the iterative algorithm is proved,
and demonstrated for a two-asset contract where the selection of the parameters that generate
the best- and worst-case scenarios is clearly non-trivial.

Appendices A and B contain a number of fundamental, standard equations for reference.
Appendices C through F contain the details of some of the longer proofs. Notation will be
defined as it is introduced; for reference, Appendix G summarizes that notation.



Chapter 2

The Basic Theory and Approach
using Two-Asset Jump Diffusion
Models

2.1 Introduction

This chapter establishes the general approach to the numerical solution of the two-dimensional,
parabolic PIDE’s studied in this thesis. The simplest of these three problems is the PIDE for
the value of a two-asset option, which may be formulated to have constant coefficients and no
degeneracies. This first practical case is studied in detail so that the following two chapters
may focus on the adaptations to the approach that are required to deal with the remaining two
problems.

The localization technique introduced in this chapter is used to approximate the spatially
infinite PIDE with a spatially finite problem. This method requires the PIDE be computed in a
core domain nested inside a larger finite region. The integral term of the PIDE is a correlation
and is non-local; using a finite domain of integration is equivalent to assuming a zero solution
value outside it. Thus, in the larger region, an approximate option value is computed which
permits a more accurate computation of the integral term of the PIDE in the core. The sizes
of the two domains are specified using two error tolerance parameters. Although this approach
is proved convergent as the finite domains increase in size, without reference to any solution
method, it fits well with the numerical method used to compute the correlation.

The discretization of the finite-domain problem is formed using standard finite difference,
interpolation and quadrature approaches. The algebraic identity relating a discrete, correlation
integral to the fast Fourier transform (FFT) is exploited to permit the fast computation of what
would otherwise be a dense matrix-vector multiply. The conditions are reviewed under which
the discretization is monotone. Stability is examined in detail under both the l∞ and l2 norms.
Stability under the l∞ norm, along with consistency and monotonicity, is a key condition for
convergence to the viscosity solution. In Chapter 4 these considerations become crucial to
ensure a correct solution in the non-linear case.

7



CHAPTER 2. BASIC APPROACH USING TWO-ASSET JUMP DIFFUSION 8

The fixed point iteration for the solution of the algebraic equations for a single time step is
described in detail in this chapter and proved convergent in a number of key cases. It permits
the use of an implicit time step, which does not suffer from step size restrictions due to stability
considerations, without actually having to compute a dense linear system solution. The FFT
technique replaces the dense matrix-vector multiply that would otherwise be required for the
integral term. The fixed point iteration may be combined with a penalty iteration to compute
the value of options with an American, early-exercise feature. This algorithm will carry over to
the stochastic volatility case in Chapter 3 with no changes, but requires important changes in
Chapter 4 to deal with uncertain parameters.

It is worth noting that the technique for solving the jump-diffusion problem can be im-
plemented as an extension to a conventional two-factor, finite-difference approach for the pure
diffusion, PDE case. The fixed point iteration may be programmed as a variation on an existing
penalty iteration method for American options. The algorithm introduces two FFT’s at each
iteration of the solution method for the discrete algebraic equations at each time step.

The numerical demonstrations in this chapter are based on two synthetic markets. The first
uses bi-variate, Normally distributed jumps [86] and the second uses bi-variate exponentially
distributed jumps [72, 80]. Convergence of the localization technique is demonstrated numer-
ically by solving over progressively larger domains. The convergence with respect to grid and
time step spacing is demonstrated for the case of a conventional finite-difference grid and a
monotone finite difference discretization. The fixed point iteration is demonstrated to be con-
vergent, both for European options and when it is combined with a penalty iteration to solve
for the price of an American option.

2.1.1 Previous Work

The study of two-asset option valuation, under diffusion alone or under diffusion with jumps,
has been undertaken by a number of researchers. The following work led directly to the new
developments presented in this chapter.

A semi-analytic valuation method for options under the broad class of affine price processes
was developed by Duffie et al. [41] which computes the integral of Fourier transformed quantities.
It applies to European options on one asset under a variety of processes, which include one asset
jump-diffusion. This was simplified by Lewis [78, 79] and further development and analysis was
carried out by Lee [76]. Da Fonseca et al. extend this for multiple assets [46], an approach used
in this work as a benchmark valuation technique. Carr and Madan [26] developed a similar
approach which uses a Fast Fourier Transform and Dempster and Hong [35] adopted such an
approach for spread options. These approaches can be related to wavelet methods, developed
for implicit solutions of single factor infinite activity jump-diffusion problems with European
options by Matache et al. [82, 83, 84].

Binomial lattice methods are the equivalent of explicit finite difference methods [113] and
an approach to the one-dimensional jump-diffusion problem using this technique is discussed
by Amin [4]. Recent work in finite difference approaches by Briani et al. [18, 19] and Cont
et al. [34] use explicit time stepping for the integral operator introduced by the jump process.
Two-asset American claims under jump diffusion were priced using a Markov chain approach
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by Martzoukos [81], an approach which can be viewed as essentially an explicit finite difference
method. The jump terms were handled using an extension of the method in [4]. For single asset
problems, Andersen and Andreasen [5] developed an operator splitting approach for European
options which was unconditionally stable and second order in time. An implicit, finite difference
approach for single asset options was explored by d’Halluin, Forsyth, et al. [37, 38]. This
method was demonstrated to be quadratically convergent versus grid spacing and time step
size. A similar approach, which uses an iterative method to solve the implicit discretized PIDE
and which also uses an FFT to carry out the dense matrix-vector multiply, was developed by
Almendral and Oosterlee [2].

Pham [91] developed a modern, viscosity solution approach to the valuation of American
options under diffusion processes with jumps. Approximations, such as that of Whaley and
Barone-Adesi [107] in the pure diffusion case, have also been made for jump-diffusion cases, for
instance that of Mulinacci [88]. However, the free boundary problem arising from the American
early exercise constraint is usually solved numerically. Zhang [110] developed a semi-implicit
approach for American options using a traditional linear complementarity solver for constant
diffusion processes with Normally distributed jumps. Zvan, Forsyth et al. [48] developed a fully
implicit approach that uses a penalty method within a finite difference approach, which was
further developed [37, 38] to an implicit method for American options under one-factor jump-
diffusion models. An alternative is the integral equation approach of Tsavalis et al. [104] or
Chiarella et al. [29], however, these require assumptions about the form of the free boundary,
which penalty methods do not.

The two-asset, correlated Brownian motion model [103] is a simple extension of the one-asset
Black–Scholes model [13, 85]. In this chapter, the finite difference jump-diffusion work of [37, 38]
is adapted to the work on two-factor option valuation of Zvan, Forsyth et al. [48, 111, 112] to
produce a similarly quadratically convergent method.

This new two-asset technique retains the advantages of being able to price options with
general types of payoffs and barriers for American as well as European options. The approach
of Briani et al. [18] for a two-dimensional case with jumps has similarities to the method
presented here. However, the method developed in this thesis may be used in a fully implicit
form and also computes the jump terms implicitly. It can be used with any distribution of jumps
that obeys mild, conventional restrictions, as well as discontinuous, exponential distributions,
and also computes without splitting the linear system along axes, so can solve correlated two-
dimensional diffusion problems.

2.1.2 Overview of this Chapter

Section 2.2 reviews the equations governing option valuation over two assets with jump-diffusion.
The localization of the equations from an infinite to a finite domain, along with control methods
for the resulting error, are discussed in Section 2.3. The discretization method discussed in
Section 2.4 is studied in Section 2.5 to determine the theoretical conditions for stability and
monotonicity. Section 2.6 describes the fixed point iteration used to advance the solution by
one time step and provides theory that shows it should be rapidly convergent under normal
parameter ranges. The combination of the fixed point iteration with a penalty iteration for
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valuing American options is also discussed. Section 2.7 gives a number of numerical examples
to demonstrate the techniques and confirm the theory presented in the chapter.

2.1.2.1 Synopsis of Contributions in this Chapter

The following lists the specific contributions to the field of option valuation made in this chapter.

• A localization approach is presented in Section 2.3 for the two-asset, jump-diffusion case.

Theorems 2.3.7 and 2.3.8 use a Green’s function approach to demonstrate that the local-
ization of the option valuation PIDE’s from an infinite initial value problem, to a finite,
initial–boundary value problem has bounded error when non-zero boundary conditions are
present. These present sufficient conditions for convergence with non-zero, non-constant
boundary conditions.

Numerical demonstrations in Section 2.7.2 confirm the effectiveness of the approach.

• Using von Neumann analysis, the scheme used in this study is shown to be unconditionally
stable in the l2 norm for Crank–Nicholson time-stepping in Theorem 2.5.11.

• The discrete 1D Fourier transform integral method of d’Halluin [36] is extended in Section
2.4.3 to two-asset jump-diffusion. An alignment method for the jump PDF on the discrete
Fourier transform grid, discussed in Section 2.4.3.4, simplifies the use of exponential jump
distributions and improves on the results in [36], which suffered impaired convergence for
such distributions.

• The convergence of the functional form of the fixed point time step iteration under the
l∞ norm for the semi-discretized equations is demonstrated in Theorem 2.6.1 by Green’s
function analysis. Using an analogous formulation to the Green’s function approach,
convergence and the rate of convergence of the discrete fixed point iteration is shown
in Theorem 2.6.2 for the case when the iteration matrix is an M-matrix. By using von
Neumann analysis, Theorem 2.6.3 demonstrates that the convergence rate of the fixed
point iteration under the l2 norm is similar to that under the l∞ norm.

• Further numerical demonstrations in Sections 2.7.3 through 2.7.5 show, for both European
and American contracts, the convergence rate both of the fixed point iterative algorithm
and of the overall approach. Typically 3 to 5 fixed point iterations, or combined fixed
point and penalty iterations, are required for each time step. The overall approach is
demonstrated to be up to quadratically convergent in grid spacing and time step for the
linear problem. The convergence under a monotone spatial discretization scheme is also
shown.

2.2 Governing Equations

This section presents the equations governing the value of an option contract under two-asset
jump-diffusion. The value will be computed after transforming the asset prices from price to
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logarithm of price (log-price) scaling. For reference, some equations are given in price scaling.

2.2.1 The Finite Activity Jump Diffusion Model

In this chapter, the value of an option is computed that uses, as independent variables, the
time to expiry τ and two asset prices S1 and S2 where

t ∈ [t0, t0 + T ]
τ ∈ [0, T ]

(S1, S2) ∈ [0,∞]× [0,∞] .
(2.2.1)

Time to expiry is τ = T − t, where t is time in the forward direction. The contract of duration
T is written at t = t0 with τ = T time remaining, when the two initial asset prices may be
observed in the market. Appendix A.1 describes the risk neutral price processes assumed for
(S1, S2). A logarithmic transform is applied to the asset prices

(x1, x2) = (log(S1), log(S2)) ∈ Ω∞
Ω∞ = [−∞,∞]× [−∞,∞] .

(2.2.2)

The asset prices in logarithmic scaling evolve by a correlated, constant coefficient, Brownian
motion and correlated, finite activity jumps where the jumps are independent of the diffusion.
The value of a European option U(x1, x2, τ) over Ω∞ × [0, T ] is found by taking expectations
under the risk-neutral price process (see Appendix A.1 [18, 33]) and solving

∂U

∂τ
= LU + λHU

U(x1, x2, 0) = I(x1, x2) .
(2.2.3)

Linear operator L represents the differential and source terms due to the Brownian motion and
discounting by r and is defined in this chapter as

LU =
(
r − σ1

2

2

)
∂U

∂x1
+
(
r − σ2

2

2

)
∂U

∂x2

+
σ1

2

2
∂2U

∂x1
2

+ ρσ1σ2
∂2U

∂x1∂x2
+
σ2

2

2
∂2U

∂x2
2
− rU

(2.2.4)

with constant coefficients

σ1, σ2 > 0 the volatility of the Brownian motion of the two assets,
|ρ| ≤ 1 the correlation between the diffusion of x1 and x2, and
r ≥ 0 represents a risk-free rate of return.

For simplicity, dividends are not included in Equation 2.2.4. The operator λH represents the
effects of finite activity price jumps in two assets together, generated by a Poisson process. In
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this chapter,

λHU = λ

∫∫ ∞

−∞
g(J1, J2)

[
U (x1 + J1, x2 + J2, τ)− U

−
(
eJ1 − 1

) ∂U
∂x1

−
(
eJ2 − 1

) ∂U
∂x2

]
dJ1 dJ2

g = g(J1, J2) ∈ R

(2.2.5)

where the mean jump arrival rate is λ > 0 and the jump magnitudes (J1, J2) are distributed
according to a probability density function g(J1, J2). I(x1, x2) represents initial conditions,
usually the option payoff, which are discussed in Section 2.2.3 below.

This chapter proceeds under the standard assumption that g(J1, J2) is independent of
(x1, x2, τ). It is also assumed that g(J1, J2) satisfies the technical conditions of [54] §II.1.2
Definition 1.6 (see also [33] Proposition 3.18) in particular, that the integrals for the second,
third and fourth term of HU may be written, respectively, as∫∫ ∞

−∞
g(J1, J2) U dJ1 dJ2 = U (2.2.6)∫∫ ∞

−∞
g(J1, J2)

[(
eJ1 − 1

) ∂U
∂x1

]
dJ1 dJ2 = κ1

∂U

∂x1
(2.2.7)∫∫ ∞

−∞
g(J1, J2)

[(
eJ2 − 1

) ∂U
∂x2

]
dJ1 dJ2 = κ2

∂U

∂x2
(2.2.8)

κ1, κ2 ∈ R
|κ1| , |κ2| <∞

where values κ1, κ2 correct for the mean drift in each asset due to jumps. The first term of HU
is written separately as

JU =
∫∫ ∞

−∞
g(J1, J2) U (x1 + J1, x2 + J2, τ) dJ1 dJ2

=
∫∫ ∞

−∞
g(J1 − x1, J2 − x2) U (x1, x2, τ) dJ1 dJ2

(2.2.9)

which are equivalent forms of a correlation product. Specific formulations of g(J1, J2) with
Normal and exponentially distributed jumps, which are analogous to the one-dimensional jump
models of Merton [86] and Kou [72] respectively, are given in Appendix B.

An American option may be exercised for its terminal payoff at any time. The American
option value is the solution to a linear complementarity problem [91, 110]

∂U

∂τ
≥ LU + λHU (2.2.10)

U ≥ I(x1, x2) (2.2.11)
U(x1, x2, 0) = I(x1, x2) (2.2.12)

where at least one of Equations 2.2.10 or 2.2.11 must hold with equality.
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2.2.2 Notes on the PIDE in Price Scaling

In “price scaling”, the value of the option Ũ(S1, S2, τ) in time to expiry τ and two space
dimensions is determined by solving a PIDE analogous to Equation 2.2.3. It is defined on
(S1, S2, τ) ∈ [0,∞]× [0,∞]× [0, T ]. Note the analogue of the differential term due to Brownian
motion, which in price scaling becomes

L̃Ũ = r S1
∂U

∂S1
+ r S2

∂U

∂S2
+
S1

2σ1
2

2
∂2U

∂x1
2

+ S1S2 ρσ1σ2
∂2U

∂x1∂x2
+
S2

2σ2
2

2
∂2U

∂x2
2
− rU . (2.2.13)

This has zero differential coefficients normal to the natural lower boundary of the problem at
S1 = 0 or S2 = 0. These lines correspond to x1 = −∞ and x2 = −∞ in log-price scaling, a
feature which shall be exploited when the problem is localized to a finite domain.

2.2.3 Contract Types and Initial Conditions

The numerical examples in this chapter value various option contracts, which differ in their
payoffs. The PIDE initial conditions I(x1, x2) are defined by the terminal payoff equation of
the option contract and a strike price K. This chapter uses, as the working examples,

I(x1, x2) =



max
(
0,K −min(ex1 , ex2)

)
= max

(
0,K −min(S1, S2)

)
a put on the minimum, or

max
(
0,max(ex1 , ex2)−K

)
= max

(
0,max(S1, S2)−K

)
a call on the maximum

(2.2.14)

of the two underlying assets. These examples are not specific to the numerical solution tech-
nique, which can be used for any payoff that can be bounded linearly (see Assumption 2.3.1
below).

2.3 Localization

The numerical solution technique requires truncating the infinite domain at finite boundaries.
In this section, equation localization is discussed along with the associated convergence issues
in the context of pricing European options (Equation 2.2.3). The same approach is used for
localizing American options, which can be justified in this case by numerical experiment.

The localization method which follows is easy to visualize and implement. Essentially, the
computational domain is divided into an inner or core region, and an outer region. In the inner
region, the full PIDE is solved. In the outer region, all terms involving the integral are set
to zero and a parabolic PDE is solved. This will be justified on the basis of the properties
of the Green’s function of the PIDE [54]. As well, the integral term H is asymptotically zero
in regions where the solution is asymptotically linear in (S1, S2); linearity in asset price is a
common assumption for far-field boundary conditions in finance [108]. The outer region then
acts as a buffer zone, so that the integral terms in the inner region have enough information
for a sufficiently accurate evaluation.



CHAPTER 2. BASIC APPROACH USING TWO-ASSET JUMP DIFFUSION 14

(log(K), log(K))

(XD,XD)

(XC ,XC)

(−XC ,−XC)

∂ΩC

∂ΩD

ΩD

ΩC λC > 0

λC = 0

x1

x2

(−XD,−XD)

Figure 2.3.1: Domains ΩC ⊂ ΩD truncate the infinite domain Ω∞. In ΩC coefficient
λC > 0 and λC = 0 outside of ΩC . Thus the PIDE 2.3.2 is computed with the jump
component in ΩC only.

2.3.1 Truncation to Nested, Finite Domains ΩC and ΩD

Over (x1, x2) define an interior domain nested in a finite domain ΩC ⊂ ΩD ⊂ Ω∞, as shown in
Figure 2.3.1, with upper and lower bounds

ΩC = [−XC , XC ]× [−XC , XC ]
ΩD = [−XD, XD]× [−XD, XD] ; 0 < XC < XD

∂ΩD = {x1 = [−XD, XD], x2 = {−XD, XD}}
∪ {x2 = [−XD, XD], x1 = {−XD, XD}} .

(2.3.1)

In general, the upper and lower limits need not be equal nor the domains square. The approx-
imate option value V (x1, x2, τ) on the localized domain ΩD × [0, T ] with boundary conditions
B(x1, x2, τ) is determined by solving

∂V

∂τ
= LV + λCHDV

V (x1, x2, 0) = I(x1, x2)
V (x1, x2, τ) = B(x1, x2, τ) ; (x1, x2) ∈ ∂ΩD .

(2.3.2)

Operator L is defined by Equation 2.2.4 and

λC =

{
λ for (x1, x2) ∈ ΩC

0 for (x1, x2) ∈ ΩD \ ΩC (outside of ΩC).



CHAPTER 2. BASIC APPROACH USING TWO-ASSET JUMP DIFFUSION 15

The domain of integration in Equation 2.2.5 is truncated, and Equations 2.2.6, 2.2.7 and 2.2.8
are applied to obtain

HDV =
∫∫

(x1+J1,x2+J2)∈ΩD

g(J1, J2)V (x1 + J1, x2 + J2, τ) dJ1 dJ2

−
∫∫ ∞

−∞
g(J1, J2)

[
V (x1, x2, τ) +

(
eJ1 − 1

) ∂V
∂x1

+
(
eJ2 − 1

) ∂V
∂x2

]
dJ1 dJ2

=
∫∫

(J1,J2)∈ΩD

g(J1 − x1, J2 − x2)V (J1, J2, τ) dJ1 dJ2

− V (x1, x2, τ)− κ1
∂V

∂x1
− κ2

∂V

∂x2

= JDV − V (x1, x2, τ)− κ1
∂V

∂x1
− κ2

∂V

∂x2

.

(2.3.3)

The first term ofHDV is written in two ways, corresponding to the two forms of JU in Equation
2.2.9, and denoted JDV . In the first form, the integration for a point (x1, x2) ∈ ΩC must be
performed over (x1 + J1, x2 + J2) ∈ ΩD; the value of V is not defined outside of ΩD so the
integration limit for J depends on (x1, x2). The second form of JDV is equivalent, but since
g(J1 − x1, J2 − x2) is defined over (J1 − x1, J2 − x2) ∈ Ω∞, the integration limit is simpler
and independent of the point (x1, x2) being computed. The second form also illustrates one
reason why λC is set so that λCHDV (x1, x2) = 0 ∀ (x1, x2) /∈ ΩC . For (x1, x2) ∈ ΩC the
range of evaluation of g(J1 − x1, J2 − x2) with (J1, J2) ∈ ΩD is not severely truncated in any
given direction compared to the infinite integral (J1, J2) ∈ Ω∞ used for the second and third
terms. If size of ΩC and ΩD is set so that this truncation occurs when the value of the PDF
g(J1− x1, J2− x2) is small, then the finite evaluation range is expected to have a small impact
on the solution over ΩC .

For a complete review of the possible boundary condition assumptions and their implications
see [108]. The upper boundary may be approximated by a time-dependent value

V (x1, x2, τ) = a0e
−rτ + a1e

x1 + a2e
x2 on

{
x1 = XD x2 = [0, XD]
x2 = XD x1 = [0, XD]

(2.3.4)

where a0, a1, a2 are determined by the option contract and Equation 2.3.4 is enforced as a
Dirichlet boundary condition. On the lower boundaries,

∂V

∂τ
=



(
r − σ2

2

2

)
∂V

∂x2
+
σ2

2

2
∂2V

∂x2
2
− rV on x1 = −XD, x2 ∈ (−XD, XD)

(
r − σ1

2

2

)
∂V

∂x1
+
σ1

2

2
∂2V

∂x1
2
− rV on x2 = −XD, x1 ∈ (−XD, XD) and

−rV at (x1, x2) = (−XD,−XD) .

(2.3.5)
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This follows from the differential terms at the lower boundaries in price-scaling (Equation
2.2.13), matching those on the lower boundaries S1 = 0 or S2 = 0. This also assumes that, in
price scaling, the derivatives normal to the boundary of the option value are bounded. Note
that these lower boundary conditions do not rely on interior solution values, so may be treated
as time-dependent, Dirichlet boundary conditions when it is convenient to do so.

The lower boundary is in domain ΩD, thus λC = 0 which eliminates the integral terms.
Boundary ∂ΩD must be spaced sufficiently far from ΩC that the error from boundary approxi-
mations are well controlled (see Sections 2.3.3 and 2.7.2).

2.3.2 Convergence Estimates for European Options

This choice of localization to finite domains and the accompanying approximations is convenient
for several reasons. First, if XD > XC are both sufficiently large then one expects that the
error due to approximating H by HD and λ by λC will be negligible in ΩC , particularly near the
strike. Secondly, this localization allows an efficient, FFT-based computation of the integral
term HDV . Finally, the numerical computation of the PDE in ΩD \ ΩC is inexpensive and
assumed to be a better approximation than, for example, simply using the initial condition
I(x1, x2) in this region.

The following assumptions are required in order to bound the error due to this localization.

Assumption 2.3.1 The initial condition (the option payoff) I(x1, x2) can be bounded by

I(x1, x2) ≤ c1 + c2 (ex1 + ex2)

for some constants c1 and c2 and the jump distribution g(J1, J2) must be such that |HI| < ∞
for |x1, x2| <∞.

A payoff which is linearly valued in price scaling, such as those listed in Section 2.2.3, satisfies
Assumption 2.3.1 for the Normal and exponentially distributed jumps used in the numerical
examples.

Assumption 2.3.2 The infinite domain solution U(x1, x2, τ) ∈ Ω∞ to Equation 2.2.3 satisfies
the condition

|HU | ≤ c3 + c4 (ex1 + ex2) for x ∈ Ω∞ \ ΩC (2.3.6)

for constants c3 and c4.

Besides being finite, the action of the jump operator on the option value must be bounded by a
plane in price scaling. Again, this will be satisfied by the numerical examples, where the jump
density functions are independent of (x1, x2) and the value U(x1, x2, τ) also satisfies a bound of
the form given in Assumption 2.3.1. This limitation could apply, for example, to jump density
functions which increase the jump magnitude with the logarithm of the asset price.
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Assumption 2.3.3 The artificial boundary condition B(x1, x2, τ) of Equation 2.3.2 is bounded
by the growth in the exact, infinite domain solution U(x1, x2, τ) ∈ Ω∞, i.e. by

|B(x1, x2, τ)− U(x1, x2, τ)| ≤ c5 + c6 U(x1, x2, τ) (2.3.7)

for some constants c5 and c6.

Note that Equation 2.3.7 is satisfied even if B(x1, x2, τ) = 0.

Assumption 2.3.4 The PIDE’s 2.2.3 and 2.3.2 must satisfy the conditions in Garroni and
Menaldi [54] §I, II. In particular, the diffusion coefficients must be bounded on Ω∞ and the
operator L must be uniformly elliptic, so that a smooth, classical, bounded solution exists.
With these conditions, the solution can be represented by convolutions of Green’s functions and
Poisson functions, as in [54] §IV.

Note that the PIDE for the option value formulated in price scaling over the infinite domain
does not satisfy Assumption 2.3.4: the differential operator does not have bounded coefficients
on the infinite domain and is not uniformly elliptic [54] because of the zero diffusion coefficients
in Equation 2.2.13 on S1 = 0 and S2 = 0. Hence this thesis uses log-price scaling: the domain
is bounded away from the S1 = 0 and S2 = 0 axes and the diffusion coefficients are constant.

Assumption 2.3.5 The initial and boundary conditions are smooth and have finite first and
second derivatives with respect to x1 and x2 (see [54] §II.1.1).

The initial conditions in Equation 2.2.14 do not meet Assumption 2.3.5, however, an arbitrarily
close, but smooth approximation to I(x1, x2) may be made to satisfy the theory (independent
of the numerical solution approach). Typically, this regularization is done using a mollification
of the initial condition, with which the resulting error in the final solution may also be bounded
to an arbitrarily small value. See [51, 52] for the classical mollification method for PDE’s and a
survey by Lamm [75] for its application to integral equations. Recently this approach has been
applied in practice to financial problems by Friz and Gatheral [53] and in theory by Jakobsen
et al. [68] (particularly Lemma 3.1).

Remark 2.3.6 Assumptions 2.3.1 to 2.3.5 are taken as fulfilled for the following theorems and
the remaining discussion of the localization of the continuous operators.

The error due to the solution V of Equation 2.3.2 over (x1, x2) ∈ ΩD must now be shown to
satisfy |V (x1, x2, τ)− U(x1, x2, τ)| → 0 as ΩD,ΩC → Ω∞ where U is the solution to Equation
2.2.3 over Ω∞. This is done in two parts.

Theorem 2.3.7 Let U be the solution to PIDE 2.2.3. Let V be the solution of an initial-value
PIDE

∂V

∂τ
= LV + λCHDV

V (x1, x2, 0) = I(x1, x2) ; (x1, x2) ∈ Ω∞
(2.3.8)
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where, for this equation

λC =

{
λ for (x1, x2) ∈ ΩC

0 for (x1, x2) ∈ Ω∞ \ ΩC (outside of ΩC)

and HDV is defined in Equation 2.3.3. This is similar to localized PIDE 2.3.2, but embedded
in Ω∞ and without a boundary condition.

Define the cutoff error Ec = U − V . The value of Ec(x1, x2, τ) for a fixed (x1, x2) ∈ Ω∞
due to the approximation of λ by λC and H by HD obeys

lim
ΩC ,ΩD→Ω∞

|Ec(x1, x2, τ)| = 0 . (2.3.9)

Proof. See Appendix C.1. �

Theorem 2.3.8 Let Y be the solution to Equation 2.3.2 with the approximate boundary con-
dition Y (x1, x2, τ) = B(x1, x2, τ), (x1, x2) ∈ ∂ΩD. Let W be the solution to Equation 2.3.2
when the boundary is set to W (x1, x2, τ) = V (x1, x2, τ), (x1, x2) ∈ ∂ΩD, where V is the exact
value from the solution of Equation 2.3.8. Define the error due to approximating the exact
boundary condition V (x1, x2, τ) with the approximate boundary condition B(x1, x2, τ) on ∂ΩD

as Eb = W − Y .
The error Eb(x1, x2, τ) has the limit

lim
ΩD→Ω∞

|Eb(x1, x2, τ)| = 0 . (2.3.10)

Proof. See Appendix C.2. �

Approximating Equation 2.2.3 by Equation 2.3.2 causes errors which tend to zero as ΩC ,ΩD →
Ω∞. These limits appear at first to be disappointingly weak, however, actual bounds would
depend on the exact form of the jump size distribution g(J1, J2). Using a different localization
technique, the limit for this error in one dimension were estimated in [34] using a probabilistic
approach. Defining the computational domain in price scaling by [0, S∗], the localization error
was estimated to be [34]

LocalizationError ≤ 1
(S∗)α

, α > 0 (2.3.11)

which is similar to the limit in Equations 2.3.9 and 2.3.10.
The above estimates of the localization error are overly pessimistic. To see this, note that

in many cases large regions of the payoff and the solution are asymptotically linear in price
scaling as S1, S2 →∞. Consider such a region ΩP ⊂ ΩD where, in log-price scaling,

V (x1, x2) = c0 + c1 e
x1 + c2 e

x2

(x1, x2) ∈ ΩP .
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Note that for (x1, x2) ∈ ΩP
∂V

∂x1
= c1e

x1 ,
∂V

∂x2
= c2e

x2 .

Examine the integral term HV of Equation 2.2.5. By limiting the integral so that it is taken
only over (x1, x2), (x1 + J1, x2 + J2) ∈ ΩP then

HV (x1, x2) ' HPV (x1, x2)

=
∫∫

(x1,x2),(x1+J1,x2+J2)∈ΩP

g(J1, J2)·[
V (x1 + J1, x2 + J2)

− V (x1, x2, τ)−
(
eJ1 − 1

) ∂V
∂x1

−
(
eJ2 − 1

) ∂V
∂x2

]
dJ1 dJ2

=
∫∫

(x1,x2),(x1+J1,x2+J2)∈ΩP

g(J1, J2)·[
c0 + c1 e

(x1+J1) + c2 e
(x2+J2)

− (c0 + c1 e
x1 + c2 e

x2)

−
(
c1e

(x1+J1) − c1e
x1

)
−
(
c2e

(x2+J2) − c2e
x2

)]
dJ1 dJ2

= 0 .

In such regions one may expect that the error due to setting λC = 0 and dropping the integral
term, or due to limiting the region of integration of HD, will be small.

2.3.3 Sizing ΩD and ΩC for Error Control

If ΩD is sufficiently large then the solution in significant regions outside of ΩC tends to approach
the limiting assumptions HV → 0 discussed in Section 2.3.2. The error due to setting λC = 0,
or due the bounded region of integration of JDV , tends to be small when ΩD and ΩC are chosen
appropriately.

The sizes of ΩC and ΩD can be dictated by the asset price evolution process in a way which
controls numerical error. It is important for ΩC to be sufficiently large to ensure the solution
near (x1, x2) is minimally affected by error in the ΩD \ ΩC region. PDF g(J1, J2) is truncated
when the PIDE is localized; a sufficiently large domain ΩD will limit the integral error due
to this truncation. The following rules of thumb for sizing are adapted from [38] for the x1

direction; the x2 direction is formulated identically.
Let (x1, x2)p be a point within a region of particular interest, typically a small region around

the (log(K), log(K)) point. It is straightforward to compute or approximate, usually by Fourier
transform inversion [41, 78], the marginal distribution f1(x1; (x1, x2)p, T ) of the expected value
of an asset price path starting from (x1, x2)p and evolving to option expiry time T . Width ∆xC
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is computed based on a tolerance parameter εc such that∫ ∆xC

−∆xC

f1(x1 + z; (x1, x2)p, T ) dz > (1− εc) (2.3.12)

and the size of ΩC is chosen to ensure (x1 ±∆xC , x2) ∈ ΩC ∀ (x1, x2)p. The reasoning behind
this rule is to set ΩC sufficiently large that the influence of solution details outside ΩC have an
influence approximately proportional to εc at expiry time for points near the strike.

Let ∆xD = XD −XC , the distance from a point on the upper ΩC boundary (x1, x2) ∈ ∂ΩC

to the upper ∂ΩD boundary in the positive x1 direction. Distance ∆xD is chosen based on the
marginal jump distribution g1(x1) of g(x1, x2) in the x1 direction and the initial value I such
that a given integral evaluation error tolerance εd satisfies (where Assumption 2.3.1 holds)

max
(x1,x2)∈∂ΩC

[∫ ∞

∆xD

g1(z) I(x1 + z, x2) dz
]

' max
(x1,x2)∈∂ΩD

[I(x1, x2)]
∫ ∞

0
g1((∆xD + z)) eαz dz

' max
(x1,x2)∈∂ΩD

[I(x1, x2)] εd .

(2.3.13)

Constant α is the slope of the initial condition at the upper boundary in the positive x1

direction. Typically α = 0 in the case of a put and α = 1 for a call. The lower bound spacing
along x1 is computed analogously, with α = 0. The use of I is as an approximation to V
for the purposes of computing the domain size. The selection of max(x1,x2)∈∂ΩD

[I(x1, x2)] as
a multiplying factor ensures that the error control accounts for an artifact of the numerical
solution approach, explained in Section 2.4.3.3, which computes the integral using a method
that treats ΩD as periodic and may cause the maximum value of V to factor into the error near
the boundary. In the case of one-sided or one-dimensional jump distributions, ∆xD is never
allowed to go to zero so that, in particular, the lower boundary condition Equations 2.3.5 never
need to be altered to allow for an integral term.

2.4 Discretization

Recall Equation 2.3.2, the localized problem posed on the finite domain (x1, x2) ∈ ΩD. To
simplify the explanation of the discretization, a linear differential operator G is used which
contains only partial differential terms. Separating out the three terms of H, rewrite Equation
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2.3.2 over ΩD × [0, T ] as

∂V

∂τ
= GV − (r + λC)V + λCJDV

V (x1, x2, 0) = I(x1, x2)
V (x1, x2, τ) = B(x1, x2, τ) ; (x1, x2) ∈ ∂ΩD

GV =
(
r − σ1

2

2
− λC κ1

)
∂V

∂x1

+
(
r − σ2

2

2
− λC κ2

)
∂V

∂x2

+
σ1

2

2
∂2V

∂x1
2

+ ρσ1σ2
∂2V

∂x1∂x2
+
σ2

2

2
∂2V

∂x2
2

JDV =
∫

(J1,J2)∈ΩD

g(J1 − x1, J2 − x2)V (J1, J2, τ) dJ1 dJ2

(2.4.1)

where the boundary conditions B(x1, x2, τ) are unchanged. Note that JD is chosen to match
the second form of HD in Equation 2.3.3.

Equation 2.4.1 can now be semi-discretized in time by the theta method with constant time
step weight 0 ≤ θ ≤ 1

Wn+1 −Wn

∆τ
= (1− θ) [G − (r + λC) + λCJD]Wn+1

+ θ [G − (r + λC) + λCJD]Wn
(2.4.2)

where Wn = W (x1, x2, τn) is the solution to the semi-discretized problem. This form will be
used later in Section 2.6.1. Only the cases θ = 1/2 and θ = 0 are considered, which are the
second order Crank–Nicolson time step and the first order fully implicit time step respectively.

2.4.1 General Discrete Form

The discrete equations are first written in a general form using matrices and vectors, with the
details for the differential and integral terms to follow in Sections 2.4.2 and 2.4.3. The general
form permits the application of some useful general stability results.

Discretization is performed over a finite difference (FD) grid of N points in space and Nτ

points in time

(x1, x2)i ∈ [−XD, XD)× [−XD, XD) , i = 1 . . . N (2.4.3)
τn ∈ [0, T ] , n = 0 . . . Nτ , τn = n∆τ (2.4.4)

and form a vector of solution values at these points1

w ∈ RN , with elements wi 'W ((x1, x2)i) .
1The compact notation W ((x1, x2)i, τn), or W ((x1, x2)i) where the τn is either implied or not relevant,

will be used instead of W (x(1,i), x(2,i)) or W (x(1,i), x(2,i), τn) to avoid double subscripting. Also, f(y(1,i) +
z(1,j), y(2,i) + z(2,j)) will be denoted f((y1, y2)i + (z1, z2)j) where a sum of two co-ordinates is required.
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This requires a boundary condition enforcement vector

b ∈ RN , with elements bi ' b((x1, x2)i) .

Vector b can be seen as encoding the Dirichlet boundary condition nodes on ∂ΩD, where the
option value is known at time steps n and n + 1, after these nodes are eliminated from the
solution vector (see Appendix E) and hence from the discrete equations. Note that vector b
is not a direct representation of the values of B(x1, x2, τ). The linear differential operator is
discretized to form a matrix G such that

GW ' Gw ; G ∈ RN×N , (2.4.5)

and the integral operator discretized to form a matrix J such that

λCJDW ' λIcJw ; Ic, J ∈ RN×N (2.4.6)

[Ic]ij =

{
1 if i = j and (x1, x2)i ∈ ΩC

0 otherwise.
(2.4.7)

Using λIc to replace λC , the discrete form of the spatial operator terms of Equation 2.4.2 can
be written using a matrix

T = − [G + λIc(J− I)− r I] (2.4.8)

where I is the identity matrix.
The discrete version of the time step Equation 2.4.2 can now be written to match the

formulation of [73, 77, 102]. The full, general, discrete system is thus

[I + (1− θ)∆τ T]wn+1 = [I− θ∆τ T]wn + b (2.4.9)

which is the form required to apply some of the stability analyses of [73, 77] in Section 2.5
below. To use these analyses, the theta method time discretization is written in the form

wn+1 = ϕ(z)wn + [I + (1− θ)∆τ T]−1 b

z = ∆τ T

that uses a rational polynomial defined as in [73]2 to be

ϕ(z) = [1 + (1− θ)z]−1 [1− θz] . (2.4.10)

Equation 2.4.9 can also be written in a compact form which will be used in some definitions
in Section 2.5 as

Mn+1
i (h,wn+1

i ,wn+1
j ,wn

i ,w
n
j ) =

[I + (1− θ)∆τ T]wn+1 − [I− θ∆τ T]wn − b = 0 ; i, j ∈ 1 . . . N , i 6= j
(2.4.11)

where grid spacing is controlled by h and ∆x1,∆x2,∆τ = O(h) are representative grid spacings
in space and time.

2In [73] the values of θ and (1− θ) are reversed to the sense in which they are used here.
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2.4.2 Finite Difference Form of G, the Partial Differential Terms

The finite difference grid (FD grid) is rectangular and defined on domain ΩD. The grid
line intersections define the N solution points (x1, x2)i in log-price scaling. The grid has a fine
spacing between points near the location (x1, x2) = (log(K), log(K)) and, to save computational
effort, grid spacing increases in regions away from the strike where the high resolution is not
required. Previous work [112] has shown that the original grid should be specified so as to
accurately capture the details of the option contract, in particular, the payoff and any barriers
need to be accurately represented.

The sparse matrix G is formed over the FD grid using second order finite differences for the
diffusion term. A second order, central finite difference is used for the drift terms where possible
(see Section 2.5 below). Appendix E gives the details of the discretization assuming constant
grid spacing. In the interests of brevity, the details for non-constant spacing are omitted, since
this is completely standard. The cross-partial derivatives are discretized with a seven-point
formula, using the non-constant spacing versions of Equation E.1.5 or E.1.6 when the diffusion
correlation ρ > 0 or ρ < 0 respectively. Under certain conditions, detailed in Remark 2.5.13
below, the first-order approximation to the first partial derivatives is required.

The finite difference approximation is O(h2) for constant grid spacing h when central differ-
encing is used for the first order terms. This matches the O((∆τ)2) obtained when θ = 1/2 in
Equation 2.4.9. For non-constant spacing, if changes in the grid spacing are O(h), the second
order convergence is preserved.

2.4.3 Discrete Form of J, the Correlation Integral

In this context, it is not necessary to achieve a high accuracy evaluation in the jump integral
term; second order accuracy at each time step is good enough. This section considers the
motivation for the method which evaluates the jump integral term, then proceeds with the
details of the numeric quadrature.

Consider a simple form of J created when a second order, trapezoidal rule is used for the
approximation in Equation 2.4.6 of JD. This may be written in the following form over the FD
grid to form a dense matrix J

[IcJw]i =


[Jw]i =

N∑
j=1

f ′g((x1, x2)j − (x1, x2)i) wj for (x1, x2)i ∈ ΩC and

0 for (x1, x2)i /∈ ΩC .

(2.4.12)

Function f ′g((x1, x2)j−(x1, x2)i) is formed by integrating g((z1, z2)−(x1, x2)i) over (z1, z2) inside
the cell centered on node (x1, x2)j, as will be explained in detail in Section 2.4.3.1 below. The
result is second order accurate over the grid of N points and J naturally satisfies the conditions

Jij ≥ 0 , and
∑

j

Jij ≤ 1 . (2.4.13)
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Note that option value W is only given at points wj, located at nodes (x1, x2)j on the grid. On
a general FD grid the set of points (x1, x2)j− (x1, x2)i, around which g is integrated, may differ
for each (x1, x2)i.

Using Equation 2.4.12 would mean that Equation 2.4.9, although useful for theoretical
analysis, could not be used for a practical algorithm. Matrix J (and hence T) is dense and
solving Equation 2.4.9 could require the solution to a dense linear system and a dense matrix
multiply at each time step. The dense linear system solution can be avoided by using the
iterative method described in Section 2.6, however, this still leaves the dense matrix-vector
multiply.

There are fast methods which, under certain conditions, can be used to carry out Equation
2.4.12 (see [38]). If the sum is performed over a rectangular grid with constant spacing, then
Equation 2.4.12 can be performed by exploiting the algebraic identity which uses the discrete
Fourier transform (DFT) and in turn, the fast Fourier transform ([17] §13). To exploit this
approach, a two dimensional version of the method used in [38] is created. This method requires
an interpolation of the original FD grid of values onto a DFT grid, a summation corresponding
to Equation 2.4.12 by FFT, then an interpolation of the result back to the FD grid. Since all
stages are second order accurate the approach satisfies the accuracy requirement.

There are several algorithms which can be used to determine the FFT of input data on
unequally spaced grids [42, 96, 106]. These eliminate the need for interpolation between grids.
However, some previous tests [36] indicate that these approaches were no more efficient than the
simple interpolation strategy used here. Previously, experiments were conducted with a Fast
Gauss Transform [22] for the case when g is a Normal distribution, which also does not require
a regular grid. However, this method did not appear to be any more efficient than FFT–based
methods, at least for the order of accuracy required here.

2.4.3.1 DFT Domain and Grid

To apply the discrete Fourier transform to Equation 2.4.12, and hence allow the use of an
FFT, the sum must be computed over a rectangular grid with constant grid line spacing. A
rectangular domain Ω∗D is defined with dimensions such that ΩC ,ΩD ⊂ Ω∗D. The DFT grid
over Ω∗D is defined with NF = N1 × N2 nodes at the grid line intersections and it covers Ω∗D
with identically sized cells centered on those nodes. Nodes are denoted

(x1, x2)k ∈ Ω∗D , k = 1 . . . NF . (2.4.14)

The integers N1 and N2 are chosen so that, for a DFT grid spacing (h1, h2) which is of the
order of the size of the FD grid spacing at the strike node, the DFT grid overlaps the FD grid.
In general N1 6= N2 and h1 6= h2.

Define the vector of solution values

x ∈ RNF , with elements xk 'W ((x1, x2)k)

at nodes of the DFT grid. The matrix form of the integral operator of Equation 2.4.6 over the
DFT grid is

JDW ' Jrx ; Jr ∈ RNF×NF . (2.4.15)
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As in Equation 2.4.12, the correlation is integrated over the DFT grid with a second order,
cell-centered quadrature rule. The first line of Equation 2.4.12 then becomes, for a point
(x1, x2)k ∈ ΩC on the DFT grid,

[Jrx]k =
NF∑
l=1

fg((x1, x2)l − (x1, x2)k) xl (2.4.16)

where fg is given by

fg((x1, x2)l − (x1, x2)k) =
∫ +h1/2

−h1/2

∫ +h2/2

−h2/2
g((x1, x2)l − (x1, x2)k + (z1, z2)) dz1 dz2 . (2.4.17)

This ensures that the conditions of Equation 2.4.13 are satisfied3. The actual numerical com-
putation uses a periodic form of fg, explained below in Section 2.4.3.3.

The DFT grid must be sufficiently fine that the solution and the PDF are adequately
represented by their discrete form.4 An inaccurate representation of, in particular, the PDF
can produce useless results. This happens, typically, when the spatial grids are too coarse
(examples appear later in Section 3.5.1). This problem is usually addressed by refining the
DFT grid, as well as by the techniques in Sections 2.4.3.4 and 3.4.2 below.

2.4.3.2 Interpolating Between the FD and DFT Grids

A mapping is formed between a price vector w ∈ RN over the nodes of the FD grid and the
price vector x ∈ RNF on the nodes of the DFT grid. The mapping can be written as a NF ×N
sparse matrix L so that x = Lw. The entries of L interpolate using a local, bi-linear, Lagrange
interpolation over the FD grid. The interpolation stencil is chosen at each node so that

0 ≤ Lij ≤ 1 and
∑

j

Lij ≤ 1 .

Where DFT grid point (x1, x2)i ∈ Ω∗D but (x1, x2)i /∈ ΩD then Lij = 0 ∀ j to set xi = 0 (rather
than extrapolate). A bi-linear interpolation is applied in the other direction using N × NF

matrix K to compute w = Kx.
To apply the discrete integral term over the FD grid, approximate Equation 2.4.12 by

IcJw ' Ic [K · Jr · L] w (2.4.18)

where Jr of Equation 2.4.15 computes over the DFT grid. If h1, h2 = O(h) is the grid spacing
on the DFT grid, then Equation 2.4.18 is an O(h2) approximation to Equation 2.4.12, which is

3Where no analytic CDF is available and the PDF g is sufficiently smooth, Equation 2.4.17 can be computed
using a standard, high-accuracy numerical technique. The values fg((x1, x2)l− (x1, x2)k) repeat from one matrix
row to the next, and need only be evaluated once during the option valuation process, so this does not incur an
undue computational cost. Where the PDF is non-smooth, as with the Marshall-Olkin Bi-variate Exponential
Distribution (see Section B.2) the integral must be done directly by evaluating the cumulative distribution.

4In signal processing terms, the error due to “aliasing” is low.
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as good as the error due to the finite difference operators. Note that if Jr satisfies the conditions
of Equation 2.4.13, then the construction of L and K preserves this result so

[K · Jr · L]ij ≥ 0 and
∑

j

[K · Jr · L]ij ≤ 1 .

2.4.3.3 Fast Fourier Computation of the Integral Term

The details of the reduction of the cell-centered quadrature rule of Equation 2.4.16 to an
operation involving the DFT is described in detail in standard texts (e.g. [17] §13). However,
to exploit this method requires a new approximation F which is a Toeplitz matrix formed on
a periodic domain. In general, F 6= Jr because, in effect, fg((x1, x2)k) in Equation 2.4.16 is
replaced with a periodic function

f◦g ((x1, x2)k) = fg((x1, x2)k) ∀ (x1, x2)k ∈
(
−N1

2
h1,−

N2

2
h2

)
×
(
N1 − 1

2
h1,

N2 − 1
2

h2

)
f◦g ((x1, x2)k) = f◦g ((x1, x2)k + (aN1h1, bN2h2)), ∀ a, b integers.

The DFT in the periodic grid setting is denoted D and its inverse as D−1 (see Appendix F).
For grid points (x1, x2)k, k = 1 . . . NF the Fourier transform form of Equation 2.4.16 is given
by the identity

[F x]k =
1
NF

{
D−1

[
D(x) · D(f◦g )

]}
(x1,x2)k

(2.4.19)

where D(x) and the complex conjugate of D(f◦g ) are multiplied at each node on the Fourier-
space grid. By using an FFT to compute the DFT on the NF nodes, an O(NF

2) dense matrix
multiplication is reduced to an O(NF log(NF )) operation. The scaling factor 1/NF is a side
effect of the form chosen for the DFT (Equation F.1.2).

Any solution using F will (typically near ∂Ω∗D) have been contaminated by values where
f◦g ((x1, x2)k− (x1, x2)l) 6= fg((x1, x2)k− (x1, x2)l) because of the periodicity implied in the FFT
operation. Fortunately, the grid nesting strategy already dictates the retention only of the more
accurate values in the core domain ΩC ⊂ Ω∗D and discards the rest of the computation. The
final form of the approximation to Equation 2.4.12 is given by

IcJw ' Ic (K · F · L) w (2.4.20)

where F is computed by applying Equation 2.4.19.
The approximation in Equation 2.4.20 is used in the iterative method described in Section

2.6.1 to solve time step Equation 2.4.9. The “wrap-around” error in the computation of the
integral using the DFT approximation of Equation 2.4.19 may cause the maximum of the option
value W to factor into the error. The control of the wrap-around error is already accounted for
in the domain sizing methods discussed in Section 2.3.3.
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2.4.3.4 Grid Alignment of the PDF

Let g′(x1−z1, x2−z2) = g(x1, x2) where (z1, z2) is an arbitrary shift of the jump PDF function.
Then, by using a change of integration variable

JU(x1, x2) =
∫∫ ∞

−∞
g(J1, J2) U(x1 + J1, x2 + J2) dJ1 dJ2

=
∫∫ ∞

−∞
g′(J1 − z1, J2 − z2) U(x1 + J1, x2 + J2) dJ1 dJ2

=
∫∫ ∞

−∞
g′(J ′1, J

′
2) U(x1 + J ′1 + z1, x2 + J ′2 + z1) dJ ′1 dJ

′
2

= J ′U(x1 + z1, x2 + z2)

(2.4.21)

where J ′ computes with g′ as the PDF. This holds in the discrete periodic case as well, to
within O(h2) where h1, h2 = O(h) is the DFT grid spacing, provided the domain has been
constructed so that (z1, z2) is small relative to the size of Ω∗D.

This fact may be used to align discontinuities in a jump PDF to fall exactly between DFT
grid nodes. A translation of the PDF can be corrected when the result for point (x1, x2) is
interpolated back from the correlation by simply interpolating at (x1 + z1, x2 + z2). The DFT-
based procedure is equivalent to the cell-centered integration rule. If PDF discontinuities can
be aligned to fall on cell edges (not nodes) then the integration captures the discontinuity lo-
cation exactly. The result, although still accurate to O(h2), tends to be much more accurate in
absolute value, significantly improving the results when h specifies a coarse grid. This is par-
ticularly convenient for jumps of exponential types, where the continuous marginal probability
distribution is defined with a peak point and the two-dimensional probability distribution is
the linear combination of a PDF in each of the four quadrants around the peak.

2.5 Stability, Monotonicity and Consistency

Definition 2.5.1 Modern stability analysis (for example [73, 77, 102]) defines general cate-
gories of stability under an arbitrary norm ‖·‖ using a rational polynomial ϕ(z) (as in Equation
2.4.10). Nomenclature varies somewhat, so this thesis uses the following names for three cases
of interest. Algebraic stability holds if

‖ϕ(∆τT)n‖ ≤ c pα nβ

where the linear system has order p ≥ 1, for time step n ≥ 1, with c, α, β > 0 independent of n
and p. Strong stability holds if

‖ϕ(∆τT)n‖ ≤ c

for c > 0, which becomes strict stability if 0 < c ≤ 1.
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Definition 2.5.2 An alternate definition of stability, used for analysis of the viscosity solu-
tion to a system of equations (e.g. [47, 66]) is that the time step method of Equation 2.4.9 is
unconditionally strictly stable in the l∞ norm when∥∥vn+1

∥∥
∞ ≤ c ·max

[
‖I(x1, x2)‖∞ , ‖B(x1, x2, τ)‖∞

]
where the constant c is independent of grid spacing ∆x1, ∆x2 or ∆τ .

Definitions 2.5.1 and 2.5.2 are clearly different when applied to non-linear PIDE’s.

Definition 2.5.3 Equation 2.4.9, denoted as Mn+1
i in Equation 2.4.11, represents a mono-

tone scheme [47, 66] when, for all εn+1
j , εni , ε

n
j ≥ 0 and i 6= j

Mn+1
i (h,wn+1

i ,wn+1
j + εn+1

j ,wn
i + εni ,w

n
j + εnj ) ≤ Mn+1

i (h,wn+1
i ,wn+1

j ,wn
i ,w

n
j ) . (2.5.1)

Definition 2.5.4 Equation 2.4.9, denoted as Mn+1
i in Equation 2.4.11, is a consistent scheme

if, for any smooth function φ((x1, x2), τ) with a vector φ̄ where φ̄n
i = φ((x1, x2)i, τn) over the

i = 1 . . . N finite difference points, it satisfies∣∣∣∣∣
(
∂φ

∂τ
− Gφ− λCHDφ

)n+1

i

−Mn+1
i (h, φ̄n+1

i , φ̄n+1
j , φ̄n

i , φ̄
n
j )

∣∣∣∣∣→ 0

as h→ 0 .

Theorem 2.5.5 The discrete Equation 2.4.11 is consistent with PIDE 2.3.2.

Proof. This follows from Taylor series analysis of the techniques used to create the discretiza-
tion. �

Definition 2.5.6 If a matrix A has elements Aii > 0 and Aij ≤ 0 for i 6= j and every row sum
is non-negative with at least one row sum positive in each connected part of A, then A is an
M-matrix (see [93, 98]).

Remark 2.5.7 If matrix A is an M-matrix then A−1 exists and has elements
[
A−1

]
ij
≥ 0

[93, 98].

Definition 2.5.8 If a matrix A has elements Aii ≥ 0 and Aij ≤ 0 for i 6= j and each row sum is
non-negative then A is M-compatible.

Remark 2.5.9 The sum of an M-compatible matrix and an M-matrix is an M-matrix.

As will be shown below, if T is an M-matrix, then Crank–Nicolson time stepping is uncon-
ditionally algebraically stable in the l∞ norm and, under a time step restriction, strictly stable
in the sense both of Definition 2.5.1 and 2.5.2. In Definition 2.5.1, stability implies that at time
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step n the error En = Wn −Wn due to a perturbed solution Wn can be bounded in terms of
the initial error E0 = W 0 −W0 where W 0 is a perturbed initial solution. This definition is
useful for analyzing the fixed point iteration for time step solution in Section 2.6 below and is
similar to the one used in von Neumann analysis.

Crank–Nicolson time stepping will be shown to be unconditionally stable in the l2 norm in
the sense of von Neumann analysis. Under von Neumann analysis the conditions are determined
under which the finite difference and integral operator reduce, rather than amplify, the l2 norm
of a perturbation error En = Wn −Wn as it propagates to time step n+ 1.

2.5.1 Monotonicity and Stability in the l∞ Norm

2.5.1.1 European Options

Theorem 2.5.10 If T is an M-matrix then the time step method of Equation 2.4.9 is un-
conditionally algebraically stable in the l∞ norm for θ = 1/2. The time step method is
monotone and unconditionally strictly stable in the l∞ norm for θ = 0.

Equation 2.4.9 is monotone and strictly stable in the l∞ norm for θ = 1/2 if the time
step is bounded using the maximum diagonal of T such that

∆τ
2

max
i

(Tii) < 1 .

Proof. For stability in the sense of Definition 2.5.1 see Kraaijevanger et al. [73]. For strict
stability in the sense of Definition 2.5.2 this result is proved by simple maximum analysis (e.g.
as an extension of the result of [37]) which includes the boundary conditions. Monotonicity
follows from the definition of an M-matrix. �

The finest grid spacing in the problem determines the maximum Crank–Nicolson time step for
which the solution is strictly stable in the l∞ norm. A fully implicit time stepping provides a
monotone, consistent and stable method, which are the conditions required in [11, 18, 33, 34]
to demonstrate convergence to the viscosity solution.

2.5.1.2 American Options

For American options, if T in Equation 2.4.8 is an M-matrix, then it is straightforward to extend
the analysis in [37] to show that fully implicit time stepping (θ = 0) coupled with a penalty
method [48] is unconditionally stable and monotone in the sense of Definitions 2.5.2.

2.5.2 Stability in the l2 Norm

The von Neumann stability analysis examines a problem over a periodic domain to determine
conditions for the stability of its discrete operators under the l2 norm ([40] §8.3 and [97] §6.8). It
can be related to algebraic stability, in that the necessary conditions for both can be equivalent
[101] §3 in some situations.
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Theorem 2.5.11 Consider a periodic formulation of Equation 2.3.2, discretized with a finite
difference approximation on a grid with constant spacing. The problem is formed with constant
coefficients for the drift and diffusion terms, −1 ≤ ρ ≤ 1 and λC = λ ≥ 0 constant. Either the
cross-partial finite difference of Equations E.1.5 or E.1.6 are used to form the approximation
Gs to G on a seven-point stencil, or Equation E.1.7 used to form Gn over a nine-point stencil.

The time step Equation 2.4.9 is unconditionally von Neumann stable in the l2 norm for
θ = 0 and for θ = 1/2.

Proof. See Appendix F, in particular Appendix F.5 Remark F.5.1. �

2.5.3 Monotonicity and the Finite Difference Approximation

Ensuring that T of Equation 2.4.9 is an M-matrix is the main obstacle to guaranteeing Theorem
2.5.10 holds. In the non-linear case considered in Chapter 4, this is an essential requirement
for convergence to the viscosity solution.

Remark 2.5.12 Let the conditions

• r > 0,

• (−G) is M-compatible,

• J ≥ 0 and

• (maxi
∑

j Jij) ≤ 1 hold.

Then, from Definition 2.5.6, T of Equation 2.4.8 is an M-matrix.

A discretization that satisfies the conditions in Remark 2.5.12 will generate positive off-diagonal
and negative diagonal coefficients in G, (J − I) and hence (−T), so is also called a positive
coefficient discretization [47].

The discrete integral operator matrix J ≥ 0 is explicitly constructed in Section 2.4.3.3 to
have a maximum row sum (maxi

∑
j Jij) ≤ 1 and thus ensures that −(J − I) is M-compatible.

Since r > 0 holds, the M-compatibility of (−G) remains as the last condition of Remark 2.5.12
left to satisfy. To ensure (−G) is compatible with an M-matrix a number of conditions may be
applied or approaches taken, listed as follows with the names that will be used to denote them.

1. “Central differencing as much as possible”
The second order accurate, central difference FD stencil for first partial differential terms
makes negative off-diagonal contributions to G. Suppose, for example, the discrete deriva-
tive terms in G for one direction along an axis at solution point vb, with equidistant,
adjacent nodes va and vc, result in a diffusion term

β1va − (β1 + β2)vb + β2vc, β1,2 > 0

and by central differencing and first order differencing the drift terms result in the ex-
pressions

−α1va + α1vc and − α2vb + α2vc , α1, α2 > 0
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respectively. Central differencing will be used as much as possible to minimize discretiza-
tion error. Only when β1 − α1 < 0 will the first order difference be used instead to
preserve the M-compatibility of (−G). This approach is used in both x1 and x2 direc-
tions. Further details are omitted, since this is standard and completely analogous to the
one dimensional case as described in [38, 113].

Remark 2.5.13 It is taken as given in the remainder of this work that central differencing
is applied as much as possible, with first order differencing where required, to the discrete
drift term for proofs which require (−G) to be M-compatible.

2. “Skewed Grid”
An approach to eliminating negative diffusion coefficients is to transform the problem into
a skewed co-ordinate system as proposed by Hull and White [62, 112]

(ψ1, ψ2) = (σ2x1 + σ1x2, σ2x1 − σ1x2) (2.5.2)

which will result in a zero diffusion correlation in the transformed system. This is, in
effect, a π/4 rotation of the grid followed by a scaling in either the x1 or x2 direction. See
Appendix E.2 for details of the transformed partial differential terms.

3. “Spacing Restricted Grid”
An alternative to Item 2 is to enforce a spacing restriction on the FD grid. For the
following theorem, assume that the discretization is performed on a rectangular grid with
constant grid line spacing. Denote the grid spacing as (∆x1,∆x2) in the (x1, x2) direction.

Theorem 2.5.14 The finite difference discretization of the second partial differential
terms of G is compatible with an M-matrix if the following constraints hold when ρ 6= 0.

(a) For cross-partial derivatives, select the seven-point FD stencil which includes V (x1 +
∆x1, x2 +∆x2) and V (x1−∆x1, x2−∆x2) if ρ > 0 (Equation E.1.5), and the seven-
point stencil which includes V (x1 + ∆x1, x2 − ∆x2) and V (x1 − ∆x1, x2 + ∆x2) if
ρ < 0 (Equation E.1.6).

(b) For each point on the grid

σ1
2

∆x1
≥
∣∣∣∣ρσ1σ2

∆x2

∣∣∣∣ and
σ2

2

∆x2
≥
∣∣∣∣ρσ1σ2

∆x1

∣∣∣∣
which can be written as ∣∣∣∣ρ σ2

σ1

∣∣∣∣ ≤ ∆x2

∆x1
≤
∣∣∣∣1ρ σ2

σ1

∣∣∣∣ . (2.5.3)

With these conditions and item 1 above, (−G) is compatible with an M-matrix.

Proof. See [11] and [89] §9.4. �



CHAPTER 2. BASIC APPROACH USING TWO-ASSET JUMP DIFFUSION 32

The variable-spaced finite difference approach used here has the same restriction, except
applied to both spacings ∆x±1 and ∆x±2 on the ±x1 and ±x2 sides of the central point of
the stencil.

Remark 2.5.15 Consider the finite difference approximation Gn to G on a nine-point
stencil with the four-point second order cross-partial derivative given by Equation E.1.7.
This formulation results in negative off-diagonal coefficients in Gn for ρ 6= 0. Thus this
discretization does not result in (−G) M-compatible for correlation ρ 6= 0 and Theorem
2.5.10 cannot be shown to hold by the M-matrix approach.

4. “Rotated Grid”
A third method to generate a monotone diffusion term discretization is to rotate the finite
difference grid by [112]

θr =
1
2

tan−1

(
2ρσ1σ2

σ1
2 − σ2

2

)
(2.5.4)

which will result in a zero correlation in the diffusion tensor of the rotated system. The
cross-partial derivative is thus eliminated and the FD approximation to the second partial
derivatives is always compatible with an M-matrix. See Appendix E.3 for details of the
transformed partial differential terms.

There are two notable alternative approaches to the problem of monotone diffusion discretiza-
tion [10]: Generalized Finite Differences [14, 15] and edge swapping with a finite volume method
[113]. These are not considered since they may result in a non-local discretization that does
not respect option contract payoff features or price barriers.

2.5.4 Stability Summary

The numerical approach can deviate from the theoretical conditions for stability. The FD
method employed for grids with non-constant spacing has the same conditions for monotonicity
as Theorem 2.5.14. However, the structure of a computationally efficient FD grid is not always
such that these grid spacing conditions are met. Such a grid may not be able to guarantee the
conditions for M-compatibility at every point in the solution domain, although the conditions
will often be met locally in the region of interest near the strike price of the option. In turn,
this has implications for both European and American options: the conditions for l∞ norm
stability cannot be globally guaranteed. This issue was studied in [113] for the pure diffusion
case, where it was shown that if the option value is Lipschitz continuous then coefficients in the
discretization which are not M-compatible cause at worst an O(h) error. The convergence of the
method was demonstrated numerically. Note, also, that the contribution to the linear system
from the integral term works in favour of stability: it tends to correct, rather than worsen, the
problem of the differential term not being M-compatible.

The von Neumann stability analysis fails to apply to the method for European options
where the finite difference grid spacing is not constant in each direction. Jump rate λC is
non-constant, although the analysis demonstrates stability where either λ = 0 or λ > 0 over
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the entire domain. Nonetheless, the von Neumann analysis is interesting because it provides a
less restrictive result than the l∞ norm analysis, indicating strict l2 norm stability regardless
of the ratio of grid spacing between the axes, the time step and the choice of discretization for
the cross-partial derivatives.

The numerical demonstrations in Section 2.7 show the numerical method with Crank–
Nicolson time stepping is quadratically convergent for European and American options despite
the violations of the theoretical stability conditions that have been identified.5 Monotone spa-
tial discretization can be guaranteed by, for instance, employing a rotated co-ordinate system
which eliminates the correlation in the Brownian motion. However, as shown in Section 2.7.4,
this approach can result in higher errors in the solution. Chapter 3 investigates this issue fully in
the context of stochastic volatility problems taken from actual markets, comparing error control
and computational cost for all three fully monotone schemes. Following from that comparison,
the grid rotation approach will be used in Chapter 4 to ensure that this important condition
for convergence to the viscosity solution condition holds for a non-linear problem.

2.6 Solution of the Discrete Equations

The previous sections show how PIDE 2.2.3 has been localized to PIDE 2.3.2 and discretized.
This section focuses on how the time step Equation 2.4.9 is solved using a fixed point iteration
and how American option values are computed using a penalty method. Algorithm 2.6.1 gives
the resulting combined fixed point, penalty iteration.

2.6.1 Fixed Point Iterative Solution for One Time Step

As a motivation for the fixed point iteration scheme consider the semi-discretized Equation
2.4.2. A fixed point iteration scheme, whereby the integral terms are handled in an iterative
manner, avoids having to use the Green’s and Poisson functions of the PIDE. Rather, only the
Green’s and Poisson functions of the differential terms are required.

2.6.1.1 Semi-Discrete Form

Let Zk be the k-th iterate towards a solution Wn+1 of Equation 2.4.2. One step of the iteration
is given by

[1− (1− θ)∆τ (G − r − λC)]Zk+1 = (1− θ)∆τ λCJDZ
k

+ [1 + θ∆τ (G + λCJD − r − λC)]Wn
(2.6.1)

which is repeated until convergence.

5In one case, constructed inadvertently with an extreme spatial grid spacing change, oscillations did appear
even though implicit time steps were taken and upwind weighting was used for the drift terms. A sufficiently
poor choice of grid spacing can indeed cause oscillations in the solution.



CHAPTER 2. BASIC APPROACH USING TWO-ASSET JUMP DIFFUSION 34

Theorem 2.6.1 Let Ek = Wn+1 − Zk be the error in the solution to the semi-discretized
Equation 2.4.2 at iteration k of the functional iteration given in Equation 2.6.1. The iteration
is convergent to zero as

‖Ek+1‖∞ ≤ (1− θ)∆τ λ
1 + (1− θ)∆τ (r + λ)

‖Ek‖∞ .

Proof. See Appendix D.1. �

2.6.1.2 Fully Discrete Form

Now consider the solution of the fully discrete problem in Equation 2.4.9. To avoid having to
invert any matrix such as T of Equation 2.4.8 formed by a sum containing the dense matrix J,
use the discrete version of the iteration of Equation 2.6.1.

Let zk be the k-th iterate towards a solution wn+1 of Equation 2.4.9. The fixed point
iteration is given by

{I− (1− θ)∆τ [G− r I− λIc]} zk+1 = (1− θ)∆τ λIcJz
k

+ {I + θ∆τ [G + λIc(J− I)− r I]}wn + b .
(2.6.2)

The computation IcJz
k is done using the FFT-based method of Equations 2.4.19 and 2.4.20.

The iteration is repeated until an update is obtained which satisfies a relative tolerance of
εu such that

max
i∈1...N

∣∣zk+1 − zk
∣∣
i

max (1, |zk|i , |zk+1|i)
< εu .

The constant of one in this convergence test is set assuming that the typical option value is of
the order of w = 1. This ensures that the convergence requirement does not become extreme for
grid points with small option values. Section 2.7.5 discusses the actual amount of computation
required for each time step.

Theorem 2.6.2 Let ek = wn+1 − zk be the error in the solution to Equation 2.4.9 at itera-
tion k of the fixed-point iteration given in Equation 2.6.2. If J ≥ 0 has maximum row sum
(maxi

∑
j Jij) ≤ 1 and (−G) is M-compatible with ‖G · 1‖∞ = 0, then the error in the iterative

solution zk+1 in Equation 2.6.2 is convergent to zero as

‖ek+1‖∞ ≤ (1− θ)∆τ λ
1 + (1− θ)∆τ (r + λ)

‖ek‖∞ .

Proof. ‖G · 1‖∞ = 0 should hold for any consistent finite difference approximation. See Ap-
pendix D.2. �
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Theorem 2.6.3 Consider a periodic formulation of Equation 2.3.2, discretized with a finite
difference approximation. Let (−G) be formed either by the 7-point or 9-point finite difference
stencil on a grid with constant spacing, as in Theorem 2.5.11.

Then in the sense of von Neumann analysis the iterative solution to Equation 2.4.9 by
Equation 2.6.2 is unconditionally convergent in the l2 norm (i.e. regardless of whether (−G) is
M-compatible) at a rate which is rapid if λ∆τ � 1.

Proof. See Appendix F, in particular Appendix F.5 Remark F.5.2. �

For most practical situations, λ∆τ � 1 and convergence should be rapid. To summarize, this
section has shown the following results.

• The functional fixed-point iteration Equation 2.6.1 for the semi-discrete Equation 2.4.2
is convergent in the l∞ norm. This suggests that, for a sufficiently fine grid, the discrete
iteration should also be convergent.

• If (−G) is M-compatible then by maximum analysis the discrete fixed point iteration is
convergent in the l∞ norm.

• By von Neumann analysis, the iteration is convergent in the l2 norm for a periodic problem
with constant grid spacing, with no restrictions on grid spacing ratio or time step, using
any standard second-order finite difference approximation of the differential operators.

2.6.2 American Options by Penalty Iteration

To solve the discrete, localized version of the linear complementarity problem of Equations
2.2.10 and 2.2.11, the penalty iteration of [48, 111] is applied. In [37] this method was shown
to be l∞ stable for jump-diffusion processes provided that the discrete diffusion portion of the
process was M-compatible and that iterations of the form of Equation 2.6.2 should be rapidly
convergent. If the discretized diffusion operator is an M-matrix then for fully implicit time
stepping the method is l∞ stable and monotone, as proved by maximum analysis. Since a
consistent scheme is used for the differential and integral terms, one may expect convergence
to the viscosity solution of the localized problem [3, 18, 19, 37, 91]. Note that the concept of a
viscosity solution permits non-smooth solutions.

Define a penalty vector ck ∈ RN for iterate zk with elements

(ck)i =

{
Large if w∗i > zk

i

0 if w∗i ≤ zk
i

∀i = 1 . . . N (2.6.3)

where w∗i = I((x1, x2)i) is the vector of option payoff values, the minimum value of an American
option at any time. A value of Large ' 105 is usually sufficiently large to impose the condition
without causing numerical inaccuracy.

To impose the American constraint, Equation 2.6.2 is modified by adding the term(
ck
)′

I
(
w∗ − zk+1

)



CHAPTER 2. BASIC APPROACH USING TWO-ASSET JUMP DIFFUSION 36

to the RHS, where
(
ck
)′ denotes the transpose of ck. Vector ck is updated before each linear

system is constructed and solved, iterating from z0 = wn for solutions zk+1 for k = 0 to
convergence. The penalty iteration is incorporated into the fixed point iteration Equation 2.6.2
without adding another level of iteration. The resulting combined penalty, fixed point iteration
for non-linear system solution is given as Algorithm 2.6.1.

Intuitively, the penalty iteration may be thought of as the adaptive imposition of a Dirichlet
free boundary condition. The same approach can be used to impose a maximum value on an
option.

2.6.3 Linear System Solution

Each iteration towards the solution of a time step requires solving the linear system given in
Equation 2.6.2. In the case of American options, the linear system also contains a penalty
constraint as in Step 5 of Algorithm 2.6.1. For one-factor options, a direct solution method
based on Gaussian elimination is suitable. For two-factor options a direct method would be
unacceptably expensive, thus a preconditioned, Krylov-subspace, iterative method is used. Fol-
lowing the results of [113, 37, 98] and after some experimentation, Bi-CGStab was selected
combined with an ILU(2) preconditioner and RCM re-ordering. A relative point-wise update
to zk+1

i , at each node i, of no more than εl · max(1, vn
i ) must be attained in both Bi-CGStab

update vectors, hence in the total solution update, before it is accepted as a solution.

2.7 Numerical Demonstrations

For the numerical demonstrations, the value of three option contracts were computed with
two different types of jump-diffusion. The convergence was tested as ΩC ,ΩD → ±∞. Up to
quadratic convergence to the solution of both European and American options is shown as the
number of discrete solution nodes is increased in time and log-price.

2.7.1 Two-Asset Sample Problems: Two Markets, Three Contracts

Two jump PDF functions were chosen: the bi-variate Normal and the Marshall-Olkin Bi-variate
Exponential Distribution (MOBED). Both are described in detail in Appendix B. As noted
previously, these correspond in form to the well-known, one-asset models of Merton [86] and of
Kou [72]. Table 2.7.1 lists the model coefficients, which are of a magnitude that is plausible for
a real market.6

As a demonstration, the value of a European call on the maximum of two assets and a
European and American put on the minimum of two assets were computed. Each option had
a strike K = 100, an expiry of T = 1 and a risk free rate r = 0.05. A high-accuracy, semi-
analytic solution, computed using the method described in [46], was used for comparison with
the numerical solution of the European options.

6Compare the values in Table 3.5.1 of Chapter 3 which are drawn from statistical fits to actual markets.
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Jump Distribution
Diffusion Parameter Normal MOBED

σ1 0.12 0.12
σ2 0.15 0.15
ρ 0.30 0.30

Jump Parameter
λ 1.20 1.00
µ̌1 -0.10 0.00
µ̌2 0.10 0.00
ρ̌ -0.40
σ̌1 0.12
σ̌2 0.15
p̌1 0.40
p̌2 0.60
η̌p,1 1/0.20
η̌p,2 1/0.18
η̌q,1 1/0.15
η̌q,2 1/0.14
η̌pp 1/0.15
η̌qq 1/0.16
η̌pq 1/0.12
η̌qp 1/0.15

Table 2.7.1: The two parameter sets used for the numerical examples in this chapter.
These are not taken from actual market values, but represent parameter values in a
plausible range for a real market process. See Appendix B for the definitions of the
jump distribution coefficients. Solutions were computed with r = 0.05, strike K = 100
and expiry T = 1.
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Figure 2.7.1: This coarse grid
in log-price scaling over ΩD shows
grid line concentration in the ΩC re-
gion around the strike of K = 100.
The actual grids were extended very
coarsely to approximately S1, S2 =
11 . . . 900 to capture enough of the
solution to control the error from
the jump-diffusion computation.
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Figure 2.7.2: This coarse grid
in log-price scaling over ΩD, with
node concentration in the ΩC region
around the strike of K = 100, is ro-
tated by −26.57 degrees around the
strike node. This ensures that the
spatial finite difference approxima-
tion to the problem specified in Ta-
ble 2.7.1 generates an M-matrix.
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Algorithm 2.6.1 Solve one time step using a simultaneous fixed point, penalty iteration.

FixedPointIteration( wn, w∗, θ, ∆τ , T, G, J, λIc, b, εu )
where

wn the price at time step n
w∗ the minimum option value (usually the payoff)
θ time step weight
∆τ time step size
T,G, J, λIc the discrete PIDE to be solved, Equation 2.4.8
b boundary condition imposition vector
εu required solution update tolerance

1. Set zk=0 = wn.

2. For k = 0, 1, 2, 3, . . . until convergence (tested in Step 6)

3. For American options: set ck using Equation 2.6.3.
For European options: set ck = 0.

4. Set Nk = [I− (1− θ)∆τ (G− r I− λIc)] + (ck)′I

yk = [(1− θ)∆τ λ IcJ] zk + [I− θ∆τ T]wn + b + (ck)′I w∗

where
IcJz

k ' Ic (K · F · L) zk. (see Equation 2.4.20)

5. Solve Nk zk+1 = yk using ILU(2) preconditioned, Bi-CGStab.
(see Section 2.6.3)

6. If maxi

∣∣zk+1 − zk
∣∣
i

max (1, |zk|i , |zk+1|i)
< εu then the iteration is finished.

End For

Return the solution vector wn+1 = zk+1.
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The region near (x1, x2) = (log(K), log(K)) was discretized with a constant grid spacing
(∆x1,∆x2). Crank–Nicolson time stepping was used with a constant time step ∆τ , so that
convergence could be demonstrated with respect to a well controlled amount of computational
effort. Variable grid spacing [94] or time stepping [112] can provide computational savings,
but this thesis does not investigate these issues. Figure 2.7.1 shows the coarsest grid used for
the demonstrations of Section 2.7.3 below. Over ΩD \ ΩC solutions are expected to be mostly
piecewise linear in price scaling, hence that region remains only coarsely resolved. Regions of
the problem generated discrete equations which did not result in an M-matrix. However, the
overall problem solution proceeded with no actual numerical oscillations detected in the region
of interest around the strike. This is consistent with previous efforts [113] for pure diffusion
models.

The DFT grid spacing was set to (∆xf,1,∆xf,2) = (2∆x1, 2∆x2), twice the constant FD
grid spacing (∆x1,∆x2) near the strike node at (log(K), log(K)). The smallest integers N1 and
N2 = 2a 3b 5c 7d , a, b, c, d ∈ Z where a ≥ 1, b, c, d ≥ 0 were selected (as dictated by the choice of
FFT solution package7) such that the DFT grid of NF = N1 ×N2 nodes overlapped the finite
difference grid fully. Recall that N1 6= N2 in general, although in the following experiments the
two values were equal. This approach resulted in a number of DFT grid nodes which was of
the same order as the number of FD grid nodes.

The error tolerance parameters used for the grid refinement demonstrations were

• εc = 10−3, which must be satisfied by the size of ΩC (Equation 2.3.12),

• εd = 10−4, which dictates the minimum distance from ∂ΩC to ∂ΩD (Equation 2.3.13),

• εu = 10−7 for a relative update to a time-step solution by fixed point or combined fixed
point, penalty iteration (Section 2.6.1) and

• εl = 10−8 for a relative update by Bi-CGStab to a linear system solution (Section 2.6.3).

2.7.2 Convergence as ΩC , ΩD → Ω∞

As a partial demonstration of Theorem 2.3.7, four solutions were computed for the European
call on the maximum of two assets using grids of increasing size. The four ranges for ΩC and ΩD

are given in price scaling in the left column of Table 2.7.2. Each is roughly symmetric around
the strike node at (x1, x2) = (log(K), log(K)). The ΩD size is not a round number because it
is extended so that the grid retains a constant, but coarse spacing near the boundary in each
direction.

In order to focus on the effect of the localization error, all grids had a spacing at the strike
of ∆x1 = ∆x2 = 0.02 and each larger grid was formed as a simple extension of the previous
one. In other words, this does not reduce discretization error in an attempt to converge to the
exact solution, but rather examines the effect of the localization error for a fixed grid spacing.
The time step was ∆τ = 0.02 and the DFT grids had a spacing of ∆xf,1 = ∆xf,2 = 0.04.

7The FFTW library, available at http://fftw.org, implements an efficient Winograd transform algorithm.
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Grid Range Normal Difference vs. Largest ΩD

(Price Scale) S2 S1 = 90 100 110 90 100 110
ΩC : 60 → 165 90 11.3294 16.5689 23.4341 -0.0590 -0.0455 -0.0434

ΩD : 39.1 → 256 100 15.7163 20.4293 26.7527 -0.0582 -0.0485 -0.0530
DFT 60× 60 110 21.5055 25.4602 31.0294 -0.0807 -0.0771 -0.0893

ΩC : 50 → 200 90 11.3818 16.6109 23.4749 -0.0066 -0.0034 -0.0025
ΩD : 19.0 → 525 100 15.7710 20.4765 26.8047 -0.0034 -0.0012 -0.0009

DFT 90× 90 110 21.5845 25.5368 31.1180 -0.0018 -0.0005 -0.0007

ΩC : 25 → 400 90 11.3884 16.6144 23.4775 0.0001 0.0001 0.0001
ΩD : 9.4 → 903 100 15.7746 20.4779 26.8058 0.0001 0.0001 0.0001
DFT 112× 112 110 21.5865 25.5375 31.1190 0.0003 0.0003 0.0003

ΩC : 20 → 500 90 11.3884 16.6143 23.4774
ΩD : 8.7 → 1147 100 15.7745 20.4778 26.8057
DFT 126× 126 110 21.5862 25.5372 31.1187

Table 2.7.2: To show the effects of extending the domain, the value of the European
call on the maximum of two assets is computed using the Normal jumps model. The
ΩC and ΩD ranges are given in the left column in price scaling, along with the DFT
grid size. The FD grid has a spacing of ∆x1 = ∆x2 = 0.02 near the strike and the
time step was fixed at ∆τ = 0.02. Crank–Nicolson time stepping was used. Points
at S1, S2 = {90, 100, 110} are given for each grid. The three larger grids were each
formed by extending the next smallest grid with additional lines. The error is measured
against the solution over the largest domain ΩD : 8.7 → 1147. As the upper and lower
limits of ΩC and ΩD are extended, the difference between grids tends to diminish.

Table 2.7.2 shows the option values for the problem under Normally distributed jumps and
also shows the difference measured against the solution on the largest domain. Note that the
first two grids are, using the εc and εd specified above, somewhat too small around a small region
of interest from S1, S2 = 80 → 125. Since the convergence theorem does not address specific
cases, it may only be noted that the error tends to diminish as the domains are extended and
that the difference between the computations over the two largest domains is of the order of
the εc and εd parameters.

Theorem 2.3.8 notes that, as the domain size increases, a perturbed boundary condition
should generate a smaller error in the solution. The computations of Table 2.7.2 were repeated
with a +50% lower Dirichlet boundary condition error. No significant difference to the values
reported in Table 2.7.2 was noted. Recall that in the ΩD \ΩC region only the diffusion equation
is solved. The rapid decay of error from the boundary condition is consistent with the results
of [69, 112]. These results indicate that the propagation of that error into the interior domain
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European
TS FD TS FD DFT FP per Linear per

Grid ∆τ ∆x1,2 Nτ N N1,2 Iters TS Iters FP

1 0.04 0.04 25 4489 60 106 4.2 318 3.0

2 0.02 0.02 50 17689 112 180 3.6 540 3.0

3 0.01 0.01 100 70225 224 320 3.2 960 3.0

American

1 0.04 0.04 108 4.3 324 3.0

2 0.02 0.02 202 3.4 606 3.0

3 0.01 0.01 338 3.4 1014 3.0

Table 2.7.3: For each grid refinement, the time step and finite difference (FD) grid
spacing near the strike are listed. The number of time steps Nτ , FD grid nodes N and
FFT grid nodes in each dimension N1, N2 are listed. The total number of fixed point
(FP) and linear solver iterations required to complete the solution of the European and
American put options on the minimum of two assets are given for the test case with
Normally distributed jumps. Crank–Nicolson time stepping was used. Also shown
are the average number of fixed point iterations required to advance each time step
and the average number of linear solver iterations required to solve each fixed point
iteration. The values for the MOBED test case and for the European call on the
maximum of two assets were approximately equal to these values.

by the jump process is too small to note.

2.7.3 Convergence with Grid Refinement

In this section, convergence is examined with respect to grid and time step refinement using
ΩD = [9.4, 903] × [9.4, 903], ΩC = [25, 400] × [25, 400] (in price scaling). The error due to
the domain size, using Table 2.7.2, was ∼ 10−3 smaller than the best absolute error in the
experiments which follow. The coarsest FD grid has a spacing of ∆x1 = ∆x2 = 0.04 in a region
around the strike as shown in Figure 2.7.1. For each of the next two grids the grid spacing was
refined by two, doubling the number of finite difference grid lines in each direction. At each
grid refinement, the time step is halved from the coarse grid value of ∆τ = 0.04. The DFT grid
had a spacing of ∆xf,1 = ∆xf,2 = 0.08 on the coarsest grid, which was also refined along with
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Grid MOBED Absolute Error ε
S2 S1 = 90 100 110 90 100 110

1 90 7.3114 11.5232 18.2544 0.3161 0.2377 0.1863
100 11.8378 15.0514 20.6943 0.3448 0.2841 0.2859
110 18.6118 20.8044 24.9160 0.4007 0.4045 0.3534

2 90 7.0680 11.3398 18.1083 0.0728 0.0543 0.0402
100 11.5751 14.8357 20.4730 0.0820 0.0684 0.0646
110 18.3068 20.4956 24.6456 0.0956 0.0957 0.0830

3 90 7.0140 11.2993 18.0787 0.0188 0.0138 0.0106
100 11.5138 14.7842 20.4253 0.0208 0.0169 0.0168
110 18.2358 20.4246 24.5835 0.0246 0.0247 0.0209

Convergence 90 2.0 2.0 1.9
Exponent α 100 2.0 2.0 1.9
Grid 2 to 3 110 2.0 2.0 2.0

Table 2.7.4: Numerical solution of the European call on a maximum of two assets
with the parameters given in Table 2.7.1. The MOBED model results are reported
with an absolute error. Note that the approximate asymptotic convergence, reported
here for the two finest grids, approaches the ideal quadratic O((∆τ)2, (∆x)2) as the
grid and time step is refined. Crank–Nicolson time stepping was used. The error was
computed by comparison with the semi-analytic solution [46].

each FD grid. Table 2.7.3 lists the grid spacing and time step sizes, as well as the time step
and grid node counts at each resolution. The objective was to form a coarse grid scenario that
generated an error of the order of 1% to 3% for European options.

The grid sizes and the computed results for the European call on the maximum are given
in Table 2.7.4 for the MOBED jumps model. The semi-analytic solution, computed using
Fourier methods [46], allows a highly accurate measure of the error in the numerical scheme.
If ε is the error in the numerical solution, the working assumption is that ε = c∆x1

α and
∆x2,∆τ = O(∆x1) (see Appendix E.4). Table 2.7.4 reports the approximate convergence
exponent α. The asymptotic convergence of the price is roughly quadratic, which is computed
from the error values on the two finest grids.

2.7.4 Convergence Using a Rotated Grid

As noted in Section 2.5.3, rotation of the coordinate system and finite difference grid by θr

in Equation 2.5.4 will result in a monotone spatial discretization. Fully implicit time stepping
results in a fully monotone, consistent and stable method, which are required for convergence
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to the viscosity solution [18]. As well, both the fixed point and penalty iteration are guaranteed
to be globally convergent. From a theoretical point of view, this is highly beneficial.

A set of computations were performed with rotated grids, the coarsest of which is shown
in Figure 2.7.2. These grids were formed by taking the FD grids of Section 2.7.3 and slightly
extending the region where the grid was most highly refined. Since the payoff features are
aligned with the axes, this extension was intended to ensure that the region around the strike
remained as well covered with fine grid points as with the unrotated grids. The grids were
then extended at the boundaries, rotated around (x1, x2) = (log(100), log(100)) by θr = −26.57
degrees, then nodes outside of the original ΩD were removed. The DFT grids used were the
same as the unrotated case. The lower boundary condition specified in Equation 2.3.5 was not
applied on the rotated grid. Instead, a Dirichlet boundary condition was imposed on all of
∂ΩD using the initial conditions. To estimate the effect this had on the solution, the unrotated
grid tests were repeated with this new lower boundary condition. The absolute difference in
the solution at the strike was less than 10−6. Thus, for this problem, this boundary condition
approximation appears to be acceptable for the rotated grid case.

Previous research [113] has shown that, for the pure diffusion case, rotating the co-ordinate
systems and grids produces a solution which is less accurate than the unrotated computation
for the same grid spacing. In the rotated co-ordinates, initial conditions and barriers cannot be
represented exactly. The grid rotation ensured that there was a node at the strike (S1, S2) =
(100, 100) in common with the original grid, but other nodes did not line up with points of
non-smoothness in the payoff.

Comparing Table 2.7.5 with the results in Table 2.7.4 for the conventional grid, the error
is slightly larger for the rotated grid at the same mesh size: approximately 1.5 times that of
the conventional solution over all grid resolutions. The solutions generated by the conventional
grids generated no actual instabilities, so using grid rotation to ensure that the discretization of
the diffusion terms yields an M -matrix seems unjustified for this problem in a practical setting.

2.7.5 Convergence of American Options

The demonstrations of convergence with grid refinement were repeated with an American put
on the minimum of two assets for both the Normal and MOBED jump distributions. These
used the same domain, set of grids and time step sizes as in Section 2.7.3. Crank–Nicolson
time stepping was used. The results are given in Table 2.7.6 for nine points, all of which were
outside the region where the American minimum value constraint is imposed. In this case
the exact solution is not available. Consequently, the error is assumed to be ε = c∆x1

α with
∆x2,∆τ = O(∆x1) and the convergence exponent was computed by examining the ratio of
the difference in the computed option values for three mesh sizes. The α exponent is reported
at the same point on the three grids and is roughly two in the MOBED case. In the Normal
case the convergence is reported well above two. However, when the experiment was repeated
with one further grid refinement, the convergence over the three finest grids for the Normal
distribution was between α = 1.6 and 1.8.

Figure 2.7.3 shows the results over the core of ΩC in price scaling for the option using
MOBED jumps. The two disconnected, dark regions on the surface represent areas where the
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Rotated MOBED Absolute
Grid Value at (100, 100) Error ε

1 15.1901 0.4228
2 14.8714 0.1041
3 14.7933 0.0260

Convergence Exponent α,
Grid 2 to 3 1.8

Table 2.7.5: Numeric solution to the European call on a maximum of two assets with
the parameters given in Table 2.7.1. The MOBED model results are reported with the
absolute error. The FD grid was rotated by θr = −26.57 degrees to guarantee that
the spatial finite difference approximation is monotone. Crank–Nicolson time stepping
was used. Convergence is asymptotically quadratic, but there is a modest increase in
absolute error when compared with Table 2.7.4.

penalty method has imposed the American minimum constraint on the solution, usually called
the “early exercise” region. In this region the numerical error is controlled by Large of Equation
2.6.3 and is not significant at the grid nodes.

The spatial location of the free boundary between the constrained and unconstrained region
is resolved to within the grid spacing. Along the S1 = 100 line the boundary of the American
payoff, for the MOBED problem, is at S2 = 78.7 at the coarsest grid resolution with ∆x1 = 0.04
and S2 = 80.3 for the two finer grids. Along the S2 = 100 line, the boundary is at S1 = 81.9 for
all three grids. In both the Normal and MOBED test cases, each refinement of the grid placed
the boundary within (∆x1,∆x2) of its location on the coarser grids.

2.7.6 Computational Cost

Table 2.7.3 shows the total number of fixed point and linear solver iterations required for the
entire solution of the put on the minimum of two assets in both the European and American
cases with Normally distributed jumps. As predicted for the European case in Section 2.6.1,
the number of fixed-point iterations required to advance a single time step diminishes with ∆τ :
an average of 4.2 iterations were required with ∆τ = 0.04 but only 3.2 when ∆τ = 0.01. For
an American option, on average, between 4.3 and 3.4 iterations of the combined fixed point,
penalty algorithm were required. For both options, 3.0 linear solver iterations were required to
converge to the solution of the equation in Step 5 of Algorithm 2.6.1. The demonstrations have
shown that the rapid convergence indicated by the analyses in Section 2.6.1 is achieved in the
actual tests, that the penalty iteration incurs only modest additional work and, also, that each
resulting linear system is easy to solve.
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Grid Normal MOBED
S2 S1 = 90 100 110 90 100 110

1 90 19.5633 16.9359 15.3132 14.7744 12.2635 11.3460
100 15.8647 12.5443 10.5400 12.0048 7.9551 6.3010
110 13.5349 9.6916 7.4036 10.9220 5.9661 3.8029

2 90 19.4776 16.8221 15.1976 14.6689 12.1644 11.2836
100 15.7799 12.4401 10.4135 11.8671 7.8509 6.2074
110 13.4611 9.5726 7.2579 10.8112 5.8345 3.6758

3 90 19.4619 16.8007 15.1755 14.6437 12.1421 11.2698
100 15.7648 12.4207 10.3894 11.8350 7.8252 6.1854
110 13.4488 9.5510 7.2305 10.7861 5.8031 3.6467

Convergence 90 2.5 2.4 2.4 2.1 2.1 2.2
Exponent α 100 2.5 2.4 2.4 2.1 2.0 2.1

110 2.6 2.5 2.4 2.1 2.1 2.1

Table 2.7.6: Numeric solution to the American put on a minimum of two assets
with the parameters given in Table 2.7.1. Crank–Nicolson time stepping was used.
The Normal and MOBED jumps model values are reported. Note that convergence is
roughly quadratic as the grid and time step is refined.
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Figure 2.7.3: The solution surface for the value of an American put over the minimum
of Assets 1 and 2 with MOBED jumps and parameters from Table 2.7.1. The two,
disconnected, darker regions denote areas where the American minimum constraint is
imposed.
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2.8 Chapter Summary

The governing PIDE for valuing a two-asset, European option is a linear, infinite-domain, initial-
value problem. This chapter has presented an approach to localizing this to a finite-domain,
initial-boundary value problem. The convergence of the approach was proved rigorously using a
Green’s function analysis. Numerical tests confirmed that the localization approach is effective.

The discretization of the localized PIDE was presented. It employed finite-differences, a
second-order accurate interpolation and numerical quadrature and Crank–Nicolson time step-
ping. An efficient method for evaluating the integral term was presented, which exploits the
algebraic identity relating a correlation to a Fourier transform. The stability of the discrete
equations was investigated in both the l∞ norm by maximum analysis and the l2 norm by von
Neumann analysis. Stability by maximum analysis requires a monotone discretization in space.
Three standard methods were reviewed which create a monotone, finite-difference discretization
when the coefficients of the diffusion terms are constant. A restriction in ∆τ is required for the
maximum analysis when the time step method is second order accurate. The von Neumann
analysis indicates l2 norm stability regardless of time step or grid spacing, but this analysis is
limited to a periodic, initial value problem on a regular grid.

The fixed point iteration was presented and proved convergent when formulated using a
semi-discretization in time. With a monotone spatial discretization, the iteration is convergent
in the l∞ norm by maximum analysis. By von Neumann analysis the iteration is also always
convergent in the l2 norm. The convergence is rapid for typical values of the jump rate parameter
λ and time step ∆τ .

Numerical demonstrations with conventional and rotated grids, for both American and
European payoffs, confirmed that the overall method is up to second order convergent with
respect to the discretization size in space and time. These tests also demonstrated that the
convergence rate of the fixed point iteration method agreed with theory. The demonstrations
used market parameters which were synthetic, but had values typical of an equity market.



Chapter 3

Stochastic Volatility with Jumps and
Fully Monotone Methods

3.1 Introduction

The numerical methods presented in Chapter 2 are modified in this chapter to value options
on a single asset, where the asset price model is a risk-neutral diffusion with finite activity
jumps and the variance of the diffusion is stochastic. As noted in the introduction, the variance
model studied here is the mean-reverting, diffusion process of Heston [60] with an added jump
term. The jumps in the logarithm of the price may have any distribution, but the jumps in
variance must be positive and may be correlated with the price jumps. For brevity, the working
example is the two-dimensional distribution used by Duffie, Pan and Singleton [41], as well as
the one-dimensional Normal and positive exponential distributions which arise when certain of
its parameters go to zero.

The particular focus of this chapter will be the calculation of option values when the model
parameters are derived from actual financial markets, rather than using synthetic problems as
in Chapter 2. In these real-life examples a number of degenerate cases appear, which require
the solution method to be adapted. Under these conditions, the three approaches for monotone
diffusion discretization listed in Section 2.5.3 for constant coefficient problems (the skewed,
rotated and spacing restricted grids) are adapted for stochastic volatility, which has coefficients
that change along the independent variable axis of variance. The three approaches are compared
for the relative error they incur and their relative computational cost. This comparison informs
the approach in Chapter 4, which selects the most efficient of the monotone spatial discretization
methods as the basis for the solution method for a non-linear problem.

3.1.1 Previous Work

The semi-analytic, Fourier transform method for European options under affine price processes
created by Duffie et al. [41] also applies under stochastic volatility with jumps. Boyarchenko
et al. [16] extend this semi-analytic approach for one-touch options. The integral equation

49
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approach of Tsavalis et al. [104] or Chiarella et al. [29] can value American options using
stochastic volatility models under assumptions about the form of the free boundary.

The two-factor numerical PDE approaches of Zvan et al. [111, 112, 113] were also applied to
stochastic volatility alone. These are fully implicit and produce linear to quadratic convergence.
In Chapter 2 and in [113], some solutions and results for two-factor monotone methods are
reported. Recent work by Ikonen et al. [63, 64] also explores grid spacing restriction to form
monotone methods for stochastic volatility and form an operator splitting approach.

3.1.2 Overview of this Chapter

Section 3.2 reviews the governing equations of the price process used in this chapter. Section 3.3
reviews and modifies the localization approach of Section 2.3 for the Heston stochastic volatility
model with jumps. Alterations in the stability and monotonicity constraints are addressed in
Section 3.4. Section 3.5 demonstrates the approach applied to some fundamental contracts:
European and American vanilla options and a one-touch digital option.

3.1.2.1 Synopsis of Contributions in this Chapter

The contributions in this chapter are as follows.

• The extension of two-asset PIDE localization and solution technique of Chapter 2 to Hes-
ton stochastic volatility [60] with jumps is detailed in Sections 3.3 and 3.4. In particular,
this permits solutions to options with American exercise and also solutions to one-touch
digital options without the complexities of the analytic formulation of Boyarchenko et al.
[16].

• Numerical demonstrations are provided in Section 3.5.1 of European, American and one-
touch digital options demonstrate the efficiency of the approach in the stochastic volatility
case. Between 4 and 9 fixed point iterations are required to solve each time step. In the
stochastic volatility case, problem parameters are taken from studies of actual markets.

• The three approaches to monotone diffusion discretization of Section 2.5.3 are modified in
Section 3.4.3 for Heston stochastic volatility. Numerical evaluations in Section 3.5.2 use
only completely monotone discretizations which, although the approach is only linearly
convergent, are required for convergence to the viscosity solution. The computational
cost and absolute error of each monotone approach is evaluated against the conventional,
non-monotone alternative.

3.2 Governing Equations

In this chapter, the objective is to find the theoretical value U of a financial option on an asset
with price S. The asset price evolves by a risk-neutral, time-dependent, jump diffusion, while
the diffusion variance v evolves by a mean-reverting drift diffusion process also with jumps.
The finite activity jump process for the two factors is independent of the diffusion, but jumps
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in price and variance may be correlated. The option value is given by the solution of a partial
integro-differential equation over three independent variables: the time to expiry τ = T − t and
two spatial dimensions, the logarithm of the asset price x and its diffusion variance v where

τ ∈ [0, T ]
S ∈ [0,∞]

(x, v) = (log(S), v) ∈ [−∞,∞]× [0,∞] = Ω∞ .

(3.2.1)

The contract is written at t = t0 when τ = T remains and the asset price x0 = log(S0) and
variance v0 can be measured from the market. The contract pays I(x) at expiry time t = t0+T ,
when τ = 0. The value of a European option U(x, v, τ) over Ω∞ × [0, T ] is found by taking
expectations under the risk-neutral price process (see Appendix A.2, [18, 33]) and solving

∂U

∂τ
= LU + λHU

U(x, v, 0) = I(x)
(3.2.2)

where, for this chapter,

LU =
(
r − v

2

)∂U
∂x

+ κv (θv − v)
∂U

∂v
+

1
2
v

[
∂2U

∂x2
+ 2ρvσv

∂2U

∂x∂v
+ σv

2∂
2U

∂v2

]
− rU (3.2.3)

λHU = λ

∫ ∞

−∞

∫ ∞

0
g(Jx, Jv)

[
U (x+ Jx, v + Jv)− U −

(
eJx − 1

) ∂U
∂x

]
dJx dJv (3.2.4)

g = g(Jx, Jv) ∈ R

with parameters
r ≥ 0 the risk free rate of return,
σv ≥ 0 the volatility of the asset variance,
κv > 0 the rate of return to
θv ≥ 0 the reversion variance and
|ρv| ≤ 1 the correlation between the diffusion of x and v.
λ > 0 is the mean arrival rate of Poisson-distributed jump events and

Jx, Jv ∼ g(Jx, Jv) are the jump magnitudes and the PDF by which they are distributed,
where

Jv ≥ 0 is required to ensure that v ≥ 0 after a jump.

As in Chapter 2, g(Jx, Jv) must satisfy the technical conditions of [54] §II.1.2 Definition 1.6, so
that the second term of the integral of Equation 3.2.4 can be written∫ ∞

−∞

∫ ∞

0
g(Jx, Jv)U(x, v, τ) dJx dJv = U(x, v, τ) (3.2.5)

and the third term ∫ ∞

−∞

∫ ∞

0
g(Jx, Jv)

[(
eJx − 1

) ∂U
∂x

]
dJx dJv = κx

∂U

∂x
(3.2.6)
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where value |κx| <∞ corrects for the mean drift in price which is due to jumps. Although any
g(x, v) satisfying these constraints may be used, this study will use the example from [41] given
by

gd(x, v) =


exp {−v/µ̌v}

µ̌v
· 1
σ̌x

√
2π

exp

{
−1

2

(
x− (µ̌x + vρ̌j)

σ̌x

)2
}

if v ≥ 0

0 if v < 0

(3.2.7)

where µ̌x and σ̌x ≥ 0 specify the mean and standard deviation of the Normal distribution in
x and µ̌v ≥ 0 is the mean of the positive exponential distribution in v. Parameter ρ̌j induces
correlation, but is not the usual linear correlation so is not bounded in the usual range. If
µ̌v = 0 or σ̌x = 0 then Equation 3.2.7 specifies a one-dimensional jump process. If σ̌x = 0 and
ρ̌j 6= 0 then this process is still defined using both x and v dimensions. The PDF is defined
for v < 0 so that the correlation term in Equation 3.2.4 may be re-arranged to Equation 3.3.7
below.

The value of an American option is, again, the solution to a linear complementarity problem
[91, 110] similar to Equations 2.2.10 and 2.2.11

∂U

∂τ
≥ LU + λHU (3.2.8)

U(x, v, τ) ≥ I(x) (3.2.9)
U(x, v, 0) = I(x)

where at least one of Equations 3.2.8 or 3.2.9 must hold with equality.
The PIDE initial conditions I(x) are defined by the terminal payoff of the option contract.

In this chapter, it is assumed that the payoff has no dependence on v. For an option with strike
price K some typical contracts are

I(x) =


max(exp(x)−K, 0) = max(S −K, 0) vanilla call
max(K − exp(x), 0) = max(K − S, 0) vanilla put
0|x<log(K) , 1|x≥log(K) digital call and
0|x>log(K) , 1|x≤log(K) digital put.

(3.2.10)

Imposing an American condition on a digital put (call) results in a digital “one-touch” option.
There is a region below (above) K where the option value is constant as a function of asset
price. Since the integral operation of PIDE 3.2.2 is not local this barrier does not result in a
domain bounded at x = log(K), as it would in the pure diffusion case.

3.3 Localization

The solution of PIDE 3.2.2 on the infinite domain is approximated by solving the PIDE on the
finite domain

ΩD = [−XD, XD]× [0, vD] (3.3.1)
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as shown in Figure 3.3.1. Again, the integral term in PIDE 3.2.2 must be truncated to ΩD,
which is equivalent to assuming a zero value outside the domain and introduces an error. As
in the two-asset case, the full PIDE 3.2.2 is only solved on a smaller domain

ΩC = [−XC , XC ]× [0, vC ] ; 0 < XC < XD, 0 < vC < vD (3.3.2)

and an approximation computed over the remainder of ΩD so as to limit the error in the
truncated correlation integral term. Note that in this case a portion of the v = 0 boundary is
considered to be inside ΩC .

Similarly to the two-asset case, observe that a sufficiently large ΩD would have, letting
V (x, v, τ) denote the solution to the localized equations,

V ' a(τ)S + b(τ); S = ex (3.3.3)

over large portions of the solution because of the independence of the payoff from v. If we write
PIDE 3.2.2 in terms of S then it may be deduced that

• when S = 0 (x→ −∞) then V = b1(τ),

• as S →∞ (x→∞) then V = a2(τ)S + b2(τ) and

• as v → ∞, which is the coefficient of asset price diffusion in PIDE 3.2.2, then V '
a3(τ)S + b3(τ). This also implies that ∂V/∂v → 0 as v →∞.

In these limits, HU ' 0 similarly to the two-asset case in Section 2.3.2. Thus over ΩD \ ΩC

(the portion of the solution outside ΩC) the numerical technique which follows will again solve
the portion of PIDE 3.2.2 which remains after setting λ = 0.

Rearranging PIDE 3.2.2 and applying Equations 3.2.5 and 3.2.6, the option value V (x, v, τ)
over the localized domain ΩD × [0, T ] is given by solving

∂V

∂τ
= GV − (r + λC)V + λCJ V

V (x, v, 0) = I(x)
V (x, v, τ) = B(x, v, τ) ; (x, v) ∈ ∂ΩD

(3.3.4)

where, for this chapter,

GV =
(
r − v

2
− λCκx

)∂V
∂x

+ κv (θv − v)
∂V

∂v
+

1
2
v

[
∂2V

∂x2
+ 2ρvσv

∂2V

∂x∂v
+ σv

2∂
2V

∂v2

]
(3.3.5)

λC =

{
λ for (x, v) ∈ ΩC

0 for (x, v) ∈ ΩD \ ΩC (the region outside ΩC) and
(3.3.6)

J V =
∫∫

(Jx,Jv)∈ΩD

g(x− Jx, v − Jv) V (x, v) dJx dJv . (3.3.7)

Operator G contains all of the differential terms of Equations 3.2.2 and 3.2.6. J is the correlation
integral term of Equation 3.2.2 truncated on ΩD, arranged so that the integration bounds are
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∂ΩD

λC = 0

v

ΩC

ΩD

λC > 0

(log(K), v0)

∂ΩC

x(−XC , 0)

(XD, vD)

(−XD, 0)

(XC , vC)

Figure 3.3.1: Domains ΩC ⊂ ΩD with boundaries ∂ΩC and ∂ΩD truncate the
infinite domain. Over ΩC , λC > 0 so that the PIDE 3.2.2 is computed with the jump
component in ΩC only. ΩD has a lower bound intersecting the x axis at a finite point
on the price axis in log-scaling, thus above the zero axis of the unscaled asset price S.
Although this figure shows the domains with symmetric x bounds 0 < XC < XD this
is for convenience only: in general, the upper and lower boundaries in x need not be
symmetric.

(Jx, Jv) ∈ ΩD, the form most like the final numerical method. Note that this form is why
gd(x, v < 0) = 0 in Equation 3.2.7.

At v = 0 Equation 3.3.4 is solved; no additional boundary condition is required because the
characteristics in the v direction are outgoing. The jump term remains on the portion of v = 0
inside ΩC , which is an additional complexity compared to the two-asset problem of Chapter 2.
On the v = vD boundary λC = 0 and the condition ∂V/∂v = 0 is set as in [49, 111]. Thus, on
the v boundaries

∂V

∂τ
=


(r − λCκx)

∂V

∂x
+ κvθv

∂V

∂v
− (r + λC)V + λCJDV on v = 0, x ∈ (−XD, XD)

(
r − v

2

)∂V
∂x

+
1
2
v
∂2V

∂x2
− rV on v = vD, x ∈ (−XD, XD) .

(3.3.8)
As noted at the start of this section V (x → −∞, v, τ) = b1(τ) so the lower boundary in x

is set to
∂V

∂τ
= −rV on x = −XD, v = [0, vD] (3.3.9)

and from Equation 3.3.3 the upper boundary in x is set to

V (x, v, τ) = a0e
x + b0e

−rτ on x = XD, v = [0, vD] (3.3.10)
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where a0, b0 are determined by the contract payoff.
Note that in the case of a digital one-touch option, the extended domain is still used to ensure

that the integral term is correctly computed into the region beyond the payoff at x = log(K),
even though the option value there is simply constant, as if it were a Dirichlet boundary
condition.

Theorem 2.3.7 and 2.3.8 which limit localization error also apply to stochastic volatility
problems. Minor modifications to Assumptions 2.3.1 and 2.3.2 are required, reflecting the fact
that the payoff is assumed to be bounded in v by a constant value.

Assumption 3.3.1 The initial condition (the option payoff) I(x) can be bounded by

I(x) ≤ c1 + c2e
x

for some constants c1 and c2 and the jump distribution must be such that |HI| <∞ for |x|, v <
∞.

Assumption 3.3.2 The solution U(x, v, τ) to Equation 3.2.2 satisfies the condition

|HU | ≤ c3 + c4e
x for (x, v) ∈ Ω∞ \ ΩC (3.3.11)

for constants c3 and c4.

3.3.1 Sizing ΩD and ΩC for Error Control

Domain sizing is done nearly identically to Section 2.3.3. Under stochastic volatility, the width
of the marginal distributions of an asset path at expiry has a strong dependence on v. Also,
no negative jumps in v are permitted in this case. Let (xp, vp) be a point from a region of
particular interest, typically a small region around the (log(K), v0) point. Equation 2.3.12 for
the size of ΩC is replaced by the following computation, where minimum widths ∆xC and ∆vC

are computed based on a tolerance parameter εc and marginal distributions fx and fv of the
price process such that ∫ ∆xC

−∆xC

fx(xp + z;xp, vp, T ) dz > (1− εc)

and
∫ ∆vC

0
fv(vp + z;xp, vp, T ) dz >

(
1− εc

2

)
.

(3.3.12)

The size of ΩC is chosen to ensure (xp ±∆xC , vp + ∆vp) ∈ ΩC ∀ (xp, vp).
Distances ∆xD and ∆vD between ∂ΩC and the boundary ∂ΩD are computed using tolerance

εd in the same fashion as Equation 2.3.13. Both ∂ΩC and ∂ΩD run along v = 0 and no gap is
required at this domain boundary. In the cases where the marginal distribution of the jumps is
zero in a given direction for any of the other boundaries, the gap between ∂ΩC and ∂ΩD is not
permitted to go to zero so that the boundary conditions of the problem may remain unchanged
from Equation 3.3.8.
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3.4 Discretization

The construction of a finite difference grid, a discrete Fourier transform grid, the discrete
differential operator G and integral operator J follows the approach of the two-asset case as
detailed in Section 2.4. A finite difference grid is formed of N points in space and Nτ points in
time

(x, v)i ∈ (−XD, XD)× [0, vD] , i = 1 . . . N (3.4.1)
τn ∈ [0, T ] , n = 0 . . . Nτ , τn = n∆τ . (3.4.2)

Once again, the discrete linear form of the operators in Equation 3.3.4 is

T = − [G + λIc(J− I)− r I] (3.4.3)

with the operators

GV ' Gv

λCJ V ' IcJv

and the solution vector
V (τn) ' vn .

A time step is advanced using the theta method time discretization, written as

[I + (1− θ)∆τ T] vn+1 = [I− θ∆τ T] vn + b (3.4.4)

where vector b enforces Dirichlet boundary conditions. Again, G is formed by first and second
order finite differences and J using second order quadrature, with Jv computed by interpolation
and an FFT as in Section 2.4.3.3. Note that the v = vD upper boundary is an independent,
one-dimensional PDE and could be computed and imposed as a Dirichlet boundary condition
rather than treated as part of the solution vector. The lower v = 0 boundary is a PIDE and
must be part of the solution vector.

3.4.1 Time Step Solution

The fixed point iteration described in Section 2.6.1 and the penalty iteration of [37, 48, 111]
described in Section 2.6.2, combined in Algorithm 2.6.1, are used to solve each discrete time
step.

Compared to the two-asset case, there is a small difference in the approach to solving
the linear systems which result. The linear system from iteration Equation 2.6.2 is again
solved using the iterative, conjugate-gradient style solver Bi-CGStab with an incomplete LU
preconditioner ILU(2), retaining 2 levels of fill. However, where the grid is aligned with the
axes (i.e. not rotated or skewed), the ILU preconditioner is ordered following the grid in the
v direction first, then the x. This follows a well established rule of thumb for anisotropic,
diffusion-dominated systems [32] and slightly improves performance in these cases. For rotated
or skewed grids, RCM re-ordering is used [98].



CHAPTER 3. STOCHASTIC VOLATILITY, JUMPS AND MONOTONE METHODS 57

3.4.2 Rotation and Alignment of the Jump PDF

In Section 2.4.3.4 it was noted that the jump PDF could be shifted on the DFT grid to improve
the absolute error of the computation. For stochastic volatility problems with a shift (zx, zv),
so that g′(x− zx, v− zv) = g(x, v) where g′(x, v < 0) = 0, attention must be paid to the bounds
of integration in v so

JU(x, v) =
∫ ∞

−∞

∫ ∞

0
g(Jx, Jv) U(x+ Jx, v + Jv) dJx dJv

=
∫ ∞

−∞

∫ ∞

0
g′(Jx − zx, Jv − zv) U(x+ Jx, v + Jv) dJx dJv

=
∫ ∞

−∞

∫ ∞

−zv

g′(J ′x, J
′
v) U(x+ J ′x + zx, v + J ′v + zv) dJ ′x dJ

′
v

= J ′U(x+ zx, v + zv) .

(3.4.5)

The results using J ′U with g′ can be used as results for JU by taking the correlation result at
(x+zx, v+zv). As in the two-asset case, this observation may be used to align discontinuities in
a jump PDF to fall between DFT grid nodes to simplify integration. In the stochastic volatility
case, it can be used to align a 1D PDF to fall exactly on the nodes of the 2-dimensional DFT
grid.

Two degenerate cases of the jump PDF of Equation 3.2.7 are of interest. Where σ̌x = 0 and
ρ̌j 6= 0 the DFT grid should be rotated by

θf = tan−1 (−ρ̌j) (3.4.6)

and translated to place the PDF exactly on DFT grid nodes. The DFT grid must also be
extended to completely overlap ΩD. Where µ̌v = 0 the DFT grid must be translated, but
not rotated, to accurately represent the PDF. These rotations and translations change the
interpolation matrices K and L of Equation 2.4.20, but do not significantly alter the overall
approach.

3.4.3 Convergence by using a Stable, Monotone Approach

The preconditions which must hold for Equation 3.4.4 to be a stable method in the l∞ norm,
which also imply convergence to the viscosity solution of Equation 3.3.4, are analagous to those
outlined for two-asset problems in Section 2.5. As in the two-asset case, these reduce to the
requirement that T of Equation 3.4.3 be an M-matrix. The von Neumann analysis in the l2
norm does not apply, since the coefficients of the stochastic volatility problem are not constant.

The conditions for the monotonicity of the finite difference approximation, given in Section
2.5.3, must be adapted when they are used for stochastic volatility problems. Note that σv = 0
is also allowed, in which case there are no special conditions required on the diffusion terms.

1. The drift term weighting approach “central weighting as much as possible” is also applied
to stochastic volatility problems. Note that as v → 0, as well as on the v = 0 boundary,
a first order approach must be used.
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2. The skewed co-ordinate system of Hull and White [62, 112] becomes

(ψ1, ψ2) = (σvx+ v, σvx− v) (3.4.7)

which will result in a zero diffusion correlation in the transformed system. See Appendix
E.2 for details of the transformed partial differential terms.

3. The grid spacing condition under which G has positive, off-diagonal coefficients is, for
stochastic volatility

|ρvσv| ≤
∆v
∆x

≤
∣∣∣∣ 1
ρv
σv

∣∣∣∣ . (3.4.8)

4. The grid rotation approach also works for stochastic volatility, where the rotation is given
by

θr =
1
2

tan−1

(
2ρvσv

1− σv
2

)
. (3.4.9)

See Appendix E.3 for details of the transformed partial differential terms.

As in the two-asset case, these restrictions can often be violated when solving linear problems
without incurring any practical, numerical problems, particularly for those restrictions involving
the discrete diffusion coefficients.

The above schemes 2 to 4, which enforce monotone discrete diffusion, come with drawbacks.
Using the grid skew of Hull and White allows the terminal or barrier conditions of simple options
to be represented exactly. However, the transformed axes diminish the ability to concentrate
points in a specific region of interest in (x, v) co-ordinates.

Although the grid spacing of Equation 3.4.8 is easily satisfied, to do so may not always be
computationally efficient, particularly for the differential portion of the problem computed over
the extended region ΩD \ΩC , where a high-accuracy solution is not required. Equation 3.4.8 is
more restrictive as ρv → ±1.

The grid rotation approach was examined in [113] and Chapter 2 for two-asset problems.
In both cases the rotation was shown to introduce some numerical error, apparently due to
no longer having an exact representation of the option payoff or barrier conditions. However,
the rate of convergence when grid and time step were refined was still as high as quadratic in
numerical tests.

3.4.3.1 Boundary Considerations

At the boundary v = 0, Equation 3.3.8 supplies an outflow boundary condition where first order
differencing of the first partial differential term in v guarantees an M-matrix. The drift terms
in x must be forward or backward weighted at v = 0 because there is no diffusion, thus in x
and v the discretization is always first order. At the v = vD boundary, well away from ΩC , the
drift term in v has been set to zero, hence there is no difficulty at this boundary.

Under grid rotation or skew there is no guarantee that the v = 0 boundary will be an outflow
boundary along the transformed axes. In these cases the boundaries will be represented with
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lines truncating the transformed grid along v = 0 and v = vD. An irregularly spaced, finite
difference approximation will be formulated along those lines using the points where the rotated
or skew grid intersects the boundary. The interior points required to form the component of
the drift term normal to the boundary will be formed by second order, positively weighted,
linear interpolation. The accuracy of this approach is first order overall, which matches the
order of the forward or backward approximation required for the drift terms on v = 0 boundary
points. Dirichlet conditions are imposed at x = ±XD, simplifying the discretization on these
boundaries when lines x = ±XD are used to truncate the grid.

3.5 Numerical Demonstrations

The solution approach from Chapter 2, adapted for stochastic volatility in Sections 3.3 and 3.4,
is applicable to any contract with a payoff bounded linearly in asset price and to any variations
in asset price model that satisfy the conditions in Sections 2.3, 3.2 and 3.3. This includes jumps
in one dimension and multiple finite activity jump processes.

As a practical demonstration, five market cases were selected which use the stochastic
volatility with jumps model defined in PIDE 3.2.2. In all cases the single jump distribution
is distributed as Normal in log-price x and positive exponential in v using the PDF gd(Jx, Jv)
given in Equation 3.2.7. The cases were taken from [24, 41, 100] and are summarized in Table
3.5.1. Cases A and B from [24] were derived from the statistical analysis of a large data set of
option values. Cases C, D and E were derived from fitting the model parameters to an implied
volatility surface observed in a market, which is a relatively small data set. These last three
cases contain at least one extreme parameter value each: ρv = −1 and κv = 9.70 in case C,
a degenerate σ̌x = 0.0 in Case D (approximating σ̌x = 0.0001 in [41]), and µ̌v = 0.0, ρ̌j = 0
in Case E. Cases A and B are well behaved and typical. Cases C, D and E will illustrate the
robustness of the numerical approach under extreme parameter values.

All market cases were used to value options by employing both Crank–Nicolson and fully
implicit time stepping, with central weighting as much as possible and using both monotone
and non-monotone spatial discretizations. A selection of results are presented for each contract
valued: a European put and call, an American put and a digital one-touch option. Each option
is computed with exercise price K = 100, a risk-free rate r = 0.05 and expiry time T = 1.

The error tolerance parameters used for these demonstrations are

• εc = 5× 10−4, which the inner domain ΩC size must satisfy (Equation 3.3.12),

• εd = 10−4, which the grid region ΩD spacing from ΩC must satisfy (Equation 2.3.13),

• εu = 10−7 for a relative update to a time-step solution by fixed point or combined fixed
point, penalty iteration (Section 2.6.1) and

• εl = 10−8 for a relative update by Bi-CGStab to a linear system solution (Section 2.6.3).

Monotone discretization methods require an FD grid to be customized for each market case so,
in addition, the domain size dictated by tolerances εc and εd were computed for each market
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Market
Case σ0 =

√
v0 κv θv σv ρv λ µ̌x σ̌x µ̌v ρ̌j See

A 0.1000 5.06 0.060 0.61 -0.10 1.64 -0.03 0.2200 0.0036 -7.87 [24]
B 0.1000 4.08 0.050 0.57 -0.21 1.20 -0.04 0.1600 0.0049 -9.14 [24]
C 0.1254 9.70 0.011 0.38 -1.00 1.16 -0.10 0.1801 0.0696 -0.06 [100]
D 0.0870 3.46 0.008 0.14 -0.82 0.47 -0.10 - 0.0500 -0.38 [41]
E 0.0940 3.99 0.014 0.27 -0.79 0.11 -0.14 0.1500 - - [41]

Table 3.5.1: The model parameters for five real market cases from four papers
are used to demonstrate the numerical approach. In all cases the coefficients were
measured from option values observed in the market and are risk-adjusted. In the
models A and B from [24] no σ0 value was given, so an arbitrary value was selected.
Other references [20, 43, 44] report parameters in similar ranges. Risk free rate r = 0.05
for all demonstrations, with strike K = 100 and expiry time T = 1.

case and used to specify the grid sizes. The region of particular interest, around which ΩC was
defined using εc, was specified from (S, v) = (80, 0.0) to (125, 0.2) for options with a vanilla
payoff and from (S, v) = (70, 0.0) to (100, 0.2) for digital one-touch options. Table 3.5.2 lists
the resulting ΩC and ΩD sizes for each market case, for vanilla payoff options. Where the jump
distribution dictated a zero distance between ΩC and ΩD on any boundary other than v = 0,
the domain was extended to accommodate one extra coarse grid FD node so that the boundary
condition equations did not need to change. The size of the FD and DFT grid in (x, v) was
set to fully cover the ΩD specific to each market case. For the DFT grid, this could be done
only as far as the spacing rules for each grid and the rules for setting node counts N1 and N2

permitted (see Section 2.7.1).
The values of εc and εd are such that the option prices do not change, at the accuracy

reported, when tolerances εc and εd are tightened (which is equivalent to enlarging ΩC ,ΩD).
This was checked by re-running a number of cases with grids which had a size to match εc =
1×10−4 and εd = 5×10−5. Similarly, tighter tolerances for εu and εl do not change the solutions
within the accuracy reported.

The numerical demonstrations in this chapter use four sets of finite difference grids. One
is conventional, and the remaining three sets each test the merits of each the three monotone
discrete diffusion approaches of Section 3.4.3.

• Plain FD grids are formed with lines parallel to the x and v axes, but without attempting
to satisfy the monotonicity restriction of Equation 3.4.8. An example is given in Figure
3.5.1 and a detailed description in Section 3.5.1.

• Skew grids apply the grid skew of Hull and White, Equation 3.4.7, to guarantee mono-
tonicity in the FD discretization. Figure 3.5.2 shows the coarsest Skew grid for market
case B. Details are given in Section 3.5.2.1.

• PosD grids apply Equation 3.4.8 and restrict grid spacing. Figure 3.5.3 displays the
coarsest PosD grid for market case B. Details of the construction are in Section 3.5.2.2
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Figure 3.5.1: The coarsest finite
difference grids of the Plain set for
vanilla payoff options for market case
E. The other three grid types at-
tempt to match the spacing which
the Plain grids have along x near the
v = v0 line. The grid range is given
in Table 3.5.2.
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Figure 3.5.2: The coarsest finite
difference grid of the Skew set for
market case B. The grid range is
given in Table 3.5.2.

• Rot grids apply the rotation given by Equation 3.4.9 to ensure monotonicity. Figure 3.5.4
shows the coarsest Rot grid for the digital one-touch contract for market case D. See
Section 3.5.2.3 for details and results.

Two to three refinements of the coarsest grid were performed within each set. Each refinement
of a grid has twice the resolution in log-price x, variance v and time τ and thus eight times the
number of solution points.

3.5.1 Results Using the Non-monotone Approach

The coarsest grid of the Plain set has a spacing of (∆x,∆v) = (0.02, 0.005) near the (log(K), v0)
node for vanilla European and American options (as shown in Figure 3.5.1) and (∆x,∆v) =
(0.01, 0.005) for one-touch options. The region of high resolution in v is only near v0; at v = 0.08
the spacing widens to ∆v = 0.01. The grid widens to up to (∆x,∆v) = (0.32, 0.04) near the
outer boundaries. The Plain grid for one-touch options is conventional outside of the payoff,
inside the payoff region it is extended by a single node in x to cover the remainder of ΩD.

The DFT grid spacing for these problems was set, at the coarsest level, to (∆xf ,∆vf ) =
(0.04, 0.02) for options with vanilla payoffs and (∆xf ,∆vf ) = (0.02, 0.01) for the one-touch
options. For market cases A and B, (∆xf ,∆vf ) = (0.02, 0.005) for one-touch options; the
exponential jumps have a small mean µ̌v which led to erratic convergence when the PDF was
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Figure 3.5.3: The PosD finite dif-
ference grid set has stringent restric-
tions on node spacing. This is the
coarsest grid for market case B. The
grid range is given in Table 3.5.2.
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Figure 3.5.4: This is the coars-
est grid of the Rot grid set for mar-
ket case D for the one-touch options.
The nodes in the payoff zone are
shown to illustrate the structure of
the grid. The exact grid range is not
given in Table 3.5.2 for one-touch
problems.
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Plain Plain
Market FD Grid DFT Grid
Case ΩC Size (S, v) ΩD Size (S, v) Nodes Nodes Rotation
A (17.7, 0)→(565, 0.43) ( 5.4, 0)→(1346, 0.50) 3330 140×28
B (27.9, 0)→(358, 0.43) (14.1, 0)→( 710, 0.50) 2553 96×28
C (22.2, 0)→(450, 1.04) ( 9.8, 0)→( 867, 1.80) 4602 112×90
D (45.6, 0)→(219, 0.64) (26.7, 0)→( 232, 1.22) 2303 56×90 20.81
E (42.0, 0)→(238, 0.29) (18.6, 0)→( 457, 0.32) 1836 80×16

Table 3.5.2: This table lists, for each market case in Table 3.5.1, the ΩD, ΩC size
required by εc and εd. The number of non-Dirichlet FD nodes and DFT nodes are
reported for the coarsest Plain grid case. Finally the DFT grid rotation θf of Equation
3.4.6 required to accurately capture the one-dimensional jump PDF is given in degrees.
This is non-zero only for Market case D.

poorly resolved in the v axis. Table 3.5.2 reports the Plain FD grid node count and DFT grid
node counts for the coarsest grid used in each market case for vanilla European and American
options.

The time step used with the coarsest grid was ∆τ = 1/12 ' 0.0833 for vanilla European
and American options and ∆τ = 1/24 ' 0.04167 for the one-touch options. The time step and
grid spacing was set to yield an error of the order of 1% at the coarsest grid level.

The DFT grid was aligned so that its nodes and edges match FD grid nodes near (log(K), v0).
If this grid alignment is not done, then every evaluation of K · F · L in Equation 2.4.20 incurs
significantly more interpolation error. Numerical trials indicated that it is better to reduce the
interpolation error in each computation of K · F · L and then interpolate a final value from the
grid than to have misaligned grids. Indeed, interpolation error from misaligned grids can grow
in absolute value until it dominates the other sources of error.

A good fit and alignment is not always possible: market case D requires the DFT grid to be
rotated by θf = 20.81 degrees (Table 3.5.2) so as to accurately capture the jump PDF, which
is one-dimensional and not aligned with the (x, v) axes. The grid was then enlarged by 1.21
and 1.60 times in x and v respectively to cover ΩD. Without DFT grid rotation and alignment,
the numerical values for market case D on the first three grid resolutions were so poor as to be
unusable.

3.5.1.1 Convergence of the Solution for European Options

The first column of Table 3.5.3 reports the option values and the rate of convergence of the
numerical solution to a European call for each market case from Table 3.5.1 using the Plain
grid set. Central drift term weighting was used as much as possible with Crank–Nicolson time
stepping. The exact solutions reported were computed by the semi-analytic approach in [78].
The convergence rate is the exponent α in O(∆xα,∆vα,∆τα) with respect to the grid spacing
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and time step, computed from grid resolutions 3 and 4 by assuming the error ε = c∆xα and
∆v,∆τ = O(∆x) (see Appendix E.4).

The solution in this case is to a linear problem where the convergence to the classical solution
is likely. The convergence is roughly quadratic in all cases. Case D, which requires a rotated
DFT grid, had somewhat erratic convergence but a near-zero error at the finest grid, so the
convergence rate was computed from grid resolutions 2 and 3. Since there are a number of
distinct refinement processes in play (FD and DFT grid, interpolation and the τ grid) and
some nodes of the problem which are computed to first order accuracy, completely smooth
convergence cannot be expected.

The second column of Table 3.5.3 reports the results of a numerical computation of a Euro-
pean put option. In this case, implicit time stepping is used so that only the discrete diffusion
component of G in Equation 3.4.3 does not satisfy the M-matrix compatibility requirements dis-
cussed above in Section 3.4.3. With implicit time stepping, the rate of convergence is generally
reduced and the error due to the first order convergence in ∆τ appears to dominate starting
with the second refinement.

For each time step of the European options, an average of between 4 and 9 fixed point
iterations were required on the coarsest grids, where ∆τ = 1/12, and 3 to 6 on the finest grids.
A higher number of iterations was required consistently for market cases A and B where λ was
higher. Market cases D and E, which have the smallest λ values, required the lowest number
of iterations. This is consistent with the prediction of Theorem 2.6.2 for update tolerance
εu = 10−7. An average of 6 to 9 preconditioned Bi-CGStab iterations were required on the
coarsest grid to solve the linear system from the fixed-point iteration, which increased to 8 to
39 iterations on the finest grid. This indicates that the fixed-point approach generates a linear
system which is inexpensive to solve, but which is less well conditioned than the ones arising
from the two-asset case.

3.5.1.2 Convergence of the Solution to American and One-Touch Options

The third column of Table 3.5.3 reports the numerical solution for an American put option
over the five market cases using Crank–Nicolson time stepping. The Plain grids and time steps
were identical to the European case. This generated a roughly quadratic convergence rate with
respect to grid spacing and time step in most cases. The convergence rate α of the error is
assumed to converge as for European options however, since no exact solution is available, it is
measured using the difference between the solutions on the three finest grids.

The only change in numerical approach for American options is the combination of the fixed
point iteration with a penalty iteration. This enforces the free boundary that appears with the
early exercise condition Equation 3.2.9. The number of combined iterations required for each
time step was comparable to the number of plain fixed point iterations required for a European
put solution: on average between 4 to 9 per time step for the coarsest grids and 4 to 7 on the
finest. The linear systems were also solved with similar cost, between 6 and 9 iterations of
preconditioned Bi-CGStab on the coarsest grid and 6 to 28 iterations on the finest.

Figure 3.5.5 shows the solution to the American option for market case A using central
drift term differencing where possible and implicit time stepping. Figure 3.5.6 shows the result



CHAPTER 3. STOCHASTIC VOLATILITY, JUMPS AND MONOTONE METHODS 65

European European American One-touch
Call Put Put “Up-and-in”
Plain Plain Plain Plain Rot

Market C-N Implicit C-N Implicit Implicit
Case σ0 Grid S = 100 S = 100 S = 100 S = 90 S = 90
A 0.1000 1 16.3935 11.2659 11.9219 68.1661 68.2071

2 16.2659 11.2993 11.8568 68.4474 68.4670
3 16.2582 11.3290 11.8385 68.5796 68.5979
4 16.2508 11.3480 11.8332 68.6660 68.6650

Exact 16.2479 11.3708 - - -
α 1.9 0.9 1.8 0.6 1.0

B 0.1000 1 13.4675 8.4045 9.0892 67.7794 67.7961
2 13.3410 8.4206 9.0334 68.1154 68.1209
3 13.3585 8.4421 9.0194 68.2829 68.2901
4 13.3524 8.4563 9.0156 68.3696 68.3712

Exact 13.3501 8.4730 - - -
α 1.9 0.9 1.9 1.0 1.0

C 0.1254 1 12.3332 7.2729 8.0808 63.6539 63.4675
2 12.2743 7.3213 8.0670 64.0555 64.0536
3 12.2619 7.3500 8.0646 64.2907 64.2773
4 12.2591 7.3654 8.0642 64.3954 64.3899

Exact 12.2584 7.3813 - - -
α 2.2 1.0 2.8 1.2 1.0

D 0.0870 1 8.2104 3.2317 3.7674 51.3434 51.1531
2 8.2085 3.3024 3.8188 52.0396 52.0448
3 8.2120 3.3208 3.8234 52.3652 52.3746
4 8.2121 3.3279 3.8234 52.5326 52.5309

Exact 8.2121 3.3350 - - -
α 6.0 1.0 6.7 1.0 1.0

E 0.0940 1 7.9331 2.9903 3.5449 49.1279 49.0291
2 7.9312 3.0244 3.5555 49.9408 49.8774
3 7.9317 3.0403 3.5589 50.2934 50.2582
4 7.9320 3.0479 3.5598 50.4656 50.4558

Exact 7.9321 3.0551 - - -
α 1.6 1.0 1.9 1.0 1.0

Table 3.5.3: Option values at (S, v) = (100, σ2
0) for the European call and put, American put,

and (S, v) = (90, σ2
0) for the one-touch contract are listed. The first four columns are results

using the Plain grid, the final uses a Rot grid. Central drift term weighting was used where
possible, Crank–Nicholson or implicit time stepping was used as noted. Each refinement halves
the values of ∆x, ∆v and ∆τ . An exact solution [41] is given where it exists. The convergence
rate given is the exponent α in O(∆xα,∆vα,∆τα).
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Figure 3.5.5: This is the solution on the finest Plain grid to the American put
option for market case B using implicit time stepping. The v axis is scaled as σ =

√
v

volatility. The early exercise region is denoted by the darker shading and its boundary
is nearly a straight line in volatility scaling.
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Figure 3.5.6: The option delta with respect to S is given here for the medium
resolution Plain grid solution to the American put option for market case B using
implicit time stepping. The v axis is scaled as σ =

√
v volatility.

seen, qualitatively, in all test cases: the option delta generated by the solution is smooth, in
spite of the lack of a theoretical demonstration to guarantee that the result will be smooth and
convergent.

The fourth column of Table 3.5.3 reports the “up-and-in” one-touch contract values for each
market case. These are computed with implicit time stepping and central drift term weighting
where possible and converge at a linear rate. For comparison, the results using the alternate,
rotated grids (described below in Section 3.5.2.3) are also listed. Market case A on the Plain
grids shows some erratic convergence between grids 2, 3 and 4, but between grids 1, 2 and 3
the convergence rate is α = 1.1.

3.5.2 Results Using the Monotone Approach

The FD grid conditions in Section 3.4.3 result in discrete diffusion terms that are compatible
with an M-matrix. Results under these conditions are presented in this section for implicit
time stepping only, since this is the monotone case which guarantees the desired stability and
convergence properties. The computational cost and solution error of each of the Skew, PosD
and Rot grids are evaluated and compared against the Plain grid results. The solution used for
comparison was that of the finest grid computed for all four cases, which corresponds to Plain
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grid resolution 3.
Each grid for a monotone case was created to match some spatial aspect of the Plain grids,

with roughly the same number of nodes and attempting to produce the same error. The same
time step sizes were used. Each monotone computation of a European put or call required the
same number of fixed point iterations per time step as for the Plain grid for all market cases
and grid resolutions. The American put and one-touch digital options in the monotone cases
required, on average, no more than 1.6 additional iterations per time step than the Plain grid
solutions.

Three factors are used to compare the results with those from the Plain grids.

• The relative FD node count is given, based on the number of nodes that are not
Dirichlet boundary condition points.

• The relative cost of each computation is approximated by multiplying the number of
non-Dirichlet nodes on the FD grid by the total number of Bi-CGStab iterations used in
all fixed-point iterations for all time steps. This estimate represents the bulk of the work
done during the solution process. The number of preconditioned Bi-CGStab iterations
required increases with condition number of the grid, requiring approximately O(N5/4)
iterations when N is the number of FD grid nodes.

• The relative error of each computation is computed using the average magnitude of the
error at 36 points near (log(K), v0). Each error is computed against the semi-analytic
solution to the European put and call problem.

Thus the FD node count, effort and error values are all normalized so that the values for the
Plain grids would be 1.00.

The cost and error comparison can also be made for the American put and the one-touch
options. In these cases there is no semi-analytic solution, so in its place the solution value from
the best Plain grid was used instead. The cost and error comparisons for these contracts turned
out to be similar to those for the European contracts and are reported for the Rot grids only.

Also, an error comparison may be made using the “delta” (∂V/∂x) of the option, which is
an important quantity when hedging. The experiments that follow were repeated using error
in the delta, rather than error in the price, as the measure for comparison. This did not alter
the conclusions.

3.5.2.1 Results on Skew Grids

The Skew grids apply the transformation of Equation 3.4.7. The resolution in x is held identical
to that of the Plain grids for nodes placed along v = 0. This means that the region near v0 is
also well resolved. With this approach, no control could be imposed over grid spacing in the v
direction. One could match the Skew grids to the Plain grids in the v axis direction instead, but
this turned out to be a poor approach since it is the x resolution that dominates the error. The
grid upper and lower v boundaries were represented by a line as described in Section 3.4.3.1.
The DFT grid used was identical to that of the Plain grid.
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Skew FD Grid European Call European Put
Grids Relative Relative Relative

Node Count Cost Error Cost Error
A 0.97 1.08 0.94 1.20 0.93
B 0.97 1.01 0.90 1.01 0.94
C 0.99 1.79 1.31 1.51 0.43
D 0.81 1.28 2.68 1.12 1.59
E 1.02 3.15 0.86 2.53 0.97

Table 3.5.4: Cost and error comparison for Skew grids. The FD grid node count,
computational cost and error are given relative to Plain grids. Note the reduced node
count for market case D, due to low value in the σv parameter, corresponds to a
solution with high error. Section 3.5.2 explains the cost and error calculation.

From Table 3.5.4, note that the node count of the grid is nearly exactly that of the Plain
grids except for market case D, which had 0.81 the number of Plain grid nodes. The low value
of σv in market case D led to quite oblique grid lines and the grid became coarse at low values
of v. Overall computational effort is usually higher for Skew grids than Plain grids even when
the number of FD nodes was nearly identical. This indicates a less well conditioned problem,
resulting in a more costly linear system solution. The error is significantly worse in three cases,
significantly better only in one.

3.5.2.2 Results on Positive Diffusion Grids

The PosD grids have lines which are aligned with the (x, v) axes, but these adhere to the positive
diffusion coefficient grid spacing restrictions of Equation 3.4.8. Near (log(K), v0) the PosD grids
match the Plain grids along x only. As with Skew grids, this strategy produced better accuracy
than attempting to match the spacing along v. The grid spacing restrictions are given in the
first columns of Table 3.5.5.

For market cases A and B, (∆x,∆v) = (0.02, 0.01) on the coarsest grids for Vanilla pay-
off options near (log(K), v0). There was enough flexibility in the spacing to allow ∆v to be
coarsened away from the region of interest, and to permit the doubling of ∆x starting midway
between the region of interest from x = [80, 125] and the edge of ΩC . Market case C restricts
the grid spacing to be (∆x,∆v) = (0.02, 0.0076) everywhere. In cases D and E, ∆v was held
constant and the spacing of ∆x = 0.02 near the strike was coarsened as with cases A and B,
but only by the largest allowable factor, which was less than two. The DFT grids were set to
have a spacing which was twice that of the PosD FD grids at (log(K), v0) and were aligned to
match the nodes of the FD grids.

From Table 3.5.5, for cases A and B, note that the node count of the grid is lower and
the computational effort is only ∼ 0.35 that of the Plain grids, but the relative error is only
1.13 → 1.51. These are the cases where |ρv| is low, σv is high and the restrictions on PosD grid
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PosD FD Grid European Call European Put
Grids Minimum Maximum Relative Relative Relative

∆x/∆v ∆x/∆v Node Count Cost Error Cost Error
A 0.16 16.39 0.77 0.34 1.51 0.37 1.32
B 0.37 8.35 0.79 0.36 1.22 0.34 1.13
C 2.63 2.63 2.81 5.62 0.63 5.89 0.85
D 5.86 8.71 3.10 14.44 1.01 14.17 0.97
E 2.93 4.69 2.96 3.94 0.99 3.78 0.99

Table 3.5.5: The PosD grid spacing ratios (Equation 3.4.8) listed in this table gen-
erate a positive coefficient discretization on an axis-aligned FD grid. The FD node
count relative to Plain grids is given, along with the relative cost and error for the
European Put and call options. Note that case C permits no variation in spacing
and cases D and E only minor variation in spacing. The leads to higher node counts
with no corresponding large reduction in error. See Section 3.5.2 for details of the
calculation of cost and error.

generation are minimal.
For market cases C, D and E, the PosD grids tended to have finer overall ∆v spacing than

the Plain grids, leading to a higher node count and total effort. In these cases |ρv| → 1 which
forces constant, or nearly constant, spacing and σv is low which forces a high ∆x/∆v (low
∆v/∆x) ratio. At grid refinement 3, the PosD grid for market case C had 197989 nodes, versus
70560 on the Plain grid. For cases C, D and E the PosD approach incurs 3.78 to 14.44 times
the computational cost of the Plain grid and reduces error significantly (0.63 the Plain value)
in one case only.

3.5.2.3 Results on Rotated Grids

The Rot grids for the Vanilla payoff options are formed by mirroring the Plain grids on the
line v = 0 and rotating them around (log(K), v0) by θr of Equation 3.4.9 as given in the first
column of Table 3.5.6. The grid is then trimmed with a line at v = 0 and v = vD as described
in Section 3.4.3.1. These grids have the undesirable feature that they cannot accurately capture
the option payoff near x = log(K). Without adjustments, this caused a significant error for
the digital one-touch options. To compensate, eight nodes with ∆x = 0.0025 were placed on
both sides of x = log(K) before rotation (which was always in the negative direction). This
ensured good resolution of the barrier near (log(K), v0). The nodes inside the payoff regions
are also shown in Figure 3.5.4 to illustrate how the grid was constructed. The DFT grid was
left identical to that of the Plain grid set.

For computation, if a node i with xi < log(K) had a neighbor j with xj > log(K), then
if (log(K)− xi) < (xj − log(K)) the node i was treated as if it was inside the payoff region.
Figure 3.5.7 shows the solution for the coarsest grid one-touch option for market case C, where
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Rot FD Grid European Call European Put One-Touch
Grids Rotation Relative Relative

θr Node Relative Relative Node Relative
(Deg) Count Effort Error Effort Error Count Effort Error

A -5.50 1.04 1.11 1.05 1.17 1.01 1.17 1.52 0.86
B -9.76 1.04 0.98 1.00 1.01 1.00 1.15 1.45 0.95
C -20.81 1.04 0.70 0.87 0.91 0.94 1.06 1.14 1.18
D -6.59 1.05 1.05 1.01 1.17 0.98 0.87 0.88 1.06
E -12.35 1.01 1.76 0.94 1.74 0.96 1.04 3.08 1.09

Table 3.5.6: The FD grid rotation required to generate a rotated diffusion tensor
with zero correlation (Equation 3.4.9) is listed along with the FD node count for the
Rot grids relative to the Plain grids. The relative cost and error comparisons are
given for the European put and call options and for the one-touch options. The best
available solution on the Plain grid is used as a reference value against which the error
is computed. See Section 3.5.2 for details of the calculation for cost and error.

the rotation was most severe. Note that although the barrier is irregular, the solution becomes
smooth rapidly at lower S = ex points, particularly near σ0 = 0.1254.

The fifth column of Table 3.5.3 lists Rot grid option price results and shows the linear rate
of convergence for the one-touch digital option. From Table 3.5.6 note that the number of
nodes was nearly exactly the same as with the Plain grids for the European option cases. The
computational effort was significantly lower for market case C and significantly higher (∼ 1.75)
only for market case E. The error over the Rot grids was, essentially, no worse than the Plain
grids. For interest, the cost and error measurements for the one-touch digital option is also
reported. The best result on the Plain grids was used as the reference value against which the
error was measured. It required between 0.88 and 3.08 times the numerical effort for results
which were within ±0.18 of the error in Plain grid value.

3.6 Chapter Summary

The governing PIDE for valuing European options under stochastic volatility with jumps is, as
in the two-asset case, a linear, infinite-domain, initial-value problem. This chapter adapts the
approach of Chapter 2 to create a localized, initial-boundary value problem.

The discretization approach is essentially identical to that of Chapter 2. The diffusion
coefficients under stochastic volatility are not constant. The three approaches for generating
a monotone diffusion discretization for the constant coefficient case, as presented in Chapter
2, were adapted for this non-constant coefficient case. Boundary conditions at the v = 0, vD

edges of the domain require special treatment for rotated or skewed grids. DFT rotation had
to be applied for the case where the degenerate jump PDF was defined obliquely, along a line
not aligned with either the x or v axes.
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Figure 3.5.7: The option value with respect to price and volatility is given here for
the lowest resolution Rot grid solution to the one-touch option for market case C using
implicit time stepping. Case C has the largest FD grid rotation. The v axis is scaled
as σ =

√
v volatility. Note that the irregularity near K = 100 is smoothed inside the

solution domain and is not important near the initial volatility value σ0 = 0.1254.



CHAPTER 3. STOCHASTIC VOLATILITY, JUMPS AND MONOTONE METHODS 73

The numerical results in this chapter were based on parametrization from five actual market
cases. Three of these presented parameters with degenerate or extreme values and, where
necessary, the adaptations made in the numerical solution technique were applied. Convergence
under grid and time step refinement was shown to be as expected for smooth problems. The
main thrust of the numerical demonstrations was to determine which of the three monotone
diffusion approaches was the most cost-effective and reliable.

Of the three variant grids which resulted from those three strategies, the rotated grids pro-
duced the most favourable results. These had the least variation in cost and error. Thus, in
Chapter 4, grid rotation is selected as the approach for ensuring a monotone spatial discretiza-
tion.



Chapter 4

Option Values where Jump
Parameters are Uncertain

4.1 Introduction

Any model of a specific financial market is typically determined from a sample of data by using
a calibration procedure. Even after a model structure has been chosen, the parameter values
have a degree of uncertainty. The choice and quality of the calibration data [8], data point
weighting [33], the measure of goodness of fit and even the calibration procedure [59] can vary
to some degree and such factors introduce uncertainty into the final parameter values. The
problem of actually fitting models to markets has been studied extensively and will not be
examined further in this thesis. Rather, this chapter addresses the challenge of determining
a best- or worst-case value for an option contract given a range of parameter values. In this
chapter, the solution method for the linear two-factor problems studied in Chapters 2 and 3 is
adapted for this non-linear problem.

The “best-case” and “worst-case” option values in this context have precise financial defi-
nitions. The best-case value is that which should be charged by the seller, so that a hedging
portfolio with a short position in the option is guaranteed to have a non-negative balance at the
contract expiry. Conversely, the “worst-case” value is that which should be paid by the buyer so
that a hedging portfolio with a long position in the option is guaranteed to have a non-negative
balance at contract expiry [6]. Of course, this definition requires an idealized hedge using an in-
finite number of options trading at infinitesimal intervals. In practice, however, jump-diffusion
can be hedged using a small number of options with a small degree of error [70].

Note that parameter uncertainty contains no information other than the allowed range. Any
further information, such as how parameters hold over time or in a particular market scenario,
would require additional modeling assumptions. In this chapter, an efficient algorithm to study
this problem is developed for two-factor models with diffusion and jumps, where the jump
parameters are uncertain. The synthetic market used for the numerical demonstrations in this
chapter is based on models calibrated to actual markets. The demonstrations not only show
that the numerical solution approach is tractable and converges as expected from the theory,

74
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but also reveal a wide difference between best- and worst-case prices for a typical variation
in parameters. The contribution from each uncertain parameter is evaluated to compare their
effect on the option values computed and the spread between the best- and worst-case values.

4.1.1 Previous Work

Early work on the problem by Avellaneda et al. [6] was carried out for one-asset options under
the classical Black–Scholes model. They dynamically select the maximum or minimum asset
volatility locally to maximize or minimize an option value. It can be shown in this case that the
locally optimal choice is also globally optimal. Oztukel and Wilmott [90] extend this to value
options using an uncertain risk-free rate as well, treating the uncertain parameters themselves
with a stochastic model. Work by Pooley et al. [94, 95] investigated this problem for the case
of uncertain parameters within classical one- or two-asset Black–Scholes models. Fedotov and
Panayides [45] address the problem using stochastic dynamic programming. Da Fonseca et al.
[46] focus on a multi-asset problem with a particular structure of uncertain diffusion correlations
which permits a semi-analytic solution.

In this chapter, the problem is posed as one of optimal control of a process governed by
Hamilton-Jacobi-Bellman (HJB) partial integro-differential equations with finite activity jumps
[89]. Camilli [23] showed that piecewise deterministic approximations of control problems under
jump-diffusion converge to the viscosity solution of the continuous problem. Ishikawa [65]
further studied the problem of optimal control for jump processes. Forsyth and Labahn [47]
provide a general theoretical framework which, when applied to the problem at hand, allows it
to be treated using the HJB framework and a finite-difference based approach. Jakobsen et al.
[68] provide error bounds and discuss the convergence of such schemes to the viscosity solution
in the Bellman PIDE case. They assert that the results also hold for the time-dependent case
in combination with the results in [66]. Recent applications of optimal control with PIDE’s
have been published by Mnif and Sulem [87] and Framstad et al. [50]. Recent work by Wang
and Forsyth [105] addresses the issue of optimization in the case where the discretization must
change when local control parameter values change.

This work in this chapter begins with, as a basis, the results of [47] and [105] and adapts the
approach of Chapters 2 and 3. A two-asset problem is selected since a vanilla contract payoff
and option value surface are such that the optimization of the controls is clearly not trivial.
Provided the preconditions for convergence to the viscosity solution are satisfied, this approach
could also be applied to one-asset problems under stochastic volatility with jumps.

4.1.2 Overview of this Chapter

Section 4.2 presents the governing equations for the problem, which must be altered from
Chapter 2 into non-linear, HJB-type PIDE’s. Discretization is discussed in Section 4.3. The
fixed point policy iteration is described in Section 4.4 and proved to be convergent. Finally,
in Section 4.5, numerical demonstrations are provided. These evaluate the rate of convergence
of the approach with respect to grid spacing and examine the dependence of the best-case,
worst-case spread on the individual control parameters.
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4.1.2.1 Synopsis of the Contributions in this Chapter

The following results are presented.

• The discretization method of [30, 31] is extended to controlled HJB equations with jumps.
This forms a fully implicit, monotone method. The implicit controls are also discretized
over their continuous range. This is of the form used in [18, 23, 68] for the study of the
viscosity solutions of related general problems.

• The fixed point method of Chapter 2 is reformulated into the new fixed point policy
iteration for the solution of the nonlinear, discretized, algebraic equations at each time
step. This allows a significant reduction in the computational cost from that which would
be required using simple piecewise constant policy time stepping. The convergence of the
fixed point policy iteration is proved under a mild time step restriction. The new iteration
is combined with a penalty iteration to compute American option values.

• Numerical demonstrations are provided for both the best-case and worst-case value of
European and American options. The overall convergence of the algorithm is shown to be
linear or better in the parameter controlling the spacing of the finite difference grid and
policy space discretization. The fixed point policy iteration is demonstrated numerically
to be rapidly convergent, typically in 4 to 7 iterations per time step. The sensitivity of
the gap between best- and worst-case prices to the uncertainty in individual parameters
is assessed.

4.2 Governing Equations

The theory and examples in this chapter are developed using the concrete example of an option
written on two assets. Thus, the objective is to find the best- or worst-case theoretical value U
of a financial option of duration T on a pair of assets S1 and S2 at time t = t0. As in Chapter 2,
the independent variables are the logarithm of the asset prices (x1, x2) and the time remaining
to expiry τ as defined in Equations 2.2.1 and 2.2.2. As before, the log-scaled asset prices evolve
by a correlated Brownian motion and correlated finite activity jumps which are independent of
the Brownian motion. However, the parameters of the jumps are known only to fall within a
deterministic range of possible values. For the best-case value this can be written [33, 47, 68]
as an optimal control problem on a PIDE over Ω∞ × [0, T ]

∂U

∂τ
= GU − rU + sup

Q∈ bQ
{
H(Q)U

}
U(x1, x2, 0) = I(x1, x2) .

(4.2.1)

In this chapter, operator G represents the partial differential terms due to Brownian motion
and drift, r ≥ 0 is the risk free rate of return and H(Q) represents the integral operator due to
the arrival of finite activity jumps controlled by a vector Q ∈ Q̂ of parameters, optimal for each
point in Ω∞ × [0, T ]. For simplicity, the option value is restricted to U ≥ 0. To compute the
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worst-case option value, replace sup with inf; only the sup form will be considered further, since
the inf form requires only simple changes to the formulation and only obvious changes to the
numerical method. The differential operator GU has constant diffusion parameters σ1, σ2 ≥ 0
and |ρ| ≤ 1 over Ω∞ × [0, T ] where

GU =
(
r − σ1

2

2

)
∂U

∂x1
+
(
r − σ2

2

2

)
∂U

∂x2
+
σ1

2

2
∂2U

∂x1
2

+ ρσ1σ2
∂2U

∂x1∂x2
+
σ2

2

2
∂2U

∂x2
2
. (4.2.2)

The integral operator is defined as

H(Q)U =
∫∫ ∞

−∞
g(J1, J2;Q)

[
U (x1 + J1, x2 + J2, τ)− U

−
(
eJ1 − 1

) ∂U
∂x1

−
(
eJ2 − 1

) ∂U
∂x2

]
dJ1 dJ2

g = g(J1, J2;Q) ∈ R
Q = Q(x1, x2, τ) ∈ Rm

(4.2.3)

where J1, J2 are the jump magnitudes and g is the two-dimensional Lévy measure by which
they are distributed, defined by a vector Q of m parameters.

This chapter assumes that for all Q ∈ Q̂, g(J1, J2;Q) again defines a finite activity process
which satisfies the bounds given in [54] §II.1.2 Definition 1.6 (see also [33] Proposition 3.18) so
that the second, third and fourth terms of H(Q) of Equation 4.2.3 can be written, respectively,
as ∫∫ ∞

−∞
g(J1, J2;Q) U dJ1 dJ2 = λ(Q) U (4.2.4)∫∫ ∞

−∞
g(J1, J2;Q)

[(
eJ1 − 1

) ∂U
∂x1

]
dJ1 dJ2 = λ(Q) κ1(Q)

∂U

∂x1
(4.2.5)∫∫ ∞

−∞
g(J1, J2;Q)

[(
eJ2 − 1

) ∂U
∂x2

]
dJ1 dJ2 = λ(Q) κ2(Q)

∂U

∂x2
(4.2.6)

κ1(Q), κ2(Q), λ(Q) ∈ R
λ(Q) > 0

|κ1(Q)| , |κ2(Q)| < ∞

where λ(Q) is the arrival rate of Poisson-distributed jumps and values κ1(Q), κ2(Q) correct for
the mean drift in each asset due to jumps. The integral operator differs from Chapters 2 and
3. Here, g(J1, J2, Q) varies with time and asset price and includes the λ(Q) multiplier.

The PIDE initial conditions I(x1, x2) are defined by the terminal payoff equation of the
option contract and a strike price K as in Section 2.2.3.

The linear complementarity problem for American options, modified from Equations 2.2.10
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and 2.2.11 for uncertain coefficients, is

∂U

∂τ
≥ GU − rU + sup

Q∈ bQ {H(Q)U} (4.2.7)

U ≥ I (4.2.8)
U(x1, x2, 0) = I(x1, x2)

where at least one of Equations 4.2.7 or 4.2.8 must hold with equality.

4.2.1 Jump Distribution

Although any jump measure satisfying the above noted constraints may be used, this chapter
will define g(J1, J2;Q) as a bi-variate Normal distribution scaled by the jump arrival rate
parameter λ. Thus, the control vector Q ∈ Q̂ has a length of m = 6 elements

Q = (λ, µ̌1, µ̌2, σ̌1, σ̌2, ρ̌) ∈ R6 .

The finite activity Lévy measure is defined as

g
(
J1, J2;Q) = g

(
J1, J2; (λ, µ̌1, µ̌2, σ̌1, σ̌2, ρ̌))

= λ gn(J1, J2; µ̌1, µ̌2, σ̌1, σ̌2, ρ̌)
(4.2.9)

where gn is the conventional bi-variate Normal distribution given in Equation B.1.1. The range
of the parameters is defined as a compact, convex region

Q ∈ Q̂ = [λmin, λmax]
×
[
µ̌(1,min), µ̌(1,max)

]
×
[
µ̌(2,min), µ̌(2,max)

]
×
[
σ̌(1,min), σ̌(1,max)

]
×
[
σ̌(2,min), σ̌(2,max)

]
× [ρ̌min, ρ̌max] .

(4.2.10)

4.3 Localization and Discretization

Equation 4.2.1 must be localized to a finite domain with appropriate boundary conditions and
discretized before it is solved numerically. This can be done by applying the approach of Section
2.3.1, since there are no uncertain parameters in ΩD \ ΩC where only the diffusion component
is computed.

The solution of PIDE 4.2.1 on the infinite domain is approximated by solving the PIDE on
the finite domains shown in Figure 2.3.1. Let V denote the option value computed on finite
domain ΩD × [0, T ] by the equations

∂V

∂τ
= GV − rV +

max
Q∈ bQ

{
HD(Q)V

}
for (x1, x2) ∈ ΩC

0 for (x1, x2) ∈ ΩD \ ΩC

V (x1, x2, 0) = I(x1, x2)
V (x1, x2, τ) = B(x1, x2, τ) ; (x1, x2) ∈ ∂ΩD

(4.3.1)
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where B represents the boundary conditions at ∂ΩD, which are Equations 2.3.4 and 2.3.5 on
the upper and lower boundaries respectively. The sup operator is replaced by max since Q̂ is a
compact region and V is assumed finite. The integral operator HD(Q)V must be truncated to
ΩD. Equations 4.2.4 to 4.2.6 are applied to write

HD(Q)V = JD(Q)V − λ(Q) V − λ(Q)
(
κ1(Q)

∂V

∂x1
+ κ2(Q)

∂V

∂x2

)
(4.3.2)

JD(Q)V =
∫∫

(J1,J2)∈ΩD

g(J1 − x1, J2 − x2;Q) V (J1, J2, τ) dJ1 dJ2 . (4.3.3)

This chapter shall proceed under the assumption that the localization approach used in the
linear case, proved convergent using Greens functions, is reasonable for the non-linear case and
check the assumption numerically. There are some further assumptions on the regularity of the
coefficients discussed in Section 4.3.3.

The appropriate size for ΩD and ΩC is again determined by the error control approach
described in Section 2.3.3 and tolerances 0 < εc, εd < 1. The largest distribution at time T
of the two assets is computed, starting from a point of interest (x1, x2)p, under the permitted
policies, which contains (1 − εc) of the price paths. This determines the size of ∆xC and ΩC .
Similarly, the largest value in each direction of ∆xD, computed using Equation 2.3.13 from the
allowed PDF’s g(J1, J2;Q), is the one used to determine the size of ΩD.

4.3.1 Discretization

Discretization is performed as in Section 2.4.1 over a finite difference (FD) grid of N points in
space and Nτ points in time

(x1, x2)i ∈ [−XD, XD)× [−XD, XD) , i = 1 . . . N (4.3.4)
τn ∈ [0, T ] , n = 0 . . . Nτ , τn = n∆τ (4.3.5)

over which a discrete solution v and control vector q are determined which approximate their
continuous counterparts

V ((x1, x2)i, τn) ' vn
i ∈ R , vn ∈ RN×1

Q((x1, x2)i, τn) ' qn
i ∈ Rm , qn ∈ RN×m .

As in Section 2.4.1, each of the terms of the continuous Equation 4.3.1 has a discrete
counterpart. The linear differential operator G is discretized with second order finite differences
for the diffusion term. Second order, central finite differences are used for the drift terms, except
where a first order forward or backward difference is required to create a monotone method
(see Section 2.5.3 and 4.3.3 below). This choice is made by considering all drift terms together,
composed from the first partial derivatives in G and HD(Q) (Equations 4.2.2 and 4.3.2)(

r − σ1
2

2
− λ(Q)κ1(Q)

)
∂V

∂x1
+
(
r − σ2

2

2
− λ(Q)κ2(Q)

)
∂V

∂x2
. (4.3.6)
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The discrete terms due to Brownian motion and drift are given at time step n+1 with τ = τn+1

under policy qn+1 by

GV (τn+1) ' G(qn+1) vn+1 ; G(qn+1) ∈ RN×N .

Even though G does not contain coefficients which depend on Q, the discrete form G(qn+1) has a
dependence on the discrete control. Different values of qn+1 may select a different discretization
for different point-wise controls when considering the full set of first partial differential terms
in Equation 4.3.6.

As in the linear case, the integral operator HD(Q) of Equation 4.3.2 is discretized term-
by-term, using a second order numerical quadrature for JD(Q). This first term is discretized
by integrating g(x1, x2; qn+1) over the cells surrounding each of the grid nodes in turn to form
a dense matrix J(qn+1). A diagonal matrix D(qn+1) is formed for the second term. A sparse
matrix P(qn+1) is formed for the differential term by finite differences, using the same dis-
cretization (central, forward or backward) used for the first partial terms of G. Thus at time
step n+ 1 with τ = τn+1 under policy qn+1

JD(Q)V (τn+1) ' J(qn+1)vn+1 (4.3.7)

λ(Q)V (τn+1) ' D(qn+1)vn+1 (4.3.8)

λ(Q)
(
κ1(Q)

∂V (τn+1)
∂x1

+ κ2(Q)
∂V (τn+1)
∂x2

)
' P(qn+1)vn+1 (4.3.9)

J(qn+1),D(qn+1),P(qn+1) ∈ RN×N .

(4.3.10)

The integral JD(Q)V (τn+1) and its discrete form J(qn+1)vn+1 in Equation 4.3.7 are correlations.
Section 4.4.3 discusses the efficient computation of this term and the difference in approach from
the known-parameter, linear case.

The equation for one time step from τn to τn+1 in the discrete form of the PIDE is

vn+1 − vn

∆τ
= max

q∈bY
{[

G(q)− r I + Ic [J(q)− D(q)− P(q)]
]
vn+1

}
+ b (4.3.11)

v0
i = I((x1, x2)i)

b ∈ RN .

As in the linear case, vector b encodes the Dirichlet boundary conditions. Only an implicit
time step is used so that, provided G(q) is discretized so as to be monotone spatially, the
method is unconditionally monotone.1 Continuous policy space Q̂ is approximated by discrete
policy space Ŷ as detailed in Section 4.3.2 below. The controls must be imposed implicitly (see
Section 4.3.3 below) so that the discrete operators are determined by a control qn+1 ∈ Ŷ which

1Higher order time stepping methods would have to satisfy the monotonicity and stability requirements
explained in Section 4.3.3. Crank-Nicolson time stepping does so only under a severe time step restriction.
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maximizes vn+1. The values of HD(Q) are only applied on ΩC , thus the matrix Ic of Equation
2.4.7 selects only those points.

It is again convenient to denote the composition of all of the discrete, spatial operators as
a single matrix

T(qn+1) = −
[
G(qn+1)− r I + Ic

(
J(qn+1)− D(qn+1)− P(qn+1)

)]
(4.3.12)

for the purposes of the analysis which follows.
Equation 4.3.11 may be written in a conventional matrix form as[

I + ∆τT(qn+1)
]
vn+1 = vn + b

qn+1 = arg max
q∈bY

{
−T(q)vn+1

}
. (4.3.13)

This may also be written in a compact form

Mn+1
i (h, vn+1

i , vn+1
j , vn

i , v
n
j ) =[

I + ∆τT(qn+1)
]
vn+1 − vn − b = 0 ; i, j ∈ 1 . . . N , i 6= j

qn+1 = arg max
q∈bY

{
−T(q) vn+1

} (4.3.14)

as in Equation 2.4.11. In this form the h parameter also refers to hy, which defines the grid
spacing for Ŷ . The optimization of the control is implied.

In Equations 4.3.11, 4.3.13 and 4.3.14, as well as in all future equations for the optimization
of vector valued functions, the minimum or maximum is understood to be taken line by line.
Thus the value vn+1

i on row i of Equation 4.3.13 is maximized by selecting a control qn+1
i ∈ Ŷ .

Note that, under a grid skew or rotation, all of the partial differential terms are transformed.
This includes those that are discretized to form matrix P(qn+1) in the jump term in Equation
4.3.9. Hence, the maximization in Equation 4.3.13 is also solved in the transformed co-ordinates.
For simplicity, the discussion will continue in the original (x1, x2) co-ordinates.

4.3.2 Policy Discretization

Jump distributions used in this method must have a continuous dependence on their parametriza-
tion; preferably, that dependence should be Lipschitz continuous. Equation 4.2.9 satisfies the
Lipschitz continuity criterion, which permits Equation 4.3.1 to be maximized in a consistent
fashion by Equation 4.3.13 by discretizing the controls Q̂ into a finite set Ŷ .

Remark 4.3.1 For a discretization Ŷ of continuous controls Q̂, with spacing hy in each control
dimension, recall that the definition of consistency relevant to viscosity solutions is defined in
terms of a smooth test function φ(x1, x2) [105]. The discretization of the controls is consistent
if ∣∣∣∣∣

(
∂φ

∂τ
− Gφ+ rφ−max

Q∈ bQ {HD(Q)φ}

)
−

(
∂φ

∂τ
− Gφ+ rφ−max

Q∈bY {HD(Q)φ}

)∣∣∣∣∣→ 0

as hy → 0 .
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Theorem 4.3.2 Let HD(Q) be a continuous function of the control vector Q. If the control
space Q̂ is discretized by a finite set of controls Ŷ with a spacing of hy then, for a continuous test
function φ(x1, x2), the solution to Equation 4.3.1 over Q ∈ Ŷ is consistent with the solution
over Q ∈ Q̂. If HD(Q) is a Lipschitz continuous function of the control vector Q then the
solution to Equation 4.3.1 over Q ∈ Ŷ is consistent with the solution over Q ∈ Q̂ to O(hy).

Proof. This result follows from [23, 68] by applying the approach of [105]. �

To discretize Q̂, first note that the integral term may be written from Equations 4.3.2, 4.3.3
and jump measure Equation 4.2.9 as

max
Q∈ bQ

{
HD(Q)V

}
= max

Q∈ bQ
{
λ(Q)

(
BR V

)}
BR V =

[ ∫∫
(J1,J2)∈ΩD

gn(J1 − x1, J2 − x2;R) V (J1, J2, τ) dJ1 dJ2

− V − κ1(R)
∂V

∂x1
− κ2(R)

∂V

∂x2

]
R = (µ̌1, µ̌2, σ̌1, σ̌2, ρ̌)

(λ×R) = Q ∈ Q̂

(4.3.15)

where gn(J1, J2;R) is the PDF of the bi-variate Normal distribution and gn and BRV have no
dependence on λ(Q) in their continuous form. Noting that λ(Q) is a multiple of BRV and

λ(Q) =

{
λmin if BRV < 0
λmax if BRV > 0

to select max
Q∈ bQ

{
λ(Q)

(
BR V

)}
,

it seems reasonable that λ(Q) is a so-called “bang-bang” constraint, since the maximum is
attained at extreme values of λ(Q).

At least the minimum and maximum points of each element of Q must be present in the
discrete form of Q̂. At each refinement an evenly spaced grid will be created with two nodes in
the λ dimension and Nq nodes in each remaining dimension

Q ∈ Ŷ =
{

(λmin, λmax)
×
(
µ̌(1,min), µ̌(1,min) + h1, . . . , µ̌(1,max)

)
×
(
µ̌(2,min), µ̌(2,min) + h2, . . . , µ̌(2,max)

)
×
(
σ̌(1,min), σ̌(1,min) + h3, . . . , σ̌(1,max)

)
×
(
σ̌(2,min), σ̌(2,min) + h4, . . . , σ̌(2,max)

)
× (ρ̌min, ρ̌min + h5, . . . , ρ̌max)

}
(4.3.16)

where h1, . . . , h5 = O(hy). The total number of discrete policies is denoted NY = 2Nq
m−1

where in this case m = 6 policy dimensions including λ(Q). The coarsest Ŷ grid used in this
chapter will have Nq = 3 nodes in the (µ̌1, µ̌2, σ̌1, σ̌2, ρ̌) dimensions, which will then be refined
by halving the spacing.
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Although λ(Q) appears to be “bang-bang” in the continuous form of the problem, it is not
likely to be so once the problem is discretized. The question of whether λ(Q) converges to a
“bang-bang” constraint as hy → 0 will be checked numerically. This is done by comparing the
results using Q ∈ Ŷ with results using a “no bang-bang λ” discretization of the controls

Q ∈ Ŷλ =
{
(λmin, λmin + hλ, . . . , λmax)× . . .

}
(4.3.17)

where λ(Q) is discretized along with the other parameters. By Theorem 4.3.2, if λ(Q) is a
“bang-bang” constraint then the solution using a “no-bang-bang” discretization of the λ(Q)
control must be convergent to the “bang-bang” solution as hλ → 0.

4.3.3 Stability, Convergence and a Monotone Method

The reader is referred to [23, 47, 65, 66, 68, 89, 105] for the general theory behind the solution of
optimal control problems with discrete, implicitly imposed controls and [50, 87] for some recent
applications under jump processes. The following definitions and constraints for the HJB-type
PIDE of this chapter are similar to those of Section 2.5, but repeated here for clarity.

The finite difference discretization of G(qn+1) and P(qn+1) as well as the quadrature scheme
used for J(qn+1) match that of [68] on grids with constant spacing. The region ΩD \ ΩC is
analogous to the extended domains of [18, 34] in the linear case and all boundary conditions
may be treated as Dirichlet.

Theorem 4.3.3 If T(qn+1) of Equation 4.3.12 is an M-matrix then the time step method of
Equation 4.3.13 is unconditionally strictly stable in the l∞ norm, i.e.∥∥vn+1

∥∥
∞ ≤ c ·max

[
‖I(x1, x2)‖∞ , ‖B(x1, x2, τ)‖∞

]
where the constant c is independent of grid spacing ∆x1, ∆x2, ∆τ or ∆hy. This is stability in
the sense of Definition 2.5.2.

Proof. As in the linear case in Section 2.5, this result is proved by a simple maximum analysis
which includes the boundary conditions. �

Theorem 4.3.4 If T(qn+1) of Equation 4.3.12 is an M-matrix then the discretized Equation
4.3.13, written as Mn+1

i in Equation 4.3.14, is a monotone scheme as in Definition 2.5.3.

Proof. If T(qn+1) is an M-matrix then the scheme of Equation 4.3.13 is a positive coefficient
discretization (see Section 2.5.3). Note also that[

max f(·)−max g(·)
]
≤ max

[
f(·)− g(·)

]
.

Then the result follows from the same steps as [47] Lemma 5.3, where f(·) and g(·) are replaced
by the perturbed and unperturbed values of Mn+1

i (·) in the Definition 2.5.3 of monotonicity,
Equation 2.5.1. �
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Definition 4.3.5 Equation 4.3.13, written as Mn+1
i in Equation 4.3.14, is a consistent scheme

if, for any smooth function φ((x1, x2), τ) with a vector φ̄ where φ̄n
i = φ((x1, x2)i, τn) over the

i = 1 . . . N finite difference points,∣∣∣∣∣∣
(
∂φ

∂τ
− Gφ+ rφ−max

Q∈bY {HD(Q)φ}

)n+1

i

−Mn+1
i (h, φ̄n+1

i , φ̄n+1
j , φ̄n

i , φ̄
n
j )

∣∣∣∣∣∣→ 0

as h→ 0 .

Remark 4.3.6 The form of consistency in Definition 4.3.5 is all that is required, rather than
the more involved form of, for example [9, 10, 18]. This is so when either [9, 47]

• the boundary conditions are the limit of the PIDE from the interior, or

• the PIDE is non-degenerate normal to the boundary.

Theorem 4.3.7 The discrete Equation 4.3.13 is consistent with PIDE 4.3.1.

Proof. This follows from Theorem 4.3.2 and the Taylor series expansion used to create the
discretization. �

For convergence to a viscosity solution, it is generally necessary [67, 68] that regularity condi-
tions hold for the coefficients of the continuous PIDE 4.3.1 (typically that they are Lipschitz
continuous in (x1, x2)). This is not the case in Equation 4.3.1 at ∂ΩC . However, this diffi-
culty can be avoided by using a smooth mollifier function which makes HD(Q)V → 0 smoothly
as (x1, x2) ∈ ΩC → ΩD. Under this regularization, the localized PIDE 4.3.1 satisfies the re-
quirements of [67] for a maximum principle over a finite spatial domain, notably also of [67]
Remark 3.4 that the integral term not permit jumps outside the finite domain.

In [18, 23, 68], the requirements for monotonicity, l∞-norm stability and consistency are
required to prove the convergence of the numerical scheme to the viscosity solution of a non-
linear PIDE. PIDE 4.3.1 does not match the problems in [18, 23, 68] in every respect. Hence,
this work does not claim a rigorous proof of convergence to the viscosity solution. This study
proceeds under the assumption that because the scheme used here is monotone, stable and
consistent that it does converge to the viscosity solution.

Remark 4.3.8 Matrix T(qn+1) of Equation 4.3.12 will be an M-matrix if −
(
G(qn+1)− IcP(qn+1)

)
and

[
−Ic

(
J(qn+1)− D(qn+1)

)]
, which are components of T(qn+1), are M-compatible (see Defi-

nition 2.5.8).

Section 3.5.2 indicates that of the strategies listed in Section 2.5.3, in addition to central
weighting as much as possible, grid rotation is to be preferred to ensure a monotone spatial
discretization. The entries of J(qn+1) in Equation 4.3.7 are defined by integrating the values of
g(J1, J2; qn+1) over the FD grid cells. Since the integral of the entire function g around (x1, x2)i
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Figure 4.3.1: The coarsest finite difference grid used in the numerical demonstrations
is rotated, but has a boundary aligned with the axes. This grid has 2399 nodes and a
grid spacing at the strike (log(K), log(K)) of (∆x1,∆x2) = (0.04, 0.04).

is, by definition, the λ(qn+1) value at node i then[
J(qn+1)

]
ij
≥ 0

and
∑

j

[
J(qn+1)

]
ij

= λ(qn+1)i

with
[
D(qn+1)

]
ii

= λ(qn+1)i .

(4.3.18)

As in the linear case,
[
Ic
(
J(qn+1)− D(qn+1)

)]
is M-compatible.

4.3.3.1 Boundary Considerations

Grid rotation produces an irregular boundary along (x1, x2) = (±XD,±XD). This, in turn,
complicates the otherwise simple boundary conditions specified in Equation 2.3.5 on the lower
edges. The approach taken in Chapter 3 is the one used here: the boundaries are represented
by a line which truncates the rotated grid. Since there are no terms in boundary condition
Equation 2.3.5 which are normal to the boundary, this simply puts an irregularly spaced,
one-dimensional grid along the lower edges. An example of the type of rotated grid used for
numerical demonstrations is given in Figure 4.3.1.
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4.4 Time Step Solution Techniques

Equation 4.3.13 is unlike the time step for the jump-diffusion problems in Chapters 2 and 3
or of [37, 38, 48, 111]: T(qn+1) is an implicit function of the time step solution vn+1, making
T(qn+1) non-linear even for European options.

In this section, the fixed point iteration is modified to introduce a policy selection step,
which is performed together with the time step solution. This time step solution method
implicitly imposes the policy constraints for Equation 4.3.13. By using the computational
savings techniques detailed in Section 4.4.3 below, the cost of the time step solution becomes
considerably lower than is possible with the existing approach: piecewise constant time stepping.
This is analyzed in Section 4.4.4. Penalty iteration for American options is readily combined
with the new approach, as described in Section 4.4.5. The resulting time step solution algorithm
is given below as Algorithm 4.4.1 for both European and American options.

4.4.1 Alternate Approach: Piecewise Constant Time Stepping

At first glance, piecewise constant policy time stepping [47, 74] could be applied to solve for
the next time step value vn+1 of Equation 4.3.13. This is a well-studied approach which starts
by solving for vn+1(e) for each time step matrix T(e) that corresponds to a constant policy
e ∈ Ŷ . For each constant policy evaluation, the control vector is set to the same policy
qn+1
i = e ∀ i = 1 . . . N for each solution node in the spatial grid.

Thus, this time step approach first solves[
I + ∆τ T(e)

]
vn+1(e) = vn + b ∀ e ∈ Ŷ (4.4.1)

then, as the second step, computes

[
vn+1

]
i
=
[
max
e∈bY

(
vn+1(e)

)]
i

∀ i = 1 . . . N . (4.4.2)

Thus, the solution vn+1 and the policy q is selected, point-wise at each grid node, from the
maximum of the implicit time step solutions over each of the NY constant policies.

Using the fixed point iteration method would require Mf iterations, consisting of one sparse
linear system solution and two FFT’s, for each of the NY constant policy solutions in Equation
4.4.1. From Chapter 2, Mf = 3 to 5 iterations would typically be required to converge to
the solution of Equation 4.4.1 for European, two-asset option problems with a single, constant
policy.

4.4.2 Fixed Point Policy Iteration

Fixed point policy iteration computes a series of intermediate solutions zk, starting with an
initial guess z0 = vn, which converge to the solution vn+1 of Equation 4.3.13. At the start of
each iteration, the optimal policy qk is determined for iterate zk. The corresponding matrices
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G(qk), J(qk), D(qk) and P(qk) are constructed so that[
G(qk) + Ic

(
J(qk)− D(qk)− P(qk)

)]
zk = max

q∈bY
{[

G(q) + Ic (J(q)− D(q)− P(q))
]
zk
}
. (4.4.3)

The solution will be unique, as proved below, but the policy may not be unique. In this case the
choice between policies that produce the same value in Equation 4.4.3 will be made arbitrarily.
In order to avoid solving a system with the J(q) term in the LHS, as in Equation 4.3.13 (noting
Equation 4.3.12), the fixed point policy iteration splits the linear system into{

I−∆τ
[
G(qk)− r I− Ic

(
D(qk) + P(qk)

)]}
zk+1 = ∆τ IcJ(qk) zk + vn + b (4.4.4)

qk = arg max
q∈bY

{[
G(q) + Ic [J(q)− D(q)− P(q)]

]
zk
}

(4.4.5)

and solves for zk+1. The solution of Equation 4.4.5 is discussed in Section 4.4.3 below. Conver-
gence is reached when the relative update is less than a tolerance εu. Linear system Equation
4.4.4 is solved using preconditioned Bi-CGStab, as previously discussed in Section 2.6.3.

In order to prove the convergence of iteration Equations 4.4.4 and 4.4.5, a number of inter-
mediate results are required.

Remark 4.4.1 For brevity in the following development, denote the matrices in the LHS and
RHS of Equation 4.4.4 and 4.4.5 as

Nk = I−∆τ
(
G(qk)− r I− Ic

[
D(qk) + P(qk)

])
Bk = ∆τ IcJ(qk)

(4.4.6)

to re-write Equation 4.4.4 as
Nkzk+1 = Bkzk + vn + b . (4.4.7)

Lemma 4.4.2 Norm of the Iteration Matrices. Assume that (G(qk) − Ic P(qk)) are M-
compatible and satisfy Remark 4.3.8 so that Nk is an M-matrix (Definition 2.5.6). Then the
norm ∥∥∥∥(Nk

)−1
Bk

∥∥∥∥
∞
≤ c1 =

∆τ λmax

1 + ∆τ (λmax + r)
< 1 (4.4.8)

and similarly ∥∥∥∥(Nk
)−1

Bk−1

∥∥∥∥
∞
≤ c2 =

∆τ λmax

1 + ∆τ (λmin + r)
(4.4.9)

where λmin and λmax are defined in Equation 4.2.10.

Proof. Note that the elements of
(
G(qk)− IcP(qk)

)
satisfy

−
(
G(qk)− IcP(qk)

)
ii
≥
∑
j6=i

(
G(qk)− IcP(qk)

)
ij
≥ 0 .
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Consider two vectors y, z ∈ RN such that, for an arbitrary z, y satisfies

Nky = Bkz . (4.4.10)

Split Equation 4.4.10 as follows for row i using the definitions in Equation 4.4.6 and apply
Equation 4.3.18 for the row sum of Bk

[1 + ∆τ
(
r + (Ic)ii λ(qk)i

)
−∆τ

(
G(qk)− IcP(qk)

)
ii

]
yi

=
∑
j6=i

[
∆τ
(
G(qk)− IcP(qk)

)
ij
yj

]
+
(
Bkz
)

i

≤
∑
j6=i

[
∆τ
(
G(qk)− IcP(qk)

)
ij

]
‖y‖∞ + ∆τ (Ic)ii λ(qk)i ‖z‖∞ .

(4.4.11)

Let 1 ≤ i ≤ N be an index of y such that yi = ‖y‖∞. Then, from Equation 4.4.11[
1 + ∆τ

(
r + (Ic)ii λ(qk)i

)]
‖y‖∞ ≤ ∆τ (Ic)ii λ(qk)i ‖z‖∞ (4.4.12)

‖y‖∞ ≤
∆τ (Ic)ii λ(qk)i

1 + ∆τ [r + (Ic)ii λ(qk)i]
‖z‖∞

‖y‖∞ ≤ ∆τ λmax

1 + ∆τ (λmax + r)
‖z‖∞

which implies Equation 4.4.8 as required.
If Nkz = Bk−1y then Equation 4.4.12 must be changed to allow for λ(qk) on the left and

λ(qk−1) on the right hand side. Matrix Ic does not change. Thus[
1 + ∆τ

(
r + (Ic)ii λ(qk)i

)]
‖y‖∞ ≤ ∆τ (Ic)ii λ(qk−1)i ‖z‖∞

‖y‖∞ ≤ ∆τ λmax

1 + ∆τ (λmin + r)
‖z‖∞

which implies Equation 4.4.9 as required. �

Lemma 4.4.3 Bounded Iterates. Under the preconditions of Lemma 4.4.2, the norm ‖zk+1‖∞
of the solution to Equation 4.4.4 with z0 = vn is bounded by

‖zk+1‖∞ < c1 ‖vn‖∞ +
c3

1− c1
‖vn + b‖∞ (4.4.13)

where 0 < c1 < 1 as given by Equation 4.4.8 and c3 < ∞ are both constants independent of
iteration number k.

Proof. Iteration Equation 4.4.4, written using Equation 4.4.6 to form Equation 4.4.7, can be
rearranged as

zk+1 =
(
Nk
)−1

·
[
Bkzk + vn + b

]
. (4.4.14)
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Taking the l∞ norm of both sides and applying the triangle inequality and Equation 4.4.8 of
Lemma 4.4.2 ∥∥∥zk+1

∥∥∥
∞
≤
∥∥∥∥(Nk

)−1
Bk

∥∥∥∥
∞
·
∥∥∥zk
∥∥∥
∞

+
∥∥∥∥(Nk

)−1
∥∥∥∥
∞
‖vn + b‖∞

≤ ∆τ λmax

1 + ∆τ (λmax + r)

∥∥zk
∥∥
∞ + c3

∥∥vn + b
∥∥
∞

≤ c1
∥∥zk
∥∥
∞ + c3

∥∥vn + b
∥∥
∞

(4.4.15)

where c1 is defined in Equation 4.4.8 and c3 =
∥∥∥(Nk

)−1
∥∥∥
∞
< ∞ because Nk is an M-matrix.

Assuming z0 = vn (as in Equation 4.4.4), then the expanded recursion of Equation 4.4.15 is
bounded by a geometric series in 0 < c1 < 1

∥∥∥zk+1
∥∥∥
∞
≤ c1

k ‖vn‖+ c3

(
k−1∑
i=0

c1
i

)
‖vn + b‖∞

< c1 ‖vn‖+
c3

1− c1
‖vn + b‖∞ .

�

Remark 4.4.4 Define

Ykzk =
[(

Nk−1 − Bk−1
)
−
(
Nk − Bk

)]
zk

= ∆τ
{ [

G(qk) + Ic
(
J(qk)− D(qk)− P(qk)

)]
−
[
G(qk−1) + Ic

(
J(qk−1)− D(qk−1)− P(qk−1)

)]}
zk

(4.4.16)

where qk and qk−1 solve Equation 4.4.5 for zk and zk−1 respectively. Then, by construction (see
Equation 4.4.5),

Yk zk ≥ 0 .

Equality is reached if the policy applied at iterations k and k− 1 both maximize the result, or if
they are the same policy.

Theorem 4.4.5 Convergence of the Fixed Point Policy Iteration. Provided the precon-
ditions of Lemma 4.4.2 hold and the time step ∆τ is restricted to ensure that Equation 4.4.9
satisfies 0 < c2 < 1, then the fixed point policy iteration of Equations 4.4.4 and 4.4.5, with
z0 = vn, is convergent to the unique solution of time step Equation 4.3.13.
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Proof. Iteration Equation 4.4.7 must also hold for previous iteration k − 1 when k > 0, so

vn = Nk−1zk − Bk−1zk−1 − b . (4.4.17)

Equations 4.4.7 and 4.4.17 may be combined to form the equation for the update to zk+1,
applying Equation 4.4.16 to introduce Yk

Nk
(
zk+1 − zk

)
= Nk−1zk − Nkzk + Bkzk − Bk−1zk−1

=
[(

Nk−1 − Bk−1
)
−
(
Nk − Bk

)]
zk + Bk−1

(
zk − zk−1

)
= Ykzk + Bk−1

(
zk − zk−1

)
.

This may be rewritten to obtain, for k > 0

zk+1 − zk =
(
Nk
)−1

Ykzk +
(
Nk
)−1

Bk−1
(
zk − zk−1

)
= uk + Wk

(
z1 − z0

) (4.4.18)

where

uk =
(
Nk
)−1

Ykzk

+
(
Nk
)−1

Bk−1

((
Nk−1

)−1
Yk−1zk−1

)
. . .

+
(
Nk
)−1

Bk−1
(
Nk−1

)−1
Bk−2 . . .

(
N2
)−1

B1
((

N1
)−1

Y1z1
)

(4.4.19)

Wk
(
z1 − z0

)
=
(
Nk
)−1

Bk−1
(
Nk−1

)−1
Bk−2 . . .

(
N1
)−1

B0
(
z1 − z0

)
. (4.4.20)

When Equation 4.4.18 is applied recursively back to the first iteration it becomes

zk+1 = z1 +
k∑

i=1

ui +
k∑

i=1

Wi
(
z1 − z0

)
. (4.4.21)

At this point, the condition restricting ∆τ so that constant 0 < c2 < 1 in Lemma 4.4.2 Equation
4.4.9 is required. By the M-matrix condition for Nk of Lemma 4.4.2,

(
Nk
)−1 ≥ 0. Also Bk ≥ 0

so Wk ≥ 0. By Lemma 4.4.2∥∥∥Wk
∥∥∥
∞

=

∥∥∥∥∥
k∏

i=1

(
Ni
)−1

Bi−1

∥∥∥∥∥
∞

≤ (c2)k . (4.4.22)

Then, from Equation 4.4.22 ∥∥∥∥∥
k∑

i=1

Wi

∥∥∥∥∥
∞

≤
k∑

i=1

(c2)i <
c2

1− c2
.



CHAPTER 4. OPTION VALUES WHERE JUMP PARAMETERS ARE UNCERTAIN 91

Thus
{∑k

i=1 Wi
}

k
is a non-decreasing series bounded from above with

∥∥Wk
∥∥
∞ → 0 as k →∞.

By Equation 4.4.22 and Lemma 4.4.3 that portion of Equation 4.4.21 converges to a finite value∥∥∥∥∥
k∑

i=1

Wi
(
z1 − z0

)∥∥∥∥∥
∞

→ c4 <∞

for any z1 and z0. By Remark 4.4.4, Ykzk ≥ 0. With
(
Nk
)−1 ≥ 0 and Bk ≥ 0, uk ≥ 0 then

the series
∑k

i=0 ui is non-decreasing. By Lemma 4.4.3 the iterates zk are bounded from above.
With

∑k
i=1 Wi

(
z1 − z0

)
convergent and finite, the conclusion is that uk → 0 as k →∞.

Note that if zk+1 = zk then zk+1 is the solution to Equation 4.3.13. Thus the iteration
converges to a limit which, by Theorem 5.1 of [47], is the unique solution to Equation 4.3.13.

�

The condition for Theorem 4.4.5 that c2 < 1 in Equations 4.4.9 and 4.4.22 is relatively mild.
It is always satisfied, for example, if ∆τ λmax ≤ 1. Convergence can be proved with no time
step condition by forcing

(
z1 − z0

)
≥ 0 since, in this case,

∑k
i=1 Wi

(
z1 − z0

)
is non-decreasing.

Provided vn ≥ 0 and the boundary conditions force vn+1 ≥ 0 at the boundary, setting z0 = 0
forces

(
z1 − z0

)
≥ 0. However, as observed in numerical testing, this approach always incurs

the expense of an extra fixed point policy iteration to converge the solution to the required
tolerance. Note that the condition c2 < 1 is sufficient and does not appear to be necessary.
In many numerical experiments conducted with c2 ≥ 1 and z0 = vn, the iteration was always
convergent.

4.4.3 Reducing Computational Cost

When a correlation J(e)vk is performed over a rectangular grid with constant spacing for a single,
constant policy e ∈ Ŷ , then the computation can be performed by applying the approach of
Section 2.4.3. The FFT approach can be exploited to form the product J(qk)vk in Equation
4.4.3 by evaluating each of the NY constant policies individually. An FFT solution generates
all N points together for a given constant policy e. Once qk is determined, then the J(qk)vk

components which are selected can be taken from the set of NY constant policy solutions.
To use the FFT approach, note that the solution to Equation 4.4.3 may be written for fixed

point policy iterate zk as finding Rk(e) ∀ e ∈ Ŷ such that for qk in Equation 4.4.5[
G(qk) + Ic

(
J(qk)− D(qk)− P(qk)

)]
zk =

∑
e∈bY
{

Rk(e)
[
G(e) + Ic (J(e)− D(e)− P(e))

]
zk

}
.

(4.4.23)

Matrices G(e) and [J(e)− D(e)− P(e)] represent the discrete operators when a single constant
policy e ∈ Ŷ is applied over the entire grid. Matrix Rk(e) ∈ RN×N selects the nodes at iteration
k for which a particular policy is applied to maximize each row so that[

Rk(e)
]
ij

=

{
0 or 1 i = j

0 i 6= j
and

∑
e∈bY

Rk(e) = I . (4.4.24)
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Note that the solution of Equation 4.4.23 must be done with the same drift term discretization
(i.e. central, forward or backward weighting) used in the iteration Equation 4.4.4 or convergence
is not guaranteed [47] §4.3,[105].

To use the FFT approach, an interpolation of the original FD grid of values must again
be made onto the rectangular, constant spacing, DFT grid which overlaps ΩD. With the
interpolation onto the DFT grid, the actual computation for a single, constant policy e becomes

J(e) v ' (K · F(e) · L) v (4.4.25)

where F(e) computes the correlation operation corresponding to J(e) using the FFT approach.
Matrices K ≥ 0 and L ≥ 0 are the same second order accurate, monotone, linear interpolations
between the DFT grid and the FD grid as were used in previous chapters

Actually, fewer than O(NY ·N log(N)) operations are required to compute J(qk)vk. Observe
that some λ(e) multiplies each line of the matrix(

J(qk)− D(qk)− P(qk)
)

=
∑
e∈bY

Rk(e) [K · F(e) · L− D(e)− P(e)]

and hence that factor may be taken outside the discrete integral operator when forming Rk(e).
Also, two constant policies E,F ∈ Ŷ which differ by a shift in the mean of the distribution

may be evaluated with only one application of the FFT approach. If the jump measure for
policy F is identical to that of E to within a shift (z1, z2) in the mean where g(J1, J2;F ) =
g(J1 − z1, J2 − z2;E) then for

J (F )U(x1, x2, τ) =
∫∫ ∞

−∞
g(J1, J2;F )U(x1 + J1, x2 + J2, τ) dJ1 dJ2

=
∫∫ ∞

−∞
g(J1 − z1, J2 − z2;E)U(x1 + J1, x2 + J2, τ) dJ1 dJ2

=
∫∫ ∞

−∞
g(J ′1, J

′
2;E)U(x1 + J ′1 + z1, x2 + J ′2 + z2, τ) dJ ′1 dJ

′
2

= J (E)U(x1 + z1, x2 + z2, τ) .

(4.4.26)

The correlation result for policy F can be computed for point (x1, x2) by re-using the correlation
result for E and taking the value at the point (x1+z1, x2+z2). This result holds for the periodic,
discrete case as well to within O(h2) where h controls the DFT grid spacing, provided that ΩD

has been constructed so that (z1, z2) is small relative to its size. This will be the case if the
domain sizing approach of Sections 2.3.3 and 4.3 has been employed.

Thus, for the particular case in question where g(J1, J2; e) is defined by Equation 4.2.9 for
a constant policy e, λ(e) may be factored out of g to make it a conventional bi-variate Normal
distribution with FFT evaluation operation F∗(e). Only a new value of the triplet (σ̌1, σ̌2, ρ̌)
for a policy e triggers a need to re-evaluate F∗(e) · L zk with the O(N log(N)) FFT procedure.
If constant policy e and constant policy f differ only in (λ, µ̌1, µ̌2) then only an O(N) operation
is required to re-evaluate[

G(f) + λ(f)Ic
[
K(f) · F∗(e) · L− IcD(f)− IcP(f)

]]
zk
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by re-using F∗(e) ·L zk with the matrices G(f), K(f), D(f) and P(f). Considerable computational
effort can be saved by grouping the evaluation of all policies in Equation 4.4.23 which have
common (σ̌1, σ̌2, ρ̌) values.

Applying this to the first step of the piecewise constant policy time step approach could
save work, but on the first iteration only. In that case it could be used to evaluate the NY

linear systems where z0 = vn for all cases.

4.4.4 Algorithm Cost Comparison

Recall from Section 4.3.2 that NY = 2Nq
5 for the problem under investigation where Nq is

the number of grid points, spaced O(hy) apart, in each of the discretized control parameter
dimensions except that of λ(Q). Although Nq < NY � N in the numerical tests which
follow, it is also useful to express the cost of the algorithms in terms of a general discretization
parameter h where ∆x1,∆x2,∆τ, hy = O(h) such that

N = O

([
1
h

]2
)

and NY = O

([
1
h

]5
)
.

A single piecewise constant policy time step (Equations 4.4.1 and 4.4.2) requires NY linear
system solutions, each of which may be done using Mf fixed point iterations. Thus, over N
finite difference grid nodes, for each of NY = 2Nq

5 policies, for Mf iterations, an O(N5/4) sparse
linear solution and two O(N log(N)) FFT’s are required. The cost per piecewise constant policy
time step is

Cpwcp = O
(
2Nq

5 ·Mf ·
[
N5/4 +N log(N)

])
= O

(
Mf ·

[
1
h

]15/2
)
. (4.4.27)

The cost saving measures of Section 4.4.3 split the cost of evaluating NY policies into
Nq

3 FFT evaluations for the unique triplets of (σ̌1, σ̌2, ρ̌) parameters and 2Nq
5 linear system

evaluations for all unique elements of Ŷ . In the fixed point policy iteration, this means the
effort is reduced, for one time step, to Mp iterations of the policy evaluation and Mp sparse
linear system solutions. Thus the cost per time step using a fixed point policy iteration is

Cfppi = O
(
Mp ·

[
2Nq

5 ·N +Nq
3 ·N log(N) +N5/4

])
= O

(
Mp ·

[
1
h

]7
)
. (4.4.28)

Assuming Mf ' Mp, then the complexity of the fixed point policy iteration computed by
Equation 4.4.28 is lower than that of the piecewise constant policy method given by Equation
4.4.27. The fact that NY � N under the demonstration scenarios which follow makes this a
pronounced savings.

4.4.5 American Options by Penalty Iteration

The penalty method of Section 2.6.2, when used with the fixed point policy iteration, does
not need to be separate. The penalty vector for iterate zk is evaluated before iteration update
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Algorithm 4.4.1 Solve one time step using a combined fixed point policy and penalty iteration.

FixedPointPolicyIteration( vn, v∗, ∆τ , G(e), J(e), D(e), P(e), b, εu )
where

vn the price at time step n
v∗ the minimum option value (usually the payoff)
∆τ time step size
G(e) discrete Brownian motion differential terms and

J(e),D(e),P(e) discrete integral operator components, policies e ∈ Ŷ .
b boundary condition imposition vector
εu required solution update tolerance

1. Set zk=0 = vn.

2. For k = 0, 1, 2, 3, . . . until convergence (tested in Step 7)

3. For American options: set ck using Equation 2.6.3.
For European options: set ck = 0.

4. Determine qk and matrices G(qk),J(qk),D(qk) and P(qk) such that[
G(qk) + Ic

(
J(qk)− D(qk)− P(qk)

)]
zk

= max
q∈bY

{[
G(q) + Ic

[
J(q)− D(q)− P(q)

]]
zk

}
using the approach of Section 4.4.3 and G(e), J(e), D(e), P(e), ∀ e ∈ Ŷ .

5. Set Nk =
[
I−∆τ

(
G(qk)− r I− Ic

[
D(qk) + P(qk)

])]
+ (ck)′I

yk =
[
∆τ IcJ(qk)

]
zk + vn + b + (ck)′I v∗

6. Solve Nk zk+1 = yk using ILU(2) preconditioned Bi-CGStab.

7. If max
i

[ ∣∣zk+1 − zk
∣∣
i

max (1, |zk+1|i , |zk|i)

]
< εu then the iteration is finished.

End For

Return the solution vector vn+1 = zk+1.
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Equation 4.4.4. Equation 4.4.4 is modified by adding the term
(
ck
)′

I
(
v∗ − zk+1

)
to the RHS

to form{
I−∆τ

[
G(qk)− r I− Ic

(
D(qk) + P(qk)

)]
+
(
ck
)′

I

}
zk+1

= ∆τ IcJ(qk) zk +
(
ck
)′

I v∗ + vn + b . (4.4.29)

Algorithm 4.4.1 is the combination of both iterations.

Theorem 4.4.6 Convergence of the Combined Penalty, Fixed Point Policy Itera-
tion. Let the preconditions of Lemma 4.4.2 hold and let Equation 4.4.9 satisfy 0 < c2 < 1.
Then the combined penalty, fixed point policy iteration Equation 4.4.29 is convergent to the
unique solution of the following time step equation for American options (equivalent to Equa-
tion 4.3.13 for European options)[

I + ∆τ T(qn+1) +
(
cn+1

)′
I
]
vn+1 = vn +

(
cn+1

)′
I v∗ + b

where cn+1 is the penalty vector at time τn+1.

Proof. The proof follows by creating an additional control β(x1, x2, τ) ∈ {0, 1} to form a
penalty term added to Equation 4.2.1. This leads to an HJB-style PIDE for American options
[47] which is equivalent to the linear complementarity form of Equations 4.2.7 and 4.2.8

∂U

∂τ
= GU − rU + max

Q∈ bQ
{
H(Q)U

}
+ max

β∈{0,1}

{
β

1
ε
· (I − U)

}
, ε� 1 (4.4.30)

U(x1, x2, 0) = I(x1, x2) .

Localization and discretization of Equation 4.4.30 leads to the terms of iteration Equation
4.4.29. The proof of convergence of the penalty iteration, combined with fixed point policy
iteration, proceeds using the same steps as in Section 4.4.2 above. Remark 4.4.4 changes so
that matrix Yk is formed to include penalty term(

ck
)′

I
(
v∗ − zk+1

)
and Ykzk ≥ 0 still holds [37] §4. Then the remaining steps of the proof proceed in nearly
identical fashion to those of Theorem 4.4.5. �

Amadori (see [3] § 4.2) investigates the conditions for convergence of the penalty method to
the viscosity solution of an American option under constant coefficients. The combined method
presented here is consistent, monotone and stable, thus is assumed to converge to the viscosity
solution of the localized problem for uncertain coefficients [18, 19, 91]. However, this thesis
does not undertake to prove this assumption.
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λ µ̌ Data Source of
Study Min Max Min Max Source Variation

Bakshi & al. 1997 [8] 0.57 0.70 -0.090 -0.040 S&P 500 Fit error, data weights.
Eraker & al. 2003 [44] 0.98 2.04 -0.038 -0.014 S&P 500 Fit error, 1 std. dev.
Eraker & al. 2003 [44] 1.89 6.78 -0.035 -0.014 Nasdaq Fit error, 1 std. dev.

Eraker 2004 [43] 0.25 0.75 -0.037 0.031 S&P 500 Fit error, 1 std. dev.
Bakshi & al. 2003 [24] 2.56 3.27 -0.050 -0.010 S&P 500 Choice of data set.

Table 4.5.1: Jump parameters λ and µ̌ ranges from stochastic volatility with jump
studies, where the jumps are in price only and are Normally distributed with mean µ̌.
These ranges are taken as indicative, but would likely be larger in a constant volatility
study since the jump process would have to account for more of the variation in the
non-constant implied volatility. The data source and the main source of variation is
identified for each case.

4.5 Numerical Demonstrations

The first step of the numerical demonstrations in this chapter is to construct a reasonable
synthetic market which describes the evolution of two correlated assets. This is done in Section
4.5.1. Over this market, a European call option on the maximum of the two assets and an
American put option on the minimum of the two assets are valued. The convergence and
cost of the approach is demonstrated in Section 4.5.2. Finally, the sensitivity of the best- and
worst-case prices to the underlying parameters is reviewed in Section 4.5.3.

4.5.1 Contracts and Synthetic Market

To derive a reasonable synthetic market, the results of He et al. [59] serve as a starting point. In
that study, a Merton one-asset model [86] with Normally distributed jumps and diffusion was
fit to several option price sets. These sets were computed using values from a known process
to which 4.7% to 6% noise was added. In that case, the calibrated jump rate was λ = 0.06
to 0.15 around the known value of λ = 0.1 and the mean jump ranged from µ̌ = −0.0178 to
−0.0061 around the known value of µ̌ = −0.0092. Interestingly, in each case the jump volatility
estimates were nearly exactly the known value σ̌ = 0.20. This chapter will follow this indication
and fix the values of the jump standard deviations (σ̌1, σ̌2) to constant values.

Available, recent, calibration studies from actual markets use the stochastic volatility model
with jumps. The calibration ranges for λ and µ̌ from several studies are listed in Table 4.5.1
for stochastic volatility with Normal price jumps. These will be taken as indicative, although
not all of the values are in the risk-neutral measure. In a constant Brownian motion setting
the jump parameter values could be expected to take on higher values to reflect the absence of
stochastic volatility as a source of variation in the implied volatility.

Based approximately on these ranges, Table 4.5.2 lists the parameters of the Brownian mo-
tion and jump components (Equation 4.2.3) of the synthetic price process used in the following
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Fixed Uncertain
Parameter Value Min Max

Brownian Motion σ1 0.15
σ2 0.12
ρ 0.30

Finite Activity Jumps λ 1.50 2.00
µ̌1 -0.04 0.00
µ̌2 -0.02 0.02
σ̌1 0.12
σ̌2 0.16
ρ̌ -0.80 0.80

Table 4.5.2: Price process parameters for the numerical demonstration. Four jump
parameters are uncertain. All contracts were solved with a risk-free rate r = 0.05,
strike K = 100 and expiry time T = 1.

numerical examples. Jump parameter ρ̌ is selected to allow both a strong positive and a strong
negative correlation. This corresponds to a case where two assets are related and an important
news event may affect either both together or one in favour of the other (e.g. a duopoly where
an industry wide shock may occur, or an event favouring one firm over the other). The jump
arrival rate λ, the mean of the jumps on both axes (µ̌1, µ̌2) and the jump correlation ρ̌ are un-
certain, which supplies four parameter dimensions to discretize. The total asset price variance
due to Brownian motion in this case is somewhat lower than the variance due to jumps.

4.5.2 Numerical Convergence

All contracts were solved with a risk-free rate r = 0.05, strike K = 100 and expiry time T = 1.
For all tests, ΩC = [35, 300] × [35, 300] and ΩD = [8, 1240] × [8, 1240] in price scaling (S1, S2).
These satisfy the ΩC and ΩD sizes around a region of interest [80, 125]× [80, 125] using domain
size tolerances εc = 10−3 and εd = 10−4, which were the values used in Chapter 2.

To verify that these finite domains were large enough, the numerical tests which follow
were repeated with a much larger ΩD = [4, 2357]× [4, 2357] using the second of the three grid
resolutions. This produced no difference in the values to the accuracy reported below. With
a larger ΩC = [25, 400] × [25, 400] as well as larger ΩD = [4, 2357] × [4, 2357], the best-case
European option value differed by an relative value of 4× 10−5. In all other cases the relative
difference was less than 1 × 10−5. For both tests on larger domains, the error due to domain
truncation appears to be much less than the discretization error on the finest grid used for tests.

To demonstrate convergence, solutions on three levels of refinement were performed. For
each refinement, the spacing of the grid of uncertain parameters, the FD and DFT grid spacing
and the time step were divided by two. The coarsest FD grid was formed with a spacing
near the strike point (log(K), log(K)) of (∆x1,∆x2) = (0.04, 0.04) and was then rotated using
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Equation 2.5.4 around the strike by θr = 26.5651 degrees before truncation at the upper and
lower (x1, x2) boundaries. This grid is shown in Figure 4.3.1. The DFT grid remained aligned
with the (x1, x2) axes and for the coarse grid had a spacing of (∆xf,1,∆xf,2) = (0.08, 0.08).
The time step used with the coarsest grid was ∆τ = 0.04.

The parameter grid Ŷ Equation 4.3.16 has, for the parameters of Table 4.5.2, four dimen-
sions. Each dimension other than λ was discretized by Nq = 3 points in each direction for
the first, coarse grid computation, which generated NY = 2Nq

3 = 54 discrete policies. On the
finest grid, NY increased to 1458. Since σ̌1, σ̌2 were constant, Equation 4.4.28 for the cost of
the fixed point policy iteration becomes

Cfppi = O
(
M ·

[
2Nq

3 ·N +Nq ·N log(N) +N5/4
])

= O

(
M ·

[
1
h

]5
)

(4.5.1)

for each time step.
A time step was considered converged when a fixed point policy iteration or combined

penalty, fixed point policy iteration produced a relative update smaller than εu = 10−7 (Algo-
rithm 4.4.1 Step 7). A linear system was considered solved when the preconditioned Bi-CGStab
algorithm produced a relative update smaller than εl = 10−8. Tighter tolerances produced no
change in the option value within the accuracy reported.

The values for the option contracts are listed in Table 4.5.3 for each grid refinement 1 through
3. The convergence rate α is given assuming that the error is O((∆x1)α, (∆x2)α, (∆τ)α, (hy)α).
By the second grid, the solutions appear to be accurate to within 1% of the option value. The
error at all resolutions is much less than the difference between the best- and worst-case for
each contract.

Figure 4.5.1 shows the best-case option value surface for the American option at τ = T for
the finest grid. The surface has dark shading where λ(Q) = λmin and light where λ(Q) = λmax.
Figure 4.5.2 shows the difference between the best- and worst-case European option on the finest
grid at τ = T . The surface is shaded from dark to light by the value of µ̌1, from minimum to
maximum, which is in force at each grid point for the best-case policy.

Numerical runs were also repeated using the “no bang-bang λ” policy set Ŷλ of Equation
4.3.17, where the λ values were also refined between λmin and λmax. Even if the exact solution
has bang-bang type controls, there is no guarantee that the controls will be bang-bang on a
finite grid. In [27], a no-bang-bang discretization converged more smoothly than a bang-bang
discretization, even though the converged solution had a bang-bang control. The solutions
using Ŷλ are listed in the lower half of Table 4.5.3. The policies with intermediate values of λ
occurred infrequently, only between larger patches where λ(Q) = λmin or λ(Q) = λmax and only
away from the core of the solution at points, where the grid spacing changed. In the interior
of the solution (S1, S2) ∈ [80, 125]× [80, 125], the solution under Q ∈ Ŷ versus Q ∈ Ŷλ differed
by less than an absolute value of 1× 10−4 on the coarsest grid, less than 1× 10−6 on the first
refinement and less 1× 10−8 on the finest grid. This agrees with the assertion in Section 4.3.2
that λ(Q) is a “bang-bang” constraint and thus only λmin, λmax are required in the discrete
policy grid.
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Q ∈ Ŷ : “bang-bang λ”
V (S1 = 100, S2 = 100)

European American
Grid Call on max() Put on min()

Refinement Worst Best Worst Best
1 16.2688 22.6877 9.3775 13.8786
2 15.8978 22.2701 9.2088 13.7263
3 15.8097 22.1835 9.1748 13.7020
α 2.1 2.3 2.3 2.7

Q ∈ Ŷλ: “no bang-bang λ”
1 16.2688 22.6877 9.3775 13.8786
2 15.8978 22.2701 9.2088 13.7263
3 15.8097 22.1835 9.1748 13.7020

Table 4.5.3: At each refinement, the best- and worst-case option values for a Eu-
ropean call on the maximum and American put on the minimum of two assets are
given for (S1, S2) = (100.0, 100.0) at τ = 1. The approximate convergence rate α is
given, assuming the error is O((∆x1)α, (∆x2)α, (∆τ)α, (hy)α). The top section of the
table lists results for Q ∈ Ŷ Equation 4.3.16 where λ(Q) is treated as a “bang-bang”
constraint. The bottom section lists the results where Q ∈ Ŷλ Equation 4.3.17 where
λ(Q) is discretized, which resulted in no difference in the results within the accuracy
reported.
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Figure 4.5.1: This figure shows the best-case option value for the American put on
the minimum of two assets under the uncertain parameters given in Table 4.5.2. The
result is from the finest grid resolution. The surface is shaded by the value of λ(Q)
in force at τ = 1: λ(Q) = λmin where the surface is dark and λ(Q) = λmax where the
surface is light.
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Figure 4.5.2: This shows the difference between the best-case and the worst-case
option value for the European call on the maximum of two assets. The result is from
the finest grid resolution. The surface is shaded from dark to light by the value of µ̌1,
minimum to maximum, which is in force at τ = 1 from the best-case policy.
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European Call on max(), Best-Case
Time FD Iterations

Grid Steps Nodes Policies FPP Bi-CGStab CPU
Refinement Nτ N NY Total /TS Total /FPP Time

1 25 2399 54 161 6.4 483 3.0 1
2 50 8885 250 269 5.4 877 3.3 29
3 100 34091 1458 450 4.5 1800 4.0 1107

American Put on min(), Best-Case
1 25 2399 54 159 6.4 477 3.0 1
2 50 8885 250 267 5.3 801 3.0 29
3 100 34091 1458 449 4.5 1796 4.0 1110

Table 4.5.4: The number of time steps Nτ , finite difference nodes N and the number
of policies NY , is given for each grid refinement. For the best-case option value, for the
European call on the maximum and American put on the minimum of two assets, the
number of outer iterations is given, total and per time step. The outer iterations are
either fixed point policy (FPP) iterations in the European case or combined penalty
iterations for the American case. The number of Bi-CGStab solver steps is given along
with the average per outer, time step iteration. The CPU time is given with cost of
the coarse grid solution for the European case normalized to 1.0.

Table 4.5.4 lists the number of time steps Nτ , FD grid nodes N and the size of the set of
discrete policies at each grid refinement NY for two contracts. It shows that, for the best-case
price of the European option, an average of 6.4 fixed point policy iterations were required to
converge each time step on the coarsest grid. On the finest grid this was reduced to 4.5, which
implies that the λmax∆τ factor in the proof of Theorem 4.4.5 does indeed influence the rate of
convergence. The worst-case European price required only 6 fixed point policy iterations for
each time step on the coarsest grid and 4.5 on the finest. The American options required almost
exactly the same number of combined penalty, fixed point policy iterations. Each linear system
(Step 6 of Algorithm 4.4.1) required, on average, 3 Bi-CGStab iterations on the coarsest grid
and 4 on the finest grid in all cases.

The normalized CPU time in Table 4.5.4 increases, approximately, by the expected value
of 32 with each refinement. The bulk of the computational time for the all grids was taken up
by Step 4 of Algorithm 4.4.1: the determination of the policies over (x1, x2) which select the
best- or worst-case option value given iterate zk. The policy selection step could readily exploit
parallel computation techniques.
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V (S1 = 100, S2 = 100)
European American

Uncertain Call on max() Put on min()
Parameters Worst Best Worst Best

λ 18.38 20.00 10.68 12.08
(µ̌1, µ̌2) 18.57 19.68 11.07 11.76

ρ̌ 16.97 20.83 9.98 12.46
λ, (µ̌1, µ̌2) 17.80 20.51 10.41 12.47

λ, ρ̌ 16.20 21.50 9.36 13.19
(µ̌1, µ̌2), ρ̌ 16.42 21.29 9.71 12.90
λ, (µ̌1, µ̌2), ρ̌ 15.90 22.27 9.21 13.73

Table 4.5.5: Best- and worst-case option values are supplied where different sets
of parameters are allowed to be uncertain over the range given in Table 4.5.2. The
parameters not listed in the first column above are fixed to the mid-point of their
range. The final line repeats the values for all parameters uncertain. Values are from
grid resolution 2 and are approximately 1% accurate.

4.5.3 Sensitivity to Parameters

Six tests were performed to discover which of λ, (µ̌1, µ̌2) or ρ̌ had the greatest effect on option
value uncertainty. Each was computed at the second grid resolution, thus with approximately
1% accuracy in price. The results for the two contracts are summarized in Table 4.5.5; each row
lists the uncertain parameters in each test and, for ease of comparison, the last row repeats the
results for the full set of uncertain parameters. The two jump mean parameters were always
either both uncertain or both fixed. Fixed parameters were set to the mid-point of their range
in Table 4.5.2.

Of the cases where one of λ, (µ̌1, µ̌2) or ρ̌ was uncertain, listed on the first three lines of
Table 4.5.5, the correlation ρ̌ produced the widest gap between worst- and best-case values as
well as the highest best-case values and lowest worst-case values. When only one parameter
was fixed, the widest ranges were also produced when ρ̌ was allowed to be uncertain. These
results suggest that, for the synthetic market used in this chapter, the correlation ρ̌ was the
parameter which most influenced the range of results, followed by the jump rate λ.

4.6 Chapter Summary

The localization and discretization of the linear, two-asset PIDE of Chapter 2 has been adapted
to the case of a non-linear, HJB-type PIDE for the solution of the best-case and worst-case
option value under a deterministic range of parameters. The control variable space was dis-
cretized using a standard approach. The spatial discretization was performed using a rotated
grid. This was shown in Chapter 3 to be the best from three choices of approach which generate
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a monotone discretization. The boundary approximation of Chapter 3 was also used, where a
axis-aligned line of nodes are place along each boundary.

A new algorithm was presented, the fixed point policy iteration, for the solution of the
algebraic equations required for a single time step. It combines implicit imposition of policy
with the fixed point algorithm of Chapter 2. It was proved to be globally convergent provided
a very mild time step restriction is imposed. An approach was presented that significantly
reduces the cost of the most computationally expensive part of the algorithm: determining the
policy which minimizes or maximizes the result for each iteration.

Numerical demonstrations, based on a synthetic, but realistic, two-asset market, show the
cost and efficiency of the approach. Convergence of the numerical solution with respect to a grid
spacing parameter was demonstrated to match the linear rate expected for smooth problems.
The localization approach of Chapter 2 is shown to be effective for this case as well. The
uncertain parameters generate a best-case to worst-case spread which is comparable to, or
even exceeds, the bid and ask spread seen in a typical option market written on equities. For
the synthetic market example presented, the correlation was the parameter whose uncertainty
generated the widest best-case, worst-case difference.



Chapter 5

Conclusions

The PIDE’s at the focus of this thesis arise from problems in the financial option markets. This
work has focused on creating accurate and efficient pricing algorithms for three closely related,
fundamental valuation problems. The algorithms could, in turn, lead to practical improvements
in the ability of financial institutions to offer more sophisticated contracts.

5.1 Two Asset Results

In Chapter 2 an implicit, finite-difference based method was developed to compute the solution
of the PIDE which arises from a two-asset option valuation problem under jump diffusion. An
approach was presented for the localization of the infinite-domain, initial-value problem to a
finite-domain, initial- and boundary-value problem. The convergence of this localization was
proved using a Green’s function approach. Localizing the integral term of the PIDE generates an
error, which is reduced using an approximation in an outer, buffer region. This approximation
is, in the final numerical method, inexpensive and simple to compute.

A näıve implicit computation of the discrete integral term in the PIDE would involve the
solution of a dense linear system. However, the use of a fixed point iteration reduces this to
the problem of carrying out a dense matrix-vector multiply. The integration has the form of a
discrete correlation and can be carried out by using two FFT’s. The method is straightforward
to implement, easily extended to American options through use of a penalty method and jump
diffusion can be added to an existing two asset Brownian motion pricing model at the expense
of a few FFTs per time step.

When the diffusion coefficients are constant, standard schemes for monotone spatial dis-
cretization apply (such as grid rotation) which have the result that the discrete system of equa-
tions are monotone for fully implicit time stepping. This property can be used to guarantee
convergence of the fixed point iteration, and is a requirement for convergence to the viscosity
solution of the whole discrete, linear problem. In the case where the discrete equations are
non-monotone, a von Neumann analysis indicates that the fixed point iteration is still globally
convergent.

The analysis indicates that, for typical market parameters, the fixed point iteration will
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reduce the initial residual by seven orders of magnitude in 3 to 5 iterations for European options.
Numerical experiments on a synthetic, but typical set of parameters confirm this. Numerical
experiments also show quadratic convergence as the grid and time step are refined when Crank–
Nicolson time stepping was used. Quadratic convergence was obtained for the solutions on the
rotated grid, however, for a given mesh size these had somewhat higher absolute error than a
comparable conventional grid.

5.2 Stochastic Volatility and Monotone Approaches

In Chapter 3 the numerical method was extended to two-factor, stochastic volatility with jumps
for option valuation on one asset. In this case, sets of market model parameters were available
from actual markets. The approach was robust for all of the market cases tested, including
after the minor adaptions required to compute using the three market cases which had extreme
parameter values.

The stochastic volatility case has partial differential coefficients which vary along one spatial
dimension. The approaches used in Chapter 2 that result in the three methods for generating
monotone, discrete diffusion terms were adapted to apply to stochastic volatility. The numerical
tests in Chapter 3 quantified the cost of each monotone diffusion approach, each of which
requires an adapted finite difference grid, compared to using the a non-monotone discretization
on a conventional finite difference grid. The grid rotation approach is, by the measures used,
to be preferred.

5.3 Monotonicity and Non-linearity

The monotone approaches guarantee the convergence of the penalty and fixed point iterations.
These also guarantee the unconditional stability of the method in the l∞ norm which is a
theoretical precondition for convergence to the viscosity solution of the localized PIDE. This
method is therefore useful for valuation problems with non-linearities, such as those formulated
as solutions to optimal control problems under HJB PIDE’s with jumps. An HJB-type PIDE
was studied which arises from cases where the jump parameters of the process are uncertain.
In Chapter 4 the fixed point iteration is adapted to form a new fixed point policy iteration by
adding a control optimization step. American options can be valued by combining a penalty
iteration with this technique.

The fixed point policy iteration is proved to be globally convergent, starting from the the-
ory in [47], under a mild time step restriction. Numerical tests confirm that the approach is
convergent, in the discretization parameter which specifies the time step, finite difference and
discrete policy grid, by at least the linear rate which would be expected for smooth problems.

From a practical perspective, these results show that even fairly small, quite typical uncer-
tainty in the parameters specifying the jump size density can result in large differences between
the best- and worst-case option values. The bid/ask spread in a typical option market is of
the magnitude seen between the best- and worst-case in the numerical tests of Chapter 4. In
this case, the spread would reflect the buyer and seller both valuing the option under their own
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worst-case scenario. For the synthetic market used to generate the numerical results, the jump
correlation was the parameter which generated the widest gap between best- and worst-case
values, followed by jump arrival rate then the jump mean.

5.4 Future Work

The FFT-based approximation to the correlation integral requires the use of either an inef-
ficient, constant-spacing finite difference grid, too highly resolved in areas of low interest, or
the interpolation scheme developed here. One avenue for improvement might be through Fast
Multipole Methods [12] which include the Fast Gauss Transform [56, 109]. These methods were
originally developed to solve problems in multi-body dynamics, which have less structure than
a problem on a finite difference grid. Current implementations appear to spend time locating
poles around which functions are expanded. This is likely not required in the case of an FD
grid and would explain the failure of these approaches to perform well in tests reported in [36].
To be useful in a non-linear problem, the monotonicity of the resulting approximations would
need to be established. Similarly, H–matrices [57, 58] hold some promise for being able to
compute the correlation integral, but that technique remains unexplored for option valuation
under jump diffusion.

The problem of maintaining monotonicity in the finite difference approximation is one that
is not fully resolved. The stochastic volatility problem explored in this thesis has a very simple,
structured form of variability in the diffusion coefficients. Less well structured cases remain an
open problem. It may indeed by the case that non-local, finite difference approximation used in
Generalized Finite Differences [14] is well suited to the problems considered in this work. This
would be especially so if the technique can be modified to respect option payoff features.

The solution of the non-linear problem addressed in this work, which uses discrete controls,
is an improvement on existing methods but is still relatively expensive. By making some as-
sumptions about the structure and smoothness of both the solution and the jump PDF, it may
be possible to create a method which exploits more conventional optimization techniques. Opti-
mal control problems in finance are an area of active research [92], where practical improvements
in algorithms are of interest to the finance community.



Appendix A

Pricing PIDE

The stochastic differential equations (SDE), from which the PIDE’s 2.2.3 and 3.2.2 are derived,
are listed in this appendix. Note the assumption that there is a single Poisson process which
drives correlated jumps in both factors. This corresponds to a single market shock process
which affects either both asset prices or both the asset price and its variance [33].

A.1 Two-Asset Problems

The underlying assets for two-asset options are assumed to follow the risk neutral processes

dS1 = (r − λκ1)S1 dt+ σ1S1 dZ1 +
(
eJ1 − 1

)
S1 dq ,

dS2 = (r − λκ2)S2 dt+ σ2S2 dZ2 +
(
eJ2 − 1

)
S2 dq ,

or, in log-price scaling (x1, x2) = (log(S1), log(S2))

dx1 =
(
r − λκ1 −

σ1
2

2

)
dt+ σ1 dZ1 + J1 dq ,

dx2 =
(
r − λκ2 −

σ2
2

2

)
dt+ σ2 dZ2 + J2 dq ,

(A.1.1)

where

σ1, σ2 = asset volatilities,
r = risk free rate,

dZ1, dZ2 = increments of Wiener processes,
dZ1 dZ2 = ρ dt ,

dq =

{
0 with probability 1− λdt

1 with probability λdt,

λ = mean arrival rate of Poisson jumps (J1, J2) ,

(S1, S2) → (eJ1S1, e
J2S2) , or

(x1, x2) → (x1 + J1, x2 + J2) ,
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κ1 = E[eJ1 − 1];κ2 = E[eJ2 − 1]

E[f(J1, J2)] =
∫∫ ∞

−∞
f(J1, J2)g(J1, J2) dJ1 dJ2 ,

g(J1, J2) = density function of the jump magnitudes in log-price scaling.

From this SDE, by using Ito’s formula for finite activity jump processes, one can easily derive
the pricing PIDE 2.2.3 by taking expectations under the risk neutral process ([33], [54] §1.4.5).

A.2 Stochastic Volatility Problems

For stochastic volatility with jumps problems, the underlying asset is assumed to follow the
risk neutral process

dx = (r − v

2
− λκx) dt+

√
v dZx + Jx dq ,

dv = κv (θv − v) dt+ σv dZv + Jv dq ,
(A.2.1)

where
√
v, σv = asset volatility and volatility of volatility,

r = risk free rate,
dZx, dZv = increments of Wiener processes,
dZx dZv = ρv dt ,

dq =

{
0 with probability 1− λdt

1 with probability λdt,

λ = mean arrival rate of Poisson jumps (Jx, Jv ≥ 0) ,
(x, v) → (x+ Jx, v + Jv) ,

κx = E[eJx − 1]

E[f(Jx, Jv)] =
∫ ∞

−∞

∫ ∞

0
f(Jx, Jv)g(Jx, Jv) dJx dJv , and

g(Jx, Jv) = density function of the jump magnitudes.

From this SDE, by using Ito’s formula for finite activity jump processes, one can easily derive
the pricing PIDE 3.2.2 by taking expectations under the risk neutral process ([33], [54] §1.4.5).



Appendix B

Probability Distribution Functions
for Jump Magnitudes

The two jump distributions used for the two-asset numerical examples of Chapter 2 are described
in this appendix.

B.1 Bi-Variate Normal in Log-Price

The bi-variate Normal distribution is a straightforward and well defined extension of the uni-
variate case. The probability density function for this distribution is, with parameters for the
mean µ̌1, µ̌2, standard deviations σ̌1, σ̌2 and correlation ρ̌:

gn(x1, x2; µ̌1, µ̌2, σ̌1, σ̌2, ρ̌) =
1

2πσ̌1σ̌2

√
1− ρ̌2

exp
{
− z

2(1− ρ̌2)

}
(B.1.1)

with

z =
(
x1 − µ̌1

σ̌1

)2

− 2ρ̌ (x1 − µ̌1) (x2 − µ̌2)
σ̌1σ̌2

+
(
x2 − µ̌2

σ̌2

)2

.

B.2 Marshall-Olkin Bi-Variate Exponential

The two-asset extension of the one-dimensional, double-sided, exponential distribution of Kou
[72] is not as straightforward as with the Normal case. Numerous bi-variate exponential distri-
butions have been studied (see [71], Chapter 47). Of these, the Marshall-Olkin bi-variate expo-
nential distribution (MOBED) [80] retains the lack-of-memory property of the one-dimensional
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distribution. The PDF of this distribution is discontinuous

gx(x1, x2; η̌1, η̌2, η̌12) = exp {−η̌1x1 − η̌2x2 − η̌12 max(x1, x2)}

×


η̌1(η̌2 + η̌12) 0 < x1 < x2

η̌12 0 < x1 = x2

η̌2(η̌1 + η̌12) 0 < x2 < x1

(B.2.1)

where 1/η̌1 and 1/η̌2 are the mean jumps in direction of x1 and x2 by themselves and 1/η̌12 is
the mean jump of both assets together. Although the PDF is discontinuous and the line x1 = x2

has a two-dimensional Lebesgue measure of zero, there is a positive probability associated with
this line. For the computations in Section 2.4.3.1 the integrated PDF must be expressed in
terms of the cumulative distribution function given in [80] §3.1.

To define the PDF in the entire real plane it is written in four quadrants and, following
the approach of [72], a probability is assigned to each quadrant. Take p̌1, p̌2 ∈ [0, 1] as the
probability of a positive jump in x1 and x2 respectively with q̌1 = (1 − p̌1) and q̌2 = (1 − p̌2)
the probability of a negative jump. The PDF is then

gm(x1, x2;η̌p,1, η̌q,1, η̌p,2, η̌q,2,

η̌pp, η̌qp, η̌pq, η̌qq, p̌1, p̌2) = p̌1p̌2 · gx(+x1,+x2; η̌p,1, η̌p,2, η̌pp) · 1x1,x2≥0

+q̌1p̌2 · gx(−x1,+x2; η̌q,1, η̌p,2, η̌qp) · 1x1<0,x2≥0

+p̌1q̌2 · gx(+x1,−x2; η̌p,1, η̌q,2, η̌pq) · 1x1≥0,x2<0

+q̌1q̌2 · gx(−x1,−x2; η̌q,1, η̌q,2, η̌qq) · 1x1,x2<0

(B.2.2)

where the η̌ parameters are defined for each of the four quadrants. To avoid further complica-
tion, this does not encode the case where the peak of the distribution is offset by (µ̌1, µ̌2). Note
that to satisfy Assumptions 2.3.1 and 2.3.2 the positive jumps must have a mean 1/η̌ < 1, or
η̌ > 1, as in [72].



Appendix C

Localization Error Proofs

Section 2.3.2 left the proofs of Theorems 2.3.7 and 2.3.8 to the following two sections. This
appendix employs proofs using Green’s functions, which require two spatial coordinate pairs
and two time parameters. For brevity, the spatial parameters and related terms are written

x = (x1, x2)
x′ = (x′1, x

′
2)

dx′ = dx′1 dx
′
2

J = (J1, J2)
dJ = dJ1 dJ2

with the usual element-wise vector sum.

C.1 Proof of Theorem 2.3.7 in Log-Price Scaling: Cutoff Error
Due to Localization is Bounded

Theorem 2.3.7 (Restated). Let U be the solution to PIDE 2.2.3. Let V be the solution an
initial-value PIDE

∂V

∂τ
= LV + λCHDV ,

V (x, 0) = I(x) , x ∈ Ω∞
(2.3.8)

where, for this equation

λC =

{
λ for x ∈ ΩC

0 for x ∈ Ω∞ \ ΩC (outside of ΩC)

and HDV is defined in Equation 2.3.3. This is similar to localized PIDE 2.3.2, but embedded
in Ω∞ and without a boundary condition.
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Define the cutoff error Ec = U − V . The value of Ec(x, τ) for a fixed x ∈ Ω∞ due to the
approximation of λ by λC and H by HD obeys

lim
ΩC ,ΩD→Ω∞

|Ec(x, τ)| = 0 . (2.3.9)

Proof. The objective is to prove bounds on the effect of the approximations to the infinite
operators of Equation 2.2.3 by the localized operators in Equation 2.3.2. These approximations
are

λ ' λC and
H ' HD .

(C.1.1)

The difference between HD in Equation 2.3.3 and H given in Equation 2.2.5 is in the range of
the correlation integral, which is performed over ΩD instead of Ω∞ respectively. In the following
the problem is treated as embedded in the infinite domain Ω∞ and hence the solution is defined
outside of ΩD.

Define the cutoff error E = U − V . Manipulating Equations 2.2.3 and 2.3.8 supplies

∂E

∂τ
= LE + λCHDE + (λ− λC)HU + λ(H−HD)U

E(x, 0) = 0 .
(C.1.2)

PIDE C.1.2 satisfies the conditions of Assumption 2.3.4 so that a classical solution can be
expressed as a convolution of a Green’s function and a source function. With the conditions
thus satisfied, the solution to E(x, τ) can be written as [54]

E(x, τ) =
∫ τ

0

∫
Ω∞

G(x, τ, x′, τ ′)
[
(λ− λC)HU(x′, τ ′) + λ(H−HD)U(x′, τ ′)

]
dx′ dτ ′

E(x, 0) = 0
(C.1.3)

where G(x, τ, x′, τ ′) ≥ 0 is the Green’s function of Equation 2.3.8, which is the formal solution
to

∂G

∂τ
= LG+ λCHDG+ δ(x− x′, τ − τ ′) . (C.1.4)

Equation C.1.3 can be rewritten in two components: the first of which expresses error due to a
finite ΩC ⊂ Ω∞ and the second expresses error due to a finite ΩD ⊂ Ω∞. This provides a sum
of two errors, each of which is to be bounded separately

E(x, τ) = E1(x, τ) + E2(x, τ)

E1 =
∫ τ

0

∫
Ω∞

G(x, τ, x′, τ ′)
[
(λ− λC)HU(x′, τ ′)

]
dx′ dτ ′

E2 =
∫ τ

0

∫
Ω∞

G(x, τ, x′, τ ′)
[
λ(H−HD)U(x′, τ ′)

]
dx′ dτ ′ .

(C.1.5)
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First, estimate E1 as ΩC → Ω∞. This leads to a bound for the integral of the Green’s
function by noting that the solution to

∂W

∂τ
= LW + λCHDW

W (x, 0) = I(x)
(C.1.6)

on Ω∞ can be written as

W (x, τ) =
∫

Ω∞

G(x, τ, x′, 0) I(x′) dx′ . (C.1.7)

Assuming that a bounded solution (for fixed x) exists, then

lim
ΩC→Ω∞

∫
Ω∞\ΩC

G(x, τ, x′, 0) I(x′) dx′ = 0 (C.1.8)

must hold and, hence,

lim
ΩC→Ω∞

∫ τ

0

∫
Ω∞\ΩC

G(x, τ, x′, τ ′) I(x′) dx′ dτ ′ = 0 . (C.1.9)

In particular, Assumption 2.3.1 is taken to hold so that a solution to Equation C.1.6 exists for
any

I(x) ≤ c1 + c2 (ex1 + ex2) (C.1.10)

so that using Equations C.1.9 and C.1.10 gives

lim
ΩC→Ω∞

∫ τ

0

∫
Ω∞\ΩC

G(x, τ, x′, τ ′)
[
c1 + c2

(
ex

′
1 + ex

′
2

)]
dx′ dτ ′ = 0 . (C.1.11)

If Assumption 2.3.2 holds for the solution U to Equation 2.2.3 over Ω∞ \ ΩC

|HU(x, τ)| ≤ c3 + c4 (ex1 + ex2) (C.1.12)

then, because λ− λC = 0 on ΩC , it follows that

lim
ΩC→Ω∞

|E1| ≤ lim
ΩC→Ω∞

∫ τ

0

∫
Ω∞

G(x, τ, x′, τ ′)
∣∣(λ− λC)HU(x′, τ ′)

∣∣ dx′ dτ ′
= lim

ΩC→Ω∞

∫ τ

0

∫
Ω∞\ΩC

G(x, τ, x′, τ ′)
∣∣λHU(x′, τ ′)

∣∣ dx′ dτ ′
≤ lim

ΩC→Ω∞

∫ τ

0

∫
Ω∞\ΩC

G(x, τ, x′, τ ′)
[
c5 + c6

(
ex

′
1 + ex

′
2

)]
dx′ dτ ′ = 0

(C.1.13)

which, in turn, follows from Equation C.1.11.
Next, bound E2 as ΩD → Ω∞. Note that from Equations 2.2.5 and 2.3.3

(H−HD)U(x, τ) =
∫

(x+J)∈Ω∞\ΩD

g(J)U(x+ J, τ) dJ .
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The preconditions for the existence of∫ ∞

−∞
g(J)U(x+ J, τ) dJ

imply that

lim
ΩD→Ω∞

∫
(x+J)∈Ω∞\ΩD

g(J)U(x+ J, τ) dJ = 0

hence

lim
ΩD→Ω∞

E2 = lim
ΩD→Ω∞

λ

∫ τ

0

∫
Ω∞

G(x, τ, x′, τ ′)(H−HD)U(x′, τ ′) dx′ dτ ′

= lim
ΩD→Ω∞

λ

∫ τ

0

∫
Ω∞

G(x, τ, x′, τ ′)
∫

(x′+J)∈Ω∞\ΩD

g(J)U(x′ + J, τ ′) dJ dx′ dτ ′ = 0

(C.1.14)

and thus
lim

ΩC ,ΩD→Ω∞
|E(x, τ)| ≤ |E1(x, τ)|+ |E2(x, τ)| = 0 .

�

C.2 Proof of Theorem 2.3.8: Error Due to Artificial Dirichlet
Condition is Bounded

Theorem 2.3.8 (Restated). Let Y be the solution to Equation 2.3.2 with the approximate
boundary condition Y (x, τ) = B(x, τ), x ∈ ∂ΩD. Let W be the solution to Equation 2.3.2 with
the boundary is set to W (x, τ) = V (x, τ), x ∈ ∂ΩD, where V is the exact value from the solution
of Equation 2.3.8. Define the error due to approximating the exact boundary condition V (x, τ)
with the approximate boundary condition B(x, τ) on ∂ΩD as Eb = W − Y .
The error Eb(x, τ) is bounded as

lim
ΩD→Ω∞

|Eb(x, τ)| = 0 . (2.3.10)

Proof: In this section, the error due to approximating the exact boundary condition for
Equation 2.3.2 is bounded. Note that the previous section showed that Equation 2.3.8 converges,
in theory, to the solution of Equation 2.2.3 as ΩC ,ΩD → Ω∞.

Now, solve for W on the finite domain ΩD

∂W

∂τ
= LW + λCHDW

W (x, 0) = I(x)
W (x, τ) = V (x, τ) ; x ∈ ∂ΩD

(C.2.1)
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where V (x, τ) is the exact Dirichlet boundary condition, given from the solution to Equation
2.3.8 embedded in Ω∞. Therefore, noting that the correlation integral of (x+ J) ∈ HD of
Equation C.2.1 is truncated to operate on ΩD only, W = V on ΩD. The solution to Equation
C.2.1 is [54] §IV

W (x, τ) =
∫

ΩD

GW (x, τ, x′, 0)I(x′) dx′ +
∫ τ

0

∫
∂ΩD

P (x, τ, x′, τ ′)V (x′, τ ′) dx′ dτ ′ (C.2.2)

where the Green’s function GW (x, τ, x′, τ ′) ≥ 0 is the formal solution to

∂GW

∂τ
= LGW + λCHDG

W + δ(x− x′, τ − τ ′)

GW (x, τ, x′, τ ′) = 0 ; x ∈ ∂ΩD

and P (x, τ, x′, τ ′) ≥ 0 is the Poisson1 function ([54] § IV) of Equation C.2.1. The solution for
V depends only on initial conditions hence can be written

V (x, τ) =
∫

Ω∞

G(x, τ, x′, 0)I(x′) dx′ (C.2.3)

where the Green’s function G is the solution to Equation C.1.4. Since V = W on ΩD and, as
ΩD → Ω∞, GW → G, then, for any fixed point (x, τ),

lim
ΩD→Ω∞

∫ τ

0

∫
∂ΩD

P (x, τ, x′, τ ′)V (x′, τ ′) dx′ dτ ′ = 0 . (C.2.4)

In particular, this holds for a value V constant in x. If I(x) = c0 > 0, then V = c0e
−rτ along

with c1 = c0e
−rT ≤ c0e

−rτ (for τ ≤ T ) and

lim
ΩD→Ω∞

∫ τ

0

∫
∂ΩD

P (x, τ, x′, τ ′) c1 dx′ dτ ′

≤ lim
ΩD→Ω∞

∫ τ

0

∫
∂ΩD

P (x, τ, x′, τ ′)c0e−rτ dx′ dτ ′ = 0 .
(C.2.5)

Now, suppose W on ΩD is approximated by Y where

∂Y

∂τ
= LY + λCHDY

Y (x, 0) = I(x)
Y (x, τ) = B(x, τ) ; x ∈ ∂ΩD

so that the error E = W − Y satisfies
∂E

∂τ
= LE + λCHDE

E(x, 0) = 0
E(x, τ) = V (x, τ)−B(x, τ) ; x ∈ ∂ΩD

(C.2.6)

1Intuitively, the Poisson function serves to encode the boundary conditions of the problem and Green’s
functions solve for the interior when the boundary condition is zero.
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with solution [54]

E(x, τ) =
∫ τ

0

∫
∂ΩD

P (x, τ, x′, τ ′)
[
V (x′, τ ′)−B(x′, τ ′)

]
dx′ dτ ′ . (C.2.7)

Without loss of generality, assume that I(x) ≥ 0, so that V (x, τ) ≥ 0. Suppose that, by
Assumption 2.3.3

|V (x, τ)−B(x, τ)| ≤ c1 + c2V (x, τ)

(which is trivially satisfied if B(x, τ) = 0), then Equation C.2.7 becomes

|E(x, τ)| ≤
∫ τ

0

∫
∂ΩD

P (x, τ, x′, τ ′)
[
c1 + c2V (x′, τ ′)

]
dx′ dτ ′ . (C.2.8)

From Equations C.2.4 and C.2.5 it follows that

lim
ΩD→Ω∞

|E(x, τ)| = 0 .

�



Appendix D

Convergence of the Fixed Point
Iteration

In this appendix the convergence rate for the fixed point iteration of Section 2.6.1 is demon-
strated both as a functional iteration using the continuous operators and as an iteration using
the general discrete linear system operators as outlined in Section 2.4.1. The compact notation
of Appendix C is also used here.

D.1 Proof of Theorem 2.6.1: Convergence of the Functional
Fixed Point Iteration

Theorem 2.6.1 (Restated): Let Ek = Wn+1 − Zk be the error in the solution to the semi-
discretized Equation 2.4.2 at iteration k of the functional iteration given in Equation 2.6.1. The
iteration is convergent to zero as

‖Ek+1‖∞ ≤ (1− θ)∆τ λ
1 + (1− θ)∆τ (r + λ)

‖Ek‖∞ .

Proof: Note that operator G contains only differential terms so if c is a constant then Gc = 0.
Impose a Dirichlet boundary condition over all of ∂ΩD.

Let Ek = Wn+1 − Zk to obtain the error propagation equation

[1 + (1− θ)∆τ (r + λC − G)]Ek+1 = (1− θ)∆τ λCJDE
k

Ek+1(x, τ) = 0 ; x ∈ ∂ΩD

with solution [54] §IV

Ek+1(x) =
∫

ΩD

G(x, x′) (1− θ)∆τ λCJDE
k(x′) dx′ (D.1.1)

118



APPENDIX D. CONVERGENCE OF THE FIXED POINT ITERATION 119

where G(x, x′) > 0 is the formal solution of

[1 + (1− θ)∆τ (r + λC − G)]G = δ(x− x′)
G(x, x′) = 0 ; x ∈ ΩD .

Note that E0 = Wn+1 − Wn is the difference between two smooth functions, hence is also
smooth and that G is a uniformly elliptic operator with bounded coefficients on ΩD (see [54]
§IV.2).

Now, consider the equation

[1 + (1− θ)∆τ (r + λC − G)]A = f(x) ; x ∈ ΩD

A(x) = B(x) ; x ∈ ∂ΩD
(D.1.2)

which has the formal solution

A(x) =
∫

ΩD

G(x, x′)f(x′) dx′ +
∫

∂ΩD

P (x, x′)B(x′) dx′ (D.1.3)

where P (x, x′) ≥ 0 is a Poisson function induced by the non-zero boundary conditions ([54] §IV.3).
Let A(x) = 1. We can then compute the RHS of Equation D.1.2 directly

[1 + (1− θ)∆τ (r + λC − G)]A = [1 + (1− θ)∆τ(r + λC)]

so that, if

f(x) = 1 + (1− θ)∆τ (r + λC)
B(x) = 1 ; A(x) = 1

(D.1.4)

then combining equations (D.1.3) and (D.1.4) the integral is split into two components based
on the spatial value of λC . Note that G(x, x′) ≥ 0 and P (x, x′) ≥ 0 to obtain∫

ΩC

G(x, x′) [1 + (1− θ)∆τ (r + λC)] dx′ +
∫

∂ΩD

P (x, x′) dx′ =∫
ΩD\ΩC

G(x, x′) [1 + (1− θ)∆τ r] dx′ +
∫

ΩC

G(x, x′) [1 + (1− θ)∆τ (r + λ)] dx′

+
∫

∂ΩD

P (x, x′) dx′ = 1

[1 + (1− θ)∆τ (r + λ)]
∫

ΩC

G(x, x′) dx′ ≤ 1

or ∫
ΩC

G(x, x′) dx′ ≤ 1
1 + (1− θ)∆τ (r + λ)

. (D.1.5)

Noting that
JD‖Ek‖∞ ≤ ‖Ek‖∞
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and G(x, x′) ≥ 0 then Equation D.1.1 gives

Ek+1 ≤ (1− θ)∆τ λ‖Ek‖∞
∫

ΩC

G(x, x′) dx′ (D.1.6)

which becomes, by Equation D.1.5,

‖Ek+1‖∞ ≤ (1− θ)∆τ λ
1 + (1− θ)∆τ (r + λ)

‖Ek‖∞ .

Hence the functional iteration (2.6.1) is unconditionally convergent, with rapid convergence in
the usual case where λ∆τ � 1.

D.2 Proof of Theorem 2.6.2: Convergence of the Discrete Fixed
Point Iteration

Theorem 2.6.2 (Restated): Let ek = wn+1 − zk be the error in the solution to Equation
2.4.9 at iteration k of the fixed-point iteration given in Equation 2.6.2. If J ≥ 0 has maximum
row sum (maxi

∑
j Jij) ≤ 1 and (−G) is M-compatible with ‖G · 1‖∞ = 0, then the error in the

iterative solution zk+1 in Equation 2.6.2 is convergent to zero as

‖ek+1‖∞ ≤ (1− θ)∆τ λ
1 + (1− θ)∆τ (r + λ)

‖ek‖∞ .

Proof: For the following, denote by 1 the vector 1i = 1 ∀ i. Three conditions must hold:

1. ‖G · 1‖∞ = 0, i.e. the differential approximation is exact for a constant vector,

2. J ≥ 0 and maxi
∑

j Jij ≤ 1 thus ‖J · 1‖∞ ≤ 1 and

3. (−G) is M-compatible so that N−1 ≥ 0 exists ([93] Theorem F15) where

N = {I− (1− θ)∆τ [G− r I− λIc]}

is the matrix of the LHS of the iteration.

Let ek = wn+1 − zk. Thus the error in the solution iteration Equation 2.6.2 propagates as

ek+1 =
[
(1− θ)∆τ λ

] [
N−1IcJ

]
ek . (D.2.1)

Taking the norm of Equation D.2.1∥∥∥ek+1
∥∥∥
∞

=
∥∥∥[(1− θ)∆τ λ

] [
N−1IcJ

]
ek
∥∥∥
∞
≤ [(1− θ)∆τ λ]

∥∥N−1Ic
∥∥
∞ ‖J‖∞ ‖e

k‖∞ (D.2.2)

by the compatibility of the ‖ · ‖∞ norm and triangle inequality. Condition 1 holds, therefore

N · 1 ≥ [1 + (1− θ)∆τ (r + λ)] Ic · 1 and N−1Ic · 1 ≤
1

1 + (1− θ)∆τ (r + λ)
1
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and because Condition 3 holds N−1 ≥ 0 exists and it follows that∥∥N−1Ic · 1
∥∥
∞ =

∥∥N−1Ic
∥∥
∞

by the definition of the row maximum norm of a matrix. This leads in turn to ‖J‖∞ ≤ 1 by
Condition 2, and Equation D.2.2 may be written as

‖ek+1‖∞ ≤ (1− θ)∆τ λ
1 + (1− θ)∆τ (r + λ)

‖ek‖∞ . (D.2.3)

Thus the fixed point iteration Equation 2.6.2 is convergent with the rate stated in Theorem
2.6.2.



Appendix E

Discretization Notes

This appendix contains details concerning the discretization of the partial differential terms
and about convergence estimates.

E.1 Finite Difference Stencils

For reference, particularly in Appendix F, the following finite difference stencils are supplied over
a function U(x1, x2). For further information the reader may wish to consult [1] §25.3,[89] §9.4,
or [40] §8. The extension of these operators to a non-constant grid spacing is omitted for brevity,
but is straightforward.

The grid of points x = (x1, x2), on which this set of finite difference stencils is defined, has
constant spacing h1 and h2 in x1 and x2 with h1 6= h2 in general. Each finite difference is
written in a compact linear operator form, for example ∂h1

1 .
When Dirichlet boundary conditions are applied, the boundary nodes are not included in

the solution vector. Where entries in a finite difference stencil centered on an interior node re-
fer to adjacent boundary nodes, they do not appear in the matrix G of the discrete differential
operator and hence are, in effect, zero. The off-diagonal entries which cannot be represented
in G are multiplied by the known boundary condition values then summed into the boundary
enforcement vector b of Equation 2.4.9. Other methods of imposing Dirichlet boundary condi-
tions are equally effective; this approach permits the ready application of the l∞ norm stability
analyses in [73, 77, 102].

First partial derivatives are approximated with a second order central difference

∂U(x1, x2)
∂x1

' 1
2h1

[U(x1 + h1, x2)− U(x1 − h1, x2)] = ∂h1
1 U(x1, x2) . (E.1.1)

Where the second order approximation results in negative values for the off-diagonal coefficients
of matrix G of Equation 2.4.8, a first order approximation may be used. Either the forward

∂U(x1, x2)
∂x1

' 1
h1

[U(x1 + h1, x2)− U(x1, x2)] = ∂h1+
1 U(x1, x2) (E.1.2)
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or backward

∂U(x1, x2)
∂x1

' 1
h1

[U(x1, x2)− U(x1 − h1, x2)] = ∂h1−
1 U(x1, x2) (E.1.3)

difference may be applied, depending on the leading coefficients. The second order partial
difference is taken with the second order equation ([1] §25.3.23)

∂2U(x1, x2)
∂x1

2
' 1
h1

2 [U(x1 + h1, x2) + U(x1 − h1, x2)− 2U(x1, x2)] = ∂h1
11U(x1, x2) . (E.1.4)

The above stencils are constructed analogously in the x2 direction.
A cross-partial derivative on a seven-point stencil is taken by using one of the two, following,

complementary choices([1] §25.3.27). The first is selected for problems where ρ > 0

∂2U(x1, x2)
∂x1 ∂x2

' 1
2h1 h2

[
U(x1 + h1, x2 + h2) + U(x1 − h1, x2 − h2) + 2U(x1, x2)

− U(x1 + h1, x2)− U(x1 − h1, x2)

− U(x1, x2 + h2)− U(x1, x2 − h2)
]

= ∂h1h2+
1,2 U(x1, x2)

(E.1.5)

and the second is appropriate for ρ < 0

∂2U(x1, x2)
∂x1 ∂x2

' −1
2h1 h2

[
U(x1 − h1, x2 + h2) + U(x1 + h1, x2 − h2) + 2U(x1, x2)

− U(x1 + h1, x2)− U(x1 − h1, x2)

− U(x1, x2 + h2)− U(x1, x2 − h2)
]

= ∂h1h2−
1,2 U(x1, x2) .

(E.1.6)

A nine-point stencil may be used to obtain a four point cross-partial difference ([1] §25.3.26)

∂2U(x1, x2)
∂x1 ∂x2

' 1
2h2

[
U(x1 + h1, x2 + h2)− U(x1 − h1, x2 + h2)

2h1

− U(x1 + h1, x2 − h2)− U(x1 − h1, x2 − h2)
2h1

]
= ∂h1h2◦

1,2 U(x1, x2) .

(E.1.7)

E.2 Coefficients for Skew Grids

Under the grid skew of Hull and White, Equation 2.5.2 or 3.4.7 [62, 112] all partial differen-
tial terms of the option valuation PIDE are transformed. Thus the first order terms are, in
transformed co-ordinates

c1σ2
∂V

∂ψ1
+ c2σ1

∂V

∂ψ2
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where c1, c2 are the coefficients of the original ∂x1 and ∂x2 terms respectively. The second order
terms in transformed co-ordinates are(

d11σ2
2 + 2d12σ1σ2 + d22σ1

2
) ∂2V

∂ψ1
2 +

(
d11σ2

2 − 2d12σ1σ2 + d22σ1
2
) ∂2V

∂ψ2
2

where d11 is the coefficient of the original ∂x1
2 term, d12 is the coefficient of the original ∂x1x2

term, and d22 is the coefficient of the original ∂x2
2 term. For stochastic volatility problems, set

σ1 = 1.0 and σ2 = σv in the above equations.

E.3 Coefficients for Rotated Grids

Under the grid rotation of Equation 2.5.4 or 3.4.9 the first-order partial differential terms are,
in the transformed co-ordinate system (r1, r2),

(c1 cos(θr) + c2 sin(θr))
∂V

∂r1
− (−c1 sin(θr) + c2 cos(θr))

∂V

∂r2

where c1, c2 are the coefficients of the original ∂x1 and ∂x2 terms respectively. The second order
terms in transformed co-ordinates are(

d11 cos2(θr) + 2d12 sin(θr) cos(θr) + d22 sin2(θr)
)∂2V

∂r12

+
(
d11 sin2(θr)− 2d12 sin(θr) cos(θr) + d22 cos2(θr)

)∂2V

∂r22

where d11 is the coefficient of the original ∂x1
2 term, d12 is the coefficient of the original ∂x1x2

term, and d22 is the coefficient of the original ∂x2
2 term. For stochastic volatility problems, set

σ1 = 1.0 and σ2 = σv in the above equations.

E.4 Estimating Convergence

In the numerical demonstrations of Sections 2.7, 3.5 and 4.5, estimates are given of a convergence
parameter α as a grid control parameter h is refined. Assuming that ∆x1,∆x2,∆τ = O(h) for
two-asset problems, ∆x,∆v,∆τ = O(h) for stochastic volatility problems or ∆x1,∆x2,∆τ, hy =
O(h) for two-asset problems under uncertain parameters, the error is assumed to be εi = chα

i

for a grid spacing hi.
If two grids with h1 = 2h2 produced solutions V1 and V2, and where an exact solution Ve was

available, then solving for α is straightforward. Where three grids with spacing h1 > h2 > h3

were used to solve for values V1, V2 and V3 respectively, but no exact solution was available,
then the exponent α was estimated by solving the non-linear equation

V1 − V2

V2 − V3
=
c hα

1 − c hα
2

c hα
2 − c hα

3

=
hα

1 − hα
2

hα
2 − hα

3

by Newton’s method.



Appendix F

Proof of Theorems 2.5.11 and 2.6.3:
Stability and Convergence by von
Neumann Analysis

Theorem 2.5.11 (Restated): Consider a periodic formulation of Equation 2.3.2, discretized
with a finite difference approximation on a grid with constant spacing. The problem is formed
with constant coefficients in the drift and diffusion terms, −1 ≤ ρ ≤ 1 and λC = λ ≥ 0 con-
stant. Either the cross-partial finite difference of Equations E.1.5 or E.1.6 are used to form the
approximation Gs to G on a seven-point stencil, or Equation E.1.7 is used to form Gn over a
nine-point stencil.

The time step Equation 2.4.9 is unconditionally von Neumann stable in the l2 norm for θ = 0
and for θ = 1/2.

Theorem 2.6.3 (Restated): Consider a periodic formulation of Equation 2.3.2, discretized
with a finite difference approximation. Let (−G) be formed either by the 7-point or 9-point finite
difference stencil on a grid with constant spacing, as in Theorem 2.5.11.

Then in the sense of von Neumann analysis the iterative solution to Equation 2.4.9 by Equa-
tion 2.6.2 is unconditionally convergent in the l2 norm (i.e. regardless of whether (−G) is
M-compatible) at a rate which is rapid if λ∆τ � 1.

The von Neumann analysis in this appendix applies to a periodic, initial value problem
with the same, constant coefficients operators as the PIDE 2.2.3. Thus it applies to two-asset
problems, rather than stochastic volatility problems. The following sections employ a number of
elements in common, hence finish with both the time step and the fixed point iteration analysis
only after some preliminary discussions. Sections F.2 and F.3 describe the basic mathematics
used for the analysis. Section F.4 defines the problem and error propagation equations to be
analyzed, then Section F.5 discusses the approach to the final analysis and the relations that
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must hold to prove Theorems 2.5.11 and 2.6.3. In Sections F.6 and F.7 those relations are
demonstrated.

F.1 Structure of the Domain, Grid and DFT

The periodic, discrete form of the PIDE 2.2.3 localized over a periodic domain Ω◦D is the basis
for von Neumann analysis. The problem is phrased as a pure initial value problem with nodes
of ∂ΩD included in Ω◦D. A regular rectangular grid of NF = N1 × N2 equally spaced nodes
is required where, without loss of generality, N1, N2 are taken to be powers of 2. The finite
difference discretization on this grid is defined in Appendix E above using node spacing (h1, h2).
As in Section 2.4.3.1 the location of the points on the grid is defined as

(x1, x2)i ∈ Ω◦D , i = 1 . . . NF . (F.1.1)

The DFT operation makes it convenient to introduce the double-subscript notation Ukl =
U((x1, x2)i) to denote a point on the grid where (k, l) are the grid line coordinates. The grid
point (x1, x2)i, at position i in the solution vector, is related to grid line coordinates (k, l) by a
mapping such as

i = k + l N1 + 1 , k = 0 . . . (N1 − 1) , l = 0 . . . (N2 − 1) .

Where a vector u of a value over the grid is required, its components are denoted ui = Ukl =
U((x1, x2)i) assuming that this ordinate mapping holds (although different letters may be used
in the subscripts). The same double-subscript notation is used to locate points on the grid in
the Fourier-transformed space.

The DFT D(U) over periodic domain Ω◦D results in a NF = N1 × N2 grid of coefficients
denoted as Ûmn where the following, compact notation, is used

Ûmn =
N1−1∑
i=0

N2−1∑
j=0

Uij ξ(−im− jn) =
∑
ij

Uij ξ(−im− jn)

Uij =
1
NF

N1/2∑
m=−N1/2+1

N2/2∑
n=−N1/2+1

Ûmn ξ(im+ jn) =
1
NF

∑
mn

Ûmn ξ(im+ jn)

(F.1.2)

where
ξ(k) = exp

{√
−1 ζ k

}
, and ζ =

2π
NF

.

Note that the correction for the grid node count is done during the inverse transform. Usually
the ranges are dropped on the summations as in Equation F.1.2, assuming that the log-price
space indices (i, j) and the Fourier-space indices (m,n) refer to their periodic image (“wrap
around”) under an addition which crosses the grid boundary. Note the following useful identities

ξ(+m) + ξ(−m) = 2 cos(ζm) ,

ξ(+m)− ξ(−m) = 2
√
−1 sin(ζm) and

ξ(m+ i)
ξ(m)

= ξ(i)

(F.1.3)
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and note that, for example,

Ui+1,j+1 − Ui−1,j−1 =
∑
mn

[
Ûmn ξ((i+ 1)m+ (j + 1)n)− Ûmn ξ((i− 1)m+ (j − 1)n)

]
=
∑
mn

[
ξ(+m+ n)− ξ(−m− n)

]
Ûmn ξ(m+ n)

(F.1.4)

which will be used to reduce finite difference expressions.

F.2 Discrete Fourier Transform of Finite Difference Stencils

The coefficients of partial differential component of Equation 2.3.2 are constant in the initial
value problem. This means the DFT may be applied to each of the finite difference sten-
cils in Appendix E ([17] §13). For clarity, write the value for a single coefficient Ûmn of the
Fourier transform ∂̂ of difference operator ∂ at a single node Uij , leaving off the leading sums
and coefficients. The objective is to write the difference equations in terms of trigonometric
functions, thus the identities of Equations F.1.3 through F.1.4 are applied. For brevity, write
ξp = ξ(im+jn) in the final form. Discretizations that require only a change of axes are omitted.

(h1) ∂̂h1
1 Ûmn

∣∣∣
ij

=
{
ξ((i+ 1)m+ jn)− ξ((i− 1)m+ jn)

}
Ûmn

= 2
√
−1 sin(ζm) ξp Ûmn , (F.2.1)(

h1
2
)
∂̂h1

1,1Ûmn

∣∣∣
ij

=
{
ξ((i+ 1)m+ jn)− 2ξ(im+ jn) + ξ((i− 1)m+ jn)

}
Ûmn

= 2
{
cos(ζm)− 1

}
ξp Ûmn . (F.2.2)

The following two cross-partial derivatives complete the seven point discretization:

(2h1 h2) ∂̂
h1,h2+
1,2 Ûmn

∣∣∣
ij

=
{
ξ((i+ 1)m+ (j + 1)n) + ξ((i− 1)m+ (j − 1)n)

+ 2ξ(im+ jn)
− ξ((i+ 1)m+ jn)− ξ((i− 1)m+ jn)

− ξ(im+ (j + 1)n)− ξ(im+ (j − 1)n)
}
Ûmn

= 2
{
1 + cos(ζm+ ζn)− cos(ζm)− cos(ζn)

}
ξp Ûmn , (F.2.3)

(2h1 h2) ∂̂
h1,h2−
1,2 Ûmn

∣∣∣
ij

= −
{
ξ((i+ 1)m+ (j − 1)n) + ξ((i− 1)m+ (j + 1)n)

+ 2ξ(im+ jn)
− ξ((i+ 1)m+ jn)− ξ((i− 1)m+ jn)

− ξ(im+ (j + 1)n)− ξ(im+ (j − 1)n)
}
Ûmn

= −2
{
1 + cos(ζm− ζn)− cos(ζm)− cos(ζn)

}
ξp Ûmn . (F.2.4)
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The following cross-partial derivative is used in the nine-point discretization:

(4h1 h2) ∂̂
h1,h2◦
1,2 Ûmn

∣∣∣
ij

=
{
ξ((i+ 1)m+ (j + 1)n)− ξ((i− 1)m+ (j − 1)n)

− ξ((i− 1)m+ (j + 1)n) + ξ((i+ 1)m+ (j − 1)n)
}
Ûmn

=
{
−4 sin(ζm) sin(ζn)

}
ξp Ûmn . (F.2.5)

F.3 Discrete Fourier Transform of the Correlation Term

Recall from Section 2.4.3.3 that the discrete version of the integral correlation term between
values U and g may be written as a dense matrix-vector product Ju. In Equation 2.4.19 this
product is written as an operation on the DFT of the jump distribution and the option value
vector on the periodic grid.

Recall that g(x1, x2) is a PDF and that the points on the grid defined by Equation 2.4.17
for the correlation Equation 2.4.19 are defined by integrating g(x1, x2) over the DFT cell. Let

fij = f((x1, x2)k) =
∫ +h1/2

−h1/2

∫ +h2/2

−h2/2
g(x1 + z1, x2 + z2) dz1 dz2

and note that
fij ∈ R, fij ≥ 0 and

∑
ij

fij = 1 .

Thus, taking the Fourier transform

f̂mn =
∑
ij

fij ξ(−im− jn) implies that
∣∣∣f̂0,0

∣∣∣ ≤ 1 and
∣∣∣f̂mn

∣∣∣ ≤ 1 .

The magnitude of the DFT of the jump distribution and its real and imaginary components
are denoted

(f̂mn) = f̂−m,−n =
(
f̂R
−m,−n + f̂ I

−m,−n

√
−1
)

(F.3.1)

in the final proof. Using this notation, note that

0 ≤
(
1− f̂R

mn

)
≤ 2 . (F.3.2)

F.4 Discrete Option Value and Error Propagation PIDE

In this section it is useful to relate this analysis to the original form of the problem by using
a matrix, vector notation similar to that of Section 2.4.1. Write the approximation to PIDE
2.2.3 as a periodic initial value problem on a grid with a discrete solution written in a vector
u. It is discretized using a theta method from step t to t + 1 with time step weight θ as in
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Equation 2.4.9 and a finite difference method selected from Appendix E. The time step is taken
by solving an equation in the form of Equation 2.4.9

[I + (1− θ)∆τ T] ut+1 = [I− θ∆τ T] ut (F.4.1)

where
T = − [G + λ(J− I)− r I] = −G− λ J + λ I + r I . (F.4.2)

Matrix G is defined by Equation 2.4.1, where the partial differential terms have constant co-
efficients and difference Equations E.1.1 and E.1.4 with either Equation E.1.5, E.1.6 or E.1.7
for the cross-partial derivative. J is as defined in Equation 2.4.19. Note that λC or Ic do not
appear since, for this analysis, the matrix coefficients must be the same for each point in the
system.

Let et be an arbitrary perturbation error to the solution u. The error propagates by

[I + (1− θ)∆τ T] et+1 = [I− θ∆τ T] et . (F.4.3)

The fixed point iteration method solves Equation F.4.1 with approximate solution zk at the
k-th fixed point iteration solving from time step t to t+ 1

{I + (1− θ)∆τ [−G + λI + r I]} zk+1

= (1− θ)∆τλJzk + {I− θ∆τ [−G− λJ + λI + r I]} ut .
(F.4.4)

For the fixed point iteration, write the solution error ek = ut+1 − zk. The error ek of the
intermediate solution vector zk propagates by

{I + (1− θ)∆τ [−G + r I + λI]} ek+1 = (1− θ)∆τλJek . (F.4.5)

F.5 General Approach to the Proof

Arrange the Fourier transform of the time step Equation F.4.3 into a complex valued form for
a single coefficient Êmn of the transform. This must not increase during the time step. The
ratio of this coefficient between time step t and t+ 1 is given by

Êt+1
mn

Êt
mn

=
1− θ∆τ

(
−a− b

√
−1 + r + λ

)
+ θ∆τλf̂−m,−n

1 + (1− θ) ∆τ
(
−a− b

√
−1 + r + λ

)
− (1− θ) ∆τλf̂−m,−n

(F.5.1)

where a and b represent the real and imaginary contributions of the Fourier transform of the
finite difference approximation G. Take the magnitude, which must satisfy∣∣∣∣∣Êt+1

mn

Êt
mn

∣∣∣∣∣
2

=

∣∣∣Êt+1
mn

∣∣∣2∣∣∣Êt
mn

∣∣∣2 (F.5.2)

=

{
1− θ∆τ

[
−a+ r + λ

(
1− f̂R

−m,−n

)]}2
+
{
θ∆τ

(
b+ λf̂ I

−m,−n

)}2

{
1 + (1− θ) ∆τ

[
−a+ r + λ

(
1− f̂R

−m,−n

)]}2
+
{

(1− θ) ∆τ
(
b+ λf̂ I

−m,−n

)}2 ≤ 1
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with f̂−m,−n =
(
f̂R
−m,−n + f̂ I

−m,−n

√
−1
)

as in Equation F.3.1 and by Equation F.3.2 the term

λ
(
1− f̂R

−m,−n

)
> 0 when λ > 0.

Remark F.5.1 The term (−a+ r) has a different sign in the numerator and denominator of
Equation F.5.2. Note that r, λ > 0. If a ≤ 0 then Equation F.5.2 is satisfied for θ = 0 and
θ = 1/2 and Theorem 2.5.11 is proved: the time step is unconditionally strictly stable in the l2
norm by von Neumann analysis.

The Fourier transform of fixed point iteration Equation F.4.5 must be arranged into a
complex valued form for a single coefficient Ek

mn. This coefficient must decrease in the iteration.
This supplies the condition∣∣∣Êk+1

mn

∣∣∣2∣∣∣Êk
mn

∣∣∣2 =

∣∣∣∣∣ (1− θ)∆τ λf̂
1 + (1− θ) ∆τ (−a+ r + λ)− (1− θ) ∆τb

√
−1

∣∣∣∣∣
2

≤ [(1− θ)∆τ λ]2

[1 + (1− θ) ∆τ (−a+ r + λ)]2 +
[√
−1 (1− θ) b

]2
≤ [(1− θ)∆τ λ]2

[1 + (1− θ) ∆τ (−a+ r + λ)]2
< 1 .

(F.5.3)

Note that Equation F.3.2 has been used again and that the a of Equation F.5.3 is identical to
that of Equation F.5.2.

Remark F.5.2 For θ = 0 and θ = 1/2 it is sufficient, using Equation F.5.3, to demonstrate
that a ≤ 0 for the error magnitude to be reduced at each iteration. Thus if a ≤ 0 then Theorem
2.6.3 is proved: the fixed point iteration is unconditionally convergent in the l2 norm by von
Neumann analysis.

In both Remark F.5.1 and F.5.2, the stability or, respectively, convergence, is dependent
only on the real component of the Fourier transform of the finite difference approximation used
to generate G. It shall be shown that this depends, in turn, only on the discrete form of the
diffusion term.

F.6 Analysis of the 7-pt Stencil

To prove the seven-point stencil variant of Remarks F.5.1 and F.5.2, expand the partial deriva-
tive term of Equation F.4.1 in finite differences in Fourier space. Use the cross-partial derivative
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Equation E.1.5, which normally would apply for 0 < ρ ≤ 1,[
v1 ∂̂

h1
1 + v2 ∂̂

h2
2 + d11 ∂̂

h1
2

11 + d22 ∂̂
h2

2

22 + 2 d12 ∂̂
h1h2+
12

]
Ûmn

= 2
{[

v1
h1

sin(ζm) +
v2
h2

sin(ζn)
]√

−1

+
d11

h1
2 [cos(ζm)− 1] +

d22

h2
2 [cos(ζn)− 1]

+
d12

h1h2
[1 + cos(ζm+ ζn)− cos(ζm)− cos(ζn)]

}
ξp Ûmn

= 2
{
a+ b

√
−1
}
ξp Ûmn

(F.6.1)

where v1, v2 are the coefficients of the first partial derivatives and d11, d12, d22 are the coefficients
of the diffusion terms. From this expression

a =
(
σ1

h1

)2

[cos(ζm)− 1] +
(
σ2

h2

)2

[cos(ζn)− 1]

+ ρ
σ1

h1

σ2

h2
[1 + cos(ζm+ ζn)− cos(ζm)− cos(ζn)] .

(F.6.2)

Differentiate a to find its extrema by solving for the simultaneous zeros of

∂a

∂(ζm)
= −

(
σ1

h1

)2

sin(ζm) + ρ
σ1

h1

σ2

h2
(sin(ζm)− sin(ζm+ ζn)) = 0

∂a

∂(ζn)
= −

(
σ2

h2

)2

sin(ζn) + ρ
σ1

h1

σ2

h2
(sin(ζn)− sin(ζm+ ζn)) = 0 .

There are four solutions at (ζm, ζn) = ({0, π} , {0, π}). Of these, the maximum is a = 0 at
(0, 0) where all cos(·) terms of a equal 1. Thus a ≤ 0 and Remarks F.5.1 and F.5.2 hold.

The case for −1 ≤ ρ < 0, using the finite difference ∂̂h1h2−
12 for the cross-partial term

(Equation E.1.6), differs only in the leading sign of the d12 term and the sign of ζn in the first
cosine term. The final result is the same: a ≤ 0 unconditionally. In neither case is there a time
step or correlation sign restriction for strict stability in the l2 norm and the coefficients of the
advection term do not appear in the final condition.

F.7 Analysis of the 9-pt Stencil

To prove the nine-point stencil variant of Remarks F.5.1 and F.5.2, expand the partial derivative
term of Equation F.4.1 in finite differences in Fourier space. Use the cross-partial derivative
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Equation E.1.7: [
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h1
1 + v2 ∂̂

h2
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2
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2
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12

]
Ûmn

= 2
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−1

+
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sin(ζm) sin(ζn)

}
ξp Ûmn

= 2
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√
−1
}
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(F.7.1)

where v1, v2 are the coefficients of the first partial derivatives and d11, d12, d22 are the coefficients
of the diffusion terms. This expression supplies the requirement that

a =
(
σ1

h1

)2

[cos(ζm)− 1] +
(
σ2

h2

)2

[cos(ζn)− 1] + ρ
σ1

h1

σ2

h2
[sin(ζm) sin(ζn)] ≤ 0 . (F.7.2)

Again, proceed as in the previous section, differentiating a and finding the zeros which solve

∂a

∂(ζm)
= −

(
σ1

h1

)2

sin(ζm) + ρ
σ1

h1

σ2

h2
(cos(ζm) sin(ζn)) = 0

∂a

∂(ζn)
= −

(
σ2

h2

)2

sin(ζn) + ρ
σ1

h1

σ2

h2
(sin(ζm) cos(ζn)) = 0 .

There are four solutions at (ζm, ζn) = ({0, π} , {0, π}). Of these, (0, 0) is the maximum with
a = 0. Thus a ≤ 0 and Remarks F.5.1 and F.5.2 hold.



Appendix G

Notation

The details for some notation change for each specific, concrete example used in the main
Chapters 2, 3 and 4. For example, although operator G always represents a continuous partial
differential operator and G represents its discrete counterpart, these will have different specific
definitions between Chapter 2 for two-asset problems and Chapter 3 for stochastic volatility
problems. For each main chapter the specific valuation problem does not change, so symbols
do not change their detailed definition.

Values, Domains and Coordinates

(S1, S2) Spatial co-ordinates for two-asset problems, price scaling.
(x1, x2) Spatial co-ordinates for two-asset problems, log-price scaling.
(S, v) Spatial co-ordinates for stochastic volatility models, price scaling.
(x, v) Spatial co-ordinates for stochastic volatility models, log-price scaling.
τ Time remaining to contract expiry where τ ∈ [0, T ].

Ω∞ Two-asset unbounded spatial solution domain [−∞,∞]× [−∞,∞].
Ω∞ Stochastic vol. unbounded spatial solution domain [−∞,∞]× [0,∞].
ΩD The finite spatial solution domain ΩD ⊂ Ω∞.
Ω∗D The finite spatial solution domain for the Discrete Fourier Transform,

ΩD ⊂ Ω∗D.
Ω◦D The finite spatial solution domain for the Discrete Fourier Transform

in periodic form.
ΩC The core spatial solution domain ΩC ⊂ ΩD.
∂ΩC , ∂ΩD Finite domain boundaries.

Q Policy parameter for an operator in the HJB PIDE case.
U Continuous solution over infinite domain Ω∞.
V Continuous solution over finite domain ΩD.
Wn Semi-discrete, continuous solution over finite domain ΩD at time step

τn (Chapter 2).
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Continuous Functions and Operators: Script Font A,B, . . .

L Continuous linear operator with partial differential and source terms.
G Continuous linear operator with partial differential terms only.
H Integral operator, including point-wise and drift-correction terms.
I Initial condition of the PIDE, usually the option payoff.
J Integral operator, first correlation term only.

L̃ A tilde indicates an operator, function or value defined over S = ex

co-ordinates (price scaling).
JD Subscripted operators are truncated to a finite domain, in this case ΩD

HD(Q) An operator subject to a control vector, in this case Q.

Discrete Operators and Values: Sans-serif Font A, a, . . .

A,Aij Matrices are denoted in upper case sans-serif font, optionally with sub-
scripted indices.

v, vi Vectors are denoted in lower case sans-serif font, optionally with a sub-
scripted index.

D Diagonal matrix formed from a term in integral operator H.
G Finite difference matrix of partial differential terms.
F Fast Fourier transform computation of a correlation integral.
I Identity matrix.
Ic Modified identity matrix to select nodes in ΩC .
J Dense matrix corresponding to the correlation integral J .
K, L Interpolation operations.
T Time step matrix, the sum of several components.
P Finite difference matrix for the partial differential terms of operator

HD(Q).

ck Penalty vector for American option solution at iteration k.

qn, qk Discrete control vector for a policy in the HJB PIDE case, at time step
τn or iteration k respectively.

Rn,Rk Discrete policy selection matrix, at time step τn or non-linear iteration
k respectively.

vn,wn Time step solution vectors at time step τ = τn.
zk Intermediate, iterate values at iteration k = 0 . . .
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Miscellaneous Values

N The number of finite difference grid points.
NF = N1 ·N2 The number of discrete Fourier transform grid points, total and in each

dimension.
Nτ The number of time steps after the initial value.
Nq Node count in discrete policies for one control dimension.
NY The total number of discrete, uncertain parameter policies.

(x1, x2)i Discrete spatial co-ordinates for two-asset problems, log-price scaling
i ∈ 1 . . . N . Used in place of (x(1,i), x(2,i)) as W ((x1, x2)i) rather than
W (x(1,i), x(2,i)) to avoid doubling subscripts.

(x, v)i Discrete spatial co-ordinates for stochastic volatility problems, log-price
scaling i ∈ 1 . . . N .

τn Discerete time to contract expiry where τn ∈ [0, T ], τn = n∆τ and
n ∈ 0 . . . Nτ .

(∆x1,∆x2) Finite difference grid spacing for two-asset problems.
(∆x,∆v) Finite difference grid spacing for stochastic volatility problems.
(∆xf,1,∆xf,2) Discrete Fourier Transform grid spacing for two-asset numerical demon-

strations.
(∆xf ,∆vf ) Discrete Fourier Transform grid spacing for stochastic volatility numer-

ical demonstrations.

r Risk free rate of return.

Two-asset Case.
σ1, σ2 Brownian motion volatilities.
ρ Brownian motion correlation between assets.

Stochastic Volatility Case.
σv Brownian motion volatility of variance.
ρv Brownian motion correlation.
θv Variance reversion level.
κv Rate of reversion to θv.

Finite Activity Jumps.
λ Finite activity jump arrival rate, the mean of Poisson process.
µ̌1, σ̌1, ρ̌ Jump distribution parameters are denoted with a check.
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