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Abstract. One popular approach to option pricing in Lévy models is through solving the related partial integro4
differential equation (PIDE). For the numerical solution of such equations powerful Galerkin methods5
have been put forward e.g. by Hilber, Reichmann, Schwab, Winter (2013). As in practice large6
classes of models are maintained simultaneously, flexibility in the driving Lévy model is crucial7
for the implementation of these powerful tools. In this article we provide a tool that enables the8
implementation of finite element Galerkin methods flexibly in the model. To this end we exploit9
the Fourier representation of the infinitesimal generator, i.e. the related symbol, which is explicitly10
available for the most relevant Lévy models. Empirical studies for the Merton, NIG and CGMY11
model confirm the numerical feasibility of the tool.12
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1. Introduction. In computational finance, methods to solve partial differential equations16

come into play, when both run-time and accuracy matter. In contrast to Monte Carlo sim-17

ulation for example, run-time is very appealing and a deterministic and conservative error18

analysis is established and well understood. In addition, compared to Fourier methods, the19

possibility to capture path-dependent features like early exercise and barriers is naturally built20

in. Within these appealing features lies the capacity to attract interest from academia and21

satisfy the needs of the financial industry alike.22

In academia, a series of publications by Cont and Voltchkova in 2005 [10], Hilber, Reich,23

Schwab and Winter in 2009 [17], Jackson, Jaimungal and Surkov in 2012 [21] Salmi, Toivanen24

and Sydow in 2014 [24], Itkin in 2015 [19], Glau in 2016 [16], and the monograph of Hilber,25

Reichmann, Schwab and Winter in 2013 [18] have opened the theory to include even more26

sophisticated models of Lévy type, resulting in Partial Integro Differential Equations (PIDEs).27

The theoretical results have been validated by sophisticated numerical studies. In this context,28

Schwab and his working group in particular have taken the lead and unveiled the potential of29

PIDE theory in high generality and for practical purposes in the financial industry. Combining30

state of the art compression techniques with a wavelet finite element setup has resulted in31

a numerical framework for option pricing in advanced and multivariate jump models, which32

thereby moved academic boundaries.33

Two standard methods are available for solving PIDEs, that is the finite difference ap-34

proach and the finite element method (FEM). More recently, also radial basis methods have35

been pushed forward to solve pricing PIDEs. For all of these concepts implementations for36

a variety of models and option types have already been developed: Finite difference schemes37
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2 MAXIMILIAN GAß AND KATHRIN GLAU

solving PIDEs for pricing European and barrier options with an implementation for Merton38

and Variance Gamma are provided by Cont and Voltchkova in 2015 [10], [9]. The method has39

been further developed in different directions, we mention one example, by Itkin and Carr40

in 2012 [20], who exploit a special representation of the equation tailored to jump diffusions41

with jump intensity of tempered stable type. Wavelet-Galerkin methods for PIDEs related42

to a class generalizing tempered stable Lévy processes are derived by Matache, Nitsche and43

Schwab in 2005 [23] for American options and e.g. by Marazzani, Reichmann and Schwab in44

2012 [22] for a high-dimensional extension. A Fourier time stepping scheme combining PIDE45

with fast Fourier transform methods has been proposed in Jackson, Jaimungal and Surkov in46

2012 [21]. Radial basis approaches for the Merton and Kou model, American and European47

options are provided by Chan and Hubbert in 2014 [7] and further developed for CGMY48

models by Brummelhuis and Chan in 2014 [4].49

In the financial industry an awareness of the full potential of these tools is yet to be50

developed. Advocating the advancement of numerical methods one must acknowledge what51

practice cherishes most. Due to model uncertainty and behavioral characteristics of different52

portfolios, financial institutions need to deal with a number of different pricing models in53

parallel. Or, in the words of Föllmer in [13]: ”In any case, the signal towards the practitioners54

of risk management is clear: Do not commit yourself to a single model, remain flexible, vary55

the models in accordance with the problem at hand, always keeping in mind the worst case56

scenario.”1 Desirable features that the numerical environment must offer include57

(1) a degree of accuracy reaching levels relevant to practical applications that can be58

measured and controlled by a theoretical error analysis,59

(2) fast run times,60

(3) low and feasible implementational and maintenance cost,61

(4) a flexibility of the toolbox towards different options and models.62

An implementation that is flexible in the driving model as well as in the option type first of63

all requires a problem formulation covering the collectivity of envisaged models and options.64

In view of feature (1), a unified approach to the error analysis of the resulting schemes is65

of equal importance. Galerkin methods, accruing from the Hilbert space formulation of the66

Kolmogorov equation, seem to be predestined to deliver the adequate level of abstraction67

for this task. It is precisely this abstract level that makes Galerkin methods flexible in the68

option type and the dimension of the underlying driving process. Consequently, even though69

Galerkin methods seem to be more involved at first glance in comparison to finite difference70

schemes, they still promise to lead to a lucid code that is easy to maintain and to extend, and71

that allows clear an extensive convergence and error analysis. This is of great importance for72

implementation and controlling methodological risk in finance. Moreover, Galerkin methods73

allow for efficient compression techniques such as wavelet-compressions, see [18], and reduced74

order modeling, see e.g. [8], [5]. We therefore consider the finite element, or more general75

Galerkin methods, worth exploring further for financial applications.76

Unfortunately, although flexibility towards models goes well with the abstract formulation,77

the finite element method faces numerical challenges when implementing Lévy model based78

pricing tools. More precisely, the Lévy operator that determines the stiffness matrix is of79

1Translated from German.
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integro differential type. Firstly, the resulting matrix is densely populated and in general not80

symmetric. Secondly, and even more severe, the matrix entries typically are not explicitly81

available. Instead, they require the evaluation of double integral terms possibly involving a82

numerically inaccessible Lévy measure. In these cases, a thorough analysis of the respective83

integrals may lead to approximation schemes deriving the stiffness matrix entries with the84

required precision. Pursuing this way, however, most likely results in a model specific scheme,85

contradicting requirement (4).86

In this paper we develop a new methodology for option pricing in Lévy models using finite87

elements which is flexible in the choice of model. We address this goal by expressing the88

operator in the Fourier space. This means accessing the model specific information via the89

symbol, and we call the resulting tool the symbol method. In contrast to the operator, the90

symbol is explicitly available for a variety of models and is thus numerically superior. Further91

advantages will be highlighted in subsequent sections. It is worth mentioning a conceptual92

relation of this new approach to the Fourier time stepping scheme of [21]. Both methods93

result in PIDE discretizations that rely on the symbol of the driving Lévy process. While94

we propose to express the bilinear form in the Galerkin representation via the symbol, the95

methods of [21] are based on applying the Fourier transform to the pricing PIDEs and is not96

related to Galerkin approximations.97

Section 2 introduces the theoretical framework for our PIDEs of interest and their weak98

formulation. The next section describes the solution scheme, that is the Galerkin approxi-99

mation in space. We investigate the scheme with regard to the numerical challenges arising100

during its implementation. Section 4 introduces the symbol method itself. All components101

of the FEM solver are expressed in Fourier space. The subsequent numerical evaluation of102

the stiffness matrix entries is supported by an elementary approximation result. Several ex-103

amples of symbols for well-known Lévy models confirm the wide applicability of the method104

and its numerical advantages. The actual implementation of the symbol method poses new105

challenges. We propose two different ways to tackle these challenges and to obtain a conver-106

gent and flexible scheme. As first approach, we propose to mollify the classic hat functions107

in Section 5. We analyse the error in detail and under standard conditions, obtain the same108

rate of convergence as for the case without mollification. Section 6 introduces an alternative109

approach by choosing splines as basis functions. The numerical studies in Section 7 confirm110

theoretically prescribed rates of convergence and validate the claim of numerical feasibility.111

2. Kolmogorov equations for option pricing in Lévy models. We first introduce the112

underlying stochastic processes, the Kolmogorov equation, its weak formulation as well as the113

solution spaces of our choice.114

2.1. Lévy processes. Let a stochastic basis (Ω,FT , (Ft)0≤t≤T , P ) be given and let L be115

an Rd-valued Lévy process with characteristics (b, σ, F ;h), i.e. for fixed t ≥ 0 its characteristic116

function is given by117

E ei〈ξ,Lt〉 = e−tA(−ξ) for every ξ ∈ Rd,(1)118119

where the symbol of the process is defined as120

(2) A(ξ) :=
1

2
〈ξ, σξ〉+ i〈ξ, b〉 −

∫
Rd

(
e−i〈ξ,y〉−1 + i〈ξ, h(y)〉

)
F (dy).121
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4 MAXIMILIAN GAß AND KATHRIN GLAU

Here, σ is a symmetric, positive semi-definite d× d-matrix, b ∈ Rd, and F is a Lévy measure,122

i.e. a positive Borel measure on Rd with F ({0}) = 0 and
∫
Rd

(|x|2 ∧ 1)F (dx) <∞. Moreover,123

h is a truncation function i.e. h : Rd → Rd such that h(x) = x in a neighborhood of 0 and124 ∫
{|x|>1} hj(x)F (dx) < ∞, where hj denotes the j-th component of the truncation function125

h for all j = 1, . . . , d. The Kolmogorov operator of a Lévy process L with characteristics126

(b, σ, F ;h) is given by127

Aϕ(x) :=− 1

2

d∑
j,k=1

σj,k
∂2ϕ

∂xj∂xk
(x)−

d∑
j=1

bj
∂ϕ

∂xj
(x)

−
∫
Rd

(
ϕ(x+ y)− ϕ(x)−

d∑
j=1

∂ϕ

∂xj
(x)hj(y)

)
F (dy)

(3)128

129

for every ϕ ∈ C∞0 (Rd).130

2.2. Kolmogorov equation in variational form. Key for the variational formulation of131

the Kolmogorov equation132

∂tu+Au = f(4)133

u(0) = g(5)134135

is the definition of the bilinear form136

(6) a(ϕ,ψ) :=

∫
Rd

(Aϕ)(x)ψ(x) dx for all ϕ,ψ ∈ C∞0 (Rd).137

It is one of the major advantages of variational formulations of evolution equations that138

solution spaces of low regularity, as compared to the space C2 for example, are incorporated139

in an elegant way. Departing from the space C∞0 (Rd) of smooth functions with compact140

support, we can select from a large variety of function spaces V that are characterized by the141

following assumption.142

(A1) V and H are Hilbert spaces such that C∞0 (Rd) is dense in V and there exists a143

continuous embedding from V into H.144

Existence and uniqueness of a variational solution critically hinges on the following two prop-145

erties of the bilinear form:146

(A2) Continuity : There exists a constant C > 0 such that147 ∣∣a(ϕ,ψ)
∣∣ ≤ C‖ϕ‖V ‖ψ‖V for all ϕ,ψ ∈ C∞0 (Rd).148

(A3) G̊arding inequality : There exists constants G > 0 and G′ ≥ 0 such that149

a(ϕ,ϕ) ≥ G‖ϕ‖2V −G′‖ϕ‖2H for all ϕ ∈ C∞0 (Rd).150

We observe that due to (A1) and (A2), the bilinear form a possesses a unique continuous151

bilinear extension a : V × V that is continuous, i.e. for a constant C > 0 we have
∣∣a(ϕ,ψ)

∣∣ ≤152

C‖ϕ‖V ‖ψ‖V for all ϕ,ψ ∈ V . Also (A3) holds for all ϕ ∈ V .153
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As V is separable, this is also true for H and one can find a continuous embedding from H154

to the dual space V ∗ of V , i.e. (V,H, V ∗) is a Gelfand triplet. We then denote by L2
(
0, T ;H

)
155

the space of all functions u : [0, T ] → H such that for every h ∈ H the map s 7→ 〈u(s), h〉156

is Borel measurable and
∫ T

0 ‖u(t)‖2H dt <∞. Moreover, we denote by ∂tu the derivative of u157

with respect to time in the distributional sense. For a detailed definition, which relies on the158

Bochner integral, we refer to Section 24.2 in [29]. The Sobolev space159

(7) W 1(0, T ;V,H) :=
{
u ∈ L2

(
0, T ;V

) ∣∣∣ ∂tu ∈ L2
(
0, T ;V ∗

)}
160

will play the role of the solution space in the variational formulation of the Kolmogorov161

equation (4), (5).162

Definition 1. Let f ∈ L2
(
0, T ;V ∗

)
and g ∈ H. Then u ∈ W 1(0, T ;V,H) is a variational163

solution of Kolmogorov equation (4), if for almost every t ∈ (0, T ),164

(8) 〈∂tu(t), v〉H + a(u(t), v) = 〈f(t)|v〉V ∗×V for all v ∈ V165

and u(t) converges to g for t ↓ 0 in the norm of H.166

Remark 2. Assumptions (A1)–(A3) guarantee the existence and uniqueness of a variational167

solution u ∈W 1(0, T ;V,H) of (8), see for instance Theorem 23.A in [30].168

2.3. Solution spaces. Expression (6) is based on the L2-scalar product and is appropri-169

ate for variational equations in Sobolev spaces. Then, typically H = L2. For Kolmogorov170

equations for option prices the initial condition g in (5) plays the role of the (logarithmically171

transformed) payoff function of the option. For a call option with strike K it is of the form172

x 7→ (S0 ex−K)+, for a digital up and out option it is given by x 7→ 1ex<b for some b ∈ R. We173

thus have to observe that the initial condition g is not square integrable for most of the typical174

cases of interest. Therefore, we base our analysis more generally on exponentially weighted175

L2 spaces: For η ∈ Rd let176

L2
η(R

d) :=
{
u ∈ L1

loc(R
d) |u e〈η,·〉 ∈ L2(Rd)

}
, ‖u‖L2

η
:=

(∫
Rd

∣∣u(x)
∣∣2 e2〈η,x〉 dx

)1/2

177

and178

(9) a(ϕ,ψ) := 〈Aϕ,ψ〉L2
η

=

∫
Rd

(Aϕ)(x)ψ(x) e2〈η,x〉 dx for all ϕ,ψ ∈ C∞0 (Rd).179

We notice that all assertions of the precedent section, concerning assumptions (A1)–(A3) and180

variational equations hold for bilinear form a defined by (9) instead of a from (6) as well.181

As solution spaces V we consider weighted Sobolev-Slobodeckii spaces. These have proven182

to apply to a large set of option types and models. We refer to [12] and [16], where particularly183

Feynman-Kac type formulas have been derived linking European and path-dependent options184

to weak solutions of Kolmogorov equations in Sobolev-Slobodeckii spaces.185

To introduce the spaces, we denote by C∞0 (Rd) the set of smooth real-valued functions186

with compact support in Rd and let187

(10) ϕ̂(ξ) = F(ϕ)(ξ) :=

∫
Rd

ei〈ξ,x〉 ϕ(x) dx188
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6 MAXIMILIAN GAß AND KATHRIN GLAU

be the Fourier transform of ϕ ∈ C∞0 (Rd) and F−1 be its inverse. We define the exponentially189

weighted Sobolev-Slobodeckii space Hα
η (Rd) with index α ≥ 0 and weight η ∈ Rd as the190

completion of C∞0 (Rd) with respect to the norm ‖ · ‖Hα
η

given by191

(11) ‖ϕ‖2Hα
η

:=

∫
Rd

(
1 + |ξ|

)2α∣∣F(ϕ)(ξ − iη)
∣∣2 dξ.192

By constructionHα
η (Rd) is a separable Hilbert space and we denote its dual space by

(
Hα
η (Rd))∗.193

3. Implementational Challenges. Based on this theoretical introduction we are now in194

the position to focus on its implementation and related numerical questions.195

3.1. Abstract Galerkin approximation in space. For a countable Riesz basis {ϕ1, ϕ2, . . .}196

of V we define197

VN := span{ϕ1, . . . , ϕN} for all N ∈ N.198

Since V is dense in H, we may further choose gN in VN such that gN → u(0) in H. For each199

fixed N ∈ N the semidiscrete problem is defined by restricting (8) to the finite dimensional200

space: Find a function uN ∈ W 1(0, T ;VN ;H ∩ VN ) that satisfies for all χ ∈ C∞0 (0, T ) and201

ϕ ∈ VN ,202

−
∫ T

0
〈uN (t), ϕ〉L2 χ̇(t) dt+

∫ T

0
a
(
uN (t), ϕ

)
χ(t) dt =

∫ T

0
〈f(t)|ϕ〉V ∗×V χ(t) dt

uN (0) = gN .

(12)203

As a result of the elegant Hilbert space formulation, the semidiscrete problem (12) is uniquely204

solvable and the convergence of the sequence uN to u is guaranteed, see Theorem 23.A and205

Remark 23.25 in [30].206

The major advantage of equation (12) in regard to implementation is that it suffices to207

insert the basis functions as test functions. Thus, denoting gN =
∑N

j=1 αjϕj and uN (t) :=208 ∑N
j=1 Uj(t)ϕj we arrive at209

N∑
l=1

U̇l(t)〈ϕl, ϕk〉L2 +

N∑
l=1

Ul(t)a
(
ϕl, ϕk

)
= 〈f(t)|ϕk〉V ∗×V210

Uj(0) = αj for all j = 1, . . . , N.211212

Written in matrix form the problem is to find U : [0, T ]→ RN such that213

MU̇(t) + AU(t) = F(t)(13)214

U(0) = α,(14)215216

where the right hand side (vector) F is given by F = (F1, . . . , FN )> with Fj(t) = 〈f(t)|ϕj〉V ∗×V217

for j = 1, . . . , N , α = (α1, . . . , αN )>, and the mass matrix M and stiffness matrix A are218

given by219

(15) Mkl = 〈ϕl, ϕk〉L2 , Akl = a
(
ϕl, ϕk

)
for all k, l = 1, . . . , N.220
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3.2. Fully discrete scheme. As fully discrete scheme, we approximate (13) with a θ221

scheme in time, namely222

M
Um+1 − Um

∆t
+ AUm+θ(t) = Fm+θ(t)(16)223

U(0) = α,(17)224225

where Um+θ = θUm+1 + (1− θ)Um, Fm+θ accordingly, and θ ∈ [0, 1].226

3.3. Flexible implementation for different driving Lévy processes. We inspect equations227

(13) and (14) in regard to flexibility towards different options as well as models. All ingredients228

depend on the choice of the basis. While M is independent of the specific problem at hand, F229

and α represent the input data and therefore may vary for different option types. The stiffness230

matrix A carries the information of the driving process. So in order to obtain flexibility231

towards model types, we need a generic way to compute the entries of the stiffness matrix.232

For smooth basis functions with compact support and solution spaces without weighting, i.e.233

η = 0, according to (3) and (6), the stiffness matrix entries are given by234

a
(
ϕl, ϕk

)
=

d∑
i,j=1

σi,j

2

∫
Rd

∂

∂xj
ϕl(x)

∂

∂xi
ϕk(x) dx−

d∑
i=1

bi
∫
Rd

∂

∂xi
ϕl(x)ϕk(x) dx235

−
∫
Rd

∫
Rd

(
ϕl(x+ y)− ϕl(x)−

d∑
i=1

∂

∂xi
ϕl(x)hi(y)

)
F (dy)ϕk(x) dx.(18)236

237

Typical basis functions are not smooth. Therefore it is not a priori clear if the integral238

representation (18) extends to the usual basis functions. Observe that an extension of this239

representation requires some care: For a large and important class of pure jump Lévy pro-240

cesses, the solution spaces are Sobolev-Slobodeckii spaces of fractional order, i.e. Hα with241

some 0 < α < 1. For functions in Hα with α < 1, however, the first order weak derivative242

in (18) is not defined and therewith this integral representation of the bilinear form is not243

well-defined. Understanding that the basis functions are usually in H1, we derive the validity244

of the representation under appropriate assumptions that also include the more challenging245

case of solution spaces with fractional order derivatives.246

Lemma 3. Let d = 1. Let a be defined by (9). Assume (A1)–(A3) for a, V and H and247

denote by a : V × V its unique bilinear continuous extension. If H1
η (R) ⊂ V , we have for248

every ϕ,ψ ∈ H1
η (R),249

a(ϕ,ψ) =
σ

2

∫
R

ϕ′(x)ψ′(x) e2ηx dx− b(η, σ, F )

∫
R

ϕ′(x)ψ(x) e2ηx dx250

−
∫
R

∫
|y|<1

∫ y

0

∫ z

0
ϕ′(x+ v) dv dzF (dy)

(
ψ′(x) + 2ηψ(x)

)
e2〈η,x〉 dx(19)251

−
∫
R

∫
|y|>1

(
ϕ(x+ y)− ϕ(x)

)
F (dy)ψ(x) e2〈η,x〉 dx252

253
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8 MAXIMILIAN GAß AND KATHRIN GLAU

with254

b(η, σ, F ) = b− 2ση +

∫
|y|<1

(
y − h(y)

)
F (dy)−

∫
|y|>1

h(y)F (dy).255

The proof of the Lemma is provided in Section A.1.256

Inspecting the expression for the bilinear form, we encounter several numerical challenges257

due to the integral part—stemming from the jumps of the process:258

1. The appealing tridiagonal structure of the stiffness matrix for classic hat functions259

related to the Black-Scholes equation does not extend to the general Lévy setting.260

Instead, the stiffness matrix is densely populated. Pleasantly, it is still a Toeplitz261

matrix.262

2. For some choices of Lévy measures and bases the stiffness matrix entries may be derived263

in closed form. This is for instance the case for the Merton model and piecewise linear264

basis functions when η = 0. Following Section 10.6.2 in [18], the stiffness matrix265

entries may be derived in semi-closed form expressions for a further group of jump266

intensities including tempered stable, CGMY and KoBoL processes and the choice of267

piecewise linear basis functions. In general, however, closed form expressions for the268

stiffness matrix entries, when arbitrary models and basis functions are considered, are269

not available.270

An implementation that is flexible in the driving Lévy process therefore has to rely on271

numerical approximations of the entries of the stiffness matrix. These approximations in-272

evitably affect the accuracy of the solution to the scheme (13)–(14). The following question273

arises: How accurate does the integration routine have to be chosen in order to meet a desired274

accuracy of the solution V ?275

In order to gain a first practical insight in the magnitude of the error resulting from276

an inaccuracy in the stiffness matrix entries, consider Section 3.4.2 in [14]. The numerical277

investigations presented therein reveal that an impressively high precision of the computation278

of the entries of the stiffness matrix is required.279

4. Fourier approach to the Kolmogorov equation. In regard to the high accuracy the280

approximation of the stiffness matrix entries needs to achieve, we would like to avoid numerical281

evaluations of the stiffness matrix entries on the basis of representation (??). Seeking for282

alternative representations, let us point out that the symbol A of the Lévy process is always283

available. Even more, it is an explicit function of the parameters of the process and thus can be284

seen as the modelling quantity of the process as the Examples 9–12 show below. We therefore285

take a Fourier perspective on the variational formulation of the Kolmogorov equation. This is286

especially promising since the Kolmogorov operator A of a Lévy process is a pseudo differential287

operator with symbol A,288

(20) Aϕ = F−1(AF(ϕ)) for all ϕ ∈ C∞0 (Rd),289

as elementary manipulations show. Now Parseval’s identity yields290

(21) a(ϕ,ψ) =
1

(2π)d

∫
Rd
F(Aϕ)(ξ)F(ψ)(ξ) dξ291

This manuscript is for review purposes only.
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for all ϕ,ψ ∈ C∞0 (Rd), respectively,292

(22) a(ϕ,ψ) =
1

(2π)d

∫
Rd
A(ξ)F(ϕ)(ξ)F(ψ)(ξ) dξ.293

This well-known identity has already proved to be highly beneficial for the analysis of the294

variational solutions of the Komogorov equations, compare e.g. [18], [15] and [16]. Let us295

point out the transition from the operator to the symbol from (21) to (22) in the bilinear form296

and recall its role for the derivation of the stiffness matrix in (15). The resulting alternative297

representation is key for the flexibility of our numerical approach. Exploiting the symbol will298

facilitate the numerical implementation considerably.299

Lemma 4 (Continuous extension of bilinear forms). Let A be the symbol of a Lévy process300

given by the characteristic triplet (b, σ, F ). Denote by A : C∞0 (Rd,C)→ C∞(Rd,C) the pseu-301

dodifferential operator associated with symbol A. Furthermore, denote by a : C∞0 × C∞0 → C302

the bilinear form associated with the operator A. Let η ∈ Rd. If303

i) the exponential moment condition304

(23)

∫
|x|>1

e−〈η
′,x〉F (dx) <∞305

holds for all η′ ∈ sgn(η1)[0, |η1|]× · · · × sgn(ηd)[0, |ηd|] and306

ii) there exists a constant C1 > 0 with307

(24) |A(z)| ≤ C1(1 + ‖z‖)α308

for all z ∈ U−η := U−η1 × · · · × U−ηd with U−ηj = R− i sgn(ηj)[0, |ηj |),309

then a(·, ·) possesses a unique linear extension a : H
α/2
η ×Hα/2

η → R that can be written as310

(25) a(ϕ,ψ) =
1

(2π)d

∫
Rd
A(ξ − iη)ϕ̂(ξ − iη)ψ̂(ξ − iη) dξ311

for all ϕ,ψ ∈ Hα/2
η (Rd).312

Proof. The proof can be found in [11] using Theorem 4.1 therein and Parseval’s identity.313

In order to gain first insight in the convergence analysis, we fix a level N in the Galerkin314

scheme and derive conditions for the convergence of the sequence of weak solutions that we315

obtain by approximating the stiffness matrix entries. In the implementation in Section 7 below316

we will also approximately compute the right hand side F of the equation. We therefore more317

generally consider sequences of stiffness matrices, right hand sides and initial conditions.318

As usual, we denote for a given bilinear form a : V × V → R the associated operator319

A : V → V ∗ defined by A(u)(v) := a(u, v) for all u, v ∈ V .320

Lemma 5. Let V , H and a : V ×V → R satisfy (A1)–(A3). Let X := span{ϕ1, . . . , ϕN} ⊂321

V and for each n ∈ N let322

(An1) fn, f ∈ L2(0, T ;H) with fn → f in L2
(
0, T ;X∗),323

(An2) gn, g ∈ H with gn → g in H,324

This manuscript is for review purposes only.



10 MAXIMILIAN GAß AND KATHRIN GLAU

(An3) an : V × V → R be a bilinear form such that for all l, k ≤ N ,325 ∣∣(an − a)(ϕl, ϕk)
∣∣→ 0.(26)326327

Then the sequence of unique weak solutions un ∈W 1(0, T ;X,H) of328

(27) u̇n +Anun = fn, un(0) = gn329

converges strongly2 in L2(0, T ;X)∩C(0, T ;H) to the unique weak solution u ∈W 1(0, T ;X,H)330

of331

(28) u̇+Au = f, u(0) = g.332

The proof is provided in Section A.2.333

Next we introduce our approach to approximate the stiffness matrix entries.334

4.1. The symbol method. The key component of a Galerkin FEM solver is the model335

dependent stiffness matrix A ∈ RN×N . Using expression (18) of Section 3.3 above, the entries336

of that matrix can be derived. The way the Lévy measure F enters that expression, however,337

renders the numerical derivation of the matrix rather cumbersome. Additionally, the empirical338

accuracy study of Section 3.4.2 in [14] emphasizes that utmost care must be taken when the339

stiffness matrix entries are numerically derived. Consequently, in this section we approach340

the calculation of the FEM solver components differently. The Fourier approach indicated by341

Lemma 4 will allow us to access the model information required for the stiffness matrix and342

all other FEM solver components via the symbol that is associated with the operator. In stark343

contrast to the operator, the symbol of a Lévy model is numerically accessible in a unified344

way for a large set of underlying models and we will present several examples highlighting this345

feature.346

Let us state the core lemma of this section. Here we concentrate on basis functions obeying347

a simple nodal translation property, which is in particular satisfied for classical piecewise348

polynomial basis functions.349

Lemma 6 (Symbol method for bilinear forms). Let the assumptions of Lemma 4 be satisfied350

with η = 0. Assume further for N ∈ N a set of functions ϕ0, ϕ1, . . . , ϕN ∈ Hα/2
0 (R) and nodes351

x1, . . . , xN ∈ R, such that for all j = 1, . . . , N352

ϕj(x) = ϕ0(x− xj) ∀x ∈ R.353

Then we have354

(29) a(ϕl, ϕk) =
1

2π

∫
R

A(ξ)eiξ(xl−xk) |ϕ̂0(ξ)|2 dξ.355

for all k, l = 1, . . . , N . If additionally356

(30) <(A(ξ)) = <(A(−ξ)) and =(A(ξ)) = −=(A(−ξ)),357

2Strong convergence in the Hilbert space L2
(
0, T ;X) means ‖un − u‖L2(0,T ;X) → 0.
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then358

(31) a(ϕl, ϕk) =
1

π

∫ ∞
0
<
(
A(ξ)eiξ(xl−xk)

)
|ϕ̂0(ξ)|2 dξ359

for all k, l = 1, . . . , N .360

Proof. Elementary properties of the Fourier transform yield361

(32) ϕ̂j(ξ) = eiξxj ϕ̂0(ξ) ∀ξ ∈ R.362

Since ϕj ∈ H
α/2
0 (R) for all j = 1, . . . , N , the identity (29) follows from identity (25) with363

η = 0 above. The second claim (31) is then elementary.364

When classic hat functions on an equidistant grid with mesh size h ∈ R are chosen as365

basis functions with366

(33) ϕ0(x) = (1− |x|/h)1|x|≤h ∀x ∈ R367

we have368

(34) ϕ̂0(ξ) =
2

ξ2h
(1− cos(ξh)) ∀ξ ∈ R.369

Corollary 7 (Symbol method for stiffness matrices). Let A be a univariate symbol with370

associated operator A satisfying (24) with η = 0. Denote by ϕj ∈ L1(R), j ∈ 1, . . . , N the basis371

functions of a Galerkin scheme associated with an equidistantly spaced grid Ω = {x1, . . . , xN}372

possessing the property373

(35) ϕj(x) = ϕ0(x− xj) ∀x ∈ R,374

for some ϕ0 : R → R with ϕ0 ∈ H
α/2
0 (R). Then, the stiffness matrix A ∈ RN×N of the375

scheme can be computed by376

(36) Akl =
1

2π

∫
R

A(ξ)eiξ(xl−xk) |ϕ̂0(ξ)|2 dξ377

for all k, l = 1, . . . , N .378

Proof. The proof is an immediate consequence of Lemma 6.379

Remark 8 (On the symbol method for bilinear forms). From a numerical perspective, the380

representations of the stiffness matrix entries provided in Lemma 6 and Corollary 7 are highly381

promising:382

1. Instead of the double integrals appearing in (18), only one dimensional integrals need to be383

computed.384

2. The model specific information is expressed via the symbol ξ 7→ A(ξ), which for a large set of385

models is available in form of an explicit function of ξ and the model parameters, a feature386

that we now can exploit numerically. We give a short list of examples below. For further387

examples we refer to [15] and [16].388
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12 MAXIMILIAN GAß AND KATHRIN GLAU

3. Representation (36) displays the entries of the stiffness matrix as Fourier integrals. Moreover,389

the nodes appear as Fourier variables. As a consequence, Fast Fourier Transform (FFT)390

methods can be used to accelerate their simultaneous computation.391

4. The essential assumption of Lemma 6 and Corollary 7 is that the basis functions are obtained392

by shifting (and possibly scaling) a ”mother” basis function. This is the case for a large and393

interesting class of bases, including the wavelet bases, and in particular extends to the multi-394

variate case. Therefore the methods we propose and analyse in this article in the univariate395

setting naturally extend to the multivariate case.396

Expression (3) introduced operators A for Lévy processes L in terms of the characteristic397

triplet (b, σ, F ). The following examples present the respective symbols for some well known398

Lévy models, where the asset price follows St = S0 eLt for every t ≥ 0 and r is the deterministic399

continuously compounding interest rate.400

Example 9 (Symbol in the Black-Scholes (BS) model). In the Black-Scholes model, deter-401

mined by the Brownian volatility σ2 > 0, the symbol is given by402

(37) A(ξ) = Abs(ξ) = iξb+
1

2
σ2ξ2,403

with drift b set to404

(38) b = r − 1

2
σ2

405

as required by the no-arbitrage condition.406

Example 10 (Symbol in the Merton model). In the Merton model where σ > 0, λ > 0,407

α ∈ R and β > 0, the symbol computes to408

(39) A(ξ) = Amerton(ξ) = iξb+
1

2
σ2ξ2 − λ

(
e−iαξ−

1
2
β2ξ2 − 1

)
409

with drift set to410

(40) b = r − 1

2
σ2 − λ

(
eα+β2

2 − 1

)
,411

as required by the no-arbitrage condition.412

Example 11 (Symbol in the CGMY model). In the CGMY model of [6] with σ > 0, C > 0,413

G ≥ 0, M ≥ 0 and Y ∈ (1, 2), the symbol computes to414

(41) A(ξ) = Acgmy(ξ) = iξb+
1

2
σ2ξ2 − CΓ(−Y )

[
(M + iξ)Y −MY + (G− iξ)Y −GY

]
,415

for all ξ ∈ R, with drift b set to416

(42) b = r − 1

2
σ2 − CΓ(−Y )

[
(M − 1)Y −MY + (G+ 1)Y −GY

]
417

for martingale pricing. This class is a special case of the classes referred to as Koponen and418

KoBoL in the literature, see e.g. [3] and as tempered stable processes.419

This manuscript is for review purposes only.



GALERKIN SCHEME FOR OPTION PRICING IN LÉVY MODELS 13

Example 12 (Symbol in the NIG model). With σ > 0, α > 0, β ∈ R and δ > 0 such that420

α2 > β2, the symbol of the NIG model is given by421

(43) A(ξ) = Anig(ξ) = iξb+
1

2
σ2ξ2 − δ

(√
α2 − β2 −

√
α2 − (β − iξ)2

)
422

for all ξ ∈ R with drift given by423

(44) b = r − 1

2
σ2 − δ

(√
α2 − β2 −

√
α2 − (β + 1)2

)
424

as required by the no-arbitrage condition.425

Implementing (36), we encounter new numerical challenges: From the perturbation study426

in Section 3.4.2 in [14] we conclude that we need to evaluate the integrals at high precision.427

Consider first the Black-Scholes model and choose the piecewise linear hat functions as basis428

elements as a toy example. Applying a standard Matlab integration routine will lead to429

considerable errors. To understand the effect, let us first consider the oscillatory contribution430

by the hat functions stemming from the Fourier transform in expression (34) to the integrands431

in (36). We depict ϕ̂0 in Figure 1.432

ξ

0 10 20 30 40 50 60 70 80 90 100

ϕ̂
0
(ξ
)

0

0.5

1

Graph of ϕ̂0

ξ

100 110 120 130 140 150 160 170 180 190 200

ϕ̂
0
(ξ
)

×10
-4

0

2

4

ξ

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100

ϕ̂
0
(ξ
)

×10
-6

0

2

4

Figure 1. Consider the hat function ϕ0 of expression (33) with h = 1. The graph depicts its Fourier
transform ϕ̂0 which is evaluated over three subintervals of R+. The oscillations and the rather slow decay to
zero complicate numerical integration with high accuracy requirements considerably.
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Figure 2. The integrand for the Black-Scholes stiffness matrix Akl for several values of l−k. The grid of the
hat functions spans the interval [−5, 5] with 150 equidistantly spaced inner nodes and grid fineness h = 0.0662.
A Black-Scholes solution on this grid would thus be represented by the weighted sum of 150 hat functions. We
observe that oscillations of the integrand increase in the value of |l − k| and so does the number of supporting
points for naive numerical integration.

Furthermore, Figure 2 shows several integrands of A ∈ RN×N in the representation pro-433

vided by (36) of Corollary 7 with the Black-Scholes symbol of Example 9. Therein, each434

integrand is evaluated for a different value of l − k over three different subintervals taken435

from the unbounded integration range. Here, the integrands of Akl, 1 ≤ k, l ≤ N , have to be436

numerically integrated for all l − k ∈ {−(N − 1), . . . ,−1, 0, 1, . . . , N − 1}.437

The larger |l − k|, however, the more severe the numerical challenges for evaluating the438

integrand, as Figure 2 demonstrates. All integrands illustrated therein decay rather slowly.439

Additionally, oscillations increase in |l − k|. In combination, these two observations seriously440

threaten a numerically reliable evaluation of the integral. With increasing values of |l − k|,441

the oscillations of the integrand accelerate and the number of necessary supporting points for442

accurate integration increases. Computation of the stiffness matrix entries along these lines by443

invoking standard integration routines e.g. based on Matlab’s quadgk demands considerable444

run times for accurate results.445
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These findings show that we need to further investigate the problem to obtain a flexible446

method to compute the stiffness matrix reliably and with low computational cost. The path447

that we propose here is to modify the problem in such a way that the resulting integrands448

decay much faster so that the domain of integration can be chosen considerably smaller and449

a usual integration routine such as Matlab’s function quadgk is sufficient. To do so, we first450

observe that the hat functions, which we used in our toy example, are piecewise linear. While451

being continuous they are not continuously differentiable everywhere and thus lack smoothness452

on an elementary level already. This lack of smoothness translates into a slow decay of their453

Fourier transform or ϕ̂0, respectively.454

Therefore, we propose to replace the piecewise linear basis functions by basis functions that455

display considerably higher regularity leading to appealing decay properties of the integrands456

in (36). In the following two sections, we present two different approaches to implement such457

a problem modification.458

5. From classic hat functions to mollified hats. It is well known that convolution with459

a smooth function has a smoothing effect on the function that the convolution is applied to.460

Functions that qualify for this smoothing by convolution are called mollifiers. In order to461

choose an appropriate mollifier for our purposes—the fast and accurate computation of the462

integrals in (36), the mollifiers need to display two essential features:463

(1) The Fourier transform of the modified basis function needs to be available.464

(2) The smoothing effect needs to be steerable through a parameter.465

As the Fourier transform of the convolution of two functions is the product of the two Fourier466

transformed functions, (1) boils down to the availability of the Fourier transform of the mol-467

lifier. Since the Fourier transform of standard mollifiers is not available in closed form, we468

widen the range of the standard mollifiers and allow for non-compact support. More precisely,469

we call the sequence m = (mk)k∈N, mk ∈ L1(R) for all k ∈ N, a mollifier, if470

1. mk ≥ 0, for all k ∈ N,471

2.
∫
R
mk(x) dx = 1, and472

3. for all % > 0 we have the convergence
∫

[−%,%]cmk(x) dx→ 0 for k →∞.473

Feature (2) is often required and we follow the usual construction here. By Proposition474

and Definition 2.14 in [1] we can adjust the influence of mollification by a parameter ε. To475

this end let m ∈ L1(R) with476

(45) m ≥ 0, and

∫
R

m(x) dx = 1.477

Define478

(46) mε =
1

ε
m
( ·
ε

)
.479

Then for each % > 0 we have
∫
R
mε(x) dx = 1 and

∫
[−%,%]cm

ε(x) dx → 0 for ε → 0. Conse-480

quently, for each null sequence (εk)k∈N the sequence (mεk)k∈N is a mollifier in the sense of481

our definition.482
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Figure 3. A comparison between the classic hat function ϕ0 on a grid with h = 1 and the mollified
hat function ϕε0 = ϕ0 ∗ mε

Gaussian for several values of ε ∈ {0.05, 0.15, 0.3} using the Gaussian mollifier of
Example 13.

Example 13 (A mollifier based on the Normal distribution). We present an example for a483

mollifier. Define484

(47) mGaussian(x) =
1√
2π
e−

x2

2 .485

Then we call (mεk
Gaussian)k∈N defined according to (46) a Gaussian mollifier. The characteristic486

function of the Gaussian mollifier is known in closed form,487

(48) ̂mε
Gaussian(ξ) = exp

(
−1

2
ε2ξ2

)
,488

thus exhibiting exponential decay.489

It is a well known result, that mollified functions f ∗mk converge to f in Lp(R), 1 ≤ p <∞490

when k tends to infinity, see for example Satz 2.15 in [1].491

Figure 4 displays the decay of the Fourier transform of the mollified hat function in492

comparison with the behaviour of the hat.493

5.1. Convergent Scheme based on mollified hats. In this section we propose and analyse494

a convergent fully discrete scheme based on the symbol method of Section 4 and mollified hats.495

We also analyze the rate of convegence of the scheme. We introduce stronger assumptions that496

allow us to use the result of [27]. Namely, we assume elliptcity of the bilinear form instead of497

the weaker assumption that a G̊arding inequality.498

According to the symbol method introduced in Corollary 7, we solve the θ scheme (16)–499

(17) with stiffness matrix A given by equation (36),500

(49) Akl = a(ϕl, ϕk) =
1

2π

∫
R

A(ξ)eiξ(xl−xk) |ϕ̂0(ξ)|2 dξ501
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for all k, l = 1, . . . N , where ϕl are the hat functions and ϕ0 is the hat function at the origin502

given by (35).503

For a light notation let mε := mε
Gaussian. Following the approach we introduced in Section504

5 to use mollified hats, we replace the stiffness matrix of (33) by505

(50) Aε
kl :=

1

2π

∫
R

A(ξ)eiξ(xl−xk) |ϕ̂0(ξ)|2
∣∣m̂ε(ξ)

∣∣2 dξ506

On the level of the bilinear form this means we replace the bilinear form a by507

(51) aε(u, v) :=
1

2π

∫
R

A(ξ)û(ξ)v̂(ξ)
∣∣m̂ε(ξ)

∣∣2 dξ.508

In order to achieve the optimal order of convergence of the thus perturbed θ scheme, we need509

to choose ε dependent on h, i.e. ε = ε(h). Moreover, in an actual implementation, we will510

need to truncate the range of integration. In order to preserve the two fundamental properties,511

G̊arding inequality and continuity with respect to the solution space V of the original equation,512

we incorporate here the asymptotic behaviour of the symbol. The asymptotic behaviour of the513

symbol plays a decisive role in the determination of the solution space. To this aim,514

let Ã : R→ R be such that there exists N > 0 such that515

(52) |A(ξ)− Ã(ξ)| ≤ |A(ξ)|/2 for all |ξ| > N516

To illustrate what form Ã can take in practice, let us briefly consider a simple example. Ã517

carries the asymptotic behaviour of A and the convergence needs to be fast enough. This518

is for instance satisfied if we take for A the symbol in Merton’s model from Example 10,519

A(ξ) = Amerton(ξ) = iξb + 1
2σ

2ξ2 − λ(e−iαξ−
1
2
β2ξ2 − 1) and for Ã we use its Brownian part,520

Ã(ξ) = 1
2σ

2ξ2.521

Now let522

(53) ãε(u, v) :=
1

2π

∫ N(ε)

−N(ε)
A(ξ)û(ξ)v̂(ξ)

∣∣m̂ε(ξ)
∣∣2 dξ +

1

2π

∫
[−N(ε),N(ε)]c

Ã(ξ)û(ξ)v̂(ξ) dξ523

Now choose N(ε) := δ̃
ε and ε(h) := δh for some 0 < δ < 1, 0 < δ̃ < min{ 1

2δ2
, 1√

2
}. Then524

(54) N2(ε)ε2 < 1/2, and N(ε(h))(ε(h))2 ≤ δ̃δh for all h.525

Under standard conditions convergence of the fully discrete version of the (13)–(15) with526

a θ-scheme in time has been provided in [27]. Assuming the same standard conditions, we527

show that the resulting fully discrete scheme when replacing in (13)–(15) the bilinear form a528

by ãε(h) still leads to a convergent scheme of the same rate.529

While the asymptotic behaviour of A is used in the theoretical analysis, numerically the530

same error behaviour is already achieved when neglecting the second term in (54), compare531

Section 7.4. This shows the potential of the approach even beyond the cases where the532

asymptotic behaviour of A is accessible in a simple form that allows to compute the second533

term in (53).534
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5.2. Convergence analysis. General assumptions and notation: I = (a, b) ⊂ R, H :=535

L2(I), V s := Hs(I), let V s
h be a Galerkin space, e.g. the linear space spanned by the hat536

functions with mesh fineness h. For ε > 0 consider the Gauss kernel mε
Gaussian from (46), (13).537

Now let ε : (0,∞) → (0,∞) and define Ṽ s
h := {(mε(h)

Gaussian ∗ uh)|I |uh ∈ V s
h }, where with a538

slight abuse of notation, we denote by uh the extension of uh by zero outside of I in order539

to define the convolution with m
ε(h)
Gaussian. We notice that this extension is not necessarily in540

Hs(R). We also denote ũh := (m
ε(h)
Gaussian ∗ uh)|I .541

We denote by u0
h = gh the initial condition of the θ scheme.542

Furthermore we set543

V t :=

{
H̃s(I) if s = α,

Hs+1(I) ∩ H̃s(I) if t = α+ 1.
544

545

Finally, set a(u, v) =
∫
Rd
A(ξ)û(ξ)v̂(ξ) dξ, ‖u‖a :=

√
a(u, u) and ‖f‖∗ := f(vh)

‖vh‖a .546

We consider the following set of conditions that form the basis of the perturbation analysis547

in [27]:548

Conditions 14. Fix index α ∈ [0, 1].549
(A1) (Continuity and coercivity) There exist constants 0 < β, γ such that for all ξ ∈ R,550

β|ξ|2α ≤ A(ξ) ≤ γ|ξ|2α.551552

(A2) (Approximation property of the Galerkin space) There exists a family of bounded linear553

projectors Ph : V α → V α
h and a constant C1 > 0 such that for all u ∈ V α+1554

(55) ‖u− Phu‖V α ≤ C1h‖u‖V α+1 .555

(A3) (Inverse property) There is a constant CIP > 0 independent of h > 0 such that with556

0 ≤ s ≤ α we have for all uh ∈ V s
h557

(56) ‖uh‖V s ≤ CIP h
−s‖uh‖H .558

(A4) (Quasi-optimality of the initial condition) There is a constant CI > 0 independent of559

h > 0 such that560

(57) ‖g − gh‖H ≤ CI inf
vh∈V sh

‖g − vh‖H .561

Condition (A1) is equivalent to the continuity and ellipticity of the bilinear form a with562

respect to V α. Conditions (A2)–(A4) are basic approximation conditions on the Galerkin563

spaces. They are not only satisfied for V s
h being the linear space spanned by the hat functions564

with mesh fineness h, but also for wavelet approximation spaces, see [27].565

We consider an equidistant time grid, tm = m ∗ T/(M − 1), m = 0, . . . ,M and denote566

um = u(tm), um+θ = θum+1 + (1− θ)um, uκh =
∑dim(V αh )

j=1 Uκj ϕj for κ = m or κ = m+ θ.567

Let us first consider the rate of convergence of the θ scheme without perturbation that we568

directly obtain from Theorem 5.4 of [27], by choosing ã = a and ν = 0 p = α and α = %/2 in569

their setting:570
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Lemma 15 (Convergence rate of the θ scheme). Assume Conditions 14 and let u ∈571

W 1(0, T ;V α, H) be the weak solution to problem (4)–(5). Then there exists a constant C > 0572

such that573

∥∥uM − uMh ∥∥2

H
+ ∆t

M−1∑
m=0

‖um+θ − um+θ
h ‖2a ≤ C h2 max

0≤τ≤T
‖u(τ)‖2V α+1

+ C h2

∫ T

0
‖u(τ)‖2V α+1 dτ

+ C

{
(∆t)2

∫ T
0 ‖ü(s)‖2∗ ds, ∀θ ∈ [0, 1]

(∆t)4
∫ T

0 ‖
...
u (s)‖2∗ ds, θ = 1

2 .

(58)574

Notice that the assertion of the lemma is only meaningful if the regularity of u implies finiteness575

of the right-hand-side of the equation. In other words, the assertion on the convergence rate576

implicitly comes with regularity assumptions on the solution u.577

5.2.1. Convergence rate for θ scheme, mollified hat. We denote by (ũmh )m=1,...,M the578

interpolated solution of the θ scheme induced by ãε(h).579

Proposition 16. The assertion of Lemma 15 also holds for the solution (ũmh )m=1,...,M of the580

perturbed θ scheme instead of (ũmh )m=1,...,M .581

Proof. In view of Conditions 14, in order to apply Theorem 5.4 of [27], it is enough to582

verify two conditions for the perturbation of the bilinear form a, namely583

(i) There exists a constant η < 1 independent of h such that584

(59)
∣∣a(u, v)− ãε(h)(u, v)

∣∣ ≤ η‖u‖a‖v‖a for all u, v ∈ V α.585

(ii) For the family of projectors Ph of Condition (A2) there exists a constant C > 0 independent586

of h such that587

(60)
∣∣a(Phu, vh)− ãε(h)(Phu, vh)

∣∣ < Ch‖u‖V α+1‖vh‖V α for all u ∈ V α+1, vh ∈ V α
h .588

These two conditions are inequalities (3.8) and (3.9) of [27].589

Verify (i): Inserting the definition, we see, denoting N = N(ε(h)) that590

∣∣a(u, v)− ãε(h)(u, v)
∣∣ ≤ 1

2π

∣∣∣∣∫ N

−N
A(ξ)û(ξ)v̂(ξ)

(
1−

∣∣m̂ε(ξ)
∣∣2)dξ

∣∣∣∣591

+
1

2π

∣∣∣∣∣
∫

[−N,N ]c

(
A− Ã

)
(ξ)û(ξ)v̂(ξ) dξ

∣∣∣∣∣ ,592

593

where
∣∣m̂ε(ξ)

∣∣2 = e−ε
2ξ2 and 0 ≤ 1−

∣∣m̂ε(ξ)
∣∣2 = 1− e−ε

2ξ2 ≤ ε2ξ2, and hence594

1

2π

∣∣∣∣∫ N

−N
A(ξ)û(ξ)v̂(ξ)

(
1−

∣∣m̂ε(ξ)
∣∣2)dξ

∣∣∣∣ ≤ ε2N2‖u‖a‖v‖a.595
596
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Moreover,597

1

2π

∣∣∣∣∣
∫

[−N,N ]c

(
A− Ã

)
(ξ)û(ξ)v̂(ξ) dξ

∣∣∣∣∣ ≤ 1/2

∫
[−N,N ]c

|A(ξ)||û(ξ)||v̂(ξ)| dξ598

≤ 1/2‖u‖a‖v‖a.599600

Summarizing, since ε(h)2N(h)2 < 1/2 for h small enough, we have601 ∣∣a(u, v)− ãε(h)(u, v)
∣∣ ≤ η‖u‖a‖v‖a602603

for some η < 1.604

Verify (ii): We first show the assertion when we replace Phu by u. We observe that605 ∣∣a(u, vh)− ãε(h)(u, vh)
∣∣ ≤ 1

2π

∫ N

−N

∣∣A(ξ)û(ξ)v̂(ξ)
∣∣ (1−

∣∣m̂ε(ξ)
∣∣2)dξ606

+
1

2π

∫
[−N,N ]c

∣∣A− Ã(ξ)
∣∣û(ξ)v̂(ξ) dξ.607

608

Using Hölder’s inequality, inserting again 1 −
∣∣m̂ε(ξ)

∣∣2 = 1 − e−ε
2ξ2 ≤ ε2ξ2, the continuity609

condition from (A1) and inequality (54) we get610

1

2π

∫ N

−N

∣∣A(ξ)û(ξ)v̂h(ξ)
∣∣ (1−

∣∣m̂ε(ξ)
∣∣2) dξ611

≤ 1

2π

(∫
R

∣∣A(ξ)
∣∣∣∣v̂h(ξ)

∣∣2 dξ

)1/2(∫ N

−N

∣∣A(ξ)
∣∣∣∣û(ξ)

∣∣2(1−
∣∣m̂ε(ξ)

∣∣2)2
dξ

)1/2

612

≤
√

1/(2π)‖vh‖a
(∫ N

−N

∣∣A(ξ)
∣∣∣∣û(ξ)

∣∣2ε4ξ4 dξ

)1/2

613

≤ ε2N
√

1/(2π)‖vh‖a
(∫

R

∣∣A(ξ)
∣∣ξ2
∣∣û(ξ)

∣∣2 dξ

)1/2

614

≤ ε2N
√
γ/(2π)‖vh‖a‖u‖V α+1615

≤ h/(2δ)
√
γ/(2π)‖vh‖a‖u‖V α+1 .616617

Finally,618

1

2π

∫
[−N,N ]c

∣∣A(ξ)− Ã(ξ)
∣∣∣∣û(ξ)v̂h(ξ)

∣∣dξ619

≤ 1

4π

∫
[−N,N ]c

∣∣A(ξ)
∣∣∣∣û(ξ)

∣∣∣∣v̂h(ξ)
∣∣dξ620

≤ 1

4π

∫
[−N,N ]c

∣∣A(ξ)
∣∣∣∣û(ξ)

∣∣ |ξ|
N

∣∣v̂h(ξ)
∣∣dξ621

≤ 1

4πN

(∫
R

∣∣A(ξ)
∣∣∣∣v̂h(ξ)

∣∣2 dξ

)1/2(∫
R

∣∣A(ξ)
∣∣ξ2
∣∣u(ξ)

∣∣2 dξ

)1/2

622

≤ hδ/(2δ̃)
√
γ/(2π)‖vh‖a‖u‖V α+1 .623624
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Now we are in a position to derive assertion (ii): By the triangle inequality we have625 ∣∣a(Phu, vh)− ãε(h)(Phu, vh)
∣∣ ≤ ∣∣a(u, vh)− ãε(h)(u, vh)

∣∣+
∣∣(a− ãε(h)(Phu− u, vh)

∣∣.626627

Invoking inequality (59), (60) for u instead of Phu and approximation property (A2) of Con-628

ditions 14 show the existence of a constant C > 0 such that629

(61)
∣∣a(Phu, vh)− ãε(h)(Phu, vh)

∣∣ < Ch‖u‖V α+1‖vh‖V α for all u ∈ V α+1, vh ∈ V α
h .630

Before we test the numerical performance of this approach to modify the Galerkin scheme631

in Section 7 below, we introduce an alternative approach based on splines. We keep the632

presentation of the second approach shorter since the numerical results are more promising633

for the mollified hat approach.634

6. Splines as basis functions. Instead of mollification of piecewise linear basis functions,635

we can alternatively choose basis functions that display higher regularity itself. We therefore636

investigate a well-established class of finite element basis functions as candidates for our637

purposes, namely cubic splines. Spline theory applies to a very broad context and we refer638

the reader to [26] for an introduction and overview. From our perspective, splines are smooth639

basis functions. Their Fourier transform is accessible and the theory of function spaces they640

span is well-established. We give the definition of the Irwin-Hall cubic spline that inherits641

its name from the related probability distribution. We define the univariate Irwin-Hall spline642

ϕ0 : R→ R+ by643

(62) ϕ0(x) =
1

4


(x+ 2)3 , −2 ≤ x < −1

3|x|3 − 6x2 + 4 , −1 ≤ x < 1

(2− x)3 , 1 ≤ x ≤ 2

0 , elsewhere

644

for all x ∈ R. The spline ϕ0 has compact support on [−2, 2] and is a cubic spline. We use it645

to define a spline basis:646

Definition 17 (Spline basis functions on an equidistant grid). Choose N ∈ N. Assume an647

equidistant grid Ω = {x1, . . . , xN}, xj ∈ R for all j = 1, . . . , N , with mesh fineness h > 0. Let648

ϕ0 be the Irwin-Hall spline of (62). For j = 1, . . . , N define649

ϕj(x) = ϕ0((x− xj)/h) ∀x ∈ R.650

We call ϕj the spline basis function associated to node j.651

For a given grid Ω = {x1, . . . , xN}, xj ∈ R, Definition 17 provides the set of spline basis652

functions that we also use in our numerical implementation, later. In standard literature, the653

Irwin-Hall basis is usually enriched with additional splines associated with the first and the last654

node of the grid that provide further flexibility in terms of Dirichlet and Neumann boundary655

conditions, see for example [26]. We omit the three Irwin-Hall basis functions associated with656

either of the first and the last grid nodes thus implicitly prescribing Dirichlet, Neumann and657

second order derivative zero boundary conditions.658
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Figure 4. Graphs of the Fourier transforms of all basis function candidates presented in this section,
evaluated over three subintervals of R+. The mesh is chosen with h = 1, the mollification parameter is set to
ε = 0.3h.

Lemma 18 (Fourier transform of the Irwin-Hall spline). Let ϕ0 be the Irwin-Hall cubic spline659

of (62). Then its Fourier transform ϕ̂0 is given by660

(63) ϕ̂0(ξ) =
3

ξ4
(cos(2ξ)− 4 cos(ξ) + 3)661

for all ξ ∈ R.662

The proof of the Lemma follows by elementary calculation. This immediately gives the fol-663

lowing corollary.664

Corollary 19 (Fourier transform of spline basis functions on an equidistant grid). Choose665

N ∈ N. Assume an equidistant grid Ω = {x1, . . . , xN}, xj ∈ R for all j = 1, . . . , N , with666

mesh fineness h > 0 and let ϕj be the spline basis function associated with node j as defined667

in Definition 17. Its Fourier transform is given by668

ϕ̂j(ξ) = eiξxj
3

h3ξ4
(cos(2ξh)− 4 cos(ξh) + 3)669

for all ξ ∈ R.670

Figure 4 compares the decay behaviour of the Fourier transforms of all three basis pre-671

sented function types. As Figure 1 already illustrated, the Fourier transform of the classic672
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hat functions exhibits both slow decay rates and oscillatory behaviour. In stark contrast the673

Fourier transforms of the mollified hats as well as the Fourier transform of Irwin-Hall splines674

visually decay to zero instantly. In case of the mollified hat functions this is due to the expo-675

nential decay of the Fourier transform of the Gaussian mollifier while for splines Corollary 19676

displays a polynomial decay of order 4. In this regard, both alternatives to the classic hat677

functions are promising candidates for the implementation of the symbol method of Corol-678

lary 7. In Section 7 we put that promise to the test. Before that we briefly discuss the error679

analysis for the symbol method via spline basis functions as presented.680

Convergence rate for θ scheme, splines. The spline approximation we consider falls into the681

framework of approximation with NURBS (non-uniform rational B-splines) of [2]. Since the682

geometry of our domain is the simplest possible one, namely an interval, large part of the683

analysis from [2] is not required in our case. Nevertheless, working with splines, we need to684

replace the standard Sobolev space H̃1 by a so-called ”bent” Sobolev space H1, where the685

Sobolev spaces on the individual elements (subintervals in our case), on which the splines686

are cubic polynomials, are ”bent” together by the corresponding regularity conditions at687

the interfaces, see equation (8) in [2]. Ignoring the boundary conditions we will impose,688

Lemma 3.3 in [2] provides the approximation property of the spline Galerkin space, (A2) from689

Conditions 14, and the inverse property, (A3) from Conditions 14, follows from Theorem 4.2690

in [2]. Now, since the proofs in [27] do not hinge on the specific properties of the space691

H̃1 (also consult Section 3.6.2 of [14]) Lemma 15 extends to the setting with splines. As692

one might expect, both the approximation property (A2) from Conditions 14 and the inverse693

property (A3) are satisfied with a higher order in h, i.e. for h4. Hence Theorem 5.4 of [27]694

is valid with an order of h4. However, all terms on the right-hand side of the estimate in695

this theorem need to be finite, in particular max0≤t≤T ‖u‖H4 , and therewith the respective696

regularity for the initial value g. As this is not given in our implementation we cannot hope697

for the order h4. 3 To summarize we can expect a convergence rate of h2 as in the case of the698

approach with mollified hats.699

7. Numerical Implementation. In this section we implement the pricing PIDEs for plain700

vanilla call and put options and test the two approaches to the symbol method experimentally.701

Theorem 20 (Feynman-Kac). Let (Lt)t≥0 be a (time-homogeneous) Lévy process. Consider702

the PIDE703

∂tU
C,P +AUC,P + rUC,P = 0, for almost all t ∈ (0, T )

UC,P (0) = gC,P ,
(64)704

where A is the operator associated with the symbol of (Lt)t≥0 and gC,P ∈ L2
η(R). Assume705

further the assumptions (A1)–(A3) of [11] to hold. Then (64) possesses a unique weak solution706

(65) UC,P ∈W 1(0, T ;Hα/2
η (R), L2

η(R))707

3Additional numerical experiments with smooth initial conditions, performed within in a master thesis in
the working group, that we do not report in this article in more detail showed the convergence rate of h4 thus
confirming the theoretical discussion from this section.
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where α > 0 is the Sobolev index of the symbol of (Lt)t≥0 and η ∈ R is chosen according to708

Theorem 6.1 in [11]. If additionally gC,Pη ∈ L1(R) then the relation709

(66) UC,P (T − t, x) = E
[
gC,P (LT−t + x)

]
710

holds for all t ∈ [0, T ], x ∈ R.711

Proof. For r = 0, the result is proved in [11] and follows from Theorem 6.1 therein. For712

general r ≥ 0, that proof is easily adapted.713

Remark 21. Setting gC,P = gC in (64), the payoff profile of a European call option, results714

in UC being the price of a European call option. Analogously, setting gC,P = gP , the payoff715

profile of a European put option, results in UP being the price of a European call option.716

7.1. Truncation to zero boundary conditions. As we derive prices of plain vanilla Eu-717

ropean call and put options, the solution to the respective pricing PIDE is defined on the718

whole real line. As a first step towards a discretization, we want to truncate the domain to719

bounded interval (a, b) and we choose to implement zero boundary conditions. Under further720

assumptions, exponential convergence of the truncation error has been shown in [9, Section721

4.1]. Here, we follow the standard procedure to subtract an appropriate auxiliary function722

ψ that matches the asymptotic behavior of UC,P . Having chosen ψ, the resulting modified723

problem for φ = UC,P − ψ is724

(67)
∂tφ(t, x) + (Aφ) (t, x) + rφ(t, x) = f(t, x) ∀(t, x) ∈ (0, T )×R,

φ(0, x) = gΨ(x) ∀x ∈ R,
725

where gΨ(x) = g(x)− ψ(0, x) for all x ∈ R and the right hand side f is given by726

f(t, x) := − (∂tψ(t, x) + (Aψ)(t, x) + rψ(t, x)) .727

The solution UC,P to the original problem (64) can easily be restored by UC,P = φ + ψ.728

Examples for ψ will be presented, later.729

The right hand side in vector notation is given by F(tk) = (F1(tk), . . . , FN (tk)) ∈ RN for730

each tk on the time grid with Fj(·), j = 1, . . . , N , given by731

Fj(t) = −
∫
R

(∂tψ(t, x) + (Aψ)(t, x) + rψ(t, x))ϕj(x) dx(68)732

for all j = 1, . . . , N .733

We observe that the operator A applied to the auxiliary function ψ appears in the integral734

of expression (68). For the same reasons as in the computation of the stiffness matrix entries,735

we decide to apply the symbol method for the computation of the entries of the right hand736

side F ∈ RN . We pursue these considerations in the following section.737

7.2. Computation of the right hand side F. First, we need to choose an appropriate738

auxiliary function ψ. As its purpose is to enable us to truncate the domain and insert zero739
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boundary conditions, we need to inspect the limit behaviour of the price value740

(69)
UC(x, t)→ 0, x→ −∞, t ∈ [0, T ]

UC(x, t)→ ex −Ke−rt, x→ +∞, t ∈ [0, T ]
741

for call options and742

(70)
UP (x, t)→ Ke−rt − ex, x→ −∞, t ∈ [0, T ]

UP (x, t)→ 0, x→ +∞, t ∈ [0, T ]
743

for put options. This is the usual way to obtain the auxiliary function. Now, in regard744

to our specific approach, relying on the Fourier transforms, we identify additional desirable745

features for the auxiliary function. We denote ψ̂(t, z) := ψ̂(t, ·)(z). Consider a smooth function746

ψ : [0, T ]×R→ R such that ψ(t) ∈ Hα/2
η (R) for all t ∈ [0, T ] for some η ∈ R. Then, for the747

second summand in (68) we have by applying the symbol method of Lemma 4 that748 ∫
R

(Aψ)(t, x)ϕj(x) dx =
1

2π

∫
R

A(ξ − iη)ψ̂(t, ξ − iη)ϕ̂j(ξ + η) dξ,(71)749

where A denotes the symbol of the model. With the above identity, we are able to derive the750

right hand side (Fj)j=1,...,N of the PIDE in vector notation as introduced by (68) in terms of751

Fourier transforms by752

(72) Fj = − 1

2π

∫
R

(
∂̂tψ(t, ξ − iη) + (A(ξ − iη) + r)ψ̂(t, ξ − iη)

)
ϕ̂j(ξ + η) dξ.753

This shows that ψ is numerically suitable for the purpose of localizing the pricing PIDE if754

ψ is quickly evaluable on the region [a, b] × [0, T ] and the integrals determining Fj can be755

numerically evaluated fast for all j = 1, . . . , N . The first feature allows retransforming the756

solution of the localized problem into the solution of the original pricing PIDE, while the757

second grants the fast numerical derivation of the right hand side in equation (67). These758

considerations lead us to the following list of desirable features for the auxiliary function ψ759

that is required to obey the respective limit conditions (69), (70):760

1. a (semi-)closed expression of the function ψ,761

2. a (semi-)closed expression of its Fourier transform ψ̂762

3. and fast decay of |ψ̂(ξ)| and |∂̂tψ(ξ)| for |ξ| → ∞.763

The smoother ψ, the faster |ψ̂| decays. In the following two subsections we analyze two764

candidates for ψ that display these desired features.765

A first suggestion for ψ consists in using Black-Scholes prices as functions in x = log(S0) ∈766

[a, b] and time to maturity t ∈ [0, T ] for localization of the pricing PIDE. We express the767

price of a European option with payoff profile gC,P in the Black-Scholes model in terms of768

(generalized) Fourier transforms and define ψ accordingly, as the following Lemma explains.769

Lemma 22 (Subtracting Black-Scholes prices). Choose a Black-Scholes volatility σ2 > 0,770

let r ≥ 0 be the prevailing risk-free interest rate and set η < −1 in the case of a call option771

and η > 0 for the put. Define ψ to be the associated Black-Scholes price,772

(73) ψ(t, x) = ψbs(t, x) := e−ηxe−rt
1

2π

∫
R

eiξxĝC,P (−(ξ + iη))ϕbs
t,σ(ξ + iη) dξ,773
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with ϕbs
t,σ(z) = etA

bs(z). We denote by A the symbol of the associated operator A. Then the774

right hand side F : [0, T ]→ RN can be written in the form775

776

(74)

Fj(t) =
1

2π

∫
R

((
Abs − A

)
(ξ − iη)

)
ĝC,P (ξ − iη) exp

(
− t
(
r + Abs(ξ − iη)

))
ϕ̂j(ξ + iη) dξ777

778

for all j = 1, . . . , N .779

Proof. In order to derive the right hand side, we need to represent ψ in Fourier terms.780

Since for call and put options, ψ /∈ L1(R), we compute the (generalized) Fourier transform of781

ψ or the Fourier transform of ψη = eη·gC,P , respectively. We get782

ψη(t, x) = e−rt
1

2π

∫
R

e−iξxĝC,P (ξ − iη)ϕbs
t,σ(−(ξ − iη)) dξ.(75)783

The integral in (75) is a Fourier (inversion) integral. We read off784

ψ̂η(t, ξ) = ĝC,P (ξ − iη) exp
(
−t
(
r +Abs(ξ − iη)

))
,(76)785

where we used the relation between the characteristic function and the symbol of a process.786

Now,787

∂̂

∂t
ψη(t, ξ) = −

(
r +Abs(ξ − iη)

)
ψ̂η(t, ξ).(77)788

Finally, since ψbs ∈ Hα/2
η (R), we have that789

(78)

∫
R

(Aψbs)(t, x)ϕj(x) dx =
1

2π

∫
R

A(ξ − iη)ψ̂bs(t, ·)(ξ − iη)ϕ̂j−η(ξ) dξ.790

Collecting our results proves the claim.791

The candidate ψ = ψbs matches the desired criteria. It is quickly evaluable, since Black-792

Scholes prices are implemented in many code libraries. Also, the integral in (74) is numerically793

accessible, since the integrand decays fast. Observe that FFT techniques could be employed794

to computed Fj(t) for all j = 1, . . . , N simultaneously. A major disadvantage of choosing795

ψ = ψbs, however, lies in the fact that t ∈ [0, T ] can not be separated from the integrand796

in (74). Consequently, Fj(t
k), must be numerically evaluated for each j = 1, . . . , N and797

k = 1, . . . ,M , individually. This results in significant numerical cost. We therefore present a798

second candidate for ψ.799

Lemma 23 (Subtracting quasi-hockey stick). Let σψ > 0. Define ψC in the call option and800

ψP in the put option case by801

(79)
ψC(t, x) =

(
ex −Ke−rt

)
Φ(x), (t, x) ∈ [0, T ]× [a, b],

ψP (t, x) =
(
Ke−rt − ex

)
(1− Φ(x)) , (t, x) ∈ [0, T ]× [a, b],

802
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where Φ denotes the cumulative distribution function of the normal N (0, σ2
ψ) distribution.803

Furthermore, in the call option case choose η < −1 and η > 0 in the put option case. Then,804

the right hand side F : [0, T ]→ RN is given by805

806

(80) Fj(t) =
1

2π

(∫
R

(
A(ξ − iη) + r

) f̂N (ξ − i(η + 1))

iξ + (η + 1)
ϕ̂j(ξ + iη) dξ807

− e−rtK
∫
R

A(ξ − iη)
f̂N (ξ − iη)

iξ + η
ϕ̂j(ξ + iη) dξ

)
,808

809

for all j = 1, . . . , N with t ∈ [0, T ], where A is the symbol of the associated operator A and810

where811

f̂N (ξ) = exp

(
−1

2
σ2
ψξ

2

)
,812

the Fourier transform of the normal N (0, σ2
ψ) density.813

Proof. We consider the call option case first. To derive the expression for Fj in (80) we814

need to compute the Fourier transform of (the appropriately weighted) ψC . We choose η < −1815

and t ∈ [0, T ] arbitrarily and compute for K = 1,816

ψ̂Cη (t, ·)(ξ) =

∫
R

eiξxeηx
(
ex − e−rt

)
Φ(x) dx

=

∫
R

eiξxe(η+1)xΦ(x) dx− e−rt
∫
R

eiξxeηxΦ(x) dx.

(81)817

Integration by parts and l’Hôpital’s rule yield that818 ∫
R

eiξxe(η+1)xΦ(x) dx = − 1

iξ + (η + 1)

∫
R

ei(ξ−i(η+1))xfN (x) dx,(82)819

which can be expressed in terms of the Fourier transform of the normal distribution yielding820 ∫
R

eiξxe(η+1)xΦ(x) dx = − f̂N (ξ − i(η + 1))

iξ + (η + 1)
.(83)821

Equivalently, we obtain for the second integral in (81) that822

∫
R

eiξxeηxΦ(x) dx = − f̂N (ξ − iη)

iξ + η
.(84)823

Assembling these results we find824

ψ̂Cη (t, ·)(ξ) = − f̂N (ξ − i(η + 1))

iξ + (η + 1)
+ e−rt

f̂N (ξ − iη)

iξ + η
.(85)825
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We deduce from (72) that826

827

(86) Fj(t) =
1

2π

(∫
R

(
A(ξ − iη) + r

) f̂N (ξ − i(η + 1))

iξ + (η + 1)
ϕ̂j(ξ + iη) dξ828

− e−rt
∫
R

A(ξ − iη)
f̂N (ξ − iη)

iξ + η
ϕ̂j(ξ + iη) dξ

)
.829

830

For the put option case we choose ψP as defined in (79). The computations for ψ̂Pη follow831

along the same lines as for the call and we get the relation832

(87) ψ̂Pη (t, ·)(ξ) = ψ̂Cη (t, ·)(ξ) ∀(t, ξ) ∈ [0, T ]×R,833

for η set to some η > 0, which proves the claim.834

Remark 24 (Computational features of ψC and ψP ). While ψC serves as localizing function835

for the call option case, ψP can be used in the put option case. Both candidates are based on836

the payoff functions of call and put options but avoid the lack of differentiability with respect837

to x in x = log(Ke−rt) for t ∈ [0, T ]. As a consequence, both ψC and ψP are smooth functions838

and thus fulfill the requirements collected above when σψ is chosen small enough. Additionally,839

the two integrals in (80) do not depend on the time variable t ∈ [0, T ] and thus need to be840

computed only once for each basis function ϕj. This results in a significant acceleration in841

computational time compared to the suggestion ψ = ψbs of Lemma 22.842

Algorithm 1 summarizes the abstract structure of a general FEM solver based on the sym-843

bol method. By plugging the symbol associated to the model of choice into the computation844

of line 9 of the algorithm, the solver instantly adapts to that model. In other words, only one845

line needs to be specified to obtain a model specific solver for option pricing. As Examples 9,846

10, 11, 12 and others emphasize, the symbol exists in analytically (semi–)closed form for many847

models, indeed. Algorithm 1 thus provides a very appealing tool for FEM pricing in practice.848

7.3. Implementation of the symbol method. As outlined in sections 5 and 6, we im-849

plement two versions of the symbol method. On the one hand, we approximate the entries850

of the stiffness matrix according to the approach of mollified hats, on the other hand we use851

Irwin-Hall cubic splines as basic functions. For the mollified hats, we simplify the scheme852

proposed in Section 5 further. Namely, we omit the second term in the defining equation853

(53) for the approximate bilinear form and we truncate the first integral at a fixed level. The854

numerical results already show the convergence rate of h2 for this simplified version, thanks855

to the small magnitude of the tail integral.856

7.4. Empirical Convergence Results. Now we implement the symbol method for both857

mollified hats and splines. Finally, we conduct an empirical order of convergence study. We858

consider the univariate Merton, CGMY and NIG model and investigate the empirical rates of859

convergence for the different implementations as Table 1 summarizes. For each model and860

each implemented basis function type enlisted in the table we consider the payoff function861

(88) g(x) = max(ex − 1, 0).862
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Algorithm 1 A symbol method based FEM solver

1: Choose equidistant space grid xi, i = 1, . . . , N
2: Choose basis functions ϕi, i = 1, . . . , N , with ϕi(x) = ϕ0(x− xi) for some ϕ0

3: Choose equidistant time grid Tj , j = 0, . . . ,M
4: Procedure Compute Mass Matrix M
5: Derive the mass matrix M ∈ RN×N by
6: Mkl =

∫
R
ϕl(x)ϕk(x) dx ∀k, l = 1, . . . , N

7: Procedure Compute Stiffness Matrix A
8: Derive the stiffness matrix A ∈ RN×N by plugging the symbol A of the chosen model

into the following formula and computing

9: Akl = 1
2π

∫
R
A(ξ) eiξ(xk−xl) |ϕ̂0(ξ)|2 dξ + rMkl ∀k, l = 1, . . . , N

10: using numerical integration
11: Procedure Run Theta Scheme
12: Choose a function ψ to subtract from the original pricing problem to obtain a zero

boundary problem and retrieve the respective basis function coefficient vectors ψ
k ∈ RN ,

k = 1, . . . ,M . Consider the suggestions by Lemma 22 or Lemma 23 for plain vanilla
European options above.

13: Choose an appropriate basis function coefficient vector U1 ∈ RN matching the initial
condition of the transformed problem

14: Derive the right hand side vectors Fk ∈ RN , k = 0, . . . ,M . Consult Lemma 22 or
Lemma 23 matching the choice of ψ.

15: Choose θ ∈ [0, 1] and run the iterative scheme

16: for k = 0 : (M − 1)
17: Uk+1 = (M + ∆t θA)−1

(
(M−∆t (1− θ)A)Uk + θFk+1 + (1− θ)Fk

)
18: end
19: Procedure Reconstruct Solution to Original Problem
20: Add previously subtracted right hand side ψ to the solution of the transformed problem

by computing

21: Ũk = Uk + ψ
k
, k = 0, . . . ,M

22: to retrieve the basis function coefficient vectors Ũk, k = 0, . . . ,M , to the original pricing
problem

of a call option with strike K = 1. In each study we compute FEM prices for Nk basis863

functions with864

(89) Nk = 1 + 2k, k = 4, . . . , 9,865

resulting in N4 = 17 basis functions in the most coarse and N9 = 513 basis functions in866

the most granular case. On each grid, the nodes that basis functions are associated with867

are equidistantly spaced and the supports of the basis functions cover the space interval868

Ω = [−5, 5]. The time discretization is kept constant with Ntime = 2000 equidistantly spaced869
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Model Symbol Parameter choices
Implemented basis functions

Mollified hats Splines

Merton Example 10
σ = 0.15, α = −0.04,

X X
β = 0.2, λ = 3

CGMY Example 11
C = 0.5, G = 23.78,

X X
M = 27.24, Y = 1.1

NIG Example 12
α = 12.26, β = −5.77,

X X
δ = 0.52

Table 1
An overview of the models considered in the empirical order of convergence analysis and their parametriza-

tion. For these models, the symbol method is implemented and tested for both mollified hat functions and splines.
In all models, the constant risk-less interest rate has been set to r = 0.03.

time nodes spanning a grid range of two years up until maturity, thus covering a time to870

maturity interval of871

(90) [T1, TNtime ], with T1 = 0 and TNtime = 2.872

For each k = 4, . . . , 9, the resulting price surface constructed by Nk basis functions in space873

and Ntime = 2000 grid points in time is computed. A comparison of these surfaces is drawn to874

a price surface of most granular structure based on the same type of basis functions. We call875

this most granular surface true price surface. It rests on Ntrue = N11 = 1 + 211 = 2049 basis876

functions in space and Ntime grid points in time covering the same grid intervals as above, that877

is Ω = [−5, 5] in space and [0, 2] in time, respectively. The underlying FEM implementation878

is thus based on distances htrue between grid nodes that basis functions are associated with of879

hmollified hat
true = (5− (−5))/(2 + 211) ≈ 0.0049,

hsplines
true = (5− (−5))/(4 + 211) ≈ 0.0049,

∆ttrue = 2/(2000− 1) ≈ 0.001

(91)880

in space and time, respectively. Note that all space grids are designed in such a way that881

the log-strike log(K) = 0 is one of the space nodes. For each model and method and each882

k = 4, . . . , 9 the (discrete) L2 error εL2 is calculated as883

εL2(k) =

√√√√∆ttrue · htrue ·
Ntime∑
i=1

Ntrue∑
j=1

(
Pricetrue(i, j)− Pricek(i, j)

)2
,884

wherein Pricetrue(i, j) is the value of the true pricing surface at space node j ∈ {1, . . . , 1+211}885

and time node i = 1, . . . , 2000 and Pricek(i, j) is the respective, linearly interpolated value of886
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Figure 5. Results of the empirical order of convergence study for the Merton, the NIG and the CGMY model
using mollified hats (left pictures) and splines (right pictures) as basis functions. All models are parametrized
as stated in Table 1. Additionally, part of a straight line with (absolute) slope of 2 is depicted in each figure
serving as a comparison.

the coarser pricing surface supported by only Nk basis functions.887

Figure 5 summarizes the results of the six studies of empirical order of convergence in888

the Merton, the NIG and the CGMY model in a symbol based implementation once using889

mollified hats and once using splines as basis functions. In each implementation and for all890

This manuscript is for review purposes only.



32 MAXIMILIAN GAß AND KATHRIN GLAU

considered models, the (discrete) L2 error decays exponentially with rate 2. The convergence891

result of Theorem 5.4 by [28] suggest that this is the best possible rate we can hope for, which892

yields the experimental validation of both approaches.893

8. Conclusion and outlook. We have presented a tool for finite element solvers that allows894

for an implementation that is highly flexible in the model choice and that maintains numerical895

feasibility. Invoking the symbol was key. The transition into Fourier space has introduced896

smoothness as a new requirement to the basis functions. We have presented mollified hats897

and splines as compatible basis functions in our approach. Several numerical examples have898

confirmed the convergence rates expected by the theoretical considerations in both cases.899

Let us mention several possible extensions of the approach. Firstly, the implementation900

naturally extends to time-inhomogeneous Lévy models that we neglected here for notational901

convenience. Secondly, combining the symbol method with wavelet basis functions allows902

for compression techniques that might further improve the overall numerical performance, as903

Hilber, Reichmann, Schwab and Winter in [18] outline. Thirdly, the polynomial decay that904

we observe in our numerical experiments can possibly be improved to exponential rates by905

invoking an hp-discontinuous Galerkin scheme, see e.g. Schötzau and Schwab in [25]. Fourthly,906

the method can be extended to multivariate settings. In particular, tensor-based multivariate907

extensions are conceptually straightforward. Since the domain for financial applications typi-908

cally is a (hyper)rectangular, tensorized extensions of the basis functions are a natural choice.909

Both the mollified hats and the splines have natural tensorized generalizations.910

Appendix A. Proofs.911

A.1. Proof of a more general version of Lemma 3.912

Proof. We first consider ϕ,ψ ∈ C∞0 (R).913

For F ≡ 0 the assertion follows directly from partial integration. Since the Lévy measure914

may be unbounded around the origin, the representation of the jump part of the bilinear form,915

ajump(ϕ,ψ) :=−
∫
R

∫
R

(
ϕ(x+ y)− ϕ(x)− ϕ′(x)h(y)

)
F (dy)ψ(x) e2〈η,x〉 dx,916

917

needs to be carefully derived. In order to exploit the identity918

ϕ(x+ y)− ϕ(x)− yϕ′(x) =

∫ y

0

∫ z

0
ϕ′′(v) dv dz919

920

we split the integral with respect to the Lévy measure in three parts, set c(F ) :=
∫
|y|<1

(
y −921

h(y)
)
F (dy)−

∫
|y|>1 h(y)F (dy) and obtain922

ajump(ϕ,ψ) :=−
∫
R

∫
|y|<1

∫ y

0

∫ z

0
ϕ′′(x+ v) dv dzF (dy)ψ(x) e2〈η,x〉 dx923

− c(F )

∫
R

ϕ′(x)ψ(x) e2〈η,x〉 dx924

−
∫
R

∫
|y|>1

(
ϕ(x+ y)− ϕ(x)

)
F (dy)ψ(x) e2〈η,x〉 dx.925

926
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Thanks to
∫ y

0

∫ z
0

∣∣ϕ′′(v)
∣∣ dv dz ≤ cy2 with some constant c > 0 for all y ∈ [−1, 1] and927 ∫

R

∫
|y|<1

∫ y

0

∫ z

0

∣∣ϕ′(x+ v)
∣∣ dv dzF (dy)

∣∣ψ′(x) + 2ηψ(x)
∣∣ e2〈η,x〉 dx

≤ (1 + 2η)‖ϕ‖H1
η
‖ψ‖H1

η

∫
|y|<1

y2F (dy)

(92)928

929

we can apply the theorem of Fubini and partial integration to obtain930

−
∫
R

∫
|y|<1

∫ y

0

∫ z

0
ϕ′′(x+ v) dv dzF (dy)ψ(x) e2〈η,x〉 dx931

=

∫
R

∫
|y|<1

∫ y

0

∫ z

0
ϕ′(x+ v) dvF (dy)

(
ψ′(x) + 2ηψ(x)

)
e2〈η,x〉 dx.932

933

This yields the assertion for ϕ,ψ ∈ C∞0 (R).934

Next, we verify that the bilinear form as stated in Lemma 3 is well defined for ϕ,ψ ∈ H1
η (R)935

and is continuous with respect to the norm of H1
η (R). For F ≡ 0 this is obvious. The assertion936

follows for the jump part from inequality (92) and937 ∫
R

∫
|y|>1

∣∣ϕ(x+ y)− ϕ(x)
∣∣F (dy)

∣∣ψ(x)
∣∣ e2〈η,x〉 dx ≤ 2F

(
R \ [−1, 1]

)
‖ϕ‖L2

η
‖ψ‖L2

η
.938

939

Thus a from Lemma 3 is a continuous bilinear form on H1
η (R) ×H1

η (R) that coincides with940

(9) on the dense subset C∞0 (R)× C∞0 (R). This proves the assertion.941

A.2. Proof of Lemma 5.942

Proof. To prove the assertion, we verify the conditions of Lemma 7.1 in [16], which provides943

an abstract robustness result for weak solutions. We first observe that the conditions for944

fn, f, gn, g coincide with those of Lemma 7.1 in [16]. Second, we verify conditions (An1)–(An3)945

of Lemma 7.1 in [16]. Therefore we assign to each u, v ∈ X the coefficients αk(u), αk(v) ∈ R946

for k ≤ N such that u =
∑N

k=1 αk(u)ϕk and v =
∑N

k=1 αk(v)ϕk. Thanks to the finite947

dimensionality of X, there exists a constant C̃ > 0 such that for all u ∈ X,948

(93) ‖u‖V ≤
N∑
k=1

∣∣αk(u)
∣∣‖u‖V ≤ C ′‖u‖V .949

Thanks to (26) there exists a sequence 0 < cn → 0 such hat for all j, k ≤ N ,950 ∣∣(an − a)(ϕj , ϕk)
∣∣ ≤ cn‖ϕj‖V ‖ϕk‖V .(94)951952

Together with assumption (A2) this yields for all j, k ≤ N ,953 ∣∣an(ϕj , ϕk)
∣∣ ≤ C1‖ϕj‖V ‖ϕk‖V .(95)954955
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Inequalities (95) and (93) together yield for all u, v ∈ X,956

∣∣an(u, v)
∣∣ ≤ N∑

j=1

N∑
k=1

∣∣αj(u)αk(v)
∣∣∣∣an(ϕj , ϕk)

∣∣957

≤ C1

N∑
j=1

N∑
k=1

∣∣αj(u)αk(u)
∣∣‖ϕj‖V ‖ϕk‖V958

≤ C1C̃
2‖u‖V ‖v‖V ,959960

which shows that condition (An1) of Lemma 7.1 in [16] is satisfied. Due to inequalities (94)961

and (93), we have for all u ∈ X,962

∣∣(a− an)(u, u)
∣∣ ≤ N∑

j=1

N∑
k=1

∣∣αj(u)αk(u)
∣∣∣∣an(ϕj , ϕk)

∣∣963

≤ cn
N∑
j=1

N∑
k=1

∣∣αj(u)αk(u)
∣∣‖ϕj‖V ‖ϕk‖V964

≤ cnC̃2‖u‖2V ,965966

which shows assumption (An3) of Lemma 7.1 in [16]. Finally, from assumption (A1) and the967

last inequality for all u ∈ X we obtain968

an(u, u) ≥ a(u, u)−
∣∣(a− an)(u, u)

∣∣969

≥ G‖u‖2V −G′‖u‖2H − cnC̃2‖u‖2V ,970971

which shows that there exists N0 ∈ N such that condition (An2) of Lemma 7.1 in [16] is972

satisfied for all n > N0. This shows the assertion of Lemma 5.973
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Finance and Stochastics, 9 (2005), pp. 299–325.996

[11] E. Eberlein and K. Glau, PIDEs for pricing European options in Lévy models – a Fourier approach.997
Technische Universität München, 2011.998

[12] E. Eberlein and K. Glau, Variational solutions of the pricing PIDEs for European options in Lévy999
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[13] H. Föllmer, Alles richtig und trotzdem falsch?, Mitteilungen der DMV, 17 (2009), pp. 148–154.1001
[14] M. Gaß, PIDE methods and concepts for parametric option pricing, PhD thesis, Technical University1002

Munich, 2016. online version forthcoming.1003
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of multivariate Lévy processes, Mathematical Models and Methods in Applied Sciences (M3AS), 221019
(2012).1020

[23] A.-M. Matache, P.-A. Nitsche, and C. Schwab, Wavelet Galerkin pricing of American options on1021
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