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Abstract

This thesis applies modern financial option valuation methods to the problem of telecom-

munication network capacity investment decision timing. In particular, given a cluster of

base stations (wireless network with a certain traffic capacity per base station), the objec-

tive of this thesis is to determine when it is optimal to increase capacity to each of the base

stations of the cluster.

Based on several time series taken from the wireless and bandwidth industry, it is argued

that capacity usage is the major uncertain component in telecommunications. It is found

that price has low volatility when compared to capacity usage. A real options approach

is then applied to derive a two dimensional partial integro-differential equation (PIDE) to

value investments in telecommunication infrastructure when capacity usage is uncertain and

has temporary sudden large variations.

This real options PIDE presents several numerical challenges. First, the integral term

must be solved accurately and quickly enough such that the general PIDE solution is rea-

sonably accurate. To deal with the integral term, an implicit method is suggested. Proofs

of timestepping stability and convergence of a fixed point iteration scheme are presented.

The correlation integral is computed using a fast Fourier transform (FFT) method. Tech-

niques are developed to avoid wrap-around effects. This method is tested on option pricing

problems where the underlying asset follows a jump diffusion process.

Second, the absence of diffusion in one direction of the two dimensional PIDE creates

numerical challenges regarding accuracy and timestep selection. A semi-Lagrangian method

is presented to alleviate these issues. At each timestep, a set of one dimensional PIDEs

is solved and the solution of each PIDE is updated using semi-Lagrangian timestepping.

Crank-Nicolson and second order backward differencing timestepping schemes are studied.

Monotonicity and stability results are derived. This method is tested on continuously

observed Asian options.
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Finally, a five factor algorithm that captures many of the constraints of the wireless

network capacity investment decision timing problem is developed. The upgrade decision

for different upgrade decision intervals (e.g. monthly, quarterly, etc.) is studied, and the

effect of a safety level (i.e. the maximum allowed capacity used in practice on a daily basis—

which differs from the theoretical maximum) is investigated.
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Chapter 1

Introduction

As evidenced by the current over-capacity in long haul optical fibre networks, it is clear

that current telecommunication industry investment decision mechanisms need to be re-

evaluated. Traditional capital budgeting techniques such as net present value and internal

rate of return are now recognized as being deficient in dealing with strategic management

of corporate investments over time. These traditional methods do not take into account

management’s ability to respond to changing business conditions. Consequently, traditional

methods can provide misleading estimates of the value of corporate investments under

uncertainty. Moreover, these methods do not provide a clear indication of how management

should respond to new conditions (e.g. when should a corporate investment project be

mothballed or abandoned completely, or when should its scale be expanded).

The real options approach is an emerging alternative methodology which addresses these

deficiencies. It uses techniques adapted from those developed for valuing and hedging

financial derivative contracts (e.g. options, futures). In particular, optimal actions for

management are determined using dynamic programming methods, and these in turn are

used to calculate the value of a corporate investment project.

This thesis is directed toward demonstrating the use of real options decision making

1



CHAPTER 1. INTRODUCTION 2

tools for optimal capacity choice for network planning in telecommunications. Given a set

of possible capacity upgrade levels, a telecommunication firm has to decide which level is

optimal to upgrade to under uncertain factors. We aim to find the percentage (in terms of

the maximum equipment transmission capacity) at which level it is optimal to upgrade.

To the best of our knowledge, this approach has not been used previously. Dixit and

Pindyck [35] study the problem of incremental upgrade in the context of a multi stage

project in the oil industry. Dangl [26] presents a model where a firm has only one chance

to determine optimal investment timing and optimal capacity. Once the capacity is fixed

the project output upper bound is fixed and cannot be adjusted later. Our approach

can be viewed as a combination of both of these methods. The firm investing into new

equipment can upgrade its network at any time, independently of the equipment lead time,

and different levels of capacity are reachable. Based on a real options approach a partial

integro-differential equation (PIDE) for the investment decision timing problem is derived.

1.1 Contributions

The main contributions of this thesis are as follows. In Chapter 2 we show that the main

underlying risk factor when investing in telecommunications is capacity usage. Capacity

usage is very volatile, while the spot price paid by customers per unit of traffic has very low

volatility. Based on these observations and some empirical studies, a two factor stochastic

process is presented to model telecom traffic. Using a real options approach a partial

integro-differential equation (PIDE) is then derived for the investment value. The real

options PIDE has two features which make numerical solution challenging: an integral

term, and convection dominance. We examine these two numerical issues separately.

In Chapter 3 we show that:

• the jump diffusion term of an option pricing PIDE can be discretized explicitly, and



CHAPTER 1. INTRODUCTION 3

when coupled with a fully implicit treatment of the usual PDE, the resulting timestep-

ping method is unconditionally stable.

• if an implicit timestepping method is used, the solution of a dense matrix can be

avoided by using a simple fixed point iteration scheme to solve the discretized algebraic

equations. This iteration is shown to be globally convergent.

• it is possible to develop a method for efficiently computing the jump integral term

using FFT methods. No assumptions are made about the probability density for the

jump term, except that the jump size density has finite expectation. This general

approach requires the evaluation of correlation type integrals, as in [92]. We also

show how to eliminate the wrap-around effects which often plague FFT methods.

• in contrast with previous work, the grid is not assumed to be equally spaced in either

the underlying asset price or its logarithm. This is a major advantage for the pricing

of contracts with barrier provisions, which typically require fine grid spacing near

barriers in order to achieve sufficient accuracy.

• the discrete penalized equations which result from the discretization of the differential-

integral complementarity problem for pricing American options on assets which follow

a jump diffusion process, can also be solved using a fixed point iteration. Sufficient

conditions at each timestep for the global convergence of this iteration are also derived.

• the method developed here uses implicit timestepping for both the correlation integral

term and the American constraint. As a result, higher order convergence (in terms

of timestepping error) is obtained when compared with previous methods which treat

the correlation integral or the American constraint explicitly.

In Chapter 4 we show that:
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• using the methods developed in Chapter 3, quadratic convergence is obtained when

pricing a wide variety of financial options. Even if the initial conditions are not

smooth, such as for digital options or Parisian options, quadratic convergence was

recovered.

• for typical values of the timestep size and Poisson arrival intensity, the fixed point

iteration scheme used to handle the jump integral term converges very rapidly (the

error is reduced by two orders of magnitude at each iteration). Given typical market

parameters [5], three iterations per timestep are enough for the fixed point algorithm

to achieve convergence to a reasonable tolerance.

• when pricing American options under the jump diffusion process, the number of iter-

ations per timestep is relatively unchanged compared to pricing vanilla options under

the jump diffusion process.

In Chapter 5 we show that:

• a semi-Lagrangian method can be used to price continuously observed Asian options

(which is a prototypical example of convection dominance), where the underlying asset

is assumed to follow a jump diffusion process. The implementation suggested here

reduces this problem to solving a decoupled set of one dimensional discrete partial

integro-differential equations at each timestep. This makes implementation of this

method very straightforward in a software library which is capable of pricing discretely

observed path dependent options [95].

• in the fully implicit case, the semi-Lagrangian method is algebraically identical to a

standard numerical method for pricing discretely observed Asian options, when the

observation interval is equal to the discrete timestep [94].

• since the discretized problem at each timestep reduces to a set of decoupled 1d PIDEs,
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we can make use of the techniques developed in Chapter 3 to prove certain properties

of the discrete scheme, including convergence of the iterative method used to solve the

implicit discrete equations. In the fully implicit case, it is straightforward to prove l∞

stability.

• even if second order timestepping methods are used, convergence as the mesh and

timestep is refined occurs at a less than second order rate. The problem can be

traced to the non-smoothness of the payoff function. The SL approach contrasts with

the method traditionally used in industry (see [95]) where high order timestepping

schemes are used but the jump condition is applied explicitly resulting only in linear

convergence.

In Chapter 6 we show that:

• the methods developed for path dependent options, where the underlying follows a

jump diffusion process, can be applied to the telecom investment problem. The limi-

tations of the algorithm presented in [31] are eliminated by solving a five factor path

dependent problem. This enables us to consider different upgrade decision intervals

independent of equipment lead time.

• today’s upgrade decision, in terms of the optimal upgrade percentage, increases as the

value of the market price of risk increases.

• when considering jumps in capacity usage, the volatility and the growth rate also

change which affects today’s upgrade decision. It is found that jumps in capacity

usage delay the decision to upgrade.

• by developing appropriate penalty functions which assign a cost to poor quality of

service, we can combine both financial and quality of service criteria. This approach

requires managers to assign a cost to quality of service issues. Penalty functions could
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be real financial incentives provided to users (e.g. during high blocking periods, all

calls are free), or they could be based on customer churn rates.

1.2 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents a two dimensional

partial integro-differential (PIDE) equation to value investment into telecommunication

equipment. This equation is the foundation of the optimal decision timing investment prob-

lem we are solving in this thesis. However, before developing algorithms, several numerical

issues must be addressed.

The two factor investment value PIDE has an integral term that must be handled care-

fully. Chapter 3 proposes a method for handling the jump integral term in an implicit fash-

ion. To validate this approach, a one dimensional PIDE taken from the financial derivative

pricing literature is considered. Chapter 4 presents several numerical tests of convergence

for a wide variety of financial options.

Chapter 5 addresses the issue raised by the absence of diffusion in one direction of the

two factor investment value PIDE by using a semi-Lagrangian method. This method is

tested on the two dimensional PIDE used to price continuously observed Asian options.

This problem was selected since the convective term becomes infinite as time moves closer

to today; making this is an extremely difficult problem.

Finally, Chapter 6 applies modern financial option valuation methods to the problem

of wireless network capacity investment decision timing. In particular, given a cluster of

base stations (with a certain capacity per base station), we determine when it is optimal

to increase capacity for each of the base stations contained in the cluster. Based on the

real options formulation of Chapter 2, a five factor algorithm that captures many of the

constraints of wireless network management is developed. This optimal upgrade algorithm
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maximizes the value of the investment to the network operator. Conclusions are finally

outlined in Chapter 7.



Chapter 2

The Investment Problem

In this Chapter, the fundamental risk factor in telecommunication equipment investments is

identified. Based on several time series taken from the wireless and bandwidth industries, it

is argued that capacity usage is the major uncertain component in telecommunications. Al-

though revenue to the owner of a network is the prevailing price times the usage, it is argued

that price has low volatility compared to usage. Consequently, as a first approximation, we

can consider price to be deterministic. Using statistical tests, a stochastic process is then

suggested for modelling capacity usage. Finally, a real options approach is applied to derive

the partial integro-differential equation (PIDE) to value investments in telecommunication

infrastructure.

2.1 Background

The value of any corporation is primarily determined by the quality of the investment

decisions made by that firm. Suboptimal decisions can damage a business, sometimes

irreparably. In many cases, suboptimal decisions are made because the right information is

not collected or simply because there is not enough data. However, in some cases the fault

8
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lies in the method used to make that decision.

Net Present Value (NPV) and Internal Rate of Return (IRR) are the traditional methods

used to quantify the value of an investment opportunity [35, 85]. For example, the NPV of a

project is the difference between how much the project is worth (in terms of the discounted

future cash flows it is expected to generate) and the capital expenditure it requires. If

the difference between the two is greater than zero, then an investment should be made.

Otherwise, the investment should not be made. Closely related to the NPV, the IRR on a

project is the required return that results in a zero NPV when it is used as the discount

rate.

However, it is now widely recognized that NPV or IRR do not capture the optionality

embedded in investment projects. The NPV approach, as traditionally applied, fails to

sufficiently account for much of the optionality inherent in corporate investments. The

reason is that a firm with an opportunity to invest is in effect holding an option analogous

to a financial American call option [52]. For example, a company often has the option to

abandon a project or expand if the output exceeds expectations. Another problem with

traditional NPV lies in the estimation of the appropriate risk-adjusted discount rate.

As an alternative, the real options approach [35, 85] can be used to effectively model

investment flexibility. Real options theory does not render the traditional NPV methods

obsolete, but it does help to capture the flexibility often present in an investment. Note

that, provided the values of all options are appropriately included in the analysis of a project

investment, the NPV approach will give the same conclusions as the real options approach.

This thesis studies the problem of optimal telecommunication investment decisions.

Wireless telephones, video conferencing and email are now regarded as essential communica-

tion tools, dramatically impacting how people approach personal and business communica-

tions. As new network infrastructure is built and competition between companies increases,

subscribers are becoming ever more critical of the service and voice quality they receive from
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network providers. Network operators must provide a guaranteed level of service to cus-

tomers while maximizing profit. The current environment, with decreasing revenue per unit

of traffic and increasing demand on networks from new features in equipment, places strain

on network managers.

While a number of publications discuss the use of real options theory for optimal in-

vestment timing (e.g. [35, 85] and references therein), very little work has been done in

telecommunications planning and management [26].

2.1.1 A Question of Demand

In order to use the real options approach to analyze investment decisions in telecommuni-

cations, the principal factors that are likely to affect the profitability of these investments

must be identified.

As we shall see, in the telecommunications industry, the fundamental uncertain factor

driving profitability is the amount which can be sold, as opposed to the price received per

unit. This situation is in contrast with traditional financial markets where the price is the

dominating factor. For example, the owner of an optical fiber network faces this type of

situation. New wavelength services allow the user to purchase limited capacity for days

or even hours [47]. Effectively, users pay only for the bandwidth that they use. Similarly,

revenues to the owner of a wireless network are determined by the prevailing price per

minute and the amount of traffic. Consequently, the revenue to the owner of the network

is determined by the prevailing price and the amount used.

A study of both bandwidth and wireless traffic data revealed some interesting facts.

Capacity usage is highly volatile. Although traffic has increased, it has done so in an

extremely erratic fashion (see Figure 2.1). Our estimates of volatility for bandwidth usage

are in the range of 80% to 150% per year, and volatility for wireless usage is in the range

of 50% to 90% per year [31, 33]. This can be compared with a volatility of 15% to 30% per
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year for most major stock indexes.
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(a) Total daily Internet traffic into and out of
the University of Waterloo from July 2000 to
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(b) Total daily busy hour minutes traffic for
a wireless switch. Data is collected during the
bouncing busy hour. This is the hour of the day
with the most traffic.

Figure 2.1: Time series capacity usage examples.

By comparison, price has shown a downward trend with relatively low volatility. Average

revenue per wireless user is decreasing with relatively little uncertainty (Figure 2.2). Sim-

ilarly, bandwidth prices have systematically decreased over the last few years (Table 2.1).

As a result, in our opinion capacity usage is the main risk factor for telecommunication

investments.

Table 2.1 Prices for lines with different maximum transmission rates. Prices are in
$/year/DS-0 mile. A DS-0 line has a maximum transmission rate of 64 kbps.

Q1 1999 Q1 2000 Q1 2001 Q1 2002
OC-3 0.013 0.011 0.0082 0.0055
OC-12 0.012 0.01 0.0066 0.0045
OC-48 0.01 0.0095 0.0054 0.0035
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Figure 2.2: Price paid on average by wireless network subscribers in dollars per minute. The price
is obtained by dividing the average revenue per user by the usage per user. These data were obtained
from Bell Canada quarterly financial reports.

2.2 Modelling Capacity Usage

Capacity usage has obviously increased but this growth has been rather erratic (see Fig-

ure 2.1). While it would be possible to identify other uncertain factors such as, for example,

technology advances or price per unit of traffic, in this thesis we consider only a single risk

factor, the capacity used. Depending on the benefits of the approach presented here and its

recognition by the telecommunication industry, it may be possible to consider in the future

more complex models.

Any variable whose value changes over time in an uncertain way is said to follow a

stochastic process [52]. As a first approximation, our basic assumption is that capacity

usage Q can be modeled by a geometric Brownian motion process [52] defined by

dQ = µQdt+ σQdZ, (2.1)

where µ is the drift rate or growth rate [89], σ is the volatility and dZ is the increment of a
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Gauss-Wiener process [52, 89]. The Gauss-Wiener process increment can be written as

dZ = φ
√
dt, (2.2)

where φ is a random variable drawn from a normal distribution with zero mean and unit

variance. The degree of randomness is determined by the volatility σ. In effect, when

modelling capacity usage using equation (2.1), we are assuming that the logarithmic relative

traffic changes are normally distributed [52]. In the absence of randomness (σ = 0), equation

(2.1) has the solution

Q = Q0 exp
(∫ t

0
µ(u)du

)
, (2.3)

where Q0 is a constant.

Before proceeding any further, the validity of equation (2.1) must be demonstrated. It

is beyond the scope of this thesis to present all the different telecom usage time series that

were made available to us. As such, equation (2.1) will be validated by focusing on a single

time series taken from the wireless industry. For a more extensive analysis of bandwidth

and wireless capacity usage data, readers are referred to [31] and [33]. Note that the model

validation results presented in both of these papers are the same as the one outlined below.

An initial analysis of the capacity usage showed strong autocorrelation of the time series

within each week (see Figure 2.3 (A)). This is not surprising, since we expect that there

will be repetitive patterns within each week. To filter out this effect, network capacity

usage is averaged for the entire year for each day of the week separately, and the day with

the highest average total daily capacity usage is chosen. This same day each week is then

chosen to estimate week to week effects (see Figure 2.3 (B)).

Prior to estimating the drift term µ and the volatility σ, the dates corresponding to

vacation periods and sudden changes are smoothed out using interpolation. Major holidays

are known events for low network capacity usage and should not be considered when com-
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(a) The stars indicate the weekly highest traffic
days.
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(b) The data corresponds to the highest average
day traffic per week. This day is chosen based on
the average network traffic that day encounters
throughout the year. Once that day is found, it
remains the same for the rest of the year.

Figure 2.3: One year wireless traffic data. This data is collected at daily intervals during one
hour. This hour corresponds to the hour of the day with the most traffic. It is often referred to as
the bouncing busy hour.

puting the drift and the volatility. The major holidays are based on the Canadian calendar.

An analysis of the data showed significant anomalous behavior on vacation dates. Studies

also indicated that the month of December has lower traffic than the rest of the year. Con-

sequently, the month of December is ignored since the decrease in traffic is a non-random

event. Furthermore, by investigating graphically the different time series, it was possible to

detect large drops in network traffic. These drops appeared across several time series and

did not correspond to any major holidays. These were perhaps due to equipment failure

(as suggested by our industrial contacts [64]). For now these changes will be smoothed out.

They will be considered later (see Section 2.2.1).

Figure 2.4 presents the results once the holidays, and suspicious events, have been

removed or smoothed out from the time series presented in Figure 2.3.
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(a) Vacation effects and suspicious changes have
been suppressed using interpolation. The month
of December is ignored.
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(b) Logarithmic relative traffic changes. The trend
of the time series has been removed

Figure 2.4: One year wireless traffic data. This data is collected at daily intervals during one
hour. This hour corresponds to the hour of the day with the most traffic. It is often referred to as
the bouncing busy hour in the industry.

Table 2.2 Details of the Ljung-Box statistical test for the wireless time series. The data
in the time series represents the minutes bouncing busy hour traffic. The Ljung-Box test
is executed at the 5% significance level. H is a boolean decision variable. H = 0 indicates
acceptance of the null hypothesis that the model fit is adequate (no serial correlation at the
corresponding element of lags); H = 1 indicates rejection of the null hypothesis. P-values
are the significance levels at which the null hypothesis of no serial correlation at each lag
in Lags is rejected.

Before the month of December After the month of December
lag 1 2 3 4 1 2 3 4
H 0 0 0 0 0 0 0 0

pvalue 0.62 0.78 0.73 0.83 0.78 0.93 0.85 0.92

If the stochastic process defined by equation (2.1) is a good model for capacity usage,

then the detrended logarithmic relative traffic change time series should contain only random

data (see Figure 2.4). To assess the hypothesis that data contains only white noise, the

Ljung-Box Q-statistical test is used [23]. Tests are conducted at the 5% significance level
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for the period before and after December for different lags (e.g. lag = 1, 2, 3 and 4). For

example, if both tests (before/after December) (see Figure 2.4) return 0 for lag equal to 4,

then the data is random. If at least one of the tests returns 1 at lag 4 then it cannot be

determined whether the data is random.

Table 2.2 presents the results. The Ljung-Box Q-statistic lack-of-fit hypothesis test

indicates that traffic data is random (H = 0). Consequently, equation (2.1) is a reasonable

fit to model traffic. Table 2.3 presents volatility and growth rate estimates for different

wireless capacity usage time series. Bandwidth results can be found in [31].

Table 2.3 Result summary table for different time series (different switches in Toronto).
The Ljung-Box test is executed at the 5% significance level. The Ljung-Box test H = 0
indicates random data, i.e. equation (2.1) is a good fit to the data.

Time series Drift term µ %/(year) Volatility (filtered data) σ %/(year)
1
2 Ljung-Box test

A -24.75 90.69 0
B 40.84 74.7 0
C 72.46 32.74 0

2.2.1 Jumps in Capacity Usage

Under the stochastic process described by equation (2.1), it has been possible to study the

problem of optimal network investment for both bandwidth and wireless [31, 33]. While

interesting results were obtained with such a simple model, the assumption of ignoring

sudden large variations in capacity usage may limit our model. In particular, it is conceivable

that rare events of large magnitude may affect network operators’ upgrade decisions.

In order to determine how these rare events affect the previous model (2.1), a comparison

of the capacity usage data with and without the sudden large variations is presented in

Figure 2.5. It must be emphasized that in this comparison the vacations effects are still

suppressed using interpolation and the month of December is ignored; the only difference

are the large deviations in capacity usage which were previously suppressed.
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(a) Vacation effects and suspicious changes have
been suppressed using interpolation. The month
of December is ignored.
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QQ Plot of Sample Data versus Standard Normal

(b) Quantile-Quantile plot of the logarithmic
relative traffic changes for Figure 2.5(a). The
trend of the time series has been removed.
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(c) Vacation effects have been suppressed and the
month of December is ignored. The large devia-
tions are included.
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(d) Quantile-Quantile plot of logarithmic rela-
tive traffic changes for Figure 2.5(c). The trend
of the time series has been removed.

Figure 2.5: Quantile-Quantile plots comparing the logarithmic relative traffic changes when the
jumps in capacity usage are ignored or included.

In Figure 2.5, two Quantile-Quantile plots are presented [89]. A Quantile-Quantile plot

is a common way of visualizing the difference between two distributions. The better the
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fit between the two distributions, the closer the line is to straight. The first Quantile-

Quantile plot (see Figure 2.5(b)) corresponds to the case when the sudden large variations

in capacity usage are ignored. The line is reasonably straight, confirming once again that

equation (2.1) is a good fit for capacity usage (assuming that it is valid to remove the rare

events). However, when the sudden large variations in capacity usage are reintegrated into

the time series, the lognormal assumption is no longer adequate. In particular it is observed

that the tails of the distribution lie away from the straight line (see Figure 2.5(d)).

To alleviate this problem, equation (2.1) is augmented so as to include jumps in capacity

usage [66]. In contrast with financial markets where if stocks jump in value, they tend to

stay at this level, we observe that when capacity usage exhibits a sudden large variation,

usage always returns very quickly to its previous level (see Figure 2.5(c)). This behaviour

is not uncommon for nonfinancial instruments. The same pattern is observed for electricity

spot prices [71]. But this is where the similarity between capacity usage and electricity

ends. Indeed, while electricity spot prices tend to stay at around the same value over time,

telecom traffic on the other hand continues to increase randomly over time. Consequently,

we suggest the following process for capacity usage

dQ = α(η −Q)dt+ (J − 1)QdY

(2.4)

dη = ηµdt+ ησdZ,
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where,

Q is traffic (unit of traffic), η is the mean (unit of traffic),

µ is the growth rate (per year), σ is the volatility (year−1/2),

dZ is an increment of a Gauss-Wiener process, dY is a Poisson process,

dY =

 0 with probability 1− λdt,

1 with probability λdt,
λ is the Poisson arrival intensity (per year),

α is the reversion speed (per year), and J − 1 produces a jump from Q to QJ

Intuitively, (2.4) implies that traffic is increasing randomly following a geometric Brow-

nian motion stochastic process, and from time to time there are sudden temporary jumps

(e.g. snow storms, power failures, earthquakes), followed by a return to the geometric

Brownian motion trend.
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(a) Sudden large variations in traffic are con-
sidered to be negative on average.
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(b) Sudden large variations in traffic are con-
sidered to be positive on average.

Figure 2.6: Illustrative sample paths followed by capacity usage over time.

A few illustrative sample paths for capacity usage are simulated using equation (2.4).
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Figure 2.6 presents the results for two different scenarios. In one case the jump sizes are on

average negative (see Figure 2.6(a)), while in the other case the jump sizes are on average

positive (see Figure 2.6(b)). The jump size distribution is assumed to follow a lognormal

distribution as in [66]. We observe that in the case of negative jumps (see Figure 2.6 (A)),

capacity usage appears to be similar to the wireless time series presented in Figure 2.6 (B).

2.3 Investment Valuation Model

Let V (η,Q, t) be the value of an investment dependent only on Q, η and time t. Using the

extended version of Itô’s lemma for the jump diffusion process (2.4) [89, 35, 5], the process

followed by V (η,Q, t) is given by

dV = (GV +R)dt+ θdZ + ωV dY, (2.5)

where R represents the revenue in dollars per year,

GV ≡ Vt + α(η −Q)VQ + ηµVη +
1
2
η2σ2Vηη, (2.6)

and

θ = σηVη, ωV = V (η,QJ, t)− V (η,Q, t). (2.7)

Let us pick two investments V1 and V2 expiring at some future time (> t). From equation

(2.5) we have

dV1 = (GV1 +R1)dt+ θ1dZ + ωV1dY,

dV2 = (GV2 +R2)dt+ θ2dZ + ωV2dY.
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Both V1 and V2 have the same factors of uncertainty dZ and dY . Let x1 be the fraction of

the amount invested in V1 and x2 be the fraction of the amount invested in V2 such that

x1 + x2 = 1. The return dΠ on the portfolio Π is given by

dΠ = x1dV1 + x2dV2

= (x1GV1 + x1R1 + x2GV2 + x2R2) dt

+ (x1θ1 + x2θ2) dZ + (x1ωV1 + x2ωV2) dY (2.8)

Choosing x1 = θ2 and x2 = −θ1, we have x1θ1 + x2θ2 = 0, then equation (2.8) becomes

dΠ = (x1GV1 + x1R1 + x2GV2 + x2R2) dt+ (x1ωV1 + x2ωV2) dY. (2.9)

In (2.9), one of the uncertain factors dZ has been eliminated, however the other uncertain

factor dY remains. In [66], the argument is made that if λ 6= 0 then it is not possible to

build a riskless portfolio Π. If we are willing to assume that jumps in capacity usage can

be diversifiable (i.e. not correlated with the market portfolio) then equation (2.9) can be

written as

E[dΠ] = (x1GV1 + x1R1 + x2GV2 + x2R2) dt+ (x1E[ωV1] + x2E[ωV2])λdt. (2.10)

Here, E[·] is the expectation operator, defined by

E[x] =
∫ ∞

0
xg(x)dx,

and g(J) is the probability density function of the jump size. Since jump risk is diversifiable,

the expected return of the portfolio Π given by (2.10) must be equal to the risk free rate since
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all the uncertain non-diversifiable factors have been removed. Equation (2.10) becomes

r(θ2V1 − θ1V2)dt = [x1GV1 + x1R1 + x2GV2 + x2R2 + (x1E[ωV1] + x2E[ωV2])λ] dt. (2.11)

It follows that

GV1 +R1 + λE[ωV1]− rV1

θ1
=
GV2 +R2 + λE[ωV2]− rV2

θ2
. (2.12)

Define ζ as the value of each side of equation (2.12), i.e.

GV1 +R1 + λE[ωV1]− rV1

θ1
=
GV2 +R2 + λE[ωV2]− rV2

θ2
= ζ. (2.13)

In real options theory ζ is often referred to as the market price of risk. It is a measure

of the extra reward expected for taking on risk scaled by a measure of risk. Dropping the

subscripts in equation (2.13), then if V is an investment dependent on Q, η and t, such that

dV = (GV +R)dt+ θV dZ + ωV dY,

then

GV − rV +R+ λE[ωV ] = θζ. (2.14)

Substituting G from equation (2.6), θ and ω from equation (2.7) into equation (2.14), we

find

Vt+α(η−Q)VQ+
1
2
η2σ2Vηη+η(µ−ζσ)Vη−rV +R+λE[V (η,QJ, t)−V (η,Q, t)] = 0. (2.15)
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Equation (2.15) can then be rewritten as

Vt + α(η −Q)VQ +R+ λ

∫ ∞

0
V (η,QJ, t)g(J)dJ

+
1
2
η2σ2Vηη + η(µ− ζσ)Vη − (r + λ)V = 0. (2.16)

For clarity of presentation, let us redefine GV ≡ 1
2η

2σ2Vηη+η(µ−ζσ)Vη−(r+λ)V . Equation

(2.16) becomes

−Vt − α(η −Q)VQ = R+ λ

∫ ∞

0
V (η,QJ, t)g(J)dJ + GV. (2.17)

Let τ = T − t (i.e. τ represents the time going backward) equation (2.17) is written as

Vτ + α(Q− η)VQ = R+ λ

∫ ∞

0
V (η,QJ, τ)g(J)dJ + GV. (2.18)

Equation (2.18) is a parabolic partial integro-differential equation (PIDE).

Remark 2.1 (Market price of risk versus discount rate). As discussed in [85], the

discount rate used should reflect the riskiness of the investment. However, the riskiness

of the investment depends on future decisions, and hence cannot be constant. Trigeorgis

[85] argues that the market price of risk approach is the correct method to apply when the

riskiness of the investment changes overtimes compared to the expected discounted cash flow

method [35].

2.4 Modelling and Numerical Issues

The goal of this thesis is to use equation (2.18) to solve the problem of optimal network

investment. However, several issues remain to be addressed. From a modelling point of view,

algorithms must be developed to solve the optimal network investment problem taking into
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account real world constraints such as maintenance costs, upgrade costs or equipment lead

time.

From a numerical point of view, equation (2.18) presents several challenges. First,

equation (2.18) is a two dimensional partial integro-differential equation (PIDE) with no

diffusion in the capacity usage (Q) direction. Second, equation (2.18) contains an integral

term that must be handled efficiently.

In the following chapters, numerical algorithms for handling the integral term and the

convection dominance problems will be presented. We develop methods for discretizing the

PIDE (2.18) containing the jump integral term in a fully implicit fashion. This requires

careful design of efficient methods for computing the jump integral term. A semi-Lagrangian

method is used to alleviate the problem of convection dominance (no diffusion) in the

capacity usage direction. Finally, we put together all these techniques to solve equation

(2.18) in the context of optimal telecommunications investment.

2.5 Summary

In this chapter, we have shown that the main underlying risk factor when investing in

telecommunication is capacity usage. Capacity usage is very volatile while the spot price

paid by customers per unit of traffic has very low volatility. Based on these observations

and some empirical studies, a two factor stochastic process was presented to model capacity

usage. Using a real options approach a partial integro-differential equation was then derived

for the investment value.



Chapter 3

Jump Diffusion: Algorithms

The two dimensional partial integro-differential equation (PIDE) that was previously de-

rived in Chapter 2 presents several numerical challenges. In particular, the jump integral

term must be solved accurately and quickly. In this chapter, a method to solve the jump in-

tegral term in an implicit fashion is proposed. To validate our approach, a one dimensional

PIDE taken from the financial derivative pricing literature is considered.

3.1 Introduction

Before proceeding any further, let us introduce the notion of financial derivatives. Finan-

cial derivatives are contracts whose payoff depends on the outcome of future events. For

example, the holder of a call option has the right but not the obligation to buy a financial

asset at a fixed price at some future time. Similarly, a put option confers the right to sell

a financial asset for a fixed price at some future time. Suppose that a financial asset X is

currently worth $100. An investor who owns this financial asset may purchase a put option

to sell the asset at $100 at some future time to protect his investment from a possible de-

cline in price. However, what is the fair market value of such an option? By fair value, we

25
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mean the value of the contract such that it cannot be bought from one party and sold to

another guaranteeing a risk free profit. This valuation approach is often referred to as the

no-arbitrage approach [52, 89].

Based on a no-arbitrage approach, Black and Scholes derived a linear parabolic partial

differential equation (PDE) for the fair price of an option on a stock [17, 65]. However, there

is increasing empirical evidence that the assumption that stocks follow a geometric Brownian

motion stochastic processed is flawed [42]. To alleviate this problem numerous avenues

of research have been explored which either extend the Black-Scholes model or explore

completely new approaches. Among these extensive works, the jump diffusion model [66]

and the stochastic volatility model (which could include jumps as well) [13, 83, 10] appear

to be the most popular among practitioners.

Unfortunately, most of the existing methods for pricing options under jump processes

are confined to vanilla European options [52]. There has been very little work of practical

significance on numerical methods for pricing exotic or path-dependent options (e.g. dis-

cretely observed barrier, lookback, and Asian options) [89]. The method suggested by [4]

is an explicit type approach based on multinomial trees. As is well-known, such methods

have timestep limitations due to stability considerations, and are generally only first or-

der correct. Zhang [92] develops a method which treats the jump integral term in explicit

fashion, and the remaining terms in the PIDE implicitly. Unfortunately, rather restrictive

stability conditions are required. Meyer [67] uses the method of lines to value American

options where the underlying asset can jump to a finite number of states. More recently, a

method based on use of a wavelet transform has been suggested by [63]. The basic idea is

to use a wavelet transform to approximate the dense matrix discrete integral operator by

dropping small terms. Andersen and Andreasen [5] use an operator splitting type approach

combined with a fast Fourier transform (FFT) evaluation of a convolution integral to price

European options with jump diffusion, where the diffusion terms involve non-constant local
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volatilities. This paper [5] demonstrates that a jump diffusion model combined with a local

volatility surface calibrated to real data, results in stable fitted parameters. However, it is

unclear how an operator splitting approach can implicitly handle American options.

Consequently, the objective of this chapter is to present a robust and efficient numerical

method for solving the jump integral term which arises from the jump diffusion model PIDE.

We limit ourselves to pricing options under the jump diffusion model, but this framework is

also applicable to credit risk models or more complex valuation models such as stochastic

volatility with jumps.

3.2 The Basic Model

Let S represent the underlying stock price. Movements in this variable over time are

assumed to be described by a jump diffusion process of the form

dS

S
= µdt+ σdZ + (J − 1)dY, (3.1)

where µ is the drift rate, σ is the volatility associated with the continuous (Brownian)

component of the process, dZ is the increment of a Gauss-Wiener process, dY is a Poisson

process which is assumed to be independent of the Brownian part (note that dY = 0

with probability 1 − λdt and dY = 1 with probability λdt, where λ is the Poisson arrival

intensity), and J − 1 is an impulse function producing a jump from S to SJ .

Under equation (3.1), the stock price S has two sources of uncertainty. The term σdZ

corresponds to normal levels of uncertainty while the term dY describes exceptional events.

If the Poisson event does not occur (dY = 0), then equation (3.1) is equivalent to the usual

stochastic process of geometric Brownian motion assumed in the Black-Scholes model [17].
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If, on the other hand, the Poisson event occurs, then equation (3.1) can be written as

dS

S
' (J − 1), (3.2)

where J − 1 is an impulse function producing a jump from S to SJ . Consequently, the

resulting sample path for the stock S will be continuous most of the time with finite negative

or positive jumps with various amplitudes occurring at discrete points in time.

Let V (S, t) be the value of a contingent claim that depends on the underlying stock price

S and time t. As is well-known, the following backward PIDE may be solved to determine

V :

Vτ =
1
2
σ2S2VSS + (r − λκ)SVS − rV +

(
λ

∫ ∞

0
V (SJ)g(J)dJ − λV

)
, (3.3)

where τ = T − t is the time until expiry at date T , r is the continuously compounded risk

free interest rate, κ = E[J − 1] denotes the expected relative jump size, and g(J) is the

probability density function of the jump amplitude J with the obvious properties that ∀J ,

g(J) ≥ 0 and
∫∞
0 g(J)dJ = 1. For brevity, the details of the derivation of equation (3.3)

have been omitted (see [66, 89, 5]) details can be found in Appendix A. An important

special case is where the jump size probability distribution is lognormal [66, 84]. In that

case, the probability density function is given by

g(J) =
exp

(
− (log(J)−ν)2

2γ2

)
√

2πγJ
, (3.4)

where ν is the mean and γ2 is the variance of the jump size probability distribution. For

future convenience, note that equation (3.3) can be rewritten in a slightly different form as

Vτ =
1
2
σ2S2VSS + (r − λκ)SVS − (r + λ)V + λ

∫ ∞

0
V (SJ)g(J)dJ. (3.5)
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Note that, as discussed in [5], if the parameters λ, ν are obtained by calibration to market

data they should be regarded as risk adjusted (i.e. Q measure not P measure).

3.2.1 Boundary Conditions

As S → 0, equation (3.5) reduces to

Vτ = −rV . (3.6)

As S →∞, we make the common assumption that

VSS ' 0 ; S →∞ (3.7)

which means that

V ' A(τ)S +B(τ) ; S →∞. (3.8)

Assuming equation (3.8) holds, then equation (3.5) reduces to

Vτ =
1
2
σ2S2VSS + rSVS − rV ; S →∞. (3.9)

Consequently, at both S = 0, S → ∞, the PIDE (3.5) reduces to the Black-Scholes PDE,

and the usual boundary conditions can be imposed. Note that in equation (3.9) Vss is

retained in the PDE for numerical stability purposes.

3.3 Implicit Discretization Methods

This section explores discretization methods for the PIDE, where the terms not involving

the jump integral are handled implicitly. A straightforward approach to the numerical
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solution of equation (3.5) would be to use standard numerical discretization methods for

the non-integral terms [84], in combination with numerical integration methods such as

Simpson’s rule or Gaussian quadrature. However, such an approach is computationally

expensive, as noted by [84]. It is more efficient to transform the integral in equation (3.5)

into a correlation integral. This allows efficient FFT methods to be used to evaluate the

integral for all values of S.

Let

I(S, τ) =
∫ ∞

0
V (SJ, τ)g(J)dJ. (3.10)

Using the change of variable

y = log(SJ), J =
exp(y)
S

, and dJ =
exp(y)
S

dy, (3.11)

and substituting (3.11) into (3.10), we obtain

I(S, τ) =
∫ ∞

−∞
V (exp(y), τ) g

(
exp(y)
S

)
exp(y)
S

dy. (3.12)

Letting f(u) = g(u)u, equation (3.12) becomes

I(S, τ) =
∫ ∞

−∞
V (exp(y), τ) f

(
exp(y)
S

)
dy. (3.13)

Let x = log(S), V (x, τ) = V (exp(x), τ) = V (S, τ) and f(log y) = f(y). To avoid notational

clutter, the dependence of V on τ is suppressed from now on. Substituting into equation
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(3.13), we have

I =
∫ ∞

−∞
V (y)f(y − log(S))dy

=
∫ ∞

−∞
V (y)f(y − x)dy

=
∫ ∞

−∞
V (x+ y)f(y))dy. (3.14)

Note that f(x) is the probability density of a jump of size x = log J . Equation (3.14)

corresponds to the correlation product ⊗ of V (y) and f(y) [77]. As a result, a discrete

form of equation (3.14) can be computed efficiently using a fast Fourier transform (FFT).

Equation (3.14) can be written as

I = V ⊗ f. (3.15)

If f is an even function (f(x) = f(−x)), then (3.15) corresponds to the convolution product

[77].

As a specific example, consider the probability density function suggested by [66, 84]:

g(J) =
exp

(
− (log(J)−ν)2

2γ2

)
√

2πγJ
. (3.16)

It follows that if f(J) = g(J)J , then

f(x) = g (exp(x)) exp(x) (3.17)

=
exp

(
− (x−ν)2

2γ2

)
√

2πγ exp(x)
exp(x) (3.18)

=
exp

(
− (x−ν)2

2γ2

)
√

2πγ
. (3.19)

Let E[·] be the expectation operator. Then, E[J ] = exp(ν + γ2/2), which means that
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κ = E[J − 1] = exp(ν + γ2/2)− 1.

We can write the correlation integral (3.14) in discrete form as

Ii =
j=N/2∑

j=−N/2+1

V i+jf j∆y +O
(
(∆y)2

)
, (3.20)

where Ii = I(i∆x), V j = V (j∆x),

f j =
1

∆x

∫ xj+∆x/2

xj−∆x/2
f(x)dx, (3.21)

and xj = j∆x. Note that we have assumed that ∆y = ∆x, and that in (3.20) N is selected

sufficiently large so that the solution in areas of interest is unaffected by the application

of an asymptotic boundary condition for large values of S. In particular, we assume that

V N/2+j , j > 0 can be approximated by an asymptotic boundary condition. In practice,

since f j decays rapidly for |j| > 0, this should not cause any difficulty. Also note that

V −N/2+j , j < 0, can be interpolated from known values Vk since these points represent

values near S = 0. An important property to note is that

f j ≥ 0 , ∀j
j=N/2∑

j=−N/2+1

f j∆y ≤ 1. (3.22)

This follows because f(y) is a probability density function and f j is defined by equation

(3.21).

The discrete form of the correlation integral (3.20) uses an equally spaced grid in logS

coordinates. While this is convenient for a FFT evaluation of the correlation integral, it is

not particularly suitable for discretizing the PDE (details of the FFT evaluation of equation

(3.20) will be given in section 3.7). We use an unequally spaced grid in S coordinates for
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the PDE discretization [S0, . . . , Sp]. Let

V n
i = V (Si, τn). (3.23)

Now, V j will not necessarily coincide with any of the discrete values Vk in equation (3.23).

Consequently, we linearly interpolate (using Lagrange basis functions defined on the S grid)

to determine the appropriate values, i.e. if

SΥ(j) ≤ ej∆x ≤ SΥ(j)+1, (3.24)

then

V j = ψΥ(j)VΥ(j) +
(
1− ψΥ(j)

)
VΥ(j)+1 +O

(
(∆SΥ(j)+1/2)

2
)
, (3.25)

where ψΥ(j) is an interpolation weight, and ∆Si+1/2 = Si+1 − Si. We are now faced with

the problem that the integral Ii is evaluated at a point S = exi which does not coincide

with a grid point Sk. We simply linearly interpolate the Ii to get the desired value. If

exΠ(k) ≤ Sk ≤ exΠ(k)+1 , then

I(Sk) = φΠ(k)IΠ(k) + (1− φΠ(k))IΠ(k)+1 +O
(
(exΠ(k) − exΠ(k)+1)2

)
, (3.26)

where φΠ(k) is an interpolation weight. Note that

0 ≤ φi ≤ 1

0 ≤ ψi ≤ 1. (3.27)
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Combining equations (3.20), (3.25), and (3.26) gives

I(Sk) =
j=N/2∑

j=−N/2+1

χ(V, k, j)f j∆y, (3.28)

where V = [V0, V1, . . . , Vp]′ and

χ(V, k, j) = φΠ(k)

[
ψΥ(Π(k)+j)VΥ(Π(k)+j) + (1− ψΥ(Π(k)+j))VΥ(Π(k)+j)+1

]
+ (1− φΠ(k))

[
ψΥ(Π(k)+1+j)VΥ(Π(k)+1+j) + (1− ψΥ(Π(k)+1+j))VΥ(Π(k)+1+j)+1

]
.

(3.29)

For future reference, note that χ(V, k, j) is linear in V , and that if ι = [1, 1, . . . , 1]′, then it

follows from properties (3.27) that

χ(ι, k, j) = 1 ∀k, j. (3.30)

We can now consider the complete discretization of equation (3.5). The integral term is

approximated using equation (3.28). We use a fully implicit method for the usual PDE, and

then use a weighted timestepping method for the jump integral term. Letting V n
i denote

the solution at node i and time level n, the discrete equations can be written as

V n+1
i [1 + (αi + βi + r + λ)∆τ ]−∆τβiV

n+1
i+1 −∆ταiV

n+1
i−1

= V n
i + (1− θJ)∆τλ

j=N/2∑
j=−N/2+1

χ(V n+1, i, j)f j∆y + θJ∆τλ
j=N/2∑

j=−N/2+1

χ(V n, i, j)f j∆y.

(3.31)

Note that θJ = 0 corresponds to an implicit handling of the jump integral, whereas θJ = 1

indicates an explicit treatment of this term.
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Discretizing the first derivative term of equation (3.5) with central differences leads to

αi,central =
σ2

i S
2
i

(Si − Si−1)(Si+1 − Si−1)
− (r − λκ)Si

Si+1 − Si−1

βi,central =
σ2

i S
2
i

(Si+1 − Si)(Si+1 − Si−1)
+

(r − λκ)Si

Si+1 − Si−1
. (3.32)

If αi,central or βi,central is negative, oscillations may appear in the numerical solution.

These can be avoided by using forward or backward differences at the problem nodes,

leading to (forward difference)

αi,forward =
σ2

i S
2
i

(Si − Si−1)(Si+1 − Si−1)

βi,forward =
σ2

i S
2
i

(Si+1 − Si)(Si+1 − Si−1)
+

(r − λκ)Si

Si+1 − Si
, (3.33)

or (backward difference)

αi,backward =
σ2

i S
2
i

(Si − Si−1)(Si+1 − Si−1)
− (r − λκ)Si

Si − Si−1

βi,backward =
σ2

i S
2
i

(Si+1 − Si)(Si+1 − Si−1)
. (3.34)

Algorithmically, we decide between a central, forward discretization at each node for equa-

tion according to Algorithm 3.1.

Note that the test condition in Algorithm 3.1 guarantees that αi and βi are non-negative.

For typical parameter values and grid spacing, forward or backward differencing is rarely

required for single factor options. In practice, since this occurs at only a small number of

nodes remote from the region of interest, the limited use of a low order scheme does not

result in poor convergence as the mesh is refined. As we shall see, requiring that all αi and

βi are non-negative has important theoretical ramifications.

As S → 0, equation (3.3) reduces to Vτ = −rV , which is simply incorporated into the
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Algorithm 3.1 For each node i, central, forward or backward discretization is selected
such that αi and βi are positive

if αi,central ≥ 0 and βi,central ≥ 0 then
αi = αi,central

βi = βi,central

else if βi,forward ≥ 0 then
αi = αi,forward

βi = βi,forward

else
αi = αi,backward

βi = βi,backward

end if

discrete equations (3.31) by setting αi = βi = 0 at Si = 0. In practice we truncate the S

grid at some large value Sp = Smax, where we impose Dirichlet conditions at p = imax.

These Dirichlet conditions can be determined by substituting equation (3.8) into equation

(3.9), and using the option payoff as an initial condition. This is done by replacing equation

(3.31) at S = Smax = Sp with the specification that V n+1
p is equal to the relevant Dirichlet

condition.

We now proceed to consider the stability of the discretization (3.31). In particular, the

following result is obtained:

Theorem 3.1 (Stability of scheme (3.31)). The discretization method (3.31) is uncon-

ditionally stable for any choice of θJ , 0 ≤ θJ ≤ 1, provided that

• αi, βi ≥ 0;

• the discrete probability density f j has the properties (3.22);

• the interpolation weights satisfy (3.27);

• r, λ ≥ 0;

• a Dirichlet boundary condition is imposed at S = Smax.
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Proof. Let V n = [V n
0 , V

n
1 , . . . , V

n
p ]′ be the discrete solution vector to equation (3.31). Sup-

pose the initial solution vector is perturbed, i.e.

V̂ 0 = V 0 + E0, (3.35)

where En = [En
0 , . . . , E

n
p ]′ is the perturbation vector. Note that En

p = 0 since Dirichlet

boundary conditions are imposed at this node. Then we obtain the following equation for

the propagation of the perturbation (noting that χ is a linear operator)

En+1
i [1 + (αi + βi + r + λ)∆τ ]−∆τβiE

n+1
i+1 −∆ταiE

n+1
i−1

= En
i + (1− θJ)∆τλ

j=N/2∑
j=−N/2+1

χ(En+1, i, j)f j∆y + θJ∆τλ
j=N/2∑

j=−N/2+1

χ(En, i, j)f j∆y,

i = 0, . . . , p− 1. (3.36)

Defining

‖E‖n
∞ = max

i
|Ei|n, (3.37)

it follows from properties (3.22), (3.27), and (3.30) and αi, βi ≥ 0 that

|En+1
i | [1 + (αi + βi + r + λ)∆τ ] ≤ ‖E‖n

∞ + (1− θJ)∆τλ‖E‖n+1
∞ + θJ∆τλ‖E‖n

∞

+ ∆τβi|En+1
i+1 |+ ∆ταi|En+1

i−1 |, (3.38)

i = 0, . . . , p− 1. (3.39)

This implies

|En+1
i | [1 + (αi + βi + r + λ)∆τ ] ≤ (∆τβi + ∆ταi)‖E‖n+1

∞

+ ‖E‖n
∞ + (1− θJ)∆τλ‖E‖n+1

∞ + θJ∆τλ‖E‖n
∞. (3.40)
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Now, equation (3.40) is valid for all i < p. In particular, it is true for node m, where

max
i
|En+1

i | = |En+1
m |. (3.41)

Writing equation (3.40) for i = m gives

‖E‖n+1
∞ [1 + (r + θJλ)∆τ ] = ‖E‖n

∞(1 + θJ∆τλ), (3.42)

and thus

‖E‖n+1
∞ ≤ ‖E‖n

∞
(1 + θJ∆τλ)

(1 + (r + θJλ)∆τ)

≤ ‖E‖n
∞. (3.43)

Remark 3.1 (Unconditional stability with explicit evaluation of the integral).

When discretizing the correlation integral term explicitly (θJ = 1) the scheme presented

in equation (3.31) remains unconditionally stable. Note that in [92] a conditionally stable

method was developed. The conditional stability was a result of a slightly different timestep-

ping approach compared to that in equation (3.31).

3.4 Crank-Nicolson Discretization

The discretization method used in the previous section is only first order correct in the time

direction. In order to improve the timestepping error, we can use a Crank-Nicolson method.
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Such an approach results in the following set of discrete equations

V n+1
i

[
1 + (αi + βi + r + λ)

∆τ
2

]
− ∆τ

2
βiV

n+1
i+1 − ∆τ

2
αiV

n+1
i−1

= V n
i

[
1− (αi + βi + r + λ)

∆τ
2

]
+

∆τ
2
βiV

n
i+1 +

∆τ
2
αiV

n
i−1

+ (1− θJ)λ∆τ
j=N/2∑

j=−N/2+1

χ(V n+1, i, j)f j∆y

+ θJλ∆τ
j=N/2∑

j=−N/2+1

χ(V n, i, j)f j∆y. (3.44)

A full Crank-Nicolson method is obtained by setting θJ = 1/2 in equation (3.44). If we

define the matrix M such that

−[MV n]i = V n
i (αi+βi+r+λ)

∆τ
2
−∆τ

2
βiV

n
i+1−

∆τ
2
αiV

n
i−1−

∆τ
2
λ

j=N/2∑
j=−N/2+1

χ(V n, i, j)f j∆y,

(3.45)

then we can write equation (3.44) as

[I −M ]V n+1 = [I +M ]V n. (3.46)

Alternatively, we can define D = [I −M ]−1 [I +M ], so that equation (3.46) can be written

as

V n = (D)nV 0. (3.47)

Note that the notation (D)n refers to D raised to the power of n. Consequently, an initial

perturbation vector E0 will generate a perturbation at the nth step, En, given by En =

(D)nE0.

The stability of the operator D is defined in terms of the power boundedness of D. If

n is the number of timesteps and p is the number of grid nodes, then given some matrix
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norm ‖ · ‖, we say that D is strictly stable if

‖(D)n‖∞ ≤ 1 ∀n, p. (3.48)

Following [48], strong stability is defined as

‖(D)n‖∞ ≤ C ∀n, p, (3.49)

and algebraic stability is defined as

‖(D)n‖∞ ≤ Cnspq ∀n, p. (3.50)

where C, s, q ≥ 0 are constants independent of n and p.

Algebraic stability is obviously a weaker condition than either strict or strong stability.

Note that the Lax Equivalence Theorem states that strong stability is a necessary and

sufficient condition for convergence for all initial data. Weaker algebraic stability yields

convergence only for certain initial data. For a more detailed discussion of this, see [48].

If µi are the eigenvalues of D, then a necessary condition for strong stability is that

|µi| ≤ 1, and that any |µi| = 1 has multiplicity one. From equation (3.45) and properties

(3.22), we have that

• The off-diagonals of M are all non-negative.

• The diagonals of M (excluding the last row) are strictly negative.

• Assuming that r > 0,
∑j=p

j=0Mij < 0 for i = 0, . . . , p− 1.

• The last row of M is identically zero due to the Dirichlet boundary condition.

It then follows that all the Gerschgorin disks of M are strictly contained in the left half of

the complex plane, with one eigenvalue identically zero. Hence all the eigenvalues of D are
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strictly less than one in magnitude, with one eigenvalue having modulus one. As a result,

D satisfies the necessary conditions for strict stability.

However, since D is non-symmetric, this is not sufficient for power boundedness of D

[18]. As discussed in [56] and [58], we can guarantee algebraic stability by examining the γ

numerical range of the matrix M . In the case γ = 1, the numerical range of M coincides

with the convex hull of the Gerschgorin disks of M when the maximum norm is used in

equation (3.50). These results can be summarized in the following theorem:

Theorem 3.2 (Algebraic Stability of Crank-Nicolson Timestepping). If the dis-

cretization satisfies the conditions of Theorem 3.1, then the Crank-Nicolson discretization

(3.44) is algebraically stable in the sense that

‖(D)n‖∞ ≤ Cn1/2 ∀n, p,

where C is independent of n, p.

Proof. Since all the Gerschgorin disks of M are in the left half of the complex plane, this

follows from the results in [58].

In fact, we believe that the algebraic stability estimate is overly pessimistic. For the case

of constant coefficients with a log-spaced grid, in Appendix C we show using Von Neumann

analysis that Crank-Nicolson timestepping with the correlation product is unconditionally

strictly stable. However, it is interesting to note that if we use Crank-Nicolson weighting

for the PDE terms and an explicit method for the jump diffusion term (θJ = 1 in equation

(3.44)), then a Von Neumann analysis shows that this method is only conditionally stable

(λ∆τ must be sufficiently small).
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3.5 Fixed Point Iteration Method

When using an implicit discretization, it is computationally inefficient to solve the full

linear system because the correlation product term makes the system dense. Consequently,

in this section we explore the use of a fixed point iteration scheme to solve the linear system

which results from an implicit discretization of the correlation product term. This idea was

suggested in [84], but no convergence analysis was given.

Define the matrix L such that

−[LV n]i = V n
i (αi + βi + r + λ)∆τ −∆τβiV

n
i+1 −∆ταiV

n
i−1, (3.51)

and the matrix B such that

[B · V n]i =
∑

i

bijV
n
j =

j=N/2∑
j=−N/2+1

χ(V n, i, j)f j∆y. (3.52)

Note that [B · V n] is a linear function of V n. Thus we can write a fully implicit (θ = 0) or

Crank Nicolson (θ = 1/2) discretization as

[I − (1− θ)L]V n+1 = [I + θL]V n + (1− θ)λ∆τBV n+1 + θλ∆τBV n. (3.53)

Note that the entries of the matrix B have the property

0 ≤ bij ≤ 1 and
∑

j

bij ≤ 1, (3.54)

a fact that will be important in the convergence analysis later. Dirichlet boundary conditions
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are enforced at i = p by setting

Lij = 0 ; i = p

bij = 0 ; i = p

V n+1
p = V n

p . (3.55)

In order to avoid algebraic complication, we assume that the Dirichlet condition at Sp is

independent of time. We can then derive the fixed point iteration method presented in

Algorithm 3.2. Note that in Algorithm 3.2, the matrix vector multiply BV̂ k is computed

in N log(N) flops using a fast Fourier transforms (FFT).

Algorithm 3.2 Fixed point iteration scheme to evaluate the jump integral term implicitly.
Let (V n+1)0 = V n

Let V̂ k = (V n+1)k

for k = 0, 1, 2, . . . until convergence do
Solve
[I − (1− θ)L] V̂ k+1 = [I + θL]V n + (1− θ)λ∆τBV̂ k + θλ∆τBV n

if maxi
|V̂ k+1

i −V̂ k
i |

max(1,|V̂ k+1
i |)

< tolerance then

Quit
end if

end for

Letting ek = V n+1 − V̂ k, the convergence of the fixed point scheme (see Algorithm 3.2)

can be summarized in the following theorem:

Theorem 3.3 (Convergence of the fixed point iteration). Provided that

• αi, βi ≥ 0 (see Section 3.3);

• the discrete probability density f j has the properties (3.22);

• the interpolation weights satisfy (3.27);

• r ≥ 0, λ ≥ 0;
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• Dirichlet boundary conditions (3.55) are used

then the fixed point iteration Algorithm 3.2 is globally convergent, and the maximum error

at each iteration satisfies

‖ek+1‖∞ ≤ ‖ek‖∞
(1− θ)λ∆τ

1 + (1− θ)(r + λ)∆τ
.

Proof. It is easily seen from the iteration Algorithm 3.2 that ek satisfies

[I − (1− θ)L] ek+1 = (1− θ)λ∆τBek. (3.56)

Following the same steps used to prove Theorem 3.1, we therefore obtain

‖ek+1‖∞ ≤ ‖ek‖∞
(1− θ)λ∆τ

1 + (1− θ)(r + λ)∆τ

< ‖ek‖∞. (3.57)

Note that typically λ∆τ � 1, so that

‖ek+1‖∞ ' ‖ek‖∞(1− θ)λ∆τ, (3.58)

which will result in rapid convergence. It is also interesting to observe that the number of

iterations required for convergence is independent of the number of nodes in the S grid.

3.6 American Options

In the following, we extend our numerical framework to handle American options. An

American option has the additional feature that it is permitted to be exercised at any time

during its lifetime. The valuation of American options is therefore more challenging since



CHAPTER 3. JUMP DIFFUSION: ALGORITHMS 45

at each timestep, given S, the value of the option must be found and it must be determined

whether or not it is optimal to exercise. This problem is often referred to as the free

boundary problem [89].

Previous work on numerical methods for American options under jump diffusion used

an explicit timestepping method for the jump integral term, and a standard linear com-

plementarity solver to solve the algebraic linear complementarity problem at each timestep

[92]. This method is only first order correct in time, and conditionally stable. In contrast,

the method in [5] is second order correct in time for Bermudan (discretely early exercisable)

options.

We develop an implicit timestepping approach, which has the potential of second order

accuracy in the time direction. We use a penalty method [44, 93] to enforce the American

constraint. As discussed in [44], a penalty method can be easily extended to multifactor

models [93], and to nonlinear models such as uncertain volatility and transaction costs [73].

It is a common misconception that penalty methods result in poorly conditioned algebraic

problems. This is shown not to be the case in [44].

If we define

LV ≡ Vτ −
(
σ2S2

2
VSS + (r − λκ)SVS − (r + λ)V + λ

∫ ∞

0
V (SJ)g(J)dJ

)
(3.59)

and if V ∗(S, τ) is the payoff, then the American option pricing problem can be stated as

LV ≥ 0

(V − V ∗) ≥ 0

(LV = 0) ∨ (V − V ∗ = 0) (3.60)

where the notation (LV = 0)∨ (V −V ∗ = 0) denotes that either (LV = 0) or (V −V ∗ = 0)
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at each point in the solution domain. Equations (3.60) can be written more compactly as

[70]

min(LV ;V − V ∗) = 0 . (3.61)

Remark 3.2 (Viscosity solution). It is well known that there is in general no smooth

solution to equation (3.61). In what follows it will be understood that we are seeking viscosity

solutions to equation (3.61). We note that the degeneracy of LV as S → 0 causes no

particular difficulty in the case of viscosity solutions. A detailed discussion of the existence

and uniqueness of viscosity solutions to equation (3.61), can be found in [70, 3]. In addition,

sufficient conditions to ensure convergence of a discrete numerical scheme to the viscosity

solution, is given in [11]. Finally, an application of the results in [11] to the case of European

options with jump diffusion is given in [21]. Due to the non-local property of the integral

term, care must be taken when considering viscosity solutions. A localization procedure is

used in [24] in order to precisely characterize viscosity solutions for jump models.

3.6.1 The Penalty Method

The basic idea of the penalty method is simple. Equation (3.5) is replaced by the nonlinear

PIDE [41]

Vτ =
σ2S2

2
VSS +(r−λκ)SVS − (r+λ)V +λ

∫ ∞

0
V (SJ)g(J)dJ +ρmax(V ∗−V, 0), (3.62)

where, in the limit as the positive penalty parameter ρ→∞, the solution satisfies V ≥ V ∗.

As shown in [44], in the case where λ = 0 (no jumps) the penalty method can be used to

obtain an approximate solution to the discretized complementarity problem (3.60) at each

timestep. For details regarding the penalty method, we refer the reader to [44].

Let V ∗ be the vector of payoffs obtained upon exercise, and let the diagonal matrix P
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be given by

P (V n+1)ii =


Large if V n+1

i < V ∗i

0 otherwise.
(3.63)

Then the matrix form of the discrete equations for the penalized method is given by

[I − (1− θ)L+ P (V n+1)]V n+1 =

[I + θL]V n + (1− θJ)λ∆τBV n+1 + θJλ∆τBV n +
[
P (V n+1)

]
V ∗. (3.64)

Dirichlet boundary conditions are enforced at i = p by setting

Lij = 0 ; i = p

Pij = 0 ; i = p

bij = 0 ; i = p

V n+1
p = V n

p . (3.65)

In order to avoid algebraic complication, we assume that the Dirichlet condition at Sp is

independent of time.

Remark 3.3 (Stability of a fully implicit discretization). It is straightforward to

show, via a maximum analysis, that setting θ = 0 in equation (3.64) results in an uncondi-

tionally stable method for any θJ , 0 ≤ θJ ≤ 1.

3.6.2 The Matrix Iteration

In order to solve equation (3.64), Algorithm 3.2 is augmented as to include the penalty

vector P (assuming θ = θJ).

The matrix vector multiplies in Algorithm 3.3 (BV̂ k) can be computed in O(N logN)
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Algorithm 3.3 Fixed point iteration scheme to solve the free boundary problem under the
diffusion process.

Let (V n+1)0 = V n

Let V̂ k = (V n+1)k

Let P̂ k = P ((V n+1)k)
for k = 0, 1, 2, . . . until convergence do

Solve[
I − (1− θ)L+ P̂ k

]
V̂ k+1 = [I + θL]V n + P̂ kV ∗ + (1− θ)λ∆τBV̂ k + θλ∆τBV n

if maxi
|V̂ k+1

i −V̂ k
i |

max(1,|V̂ k+1
i |)

< tolerance then

Quit
end if

end for

operations using an FFT (see Section 3.7). Consequently, the work for each iteration is

dominated by the forward and backward FFTs.

3.6.3 Convergence of the Iteration

In the following, we consider the problem of convergence of the iteration scheme (3.3). For

clarity, the proofs of the different lemmas and theorems can be found in Appendix D. Our

main result can be summarized in the following theorem

Theorem 3.4 (Convergence of iteration (3.3)). Let L, B and P̂ k be given by (3.51),

(3.52) and (3.63), respectively. Assume that αi ≥ 0, βi ≥ 0 in equation (3.51), that B has

the properties (3.54) and that we use a Dirichlet boundary condition in (3.65). Then the

iteration Algorithm 3.3 is globally convergent to the unique solution of equation (3.64) for

any initial iterate V̂ 0.

Proof. See Appendix D.
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3.7 Details Regarding Evaluation of the Correlation Integral

To complete the discussion of our numerical algorithm, we need to consider issues such as

evaluating the jump integral term, interpolation, and wrap-around effects. Note that each

iteration of the Algorithm 3.2 requires evaluation of a correlation integral for all points on

the PDE grid.

Fast evaluation of this integral using FFT methods necessitates transformation to an

equally spaced grid in x = log(S) coordinates. If the original PDE grid is equally spaced

in log(S), then there is clearly no difficulty. However, this type of grid spacing is highly

inefficient for cases involving discontinuous payoffs or barriers. We therefore prefer not to

restrict the type of grid used for the original PDE. Recall that the correlation integral is

I(x) =
∫ ∞

−∞
V (x+ y)f(y)dy,

or, in discrete form

Ii =
j=N/2∑

j=−N/2+1

V i+jf j∆y +O
(
(∆y)2

)
,

where Ii = I(i∆x), V j = V (j∆x), and f j is defined by equation (3.21). We have also

assumed that ∆y = ∆x, and that V (logS) = V (S).

Now, V j will not necessarily coincide with any of the discrete values Vk in equation

(3.31). Consequently, we will linearly interpolate to determine the appropriate values, as in

equation (3.25). Since equation (3.20) has the form of a discrete correlation, FFT methods

are an obvious choice to compute this efficiently. Assuming that f is real, then

FFT(I)k = (FFT(V ))k(FFT(f))∗k, (3.66)

where (·)∗ denotes the complex conjugate. Since f(z) is the probability density of z = log J ,
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which is a specified function, we can simply precompute FFT(f) on the required equally

spaced grid in z coordinates. We can then carry out an inverse FFT to obtain the values of

the correlation integral on the equally spaced x = logS grid. A further interpolation step

is required to obtain the value of the correlation integral on the original S grid (equation

(3.26)).

We can summarize the steps needed to generate the required values I(Sk), k = 0, . . . , p

into Algorithm 3.4.

Algorithm 3.4 Summary of the steps needed to generate the required values I(Sk), k =
0, . . . , p using a fast Fourier transform.

1 Interpolate the discrete values of V onto an equally spaced log(S) grid . This generates
the required values of V j .
2 Carry out the FFT on this data.
3 Compute the correlation in the frequency domain (with
precomputed FFT

(
f
)
), using equation (3.66).

4 Invert the FFT of the correlation.
5 Interpolate the discrete values of I(xi) onto the original S grid.

Note that as long as linear or higher order interpolation is used, this procedure is second

order correct, which is consistent with the discretization error in the PDE and the midpoint

rule used to evaluate the integral (3.20).

In principle, we can avoid the interpolation steps in the above procedure if we use special

techniques for computing the FFT for unequally spaced data. There are several methods

for computing the inverse FFT problem (i.e. given unequally spaced data, determine the

Fourier coefficients), as well as the forward FFT problem (given the Fourier coefficients,

determine the inverse transform values on an unequally spaced grid) [88, 37, 76]. However,

it should be noted that we are not particularly interested in obtaining highly accurate

estimates of the discrete Fourier coefficients, as we simply need to evaluate the correlation

integral correct to second order. A discussion of methods for applying FFT techniques to

unequally spaced data is given in Appendix F. An alternative approach, based on a Fast



CHAPTER 3. JUMP DIFFUSION: ALGORITHMS 51

Gauss transform is discussed in Appendix E. For our purposes there is no particular benefit

in terms of accuracy in using these other methods. We will use the interpolation method

(3.4) followed by the standard FFT to calculate our illustrative results in Chapter 4.

Another issue requiring attention is that the FFT algorithm effectively assumes that the

input functions are periodic. This may cause wrap-around pollution unless special care is

taken when implementing the algorithm. The integral (3.13) is approximated on the finite

domain

I(x) =
∫ ymax

ymin

V (x+ y)f(y)dy. (3.67)

The PDE part of the PIDE (3.5) is computed using the finite computational domain

[0, Smax], using the discrete grid S0, S1, . . . , Smax. Initially, we chose

ymax = log(Smax)

ymin = log(S1), (3.68)

assuming S1 > 0. Note that ymin = log(S1) since normally S0 = 0, so that log(S0) = −∞.

Generally, f(y) (which represents the probability density of a jump of S → SJ where

y = log J) is rapidly decaying for |y| � 0. However, V (y) does not decay to zero near

y = ymin, ymax. Typically, V (S) ≤ Const. S as S →∞, and V (S) ' Const. as S → 0, or in

y = logS coordinates,

V (y) ≤ Const. ey, y →∞ (3.69)

' Const., y → −∞. (3.70)

This will cause undesirable wrap-around effects if we use an FFT approach to evaluate

the integral (3.67), since the discrete Fourier transform (DFT) is effectively applied to the

periodic extension of the input functions. To avoid these problems, we extend the domain
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of the integral to the left and right by a size which reflects the width of the probability

density. In other words, we use the values V (y), y ∈ [ymin −∆y−, ymax + ∆y+] as input to

the correlation evaluation (3.66).

In order to determine values in the extended region, we solve the following PDE-PIDE

in the region [0, Smaxe
∆y+

].

Vτ = −rV

S = 0

Vτ =
1
2
σ2S2VSS + (r − λκ)SVS − (r + λ)V + λ

∫ ∞

0
V (Sη)g(η)dη (3.71)

0 < S < Smax

Vτ =
1
2
σ2S2VSS + rSVS − rV (3.72)

Smax ≤ S ≤ Smaxe
∆y+

.

The validity of equation (3.72) can be justified by assuming that V (S) is a linear function

of S in the extended domain. This is a common assumption in financial application. The

extended region [Smax, Smaxe
∆y+

] can be regarded as a buffer zone which reduces the effect

of FFT wrap-around. Note that we have assumed that Smax is sufficiently large so that it

is valid to assume that approximation (3.9) holds.

The values of V (u) for u ∈ [ymax, ymax +∆y+] are estimated using simple linear interpo-

lation. The values in the left extension can be determined from interpolation on the original

S grid.

This extended domain is then used as input to the forward FFT, the correlation compu-

tation (in the spectral domain), and the inverse FFT. The values in the domain extensions

are affected by wrap-around and are discarded. This causes no difficulty in the right exten-

sion. In the left extension, we actually need an estimate of the value V (S0 = 0). This is

obtained from the solution of Vτ = −rV at S = 0. In Appendix B, we show how to estimate
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∆y+,∆y− so that the errors due to wrap-around are within a user specified tolerance.

An alternative approach for evaluating the correlation integral could involve a fast Gauss

transform (FGT) [50]. This method has complexity of O(N) and does not require an equally

spaced grid. The use of this method has been explored in the general option pricing context

by [22]. In the particular case of jump diffusion, this approach would work for the case

where the jump size is lognormally distributed. It is not clear if it could be applied for

other jump distributions. We have carried out some numerical experiments using public

domain FGT software, and it appears that the FFT approach used here is superior to the

use of FGT, at least for grid sizes of practical interest (details are presented in Appendix E).

Note that all of the theoretical results given previously would be unchanged if the FGT were

used instead of the FFT.

3.8 Remarks about the Viscosity Solution

Viscosity solution theory [11] allows us to show uniform convergence to the solution without

requiring a priori smoothness of the solution (e.g. digital payoffs [75]) or non-degeneracy of

coefficients. In particular, conditions for numerical schemes which guarantee convergence to

the viscosity solution were developed by [11]. For a full description of the terminology and

technical details, readers are referred to [11] and the references therein. The main result of

[11] is presented in Theorem 3.5.

Theorem 3.5 ([11], page 12). Given a PDE which satisfies the strong comparison prin-

ciple, then a discretization scheme which is consistent, stable and monotone converges to

the viscosity solution.

Remark 3.4. Although convergence is guaranteed, the results of Barles [11] says nothing

about the rate of convergence. Barles [11] result was extended to the case of non-linear

PIDEs in [21, 24].
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Normally any reasonable discretization scheme is consistent, although there are some

technical problems in proving consistency on finite computational domains for PIDE’s, due

to the nonlocal nature of the jump integral term. See [21, 24] for details of proofs of con-

sistency for trapezoidal rule evaluation of the jump integral term on a finite computational

domain.

The most interesting requirement for convergence of a discrete scheme to the viscosity

solution is monotonicity. A scheme which is monotone also satisfies a discrete comparison

principle which means that the discrete solution satisfies certain no-arbitrage inequalities

[24]. As a result, in the following the monotonicity of scheme (3.62) is investigated.

We begin by considering equation (3.62) discretized fully implicitly. For clarity of pre-

sentation, the fully implicit discretization (θ = 0 , (3.64)) is rewritten in matrix form as

[I −∆τL− λ∆τB]V n+1 = V n + P (V n+1)(V ? − V n+1). (3.73)

At each node (Si), equation (3.73) can be written as

gi(V n+1
i , {V n+1

j }i, V
n
i ) = V n

i −[(I−∆τL−λ∆τB)V n+1]i+P (V n+1
i )(V ?−V n+1

i ) = 0 (3.74)

where {V n+1
j }i is to be interpreted as the set of values V n+1

j , j 6= i and j = 1, . . . , p.

Definition 3.1 (Monotone discretizations). A discretization of the form (3.73) is

monotone if

gi(V n+1
i , {V n+1

j }i + ρn+1
j , V n

i + ρn
i ) ≥ gi(V n+1

i , {V n+1
j }i, V

n
i ) ∀i; ∀j 6= i

∀ρn
j ≥ 0, ∀ρn+1

j ≥ 0, (3.75)

gi(V n+1
i + ρn+1

i , {V n+1
j }i, V

n
i ) < gi(V n+1

i , {V n+1
j }i, V

n
i ) ∀i;∀j 6= i

∀ρn+1
i ≥ 0 (3.76)
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Remark 3.5. In the viscosity solution literature [11], only condition (3.75) is used to define

monotonicity. However, in the conservation law literature [59, 46] monotonicity is usually

defined including condition (3.76).

Lemma 3.1 (Monotonicity of the discretization (3.74)). The fully implicit discretiza-

tion (3.74) is unconditionally monotone.

Proof. From Lemma D.3, matrix [I−∆τL−λ∆τB] is anM matrix. As a result−[(I−∆τL−

λ∆τB)V n+1
j ]i is a non-decreasing function of {V n+1

j }i. The term P (V n+1
i )(V ? − V n+1

i ) is

a non-increasing function of V n+1
i . Similarly, −[(I −∆τL − λ∆τB)V n+1

j ]i is a decreasing

function of V n+1
i . Hence the discretization is monotone from Definition 3.1.

Remark 3.6 (Extension to uncertain volatility/transaction costs). It is simple to

extend scheme (3.74) to the case of a nonlinear model with uncertain volatility or transaction

costs. Based on Remark 3.2 and the results in [73], it is then straightforward to show

convergence to the viscosity solution.

Crank-Nicolson is only conditionally monotone, hence only conditionally satisfies the

sufficient conditions in [11, 21]. However, if the Rannacher modification of Crank-Nicolson

is used, then, consistent with the results in [73], our experimental computations indicate

that fully implicit and Crank-Nicolson timestepping converge to the same solution. We con-

jecture that convergence to the viscosity solution can be obtained under somewhat weaker

conditions than strict monotonicity as suggested in [11].

3.9 Summary

The main results of this chapter are as follows:

• We proved that the jump diffusion term can be discretized explicitly, and, when

coupled with a fully implicit treatment of the usual PDE, the resulting timestepping



CHAPTER 3. JUMP DIFFUSION: ALGORITHMS 56

method is unconditionally stable.

• We proved that a simple fixed point iteration scheme can be used to solve the dis-

cretized algebraic equations, and that this iteration is globally convergent. In fact,

for typical values of the timestep size and Poisson arrival intensity, the l∞ error is

reduced by two orders of magnitude at each iteration.

• We also developed a method for efficiently computing the jump integral term. We

made no assumptions about the form of the probability density for the jump term

except that the density had finite activity [66, 24]. This general approach required

the evaluation of correlation type integrals, as in [92]. We also showed how to eliminate

the wrap-around effects which often plague FFT methods. The correlation integral

term can be rapidly computed using FFT methods.

• In contrast with previous work, we did not assume that the grid was equally spaced in

either the underlying asset price or its logarithm. This was a major advantage for the

pricing of contracts with barrier provisions, which typically require fine grid spacing

near barriers in order to achieve sufficient accuracy.

• We developed an iterative method for solving the discrete penalized equations which

result from the discretization of the differential-integral complementarity problem for

pricing American options on assets which follow a jump diffusion process. We have

also derived sufficient conditions for the global convergence of this iteration scheme

(at each timestep).

• Unlike previous work, the method developed here uses implicit timestepping for both

the correlation integral term and the American constraint. As a result, we may obtain

higher order convergence (in terms of timestepping error) compared with previous

methods which treat the correlation integral or the American constraint explicitly.
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A major advantage of the method developed here is that it is straightforward to add

a jump process to existing option pricing software. In particular, existing software, which

uses an implicit approach for valuing American options, can be simply modified to price

American options with jump diffusion. Non-linear pricing models (transaction costs, un-

certain volatility) can also be easily extended to model jumps, as well as path dependent

pricing problems (Asian, Parisian) [95].



Chapter 4

Jump Diffusion: Numerical Results

In Chapter 3, an implicit method was developed for the numerical solution of option pricing

models where the underlying process follows a jump diffusion process. Proofs of timestep-

ping stability and convergence of a fixed point iteration scheme were provided. In the

following, numerical tests of convergence for a variety of options are presented.

4.1 Results

This section presents numerical results for various options, including vanilla European and

American options, digital options, and options with barrier features. Unless stated oth-

erwise, we use the Crank-Nicolson discretization scheme (3.44). The discrete system of

equations is solved using the fixed point iteration Algorithm 3.2 with a convergence tol-

erance of tol = 10−6. For the American option tests, the penalty term is set to 1/tol

[44].

We begin by considering European options under the assumptions that the continuous

part of the underlying stock price process follows geometric Brownian motion and that the

proportional jump size is lognormally distributed, where the jump size distribution g(J) is

58
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given by

g(J) =
e

(
− (log(J)−ν)2

2γ2

)
√

2πγJ
. (4.1)

This allows us to check the accuracy of our algorithm against the analytic solution of [66].

Table 4.1 contains the input parameters. These are roughly the same as those estimated

by [5] using European call options on the S&P 500 stock index in April of 1999.

Table 4.1 Input data used to value European options under the lognormal jump diffu-
sion process. These parameters are approximately the same as those reported in [5] using
European call options on the S&P 500 stock index in April of 1999.

σ 0.15 r 0.05
γ 0.45 ν -0.90
λ 0.10 T 0.25
K 100.00

We are particularly interested in the convergence properties of the algorithm as the grid

is refined. For each test, as we double the number of grid points we cut the timestep size

(∆τ = .01 on the coarsest grid) in half. The convergence ratio presented in the tables below

is defined in the following way. Let

∆τ = max
n

(τn+1 − τn),

∆S = max
i

(Si+1 − Si).

Note that we are allowing here for the possibility of using variable timestep sizes (to be

explained below), although most of our tests will simply use a constant timestep size. If we

then carry out a convergence study letting h → 0 where ∆S = Const. h, ∆τ = Const. h,

then we can assume that the error in the solution (at a given node) is Vapprox(h) = Vexact +
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Const. hξ, and the convergence ratio is defined as

R =
Vapprox(h/2)− Vapprox(h)
Vapprox(h/4)− Vapprox(h/2)

. (4.2)

In the case of quadratic convergence (ξ = 2), then R = 4, while for linear convergence

(ξ = 1), R = 2.

Table 4.2 Value of a European put option at S = 100 using Crank-Nicolson timestepping
for linear, quadratic and cubic interpolation. The interpolation schemes are used to transfer
data between the non-uniform S grid and the uniform log-spaced FFT grid. The input
parameters are provided in Table 4.1. The convergence ratio R is defined in equation (4.2).
The exact solution is 3.149026. The number of points used for the FFT grid is 2α, where α
is the smallest integer such that the number of nodes in the non-uniform S grid p ≤ 2α.

Size of No. of Linear Quadratic Cubic
S grid Timesteps Value R Value R Value R

128 25 3.146361 n.a. 3.145896 n.a. 3.146361 n.a.
255 50 3.148354 n.a. 3.148249 n.a. 3.148354 n.a.
509 100 3.148856 3.973 3.148831 4.039 3.148832 4.175
1017 200 3.148983 3.949 3.148977 3.990 3.148977 3.287
2033 400 3.149015 4.001 3.149014 4.007 3.149014 3.997
4065 800 3.149023 3.997 3.149023 4.002 3.149023 3.997

Recall that interpolation is required to transform data from the clustered PDE grid to

the equally spaced logS grid, and vice versa. In Table 4.2, we compare linear interpolation

(see equations (3.25)-(3.26)) with quadratic and cubic Lagrange interpolation for a vanilla

European put option with different number of points on the FFT grid.

In Table 4.2 we observe quadratic convergence to the exact solution for all three inter-

polation schemes. Note that our earlier theoretical analysis for stability and convergence of

the fixed point iteration was based on linear interpolation. This was required because linear

interpolation is the only Lagrange interpolation method which has non-negative weights.
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Table 4.3 Value of a European call option using Crank-Nicolson timestepping. The input
parameters are provided in Table 4.1. The convergence ratio R is defined in equation (4.2).
The exact solution is 0.527638 at S = 90, 4.391246 at S = 100, and 12.643406 at S = 110.
The number of points used for the FFT grid is 2α, where α is the smallest integer such that
the number of nodes in the non-uniform S grid p ≤ 2α. Quadratic interpolation is used.

Size of No. of S = 90 S = 100 S = 110
S grid Timesteps Value R Value R Value R

128 25 0.526562 n.a. 4.388091 n.a. 12.641501 n.a.
255 50 0.527379 n.a. 4.390462 n.a. 12.642942 n.a.
509 100 0.527574 4.186 4.391050 4.039 12.643290 4.125
1017 200 0.527622 4.042 4.391197 3.991 12.643377 4.008
2033 400 0.527634 4.046 4.391233 4.005 12.643399 4.059
4065 800 0.527637 4.023 4.391243 4.002 12.643404 4.049

Although it is not the case for these particular parameter values, our numerical experiments

indicate that quadratic interpolation is often more accurate than linear interpolation (al-

though the rate of convergence is theoretically the same for both methods). Consequently,

in all subsequent examples we will use quadratic interpolation. In Table 4.3 we show the

convergence rate for a call option using the data in Table 4.1. For each value of S in

Table 4.3, we observe second order convergence.

Next, we present the delta VS and gamma VSS of the solution of a European call option

in Figure 4.1. In both figures, we observe that the option values, delta and gamma are

smooth.

4.1.1 Non-Smooth Payoffs

We now consider the issues raised by the presence of a discontinuity in the payoff. Oscilla-

tions are more likely to be a problem in this context if we use Crank-Nicolson timestepping,

and, unless care is taken, rates of convergence can be reduced. A detailed discussion of

this can be found in [75] for the case without jumps. Following [78], it is possible to re-

store quadratic convergence if any discontinuities in the payoff (arising either due to the
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(c) Call option gamma.

Figure 4.1: Call option values, delta (VS) and gamma (VSS) for Crank-Nicolson timestepping with
128 points with initial timestep 0.01. The input data is contained in Table 4.1.

payoff function itself in the case of a digital option, or from the application of a discretely

observed barrier) are l2 projected onto the space of linear Lagrange basis functions, and a

fully implicit method is used for a small number of timesteps after any discontinuities arise.

We will refer to this technique as Rannacher timestepping. While this method does ensure
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(b) Digital call projected payoff.

Figure 4.2: The digital payoff figure 4.2(a) is l2 projected onto the space of basis functions 4.2(b).
This approach combined with Rannacher timestepping restores quadratic convergence [75].

quadratic convergence, it does not guarantee the absence of oscillations. Typically, however,

the use of the fully implicit timesteps smooths out the function enough that oscillations are

not a problem.

Table 4.4 Value of a European digital put option using Rannacher timestepping and l2
projection. The input parameters are provided in Table 4.1. The convergence ratio R is
defined in equation (4.2). The exact solution is 0.854898 at S = 90, 0.387153 at S = 100,
and 0.077923 at S = 110. The number of points used for the FFT grid is 2α, where α
is the smallest integer such that the number of nodes in the non-uniform S grid p ≤ 2α.
Quadratic interpolation is used.

Size of No. of S = 90 S = 100 S = 110
S grid Timesteps Value R Value R Value R

128 25 0.855540 n.a. 0.387139 n.a. 0.077539 n.a.
255 50 0.855058 n.a. 0.387151 n.a. 0.077830 n.a.
509 100 0.854938 3.988 0.387152 7.157 0.077899 4.160
1017 200 0.854908 4.059 0.387153 2.219 0.077917 3.896
2033 400 0.854900 3.990 0.387153 3.590 0.077922 3.970
4065 800 0.854899 3.991 0.387153 4.124 0.077923 4.005
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We now investigate the application of Rannacher timestepping in the jump diffusion

context for a digital put option which pays $1 at maturity if the underlying stock price is

below the strike price, and zero otherwise. Table 4.4 presents a convergence study for the

digital put with jumps, using Rannacher timestepping (with two fully implicit steps) and

l2 projection. As shown in this table, quadratic convergence is generally achieved, though

perhaps a bit more erratically than for the vanilla payoff as shown in Table 4.3. Figure 4.3

provides plots of the solution value for a digital put along with the hedging parameters

delta (VS) and gamma (VSS).

We continue our numerical tests by pricing a butterfly spread using call options (i.e.

purchasing a low strike call, selling two middle strike calls, and buying a high strike call).

This provides an interesting test because the payoff pattern has a sharp kink at the middle

strike.

Table 4.5 Value of a European butterfly call option option using Rannacher timestepping.
The input parameters are provided in Table 4.1, except that the options used have strike
prices of 90, 100, and 110. The convergence ratio R is defined in equation (4.2). The exact
solution is 2.280396 at S = 95, 2.397189 at S = 100, and 2.004577 at S = 110. The number
of points used for the FFT grid is 2α such that α is the smallest integer p ≤ 2α, where p is
the number of nodes in the non-uniform S grid. Quadratic interpolation is used.

Size of No. of S = 95 S = 100 S = 110
S grid Timesteps Value R Value R Value R

128 25 2.279206 n.a. 2.396078 n.a. 2.002380 n.a.
255 50 2.280140 n.a. 2.396983 n.a. 2.004147 n.a.
509 100 2.280352 4.396 2.397166 4.947 2.004494 5.093
1017 200 2.280385 6.565 2.397182 11.412 2.004557 5.510
2033 400 2.280394 3.509 2.397188 3.043 2.004573 3.939
4065 800 2.280396 4.437 2.397189 5.125 2.004576 4.228

Table 4.5 presents our convergence test results. Rannacher timestepping is used. We

observe quadratic convergence, though it is somewhat erratic. When comparing the numer-

ical and analytic solution, we note that our algorithm produces very accurate answers, even
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Figure 4.3: Digital put option value, delta and gamma for Rannacher timestepping. The input
parameters are provided in Table 4.1.

on the coarsest initial grid with 128 nodes and 25 timesteps. No oscillations are present in

the solution or its derivatives (see Figure 4.4).
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(a) Butterfly call option price.
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(b) Butterfly call option delta.
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(c) Butterfly call option gamma.

Figure 4.4: Butterfly call option values, delta and gamma for Crank-Nicolson timestepping with
128 points with initial timestep 0.01. The input data is contained in Table 4.1. Two Rannacher
timesteps are used to smooth the initial data.

4.1.2 Probability Density function

Our next numerical tests incorporate the use of an automatic timestep size selector as de-

scribed in [54]. It is not generally possible to achieve second order convergence for American
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options using constant timesteps [44]. An initial timestep is given and the next timestep is

computed according to

∆τn+2 =

min
i

 dnorm
|V (Si,τn+∆τn+1)−V (Si,τn)|

max( D,|V (Si,τn+∆τn+1)|,|V (Si,τn)|)


∆τn+1, (4.3)

where dnorm is a target relative change (during the timestep) specified by the user. The

scale D prevents the timestep selector from taking an excessive number of timesteps in

regions where the value is small. In general it is set to D = 1.0 for options valued in

dollars.

The first test to incorporate variable timesteps involves an alternative distribution for

the jump size. Kou [55] suggests the double exponential distribution for the log jump size,

observing that it has desirable analytical properties. In the model of [55],

f(x) = pη1 exp(−η1x)H(x) + qη2 exp(η2x)H(−x), (4.4)

where η1 > 1, η2 > 0, p > 0, q = 1 − p > 0, and H(·) is the Heaviside function. As noted

in [55], the condition η1 > 1 is used to ensure that the proportional jump and stock price

have finite expectation. In this model, κ = E[J − 1] = pη1

η1−1 + qη2

η2+1 − 1.

To provide a basis for comparison with the lognormal distribution, we attempted to find

parameters for the double exponential distribution which match those used for the lognormal

distribution given in Table 4.1. This did not work well for those parameters, as the mean

is too far below zero, resulting in only the left tail of the double exponential being used.

To remedy this, we shifted the lognormal mean from its value of −.90 in Table 4.1 to −.10.

We then performed a numerical search to find parameters to match the first three central

moments of the two distributions as closely as possible. We obtained values of p = 0.3445,

η1 = 3.0465, and η2 = 3.0775. Figure 4.5 shows the double exponential probability density
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Figure 4.5: Overall comparison of the normal (µ = −.10, γ = .45) and double exponential proba-
bility density functions (p = 0.3445, η1 = 3.0465, η2 = 3.0775).

function and the normal probability density function for our parameter values. Note that

the double exponential distribution has a discontinuity at zero. This can be expected to

cause some problems for our numerical integration using an FFT method.

Table 4.6 Value of a European vanilla call option using Rannacher timestepping with
variable timestep sizes for the double exponential probability density function (4.4). The
timesteps are selected using equation (4.3), with dnorm = 0.1 on the coarsest grid, and
divided by two for each grid refinement. The input parameters are σ = 0.15, r = 0.05,
λ = 0.1, T = 0.25, K = 100, η1 = 3.0465, η2 = 3.0775, and p = .3445. The convergence
ratio R is defined in equation (4.2). The exact solution is 0.672677 at S = 90, 3.973479 at
S = 100, and 11.794583 at S = 110. The number of points used for the FFT grid is 8× 2α,
where α is the smallest integer such that the number of nodes in the non-uniform S grid
p ≤ 2α. Quadratic interpolation is used.

Size of No. of S = 90 S = 100 S = 110
S grid Timesteps Value R Value R Value R

128 34 0.671314 n.a. 3.969969 n.a. 11.78927 n.a.
255 65 0.672213 n.a. 3.972476 n.a 11.79248 n.a.
509 132 0.672535 2.791 3.973107 3.972 11.79367 2.688
1017 266 0.672630 3.358 3.973322 2.936 11.79416 2.431
2033 533 0.672660 3.225 3.973407 2.511 11.79438 2.244
4065 1067 0.672670 2.917 3.973445 2.281 11.79448 2.130
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(a) Call option value.
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(b) Call option delta.
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(c) Call option gamma.

Figure 4.6: Call option value, delta and gamma for Rannacher timestepping using the double
exponential probability density function (4.4). The input parameters are provided in the caption to
Table 4.6.

Table 4.6 presents numerical convergence tests for pricing a European call option. In an

attempt to deal with the discontinuity at zero, the number of points used on the uniform-

spaced x grid has been oversampled to a greater extent than in the lognormal case. In

particular, the number of points on the FFT grid is 8× 2α, where α is the smallest integer
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such that 2α is at least equal to the number of nodes in the S grid. Rannacher timestepping

is used. In contrast to our earlier examples, we do not obtain second order convergence

here. Instead the results indicate convergence at a linear (or perhaps slightly higher) rate

to the exact solution. Despite the discontinuity, we observe smooth solution plots for the

solution value, delta, and gamma in Figure 4.6.

Note that other numerical experiments indicate that we can achieve quadratic conver-

gence in the double exponential case if we restrict the parameters so that the distribution

is continuous at zero (i.e. set p = 0.50, η1 = η2). This still requires a heavily oversampled

FFT grid relative to the lognormal case in order to adequately capture the sharp peak of

the distribution.

4.1.3 American Numerical Examples

In this section we give a number of numerical examples which illustrate the performance

and convergence of our iteration scheme for American options. The examples are chosen

to demonstrate that for practical parameters values, the iterative method for solving the

discrete nonlinear algebraic equations at each timestep converges rapidly. In fact, the num-

ber of iterations required for convergence of European options (with jumps) is on average,

almost the same as the corresponding American option. We also verify that quadratic con-

vergence is obtained as the grid and timesteps are refined, for Crank-Nicolson timestepping.

In [44] the authors showed experimentally that in order to restore quadratic convergence

when pricing American put options, a timestep selector must be used. Consequently, as in

[44] we use a timestep selector (4.3) based on a modified form of that suggested in [54].

American Put Option Example

As a first example, we consider the case of an American put option under a jump diffusion

process.
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Table 4.7 Value of an American put, under jump diffusion process, S = 100, t = 0. The
input parameters are provided in Table 4.1. The label Itns is the total number of iterations
required in algorithm (3.3), for all timesteps. The label Change is the change from one
level of refinement and the next. The label Ratio is the ratio of changes. Crank-Nicolson
(modified using Rannacher [79] smoothing) and fully implicit timestepping is used with the
timestep selector defined by (4.3), where dnorm = .05 and the initial timestep ∆τ = .005,
on the coarsest grid. Grid and timestep sizes are reduced by half on each refinement.

Size of No. of Crank Nicolson
S grid Timesteps Itns Value Change R
127 40 121 3.2373512 n.a. n.a.
254 100 239 3.2404239 .0030727 n.a.
508 218 507 3.2410657 .0006418 4.8
1016 453 1044 3.2412099 .0001442 4.5
2032 924 2106 3.2412435 .0000336 4.3

Size of No. of Fully Implicit
S grid Timesteps Itns Value Change R
127 40 122 3.2257718 n.a. n.a.
254 100 254 3.2349932 .0092214 n.a.
508 218 507 3.2383450 .0033518 2.8
1016 454 1044 3.2398533 .0015083 2.2
2032 924 2060 3.2405629 .0007099 2.1

Table 4.7 shows the results for a convergence study. The timestep selector (4.3) is used.

The Rannacher modification for Crank-Nicolson timestepping suggested in [79] (initial two

steps fully implicit, followed by Crank-Nicolson thereafter) is used, since the payoff is non-

smooth. Table 4.7 also shows the results for fully implicit timestepping.

Bates [14] developed an analytic approximation for pricing American options under the

jump diffusion process of [66]. When comparing with our numerical algorithm, we found

that the analytic approximation of [14] is quite accurate for the out of the money case where

S = 110, about eight cents too low when S = 100, and around seventy cents too low for

the in the money case with S = 90. This suggests that (at least for our parameter values),
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Bates’ [14] approximation is not very accurate (in terms of absolute pricing error), unless

the option is deep out of the money.

Since the ratio of changes R in Table 4.7 appears to be approaching four as the grid

and timesteps are refined, this indicates that convergence is approximately quadratic in ∆S

and ∆τ . Table 4.7 also indicates that the average number of iterations per timestep for

algorithm (3.3) is of the order 2− 3.

Figure 4.7 compares the jump diffusion solution (jumps) for an American option with a

constant volatility Black-Scholes solution (no-jumps). To ensure a consistent basis for com-

parison, the volatility used in the no-jump model is the implied volatility which reproduces

the jump model price at S = K = 100. For a European call σimp = .1886. Note that the

jump model is significantly more valuable than the non-jump model at S = 110, due to the

high probability that a downward jump in the asset price can occur. Figure 4.8 shows the

delta (VS) and gamma (VSS) for the jump and no-jump models.
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Figure 4.7: The American put option value under the jump diffusion model is compared to the
no-jump model (i.e. Black-Scholes). The no-jump model has an implied volatility which gives the
same price as the jump model for a European option at the money. The input data is presented in
Table 4.1. For the jump model the value of the American put option at the strike (K = 100) is
V = 3.24116, while the value of the American put option under the no-jump model is V = 3.25682.
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Figure 4.8: American put option delta (VS), and gamma (VSS), jump diffusion model compared
with model with no jumps. The no-jump model has an implied volatility which gives the same price
as the jump model for a European option at the money. Data as in Table 4.1.

American Butterfly Example

A more challenging numerical example is given by the solution to an American butterfly.

Recall, a butterfly option has the payoff

V ∗ = max(S −K1, 0)− 2 max(S − (K1 +K2)/2, 0) + max(S −K2, 0) , (4.5)

(i.e. purchasing a low strike call K1, selling two middle strike calls (K1 +K2)/2, and buying

a high strike call K2). This provides an interesting test case because the payoff pattern has

a sharp kink at the middle strike. In our example, we assume the existence of an American

style contract which specifies the payoff (4.5) (K1 = 90,K2 = 110), and we assume that the

option can only be exercised early as a unit.

Table 4.8 shows a convergence study for the American butterfly. On each refinement,

new nodes are inserted between each pair of coarse grid nodes and the timestep size is
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approximately halved. Two timestepping methods were used. The implicit American con-

straint used Algorithm 3.3. The explicit American constraint used the following modifi-

cation. Using the notation introduced in equation (3.64), we iterate for Vk+1 (setting the

penalty term to zero)

[I − L

2
]Vk+1 = [I +

L

2
]V n +

λ∆τ
2

BVk +
λ∆τ

2
BV n. (4.6)

After the iteration has converged, we then set

V n+1 = max(V ∗,Vk+1) . (4.7)

In this case, we would expect that the time truncation error is O(∆τ). In fact, this is clearly

demonstrated in Table 4.8, since the ratio of changes appears to be asymptotically four for

the implicit Crank-Nicolson American approach (which indicates quadratic convergence)

compared to the asymptotic ratio of 2 (linear convergence) for the explicit American method.

It is interesting to see from Table 4.8 that the number of iterations for the implicit American

method is only slightly greater than for the explicit American technique. This indicates

that we can impose the American constraint implicitly at very little computational expense

compared to an explicit constraint method.

For comparison, we also show in Table 4.8 the results for a fully implicit discretization of

the PDE term, an explicit evaluation of the correlation integral, and an explicit application

of the American constraint. More precisely,

[I − L]Vn+1 = V n + λ∆τBV n

V n+1 = max(V ∗,Vn+1) . (4.8)

This method is unconditionally stable (a straightforward extension of the proofs in



CHAPTER 4. JUMP DIFFUSION: NUMERICAL RESULTS 75

Table 4.8 Value of an American butterfly, S = 105, t = 0, under the jump diffusion
process using the data presented in Table 4.1. American constraint applied implicitly is
presented first. Algorithm (4.6-4.7): American constraint imposed explicitly. Algorithm
(4.8): fully implicit PDE, explicit correlation integral, explicit American constraint. Itns
is the total number of iterations required in algorithm (3.3), for all timesteps. Change is
the change from one level of refinement to the next. Ratio is ratio of changes. Data as in
Table 4.1. Crank-Nicolson timestepping is used with the timestep selector defined by (4.3),
where dnorm = .05 and the initial timestep ∆tinit = .005, on the coarsest grid. Grid and
timestep sizes are reduced by half on each refinement.

Size of No. of Implicit American constraint
S grid Timesteps Itns Value Change R
127 44 133 5.2490795
254 111 249 5.2511148 .0020353
508 246 546 5.2515158 .0004010 5.1
1016 511 1130 5.2515839 .0000689 5.8
2032 1042 2280 5.2516010 .0000171 4.0

Size of No. of Method (4.6-4.7)
S grid Timesteps Itns Value Change R
127 43 129 5.2296200
254 111 222 5.2429331 .0179502
508 246 492 5.2475702 .0046371 3.9
1016 511 1022 5.2496169 .0020467 2.3
2032 1041 2082 5.2506144 .0009975 2.1

Size of No. of Method (4.8)
S grid Timesteps Itns Value Change R
127 43 43 5.1997845
254 111 111 5.2310288 .0312443
508 246 246 5.2423694 .0113406 2.8
1016 511 511 5.2471667 .0047973 2.4
2932 1041 1041 5.2493929 .0022262 2.0

Theorem 3.1 [29] shows this), and is clearly the cheapest method (per timestep). It is

also obvious that this method is consistent and monotone, and hence satisfies the sufficient
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conditions for convergence to the viscosity solution [11, 21]. However, convergence is clearly

only first order. As shown in [44], an explicit application of the American constraint can

result in oscillations in gamma near the exercise boundary.

Figure 4.9 shows the value of an American butterfly, with the jump diffusion model

(jumps) and the constant volatility Black-Scholes model (no-jumps). As described earlier,

the constant volatility Black-Scholes model uses an implied volatility which reproduces the

jump model price at S = 100 for a vanilla European call. The corresponding delta and

gamma are shown in Figure 4.10.
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Figure 4.9: American butterfly option value, jump diffusion model compared with model with no
jumps. The no-jump model has an implied volatility which gives the same price as the jump model
for a European option at the money. Data as in Table 4.1 K1 = 90,K2 = 110. For the no-jump
case the American put option is valued using σ = σimp = .1886.

It is common in financial applications to impose the boundary condition VSS = 0, S →

∞. Consequently, we have repeated our numerical experiments using the boundary con-

dition VSS = 0, S → ∞ , which has the result that the coefficient matrices are no longer

M-matrices and our convergence proofs no longer apply. In all cases the number of iterations

required for convergence was virtually identical to the case where a Dirichlet condition was
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(a) American put option delta.
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Figure 4.10: American put option delta (VS), and gamma (VSS), jump diffusion model compared
with model with no jumps. The no-jump model has an implied volatility which gives the same price
as the jump model for a European option at the money. Data as in Table 4.1. For the no-jump case
the American put option is valued using σ = σimp = .1886.

imposed. The solutions also agreed up to six figures.

4.1.4 Exotic Options

The last set of results to be presented are for the case of a European call option with a

Parisian knock-out feature. The particular case we consider here is an up-and-out call with

daily discrete observation dates. This contract ceases to have value if S is above a specified

barrier level for a specified number of consecutive monitoring dates. This can be valued by

solving a set of one-dimensional problems which exchange information at monitoring dates

[86]. It is easy to incorporate jumps by simply adding a jump integral term to each of the

one-dimensional problems. Other path-dependent contracts such as Asian options can also

be handled using this approach of solving a set of one-dimensional problems [95].

For our test, the barrier is set at S = 120 and the required number of consecutive daily

observations for knock-out is 10. We consider the lognormal jump distribution case with the
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same input parameters as in Table 4.1. Note that we specify the barrier observation interval

as 1/250, based on 250 trading days per year. In Table 4.9, we present our convergence

results. We use constant timestepping (∆τ = .002 on the coarse grid) and the solution is

l2 projected after each barrier observation date. Rannacher timestepping is used after each

observation. As expected, quadratic convergence is obtained.

Table 4.9 Value of an up-and-out Parisian call option using Rannacher timestepping with
constant timesteps (∆τ = .002 on the coarsest grid) and l2 projection. The input parameters
are given in Table 4.1. The barrier is set at S = 120 and 10 consecutive daily observations
are required to knock-out. The convergence ratio R is defined in equation (4.2). The number
of points used for the FFT grid is 2α, where α is the smallest integer such that the number
of nodes in the non-uniform S grid p ≤ 2α. Quadratic interpolation is used.

Size of No. of S = 90 S = 100 S = 110
S grid Timesteps Value R Value R Value R

101 125 0.524766 n.a. 4.193418 n.a 8.762555 n.a.
201 250 0.523168 n.a 4.212131 n.a 8.779253 n.a.
401 500 0.522761 3.930 4.216747 4.053 8.782267 5.540
801 1000 0.522660 4.002 4.217902 3.997 8.783008 4.068
1601 2000 0.522634 4.015 4.218192 3.990 8.783199 3.875

In Figure 4.11, we compare the solutions of a Parisian call knock-out option with discrete

daily observation dates with and without jumps.

We observe in Figure 4.11 that the difference in pricing can be significant for these

parameter values, depending on the underlying asset price. The largest differences are near

S = 110, where the model with jumps produces values of about 8.78 (as shown in Table 4.9),

but the values for the no-jump model are around 7.25. For S ranging between about 98

and around 119, the jump model produces higher option values, but outside this range (in

either direction) the model without jumps produces higher values.
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Figure 4.11: Parisian knock-out call option with discrete daily observation dates with and without
jumps. The barrier is set at S = 120 and the number of consecutive daily observations to knock-out
is 10. In the no-jump case the Parisian knock-out call option is priced using σ = σimp = .1886.

Table 4.10 Number of iterations for a European call option under jump diffusion using
Crank-Nicolson timestepping. The input parameters are provided in Table 4.1. The con-
vergence tolerance tol is defined in Algorithm 3.2.

Number of points N Timesteps Iterations (tol = 10−6) Iterations (tol = 10−8)
128 25 77 100
255 50 150 200
509 100 300 390
1017 200 600 600
2033 400 1091 1200
4065 800 1600 2400

4.1.5 Remarks on Numerical Examples

It is worth concluding this section by making some comparisons with another method which

have been proposed in the literature. When pricing options under the jump diffusion process,

the main computational cost is the evaluation of the integral term of (3.5). The approach

presented in [5] is based on a FFT-ADI finite difference method. This method evaluates the

convolution integral twice at each timestep, thus requiring a total of four FFT computations

(two forward FFTs, and two reverse FFTs). Note that the method in [5] is second order
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accurate and unconditionally stable for European options. If N is the number of timesteps,

and p the number of nodes in the S grid, then both the method in [5] and the method in

this work have complexity O(Np log p).

In Table 4.10, we see that the number of iterations required for convergence (at each

timestep) depends on the convergence tolerance. For a typical convergence tolerance of 10−6,

at most three iterations per step are required (on average). In this case, about six FFT

computations are required per timestep. Consequently, for vanilla European options (with

jumps), the method of [5] may be more efficient than the pure Crank-Nicolson timestepping

method developed here. However, in the case of American options, it is not clear how the

approach in [5] could be modified to handle the early exercise constraint implicitly, unless

some form of iteration is used. In contrast, our technique can handle implicit treatment of

the American constraint in a straightforward fashion.

4.2 Summary

The main results of this chapter are as follows:

• We showed that quadratic convergence was obtained when pricing a wide variety of

financial options. Even if the initial conditions were not smooth (such as for digital

options or Parisian options), quadratic convergence was recovered.

• We showed that for typical values of the timestep size and Poisson arrival intensity,

the l∞ error is reduced by two orders of magnitude at each iteration. On average

three iterations per timesteps were enough for the fixed point algorithm to achieve

convergence.

• We showed that when pricing American options under the jump diffusion process, the

number of iterations per timesteps is relatively unchanged compared to pricing vanilla

options under the jump diffusion process.
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• In contrast with previous work, we did not assume that the grid was equally spaced

in either the underlying asset price or its logarithm. Linear interpolation between the

option grid and the fft grid did not affect the rate of convergence.

• Unlike previous work, the method developed here uses implicit timestepping for both

the correlation integral term and the American constraint. As a result, we obtained

higher order convergence (in terms of timestepping error) compared with previous

methods which treat the correlation integral or the American constraint explicitly.



Chapter 5

Semi-Lagrangian Approach for

Path Dependent Options

Recall equation (2.18) from Chapter 2, which gives the value of investment in telecommu-

nication equipment:

Vt + α(η −Q)VQ +R+ λ

∫ ∞

0
V (η,QJ, t)g(J)dJ

+
1
2
η2σ2Vηη + η(µ− ζσ)Vη − (r + λ)V = 0. (5.1)

The objective of this thesis is to solve equation (5.1) to determine when it is optimal to add

new capacity to existing telecommunication infrastructure. In the two previous chapters

(Chapter 3 and 4), an efficient method was presented to handle the integral term in equation

(5.1). However another important numerical issue must be dealt with before proceeding any

further. Equation (5.1) is a two dimensional PIDE with no diffusion in the demand direction

(Q). Classically, equations with no diffusion are solved using non-linear flux limiters [95, 94].

In this thesis, a semi-Lagrangian method is proposed as an alternative to solve equation

(5.1). To validate our approach, we consider a two dimensional PDE taken from the financial

82
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derivative pricing literature. A financial application (i.e. Asian option) was selected since

the convective term becomes infinite as τ → T , hence this is an extremely difficult problem.

5.1 Introduction

An Asian option gives the holder a payoff that depends on the average price of the un-

derlying asset over a specified period of time. Asian-style derivatives have a wide variety

of applications in equity, energy, interest rate, and insurance markets. To the best of our

knowledge, they were first introduced in [20]. For an historical review of Asian options, see

[19].

Asian derivatives are very popular for several economic reasons. First, since the volatility

of the average price is less than the volatility of the price, Asian options are less expensive

than regular vanilla options. Second, while for some classes of derivatives it is possible

for large market participants to manipulate the price of illiquid commodities, it is much

harder to manipulate the average price over a period of time. Finally, companies are often

more interested in the average price of oil or foreign exchange rate, than the underlying

price or rate, when considering long term projects. For example, airline companies are

certainly more interested in buying oil based on its average price instead of its spot price.

Consequently, pricing Asian options accurately is critical.

The price of an Asian option at any time is a function of both the underlying asset at

that time and the average of the underlying prices up to that time; as such these options are

considered path-dependent. In practice, Asian option contracts specify that the average is

monitored discretely. A typical situation would be to base the average on the daily closing

price. In [34] it is shown that if daily averaging is used, then for typical market parameters,

for options with expiry times more than three months, for all practical purposes (i.e. 1%

accuracy) these options can be considered as being continuously monitored. In addition,
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if we need to price long term (greater than one year) Asian options, then using timesteps

of one day (which would be required in a discrete observation model [95]) would clearly be

computationally wasteful. Consequently, in this chapter we focus on continuously observed

Asian options. For details on numerical methods for discretely observed Asian options, we

refer the readers to [28, 27, 95, 45].

In general, a two dimensional PDE must be solved to price an Asian option. In certain

special cases, for example, constant volatility, no barrier features, and a floating strike

contract, this problem can be reduced to a one-dimensional PDE [8]. However, in the

general case (i.e. American style, asset dependent barriers or volatility), the two dimensional

PDE cannot be reduced to one dimension. This PDE is difficult to solve, since the pricing

equation has no diffusion in one of the coordinate directions. In [94, 96], a non-linear flux

limiter was used to retain accuracy while preventing oscillations. In [62], the first order

hyperbolic term was discretized using a first order upwind type method, resulting in at

most first order accuracy. In [69], a semi-Lagrangian (SL) method was used to discretize the

hyperbolic term in the average direction. Semi-Lagrangian schemes were first introduced by

[36] and [72] for atmospheric and weather numerical predictions. These are time marching

schemes that integrate convection-diffusion equations by tracing the characteristic backward

in time. These schemes are used to reduce numerical issues raised by convection dominated

equations. In principle, provided an appropriate time discretization and a high enough

order of interpolation to recover values at the feet of the characteristic curves [43, 2, 16],

then SL methods are able to have greater than first order convergence as the grid and the

timestep size are reduced. As such SL schemes can provide much more accurate solution

when comparing to the more traditional methods for pricing Asian options where high

order timestepping schemes (e.g. Crank-Nicolson, second order backward differencing) are

used but the jump condition is applied explicitly. For example, this standard approach

was demonstrated in [95], and only first order (in time) convergence was obtained. The
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semi-Lagrangian approach is particularly attractive, since only a small change to existing

software (which uses the traditional approach of an explicit jump condition) is required to

obtain higher oder convergence.

5.2 Mathematical Model

Let S represent the underlying stock price. Potential paths followed by the stock can be

modeled by the stochastic process given by equation (3.1).

When the average is monitored continuously [12, 89, 45], the arithmetic average A is

defined as

A =

∫ t
0 S(u)du

t
,

dA =
(S −A)dt

t
. (5.2)

Using standard arguments [12], the value of an option depending on the average A (5.2)

and S (3.1) is given by

Vt +
1
2
σ2S2VSS +

(S −A)
t

VA + (r − λκ)SVS − (r + λ)V + λ

∫ ∞

0
V (SJ)g(J)dJ = 0, (5.3)

where r is the continuously compounded risk free interest rate. Since we are solving back-

ward in time from the expiration time t = T to the present time t = 0, equation (5.3)

becomes

Vτ =
1
2
σ2S2VSS +

(S −A)
T − τ

VA + (r − λκ)SVS − (r + λ)V + λ

∫ ∞

0
V (SJ)g(J)dJ, (5.4)

where τ = T − t. It is important to note that equation (5.4) has no diffusion term in the A

direction and this is the source of many numerical difficulties [94].
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In order to completely specify our problem, boundary conditions for equation (5.4) must

be specified. For the terminal boundary conditions, a number of common payoffs for pricing

different types of Asian securities can be used. Typical examples include

• fixed strike call: V (S,A, τ = 0) = max(A−K, 0),

• fixed strike put: V (S,A, τ = 0) = max(K −A, 0).

For the non-terminal boundary conditions, at S = 0 equation (5.4) reduces to

Vτ =
−A
T − τ

VA − rV. (5.5)

Note that no boundary conditions are required at A = 0 or as A → ∞, since the charac-

teristics of the PIDE are outgoing in the A direction. The boundary condition at S → ∞

is, however, more difficult to specify and requires additional justification. If we make the

common assumption that VSS → 0 as S →∞, then this implies that

V ' f(A, τ)S + g(A, τ) (5.6)

as S →∞ which then means that equation (5.4) becomes

Vτ =
S −A

T − τ
VA + rSVS − rV. (5.7)

For A very large and S → ∞, we can approximate the solution to equation (5.7) (see [68]

for details) by

V ' H1(τ)A+H2(τ)S +H3(τ) (5.8)
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so that

V ' D1

T
e−rτ (T − τ)A+

[
D1

rT
(1− e−rτ ) +D2

]
S +D3e

−rτ (5.9)

where D1, D2, D3 are independent of (S,A, τ) and are determined by the payoff. For ex-

ample, for a fixed strike call, D1 = 1, D2 = 0, D3 = −K. We then use equation (5.9) at all

points on S = Smax (which is clearly an approximation for A small) so that

VS '
[
D1

rT
(1− e−rτ ) +D2

]
;S →∞. (5.10)

Substituting equation (5.10) into equation (5.7) gives

Vτ =
(
S −A

T − τ
VA + υ(S, τ)− rV

)
;S →∞, (5.11)

where

υ(S, τ) =
[
D1

rT
(1− e−rτ ) +D2

]
rS. (5.12)

The use of approximation (5.10) is discussed in [68], where it is mentioned that estimate

(5.10) is in fact an upper bound for VS . It must be admitted that use of equation (5.9) at

all points along S = Smax is not rigorously justified. However, we note that other authors

[62] simply specify that the boundary condition at S = Smax is set to the payoff. In [62],

the size of the computational domain is increased as the grid size is reduced, so that the

effect of poor specification of the boundary condition becomes negligible. In any case, some

numerical experiments are included with varying choice of Smax to show that in practice

this specification is not critical.

In practice, we solve for the solution of equation (3.61) on the finite computational
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domain [0, Smax] × [0, Amax]. Usually Smax = Amax. If Smax is sufficiently large, then the

errors introduced by imposing condition (5.11) are small in regions of interest. This will be

verified in some numerical experiments.

For the payoffs mentioned earlier, the corresponding formulas for υ(τ, S) are given by

• fixed strike call: υ(S, τ) = (1−e−rτ )
T S

• fixed strike put: υ(S, τ) = 0 .

5.3 Semi-Lagrangian Discretization

This section explores different discretization methods for the partial differential equation

using the semi-Lagrangian approach. Before proceeding any further, let us introduce the

following definitions. We use an unequally spaced grid in S coordinates for the PDE dis-

cretization [S0, . . . , Simax], and similarly use an unequally spaced grid in the A direction

[A0, . . . Ajmax]. Let

V n
i,j = V (Si, Aj , τ

n) (5.13)

denote the solution at asset price node Si for the average Aj and time level n. Let L be the

differential operator represented by

LV ≡ 1
2
σ2S2VSS + (r − λκ)SVS − (r + λ)V, (5.14)

and

IV ≡ λ

∫ ∞

0
V (SJ)g(J)dJ. (5.15)

Equation (5.4) can then be rewritten as

Vτ −
(S −A)
T − τ

VA = LV + IV. (5.16)
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We use standard finite difference methods to discretize the operator LV (see Chapter

3 and [73]). If we impose boundary condition (5.11), and use forward and backward dif-

ferencing as appropriate, it is easy to see that the discrete form of [I − LV ]i (where I is

the identity matrix) is an M-matrix. As discussed in [73], for typical values of σ, r, upwind

differencing of the VS term in equation (5.16) is required only rarely, and usually remote

from regions of interest, so that in practice this does not impact solution quality. Requiring

the discrete form of LV to be an M-matrix has interesting theoretical properties. In the

following, we denote the discrete form of LV at S = Si, A = Aj , τ = τn by (LV )n
i,j .

Keeping S constant, the Lagrangian derivative along a trajectory A = A(S, τ) is

DV

Dτ
=

∂V

∂τ
+
∂V

∂A

dA

dτ
. (5.17)

Along the trajectory
dA

dτ
=
A− S

T − τ
(5.18)

equation (5.16) can be written as written as

DV

Dτ
= LV + IV. (5.19)

Let A = A(Si, Aj , τ
n+1, τ) be a trajectory satisfying equation (5.18), which passes through

the discrete grid point (Si, Aj) at τ = τn+1. Let V n
i,j(i,n+1) = V (Si, A

n
j(i,n+1), τ

n) be the

value of the option price at the feet An
j(i,n+1) = A(Si, Aj , τ

n+1, τn) of the characteristic

curve defined by equation (5.18). Note that An
j(i,n+1) will not necessarily coincide with a
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grid point Aj . An
j(i,n+1) is determined by solving

dA

dτ
=

A− Si

T − τ
,

A = Aj ; τ = τn+1,

An
j(i,n+1) = An+1

j +
∫ τn

τn+1

(
dA

dτ

)
dτ . (5.20)

from τ = τn+1 to τ = τn. In general, the integration in equation (5.20) must be computed

numerically and the integration method should have an error one order higher than the

timestepping method used to approximate the Lagrangian derivative [2]. Figure 5.1 graph-

ically presents how the value V n
i,j(i,n+1) is found by tracing back along the characteristic

path A = A(Si, Aj , τ
n+1, τ).
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τ

τn+1 V n+1
i,j

A

i, j − 1 i, j

τn

dA
dτ = S−A

T−τ

V n
i,jV n

i,j−1

V n
i,j(i,n+1)

Figure 5.1: The value of V n
i,j(i,n+1) = V (Si, A

n
j(i,n+1), τ

n) is traced back along the characteristic
path A = A(Si, Aj , τ

n+1, τ). V (Si, A
n
j(i,n+1), τ

n) is found by interpolation along the A direction.

Discretizing equation (5.19) along the characteristic trajectory for different timestepping

schemes gives, in the case of fully implicit timestepping:

V n+1
i,j − V n

i,j(i,n+1)

∆τ
= (LV )n+1

i,j + (IV )n+1
i,j , (5.21)
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for Crank-Nicolson timestepping (CN),

V n+1
i,j − V n

i,j(i,n+1)

∆τ
=

1
2

[
(LV )n+1

i,j + (IV )n+1
i,j

]
+

1
2

[
(LV )n

i,j(i,n+1) + (IV )n
i,j(i,n+1)

]
, (5.22)

and for second order backward differencing (BDF) [15]

1
2V

n+1
i,j − 2V n

i,j(i,n+1) + 1
2V

n−1
i,j(i,n+1)

∆τ
= (LV )n+1

i,j + (IV )n+1
i,j . (5.23)

For ease of exposition, we have written equation (5.23) for constant timesteps. This is

trivially generalized to non-constant timesteps [15].

Unlike traditional applications of the semi-Lagrangian approach where the characteristic

curve must be estimated numerically, for Asian options the solution along the characteristic

curve can be determined exactly. Regarding S as a constant, and solving equation (5.18)

gives

A = Si +
C

T − τ
, (5.24)

where C is a constant. At τ = τn+1, A = An+1
j , so that

At time τn : An
j(i,n+1) = An+1

j +
(Si −An+1

j )(τn+1 − τn)
T − τn

,

At time τn−1 : An−1
j(i,n+1) = An+1

j +
(Si −An+1

j )(τn+1 − τn−1)
T − τn−1

, (5.25)

where T ≥ τn+1 > τn > τn−1. It is interesting to observe that for the last step when

τn+1 = T , equation (5.25) simplifies to An
j(i,n+1) = An−1

j(i,n+1) = Si.

The various quantities (·)n
i,j(i,n+1) in equations (5.21-5.23) are determined by interpola-

tion along lines of constant S = Si. Assuming that the S derivatives and the integral term

are discretized using second order accurate methods, then it follows from [16] that at least

quadratic interpolation should be used for (·)n
i,j(i,n+1) so as to retain global second order
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convergence.

5.4 Semi-Lagrangian Timestepping and Discrete Observation

It is common to consider continuously observed Asian options as the limit of discretely

observed Asian options as the observation interval tends to zero [28, 84]. In this section,

we show that if the discrete sampling period is equal to the discrete PDE timestep, then

a fully implicit, discretely sampled model is algebraically identical to a fully implicit semi-

Lagrangian discretization of a continuously observed model. In the following, for simplicity

the effect of the boundary condition (5.11) are ignored.

Consider the discrete average computed at discrete averaging times tl = l∆t.

A(tl) =
1
k

k=l∑
k=1

S(tk). (5.26)

Equation (5.26) can be written

A(tl+1) = A(tl) +
S(tl+1)−A(tl)

l + 1
. (5.27)

Now, when using a PDE method to price a discretely observed Asian option, we consider

that V = V (S,A, t), and regard (S,A) as independent variables. Suppose we have N

observation dates, at the times ∆t, 2∆t, ..., N∆t = T . Then at the l′th observation date we

must have, by no arbitrage [89]

V (S,A(tl+1), t(l+1)+) = V (S,A(tl), t(l+1)−),

A(tl+1) = A(tl) +
S −A(tl)
l + 1

, (5.28)

where t(l+1)+, t(l+1)− are the instants just after and before the observation date tl+1. Note
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that A(tl+1) is regarded as constant for tl+1 < t < tl+2. Now let l = N −k, so that k counts

backwards. Note that τk = k∆τ and that

tl = l∆t = (N − k)∆t = T − (k∆τ) = τk, (5.29)

and similarly tl+1 = τk−1. As well, we have that t(l+1)+ = τ (k−1)−, t(l+1)− = τ (k−1)+, and

writing jump condition (5.28) in terms of τ = T − t, gives

V (S,A(τk), τk−) = V (S,A(τk+1), τk+),

A(τk) = A(τk+1) +
S −A(τk+1)

N − k
. (5.30)

Note that in this case we regard A(τk+1) as fixed during τk < τ < τk+1.

Consider the case of a discretely observed European Asian option. In this case we solve

Vτ = LV + IV (5.31)

on the domain [0, Simax]×[0, Ajmax], with the jump conditions (5.30) imposed at observation

times. Away from observation dates, if we discretize equation (5.31) in the A direction, then

equation (5.31) represents a set of one dimensional PIDEs, which communicate only through

jump conditions [28].

We can write the jump condition (5.30) as

V (S,Ak, τk−) = V (S,Ak+1, τk+)

Ak = Ak+1 +
(S −Ak+1)∆τ

T − τk
(5.32)

where we have used the notation A(τk) = Ak.

Recalling that Ak+1 is constant during τk+ ≤ τ ≤ τ (k+1)− then a fully implicit dis-
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cretization of equation (5.31) gives

V (Si, A
k+1
j , τ (k+1)−)− V (Si, A

k+1
j , τk+)

∆τ
= (LV )k+1

i,j + (IV )k+1
i,j . (5.33)

Note that this is a set of independent one dimensional PDEs (there are no A derivatives

in equation (5.33), Ak+1
j appears only as a parameter). Using the jump condition (5.32) in

equation (5.33) gives

V (Si, A
k+1
j , τ (k+1)−)− V (Si, A

k
j(i,k+1), τ

k−)

∆τ
= (LV )k+1

i,j + (IV )k+1
i,j

Ak
j(i,k+1) = Ak+1

j +
(S −Ak+1

j )∆τ
T − τk

(5.34)

which we recognize from equation (5.21) and equation (5.25) as being algebraically identical

to a semi-Lagrangian, fully implicit discretization.

Note that in order for this result to hold, we must have discrete observations at t =

∆t, 2∆t, ..., N∆t, i.e. no observation at t = 0. Of course, in the limit as ∆t→ 0, adding an

extra observation at t = 0 will be the same to O(∆t) as the semi-Lagrangian solution.

Remark 5.1. As discussed in [95], it is straightforward to show that the common lattice

methods used to price Asian options [53] are simply explicit finite difference methods for

discretely observed models of Asian options. In many lattice applications, the observation

interval is set to the lattice timestep, hence the continuously observed price is computed in

the limit of vanishing timestep. A straightforward extension of the results above can be used

to show that these lattice methods are simply explicit semi-Lagrangian methods. In this case,

it is also easy to derive the conditions on the order of interpolation and the spacing on the

lattice in the average direction to ensure optimal convergence. We note that, as discussed

in [95], this is a point of confusion in the finance literature, and has led to schemes which

are not, in fact, convergent [12].



CHAPTER 5. SEMI-LAGRANGIAN APPROACH FOR PATH DEPENDENT
OPTIONS 95

5.5 Properties of the Discrete Equations

In the following, the properties of the discrete equations are investigated. We first, note that

the algebraic equations (5.34) are decoupled for each line of constant Aj at each timestep,

resulting in a set of one dimensional discrete PIDEs. Hence we can use the techniques in

Chapter 3 and in [44, 73, 29, 32] to prove certain properties of the discretized equations. In

the following we give sketches of the proofs of these properties.

5.5.1 Preliminaries

Define the matrix L such that

[
L · V n

j

]
i
= ∆τ (LV )n

i,j + interpolation error, (5.35)

and

λ
[
B · V n

j

]
i
= (IV )n

i,j + interpolation error, (5.36)

where V n
j is the vector of discrete solution values

[
V n

j

]
i

= V (Aj , Si, τ
n) for fixed Aj . A

detailed description of B and L are given in Chapter 3 equations (3.51) and (3.52). To

avoid algebraic complication, the discrete equations, and the method used to solve the alge-

braic equations, are described only for the fully implicit and Crank-Nicolson timestepping

methods. The reader should have no difficulty generalizing the results to the BDF case.

Let Φn+1 be the Lagrange interpolation operator such that

(Φn+1 · V n)i,j = V (Si, A
n
j(i,n+1), τ

n) + interpolation error (5.37)

where Φn+1 is a linear operator for any order (linear, quadratic) of interpolation. Then the



CHAPTER 5. SEMI-LAGRANGIAN APPROACH FOR PATH DEPENDENT
OPTIONS 96

matrix form of the discrete equations is given by

[I − (1− θ)L]V n+1
j =

[
Φn+1[I + θL+ θλ∆τB]V n

]
j
+ (1− θ)λ∆τBV n+1

j + ∆τFn+1
j (5.38)

for j = 1, . . . , jmax. Here θ = 0 is fully implicit, and θ = 1/2 is Crank-Nicolson timestep-

ping. The term Fn+1
j is used to approximate the boundary condition at S = Simax. The

boundary condition is also enforced at i = imax by setting

Limax,l = 0 and Bimax,l = 0 (5.39)

for l = 1, . . . , jmax and letting

[
Fn+1

j

]
i
=

 0 , i 6= imax

(1− θ)υ(Si, τ
n+1) + θυ(Si, τ

n) , i = imax
(5.40)

where υ(S, τ) is defined in equation (5.12).

The choice of interpolation scheme is discussed in [45] and [43]. Specifically, if the

interpolation error does not get damped out, the global interpolation error after N timesteps

is O
(

(∆Smax)q

∆τ

)
, where q = 2 for linear interpolation, q = 3 for quadratic interpolation and

∆Smax = maxi(Si+1−Si). Assuming second order in space and time truncation errors, the

global discretization error is

global discretization error = O

[
(∆Smax)q

∆τ
+ (∆Smax)2 + (∆τ)2

]
, (5.41)

If we assume ∆Smax = const.h and ∆τ = const.h, then equation (5.41) reduces to

global discretization error = O
[
min((hq−1, h2)

]
(5.42)
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5.5.2 Monotonicity, Stability and Convergence of the Nonlinear Iteration

As in Chapter 4, we may have non-smooth solutions to equation (5.4). This may be due

to the degeneracy of the diffusion operator (no diffusion in the A direction), and due to

possible non-smoothness in the payoff function. In these cases, we seek the viscosity solution

to equation (5.4) [11]. In the following we investigate the properties of equation (5.38)

concentrating on monotonicity and stability as in Chapter 4.

It is convenient to gather together a set of conditions required for the following results:

Conditions 5.1.

• [I − L] is an M -matrix [equation (5.38)];

• [B · V n
j ]i '

∑
k bikVkj [equation (5.35)], 0 ≤ bik ≤ 1 and

∑
k bik ≤ 1;

• Linear interpolation is used [equation (5.37)];

• Boundary conditions (5.39) and (5.40) are employed.

Remark 5.2. These conditions are satisfied if we use the discretization methods presented

in Chapter 3.

Lemma 5.1 (Stability of the fully implicit scheme (θ = 0, equation (5.38))).

The discretization method (5.38) is unconditionally stable provided that conditions 5.1 are

satisfied.

Proof. The use of semi-Lagrangian timestepping decouples the discrete equation at each

timestep into a set of one dimensional discrete PIDEs. Consequently, using similar argu-

ments as in Theorem 3.1, Chapter 3, it follows that equation (5.38) for θ = 0 is uncondi-

tionally stable.

Lemma 5.2 (Monotonocity of the discretization). The fully implicit discretization

(5.38) is monotone provided that conditions 5.1 are satisfied.
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Proof. This proof is a trivial extension of the proof of Lemma 3.1, Chapter 3, and is omitted.

Remark 5.3 (Extension to nonlinear models). It is completely straightforward to

include a transaction cost or uncertain volatility model in the basic option pricing PDE

[75], which makes the PDE nonlinear (even in the European case). For example, using the

methods in [75], it is a simple exercise to extend the above stability and monotonicity results

to the case of an American Asian option, with jumps and transaction costs [30].

Theorem 5.1 (Iterative solution of the discretized equations). The nonlinear alge-

braic equations (5.38) are solved using Algorithm 5.1. Provided that the conditions 5.1 are

satisfied, then the fixed point iteration Algorithm 5.1 is globally convergent.

Proof. The discrete equations (5.38) are decoupled for each line of constant Aj . Hence the

issue of convergence of Algorithm 5.1 reduces to the convergence of each set of equations

for constant j, hence the results follows from Theorem 3.3 in Chapter 3.

Algorithm 5.1 Fixed point iteration scheme to price Asian option using a semi-Lagrangian
approach.

Let (V n+1
j )0 = V n

j

Let V̂j
k

= (V n+1
j )k

for k = 0, 1, 2, . . . until convergence do
Solve
[I − (1− θ)L] V̂j

k+1
=
[
φn+1 [I + θL+ θλ∆τB]V n

]
j
+ (1− θ)λ∆τBV̂j

k
+ ∆τFn+1

j

if maxi
|V̂ k+1

i,j −V̂ k
i,j |

max(1,|V̂ k+1
i,j |)

< tolerance then

Quit
end if

end for

Remark 5.4 (Monotonicity of Crank-Nicolson (θ = 1
2)). Crank-Nicolson is only con-

ditionally monotone, hence only conditionally satisfies the sufficient conditions in [11, 21].
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However, if the Rannacher modification of Crank-Nicolson is used, then, consistent with

the results in [73], our experimental computations indicate that fully implicit and Crank-

Nicolson timestepping converge to the same solution. We conjecture that convergence to the

viscosity solution can be obtained under somewhat weaker conditions than strict monotonic-

ity as suggested in [11].

5.6 Computational Details and Numerical Results

This section presents numerical results for various options and payoffs. We begin our

presentation of results by an analysis of the convergence rate of a continuously observed

fixed strike Asian option with no jump (λ = 0). We use an unequally spaced grid in the A,S

directions, on the domain [0, Simax]× [0, Ajmax], with Ajmax = Simax (details regarding the

grids that are used in this Chapter can be found in Appendix I). Probabilistic arguments

can be used to determine an appropriate value for Simax [84]. We use Simax = 50K, where

K is the strike. We describe below some tests which were carried out to verify that the effect

of imposing boundary conditions at S = 50K results in insignificant error. The convergence

tolerance in iteration (3.3) was tol = 10−6. If Crank-Nicolson or BDF timestepping is

used, then quadratic interpolation is used in equation (5.37). If fully implicit timestepping

is employed, then linear interpolation is used in equation (5.37).

Given an A grid discretization, the discrete PDEs (5.21-5.22) become decoupled. At

each timestep, we have a set of independent one dimensional discrete PDEs to solve. This

property makes solution of the continuously observed Asian option straightforward to im-

plement, given an existing library which supports pricing of path dependent options.

As pointed in equation (5.42), it is necessary to use at least a quadratic Lagrange

interpolation scheme to find the solution along the characteristic curve, if we hope to obtain

quadratic convergence. This will, however, result in a scheme which is not monotone. The
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convergence ratio R is defined by equation (4.2).

Table 5.1 Value of a continuously observed fixed strike European Asian call option (no
jumps) with constant timesteps. The input parameters are σ = .1, r = .1, T = .25 and
K = 100. We compare the results given using the Večeř [87] one dimensional model, and
the semi-Lagrangian method presented here. Crank-Nicolson timestepping was used.

semi-Lagrangian Večeř 1-D PDE [87]

Size of No. of S = 100 Size of No. of S = 100
S and A grids timesteps Value R S grids timesteps Value R

51 25 1.857193 n.a. 51 25 1.839863 n.a.
101 50 1.853254 n.a. 101 50 1.848642 n.a
201 100 1.852120 3.475 201 100 1.850851 3.974
401 200 1.851781 3.338 401 200 1.851407 3.979
801 400 1.851660 2.815 801 400 1.851546 3.987

Table 5.1 shows results for a low volatility case, European Asian option (no jumps),

using the semi-Lagrangian approach. In this special case, the two dimensional PDE can be

reduced to one dimension [87], which we refer to as the Večeř PDE [87] in the following.

Results obtained by solving the Večeř PDE numerically are also given in Table 5.1.

In Table 5.1, we observe that the convergence ratio R for the semi-Lagrangian method

is not quadratic (R 6= 4), while for the Večeř PDE [87] quadratic convergence is found. As

discussed in [87], the Večeř PDE is not convection dominated, hence it is straightforward

to obtain accurate numerical solutions. We remind the reader that this clever reduction

to one dimension cannot be used for American options. The non-smooth payoff greatly

affects the convergence of the semi-Lagrangian method. There is very little diffusion in the

A direction, and the payoff non-smoothness at the strike is not smoothed out during the

solution phase. It is probable that since quadratic interpolation is used in the A direction

in order to determine the values of the solution at the feet of the characteristic curves (see

Figure 5.1), the interpolation may be affected by the non-smooth payoff, and may lower the

observed rate of convergence.
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Next the effect of the boundary condition (5.11) at S = Simax is considered. Two

different values for Simax are used and the results are presented in Table 5.2. This table

seems to indicate that there is a negligible error for options of this maturity incurred by

setting Simax = 50K. All subsequent results will be reported imposing condition (5.11) at

Simax = 50K.

Table 5.2 Value of a continuously observed fixed strike Asian call option at S = K = 100,
constant Crank-Nicolson timestepping. The input parameters are σ = .1, r = .1, T = .25,
K = 100. Convergence ratios (4.2) are presented for different timestepping schemes. The
right boundary of the space discretization [0, Simax] domain is truncated at different values.

Simax = 5×K Simax = 50×K
Timesteps S,A grid nodes Value S,A grid nodes Value

25 51 1.857193 54 1.857193
50 101 1.853254 109 1.853254
100 201 1.852120 217 1.852120
200 401 1.851781 433 1.851781
400 801 1.851660 865 1.851660

Figures 5.2 and 5.3 graphically present the solution V and the first derivative of the

solution with respect to the stock price VS when Crank-Nicolson is used. The plots are all

smooth and do not exhibit any oscillations. While not shown here, VSS also did not show

any oscillations.

We now explore numerical convergence for pricing Asian options for large values of

volatility σ. Table 5.3 presents our results. As expected quadratic convergence is recovered.

In this case, a sufficient amount of diffusion in the S direction appears to compensate the

little diffusion in the A direction.

5.6.1 An In Depth Study of the Convergence Ratio

The results of the previous section indicated that the semi-Lagrangian approach, coupled

with Crank-Nicolson timestepping, results in quadratic convergence for large volatilities.
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Figure 5.2: Value of a European fixed strike Asian
put using Crank-Nicolson with constant timestepping
(∆τ = .01). 51 grid points are used both in the A and
S direction. The input parameters are σ = .1, r = .1,
T = .25, and K = 100.
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Figure 5.3: First derivative value of a European
fixed strike Asian put using Crank-Nicolson with con-
stant timestepping (∆τ = .01). 51 grid points are
used both in the A and S direction. The input param-
eters are σ = .1, r = .1, T = .25, and K = 100.
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Table 5.3 Value of a continuously observed fixed strike Asian call option with constant
timesteps at S = K. The input parameters are σ = .5, r = .05, T = .25 and K = 100. We
compare the results given using the Večeř 1-D PDE [87], and the semi-Lagrangian method
presented here. Crank-Nicolson timestepping was used.

semi-Lagrangian Večeř 1-D PDE [87]

Size of No. of S = 100 Size of No. of S = 100
S and A grids timesteps Value R S grids timesteps Value R

51 25 6.010203 n.a. 51 25 6.009821 n.a.
101 50 6.015092 n.a. 101 50 6.014848 n.a
201 100 6.016344 3.905 201 100 6.016251 3.582
401 200 6.016651 4.085 401 200 6.016619 3.816
801 400 6.016723 4.219 801 400 6.016713 3.915

But, for small volatility values, quadratic convergence was not recovered. The goal of

this section is to explore in detail different numerical techniques that could improve the

convergence rate.

Table 5.4 Value of a continuously observed fixed strike Asian call option at the strike, con-
stant timesteps. The input parameters are σ = .1, r = .1, T = .25, K = 100. Convergence
ratios (4.2) are presented for different timestepping schemes: implicit, Crank-Nicolson and
second order BDF.

Implicit timestepping CN timestepping BDF timestepping
Size of No. of S = 100 S = 100 S = 100

S and A grids timesteps Value R Value R Value R

51 25 1.911865 n.a. 1.857193 n.a 1.86096 n.a.
101 50 1.880801 n.a. 1.853254 n.a 1.854310 n.a.
201 100 1.865907 2.086 1.852120 3.475 1.852416 3.513
401 200 1.858681 2.061 1.851781 3.338 1.851868 3.453
801 400 1.855112 2.025 1.851660 2.815 1.851686 3.014

Table 5.4 presents the convergence rate results for different timestepping schemes for

small volatility (σ = .1 and r = .1). For implicit timestepping linear convergence is recovered

(R = 2), as expected. However for higher order timestepping schemes such as Crank-

Nicolson and second order backward differencing, quadratic convergence is not found (see



CHAPTER 5. SEMI-LAGRANGIAN APPROACH FOR PATH DEPENDENT
OPTIONS 104

Table 5.4).

To try to remedy this problem, the initial payoff function is smoothed out. A classic

method for handling discontinuities involves averaging the initial data. Specifically, values

at each point are replaced with an average value over nearby space. Mathematically, we set

PAYOFFsmoothed(Si, Aj) =
∫ K+∆A

2

K−∆A
2

PAYOFF(Si, A)dA. (5.43)

For a complete description of various smoothing methods the readers are referred to [75].

Table 5.5 Value of a continuously observed fixed strike call Asian call option at the strike
with constant timesteps. The initial payoff is smoothed using the average scheme described
by equation (5.43). The input parameters are σ = .1, r = .1, T = .25, and K = 100.
Convergence ratios (4.2) are presented for different timestepping schemes: Crank-Nicolson
and second order BDF.

CN timestepping BDF timestepping
Size of No. of S = 100 S = 100

S and A grids timesteps Value R Value R

51 25 1.870322 n.a. 1.874276 n.a.
101 50 1.856377 n.a. 1.857462 n.a.
201 100 1.852873 3.981 1.853179 3.925
401 200 1.851963 3.849 1.852053 3.803
801 400 1.851704 3.513 1.851731 3.497

Table 5.5 contains the convergence rate results. From a convergence point of view,

the ratios have improved in comparison with the convergence ratio without smoothing (see

Table 5.4). However, quadratic convergence is still not obtained. From a theoretical point

of view, all the convergence analysis for semi-Lagrangian scheme are based on the smooth

properties of the solution [16, 43]. If the solution is smooth then quadratic convergence is

recovered. However, if the solution is non-smooth, then we can expect some reduction in

the convergence rate.

To confirm our intuition that the non-smooth payoff is in fact the reason why quadratic
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Table 5.6 Value of a continuously observed Asian call option at the strike with constant
timesteps. The input parameters are ∆τ = .01, σ = .1, r = .1, T = .25 and K = 100.
Convergence ratios (4.2) are presented for the Crank-Nicolson timestepping scheme.

Call option (PAYOFF(A,K) = H(A−K)(A−K)2)
Size of No. of S = 100

S and A grids timesteps Value R

51 25 0.081607 n.a.
101 50 0.080608 n.a.
201 100 0.080438 5.827
401 200 0.080408 5.800
801 400 0.080403 5.456

convergence is not recovered, we create an artificial payoff that has the property of being

quadratically smooth in the A direction, e.g. PAYOFF(A,K) = H(A − K)(A − K)2,

where H(x) is the Heaviside function. In this case quadratic convergence is recovered for

both Crank-Nicolson and second order backward differencing. Table 5.6 shows detailed

convergence results for Crank-Nicolson timestepping.

Several other approaches were considered in an effort to improve convergence. We tried

to use Rannacher timestepping [78]; two or more implicit timesteps are taken before revert-

ing to a higher order timestepping scheme such as Crank-Nicolson for example. Numerical

experiments indicated that this did not improve the convergence rate. A convergence rate

of approximately 3.5 is found in this case. Adaptive timestepping was also considered [44]

but this technique did not improve the convergence rate.

5.6.2 American Asian Option under Jump diffusion

In the following we present the convergence results when pricing a continuously observed

fixed strike Asian option under the jump diffusion process. We assume that the jumps in

the asset price are lognormally distributed [66] (see Chapter 3, equation (3.4)). The input

parameters are presented in Table 4.1.
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Table 5.7 contains the convergence rate results. We observe that quadratic convergence

is still not obtained with the added diffusion due to the integral term.

Table 5.7 Value of a continuously observed fixed strike Asian call option at the strike under
the jump diffusion process, constant timesteps. The initial payoff is smoothed using the
average scheme described by equation (5.43). The input parameters are presented in Table
4.1. Convergence ratios (4.2) are presented for different timestepping schemes: implicit,
Crank-Nicolson and second order BDF.

CN timestepping BDF timestepping
Size of No. of S = 100 S = 100

S and A grids timesteps Value R Value R

51 25 2.417380 n.a. 2.420687 n.a.
101 50 2.406342 n.a. 2.407350 n.a.
201 100 2.403495 3.877 2.403782 3.738
401 200 2.402749 3.816 2.402834 3.761
801 400 2.402539 3.554 2.402564 3.521

Table 5.8 Value of a continuously observed fixed strike put American Asian option (under
jump diffusion) with constant timestepping. Crank-Nicolson timestepping is used. The
input parameters are defined in Table 4.1. This table presents convergence rates with and
without jumps. Iterations refers to the total (over all timesteps) of the maximum number
of iterations required for any value of j (see Algorithm 3.3) at each timestep. For the no
jump case the Asian American put option is priced using σ = σimp = .1886.

No jump Jumps
Size of No. of No. of (S = 100) No. of (S = 100)

S and A grids timesteps iterations Value R iterations Value R

51 25 77 2.220443 n.a. 99 2.044636 n.a.
101 50 160 2.195726 n.a. 167 2.018530 n.a
201 100 319 2.188555 3.447 340 2.012220 4.138
401 200 692 2.186717 3.903 716 2.010691 4.126
801 400 1397 2.186243 3.874 1609 2.010281 3.728

Table 5.8 compares the value of an American Asian fixed strike put option with the value

of an American Asian fixed strike put option when the underlying stock follows the jump

diffusion process described by [66]. Second order backward timestepping is used and the
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initial payoff is smoothed out using equation (5.43). We observe that quadratic convergence

is not recovered. The convergence ratios are ≈ 3.5.

5.7 Summary

In this chapter we have put forward several contributions.

• We have demonstrated that a semi-Lagrangian method can be used to price con-

tinuously observed Asian options. The implementation suggested here reduces this

problem to solving a decoupled set of one dimensional discrete partial differential

equations (PIDEs) at each timestep. This makes implementation of this method very

straightforward in a software library which is capable of pricing discretely observed

path dependent options [95].

• We have shown that in the fully implicit case, the semi-Lagrangian method is al-

gebraically identical to a standard numerical method for pricing discretely observed

Asian options, when the observation interval is equal to the discrete timestep. Since

lattice methods [89] can be regarded as explicit finite difference methods it follows

that the usual binomial forest method for Asian options [53] can also be regarded as

an explicit semi-Lagrangian method.

• Since the discretized problem at each timestep reduces to a set of decoupled 1d PIDEs,

we can make use of the techniques developed in Chapter 3 and in [44, 29, 32] to

prove certain properties of the discrete scheme, including convergence of the iterative

method used to solve the implicit discrete equations. In the fully implicit case, it is

straightforward to prove l∞ stability.

• We have included experimental computations which indicate that, even if second

order timestepping methods are used, observed convergence as the mesh and timestep
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is refined occurs at a sub-second order rate for small values of volatility. The problem

can be traced to the non-smoothness of the payoff function.

It is straightforward to extend the semi-Lagrangian approach of this chapter to more

exotic Asian options such as American Asian options under the jump diffusion process. For

a detailed study of these particular contracts, readers are referred to [30].



Chapter 6

A Real Options Approach to

Network Management: An

Application to Wireless Networks

This chapter applies modern financial option valuation methods to the problem of wireless

network capacity investment decision timing. In particular, given a cluster of base stations

(with a certain traffic capacity per base station), we determine when it is optimal to increase

capacity for each of the base stations contained in the cluster. We express this in terms of

the fraction of total cluster capacity in use, i.e. we calculate the optimal time to upgrade

in terms of the ratio of observed usage to existing capacity. We study the optimal decision

problem of adding new capacity in the presence of stochastic capacity usage. Based on the

real options formulation of Chapter 2, a five factor algorithm that captures many of the

constraints of wireless network management is developed. This optimal upgrade algorithm

will maximize the value of the investment to the network operator.

109
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6.1 Introduction

In Chapter 2 (see Section 2.3) a real options approach to value investment into telecom-

munication infrastructure was presented. Given the stochastic process described by the

following equation

dQ = α(η −Q)dt+ (J − 1)QdY

(6.1)

dη = ηµdt+ ησdZ,

the value of an investment V depending on Q, η and time τ is given by

Vτ = α(η −Q)VQ +R+ λ

∫ ∞

0
V (η,QJ, τ)g(J)dJ

+
1
2
η2σ2Vηη + η(µ− ζσ)Vη − (r + λ)V. (6.2)

The derivation of equation (6.2) is given in Chapter 2, Section 2.3. Solving equation (6.2)

presents several challenges; it is a two dimensional PDE with no diffusion in the capacity

usage direction Q and it contains an integral term. In Chapter 3, we presented numerical

techniques for handling the integral term. In Chapter 5, a semi-Lagrangian approach was

introduced to solve a two dimensional PDE (6.2) with no diffusion in one space like direction.

As a result, the numerical techniques developed in those chapters can now be applied to

the wireless network capacity investment decision problem.

Given a cluster of base stations (see Figure 6.1), our ultimate objective is to determine

the percentage (in terms of the ratio of observed usage to existing capacity) at which it is

optimal to add capacity to each of the base stations in the cluster. This optimal upgrade

decision will maximize the value of the investment to the network operator. Figure 6.1
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provides a representation of a simplified cluster of base stations. A typical cluster contains

at least 20 base stations. When there is too much traffic in a cluster, customers experience

blocking (i.e. calls do not get through). For example, during the power outage of August

2003, wireless clusters were under extremely high traffic. As a result many calls were not

completed.

A simplistic solution to blocking would be to conduct a traffic study at the base station

level and increase the capacity of the stations that are experiencing too much blocking.

However, due to the Code Division Multiplexing Access (CDMA) [57] technology that is

currently used in leading edge wireless networks, it is not possible to only add capacity to

the base stations where high blocking occurs. A user on a network using CDMA technology

may talk simultaneously to many base stations since a procedure called soft hand-off is used

[57]. As such, when there is too much blocking on a particular base station, all the base

stations within the cluster must have their capacity increased to maintain homogeneity.
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Base station (or cell site)

Sector

Figure 6.1: Example of a cluster. A typical cluster contains at least 20 base stations. The coverage
area or sector is generally not octagonal, but this diagram gives an idea of how a cluster look like.

With this in mind, we can characterize both traffic and grade of service/blocking prob-

ability. Traffic is measured in units of Erlangs [61]. An Erlang is defined as the average

number of simultaneous calls, or equivalently, the total usage during a time interval divided

by the length of that interval. Most network management systems measure usage during
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a one hour interval. The blocking probability is the probability that a call is blocked when

there is no channel available. The blocking probability is evaluated for the load during

bouncing busy hours. In practice, network managers study the load during bouncing busy

hours and then decide whether or not new capacity must be deployed. Based on the Erlang

mathematical models (Erlang-B or Erlang-C [61]), the relationship between blocking prob-

ability and capacity usage can be established. In this work we are going to use a blocking

probability of 2% [64].

Initially, we assume that we have an existing cluster where each base station has a base

level of capacity (i.e. capacity level zero). Using Erlang tables, this means 13.2 Erlang

of traffic can be handled at 2% blocking at each base station of the cluster. If capacity

is added to a base station (i.e. level one base station), 40 users can be accommodated,

meaning 31 Erlang of traffic can be handled at 2% blocking. The base station load at

2% blocking more than doubles when capacity is added. Table 6.1 gives a synopsis of an

Erlang table. Consequently, when considering the cluster of base stations, the capacity of

the cluster is simply the capacity of a base station multiplied by the number of base stations

in the cluster.

Table 6.1 Correspondence table between increment levels at the base station, users, Erlang
and minutes of traffic in the hour that can be approximately handled by a base station at
2% blocking [64].

level Users Erlang Minutes of traffic in the hour
0 20 13.2 2376
1 40 31.0 5580
2 60 49.6 8928
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6.2 Mathematical Model

This section explores different discretization methods for the PIDE (6.2) using the semi-

Lagrangian approach presented in Chapter 5. We use an unequally spaced grid for the PDE

discretization in η coordinates [η0, . . . , ηimax], and similarly an unequally spaced grid is used

in the Q direction [Q0, . . . Qjmax]. Let

V n
i,j = V (ηi, Qj , τ

n) (6.3)

denote the solution with mean ηi, capacity usage Qj , and time level n. Let G be the

differential operator represented by

GV ≡ 1
2
η2σ2Vηη + η(µ− ζσ)Vη − (r + λ)V +R, (6.4)

and define IV as

IV ≡ λ

∫ ∞

0
V (η,QJ)g(J)dJ. (6.5)

Equation (6.2) can then be rewritten as

Vτ − α(η −Q)VQ = GV + IV. (6.6)

Let us denote the discrete form of GV or (IV ) at η = ηi, Q = Qj , τ = τn by (GV )n
i,j or

(IV )n
i,j . The Lagrangian derivative along a trajectory Q = Q(η, τ) (η =const) is

DV

Dτ
=

∂V

∂τ
+
∂V

∂Q

dQ

dτ
. (6.7)

Along the trajectory
dQ

dτ
= α(Q− η), (6.8)
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equation (6.2) can be written as
DV

Dτ
= GV + IV. (6.9)

Let Q(ηi, Qj , τ
n+1, τ) be a trajectory satisfying equation (6.8), which passes through the

discrete grid point (ηi, Qj) at τ = τn+1. Let V n
i,j(i,n+1) = V (ηi, Q

n
j(i,n+1), τ

n) be the value of

the investment at the departure point of the trajectory Q(ηi, Qj , τ
n+1, τ), at τ = τn. Note

that Qn
j(i,n+1) will not necessarily coincide with a grid point Qj . Qn

j(i,n+1) is determined by

solving
dQ

dτ
= α(Q− ηi), Qn

j(i,n+1) = Qn+1
j +

∫ τn

τn+1

(
dQ

dτ

)
dτ (6.10)

from τ = τn+1 to τ = τn. In general, the integration in equation (6.10) must be computed

numerically and the integration method should have an error one order higher than the

timestepping method used to approximate the Lagrangian derivative (see [2] and Chapter

5).

The characteristic curve associated with equation (6.8) is defined by

dQ

dτ
= α(Q− ηi), (6.11)

and consequently,

Q = ηi + C exp(ατ), (6.12)

where C is constant. At τ = τn+1, Q = Qn+1
j , so that

At time τn : Qn
j(i,n+1) = ηi + (Qn+1

j − ηi) exp
(
α(τn − τn+1)

)
,

At time τn−1 : Qn−1
j(i,n+1) = ηi + (Qn+1

j − ηi) exp
(
α(τn−1 − τn+1)

)
, (6.13)

where T ≥ τn+1 > τn > τn−1. Discretization of equation (6.9) along the characteristic for



CHAPTER 6. A REAL OPTIONS APPROACH TO NETWORK MANAGEMENT: AN
APPLICATION TO WIRELESS NETWORKS 115

different timestepping schemes gives,

• fully implicit timestepping

V n+1
i,j − V n

i,j(i,n+1)

∆τ
= (GV )n+1

i,j + (IV )n+1
i,j , (6.14)

• Crank-Nicolson timestepping

V n+1
i,j − V n

i,j(i,n+1)

∆τ
=

1
2

[
(GV )n+1

i,j + (IV )n+1
i,j

]
+

1
2

[
(GV )n

i,j(i,n+1) + (IV )n
i,j(i,n+1)

]
, (6.15)

• second order backward differencing (BDF) (constant timestepping)

1
2V

n+1
i,j − 2V n

i,j(i,n+1) + 1
2V

n−1
i,j(i,n+1)

∆τ
= (GV )n+1

i,j + (IV )n+1
i,j . (6.16)

Let us define the matrix G such that

[
G · V n+1

j

]
i
= (GV )n+1

i,j + truncation error , (6.17)

where V n+1
j is the vector of discrete solution values

[
V n+1

j

]
i
= V (ηi, Qj , τ

n+1) for fixed Qj .

Using finite differences, the matrix (6.17) is given by

(G·V n+1)i = −(αi+βi+r+λ)V n+1
i +βiV

n+1
i+1 +αiV

n+1
i−1 +Rn+1

i ; i = 1, . . . , imax−1, (6.18)

where αi, βi are chosen such that the type of approximations used for the derivatives and

second derivatives (e.g. central, forward or backward differencing) guarantees that αi and βi

are non-negative. For i = 0, the matrix (6.18) reduces to a diagonal entry with α0, β0 = 0,

and for the row i = imax, we set αi = βi = 0, and set λ = 0, and we impose a Dirichlet
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boundary condition (see Chapter 3, Section 3.3 for details of αi and βi).

As discussed in Chapter 3, the integral term (IV )i,j can be efficiently computed using

interpolation and an FFT. Effectively, (IV ) is approximated by

(IV )n+1
i,j ' λ

∑
k

hikV
n+1
kj + truncation error

= λ[H · V n+1
j ]i + truncation error

0 ≤ hik ≤ 1 and
∑

k

hik ≤ 1. (6.19)

Note that the jumps occur along the demand direction Q; this contrasts with the model of

Chapter 5, where jumps occur along the asset direction S.

Let Φn+1 be the Lagrange interpolation operator such that

(Φn+1 · V n)i,j = V (ηi, Q
n
j(i,n+1), τ

n) + interpolation error. (6.20)

In the following, for simplicity we describe the method used to solve the discrete equa-

tions (6.14), (6.15) and (6.16) only for the fully implicit (6.14) timestepping method. The

readers should have no difficulty generalizing the results to the Crank-Nicolson (6.15) and

the BDF (6.16) timestepping cases.

In the fully implicit case, the matrix form of the discrete equation (6.14) is given by

[I −∆τG− λ∆τH]V n+1
j =

[
Φn+1V n

]
j
. (6.21)

In order to solve equation (6.21), an iteration scheme (see Algorithm 6.1) is used at each

timestep to avoid solving the dense system defined by
[
H · V n+1

j

]
i

. Each iteration of

Algorithm 6.1 requires a tridiagonal factor and solve, and a forward and back FFT for each

j.
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Algorithm 6.1 Fixed point iteration scheme to evaluate the jump integral term implicitly.
for k = 0, 1, 2, . . . until convergence do

// Compute the integral term using FFT along the Qj direction
// for each node ηi

Let (V n+1
j )0 = (V n

j ), j = 0, 1, . . . , jmax
for j = 0, 1, . . . , jmax do

Let V̂j
k

= (V n+1
j )k

Solve
[I −∆τG] V̂j

k+1
=
[
Φn+1V n

]
j
+ λ∆τHV̂j

k

end for
if maxi,j

(|V̂ k+1
i,j −V̂ k

i,j |)
max(1,|V̂ k+1

i,j |)
< tolerance then

Quit
end if

end for

Theorem 6.1 (Stability of fully implicit discretization). Assuming that matrix

[I −∆τG− λ∆τH] is an M -matrix, Φ is a linear interpolant, and Dirichlet boundary con-

ditions are used at Q = Qjmax, then the discretization (6.14) is unconditionally stable.

Proof. This proof is omitted, since it is virtually identical to the proof of Theorem 3.1.

Theorem 6.2 (Convergence of the fixed point iteration (Algorithm 6.1)). Assum-

ing that matrix [I −∆τG] is an M -matrix (this follows from Lemma D.3 in Appendix D),

that H has properties (6.19), and Dirichlet boundary conditions are used at Q = Qjmax,

then Algorithm 6.1 is globally convergent to the unique solution of equation (6.21).

Proof. The proof is virtually identical to the proof of Theorem 3.3.

Remark 6.1. Theorem 6.2 can be easily extended to the Crank-Nicolson and BDF cases.

For Crank-Nicolson timestepping, we can prove algebraic stability as in Theorem 3.2.
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6.3 Algorithm

Our ultimate objective is to determine the optimal time for an equipment upgrade. This is

found as a byproduct of calculating the value of the network operator’s investment in equip-

ment. We use a dynamic programming approach to maximize the value of this investment,

and this in turn will give us the optimal upgrade strategy.

For ease of exposition we begin by ignoring the upgrade decision entirely and simply

describe how to calculate the value of an investment for a fixed level of capacity. Let Q be

the capacity level. We consider an investment horizon of T = 5 years [64]. At this date, the

value of the investment is assumed to be given by

V (η,Q,Q, T ) = f(η,Q).

Our methods can be used with any suitable choice of f(η,Q), but for simplicity we assume

that the value of all capital investment at T is equal to its salvage value, and we further

assume that this salvage value is zero (i.e. f(η,Q) = 0). Implicitly, we are assuming that

new technology renders all existing equipment obsolete at T . Our dynamic programming

approach solves backwards from this investment horizon date to today. We suppose that

revenues R accrue continuously, and are given by R(η,Q,Q, τ), measured in dollars per

year. Equation (6.2) can be written as

Vτ = α(η −Q)VQ +R(η,Q,Q, τ) + λ

∫ ∞

0
V (η,QJ, τ)g(J)dJ

+
1
2
η2σ2Vηη + η(µ− ζσ)Vη − (r + λ)V. (6.22)

Equation (6.22) is the valuation equation for a given capacity level Q, where the network

operator receives continuous revenues. The next step is to introduce maintenance costs. We

assume that these are constant over time and are paid at discrete time intervals τmaint (e.g.
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monthly). With time running backwards, let τ−maint and τ+
maint denote τ−maint = τmaint − ε

and τ+
maint = τmaint + ε where ε > 0 and ε << 1. Equation (6.22) is then augmented by the

condition

V (η,Q,Q, τ+
maint) = V (η,Q,Q, τ−maint)−M∆τmaint, (6.23)

where M is the maintenance cost in dollars per year and ∆τmaint is the time interval between

maintenance payments (expressed as a fraction of a year).

Finally, the possibility of upgrading to a higher level of capacity must be taken into

account. This adds considerable complexity. We need to keep track of the maximum

capacity of each cluster. This will be a discrete variable Qm, where there are mmax possible

capacity levels, indexed by m = 0, 1, . . . ,mmax−1. We allow upgrades to any higher level of

capacity (e.g. we could upgrade to the highest possible level, skipping all intermediate levels

[31]). In other words, we could upgrade from Qm to Qu, where u ∈ {m+ 1, . . . ,mmax − 1}.

The decision of whether or not to upgrade (and to which level) is assumed to be made

periodically, at a discrete set of observation times tobs = {0,∆tobs, 2∆tobs, . . .}. Typically,

we will let ∆tobs = 1 month. If a decision is made to upgrade at some time tup ∈ tobs, then

the actual upgrade is completed at tup + ϑ. We assume that ϑ/∆tobs is an integer. Note

that ϑ is the amount of time necessary to order and set up the equipment.

Due to the fact that the dynamic programming approach works backwards in time, at

any time in tobs we cannot know when (or if) an upgrade decision was made, and to which

capacity level. Hence, we have to solve for all possible times at which an upgrade could

occur, and all possible capacity levels for an upgrade. In addition to the variable u described

above which indicates the capacity level of a potential upgrade, we need an additional

discrete counter variable l to track the times at which upgrades might occur. l ranges from

0, 1, . . . , lmax where lmax = ϑ
∆tobs

. l = 0 corresponds to the value of the investment at the

existing level of capacity. The value of l > 0 corresponds to the amount of time elapsed
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(working backwards and measured in terms of ∆τobs = ∆tobs) since a potential upgrade

was completed. For example, suppose that ϑ = 3 months (∆τobs = 1 month), and lmax = 3.

If l = 1, then the equipment came on-line 1 month ago, and the upgrade decision will be

made 2 months from now.1 Similarly, if l = 2, the equipment was on-line 2 months ago,

but the actual decision of whether or not to upgrade will occur 1 month from now. If l = 3,

the decision to upgrade will be made immediately, and the equipment was operational 3

months ago. Note that at each observation time τobs = T − tobs, the value of l changes. Let

τ− (τ+) denote backwards time right before (after) an observation time, and let l− and l+

be the value of the counter variable at τ− and τ+. Then we have

l+ = l− + 1 if l− < lmax. (6.24)

This is because the elapsed time will be incremented by one if we have not yet reached the

time when the upgrade decision occurs.

Our valuation function now depends on six variables: the mean reversion level η, the

level of capacity usage Q, the existing capacity level Qm, the upgrade decision indicator

u, (which indicates that a decision has been made to upgrade to capacity Qu) the discrete

time counter variable l, and backwards time τ : V = V (η,Q,Qm, u, l, τ) (as well as the

periodic maintenance costs). We use the notation u = m, l = 0 to indicate the value of the

investment at the existing level of capacity.

The only remaining factor to include is the cost of upgrading. Let Cm→u(τ)l→l−1 denote

some (possibly time-dependent) designated partial payment from l to l− 1 of the total cost

of upgrading from a cluster with maximum capacity Qm to one with maximum capacity

1Recall again that time is running backwards in the dynamic programming approach being described
here. In terms of forward time, the upgrade decision has been made in the past and the equipment will
be installed in the future; but in backwards time the upgrade decision will be made in the future and the
equipment installation has occurred in the past.
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Qu.2 We assume that these upgrade costs are paid at the observation times τobs, implying

that

V (η,Q,Qm, u, l, τ
+
obs) = V (η,Q,Qm, u, l − 1, τ−obs)− Cm→u(τ−)l→l−1, l = 2, . . . , lmax

(6.25)

where u = m+ 1, . . . ,mmax − 1, τ+
obs = τobs + ε, and τ−obs = τobs − ε, ε > 0, and ε << 1. At

l = 1, we have

V (η,Q,Qm, u, 1, τ
+
obs) = V (η,Q,Qu, u, 0, τ

−
obs). (6.26)

Note that we have assumed that upgrade costs are prepaid (going forward in time) so that

Cm→u(τ−)1→0 = 0. Equations (6.26) and (6.25) indicate that partial upgrade costs are

assumed to be paid at the beginning of the month (going forward in time) and it is pos-

sible to upgrade from Qm to Qu, but the new equipment will not be ready for some time.

For example, suppose that ϑ = 3 months, ∆τobs = 1 month and lmax = 3, then upgrade

costs are paid at times 0, 1, 2 going forward in time (see Figure 6.2). Thus going backward

in time equation (6.25) represents partial payments for positions 2, 1 (i.e. l = 3, 2) and

equation (6.26) indicates what occurs at position 3 (i.e. l = 1) (see Figure 6.2). Further-

more, as we will see in more detail in the next section, when working backward in time,

upgrade costs are paid before upgrade decisions are made, and as a consequence we need to

store V (η,Q,Qm, u, lmax, τ
−
obs) into a temporary variable TMP (η,Q,Qm, u, lmax, τ

−
obs) be-

fore equation (6.25) is applied. This temporary variable is then used in deciding to upgrade

(This will be discussed in detail in Algorithm 6.4).

At each upgrade decision date, τup, we maximize the value of the investment V by

comparing the value of the investment in the current level of capacity with that of all

2The designated partial payment can be specified in a variety of ways. For instance, with three months
lead time, one-third of the cost could be paid in each of the three months. Alternatively, all of the cost could
be paid up front.
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Forward time

∆tobs

0 1 2 3

l = 3 l = 2 l = 1

Figure 6.2: This figure illustrates the sequence of payments, suppose that ϑ = 3 months, ∆τobs = 1
month and lmax = 3, then partial upgrade costs are paid at times 0, 1, 2 going forward in time. Thus
going backward in time equation (6.25) represents partial payments for l = 3, 2 and equation (6.26)
indicates what occurs at time l = 1.

possible completed upgrades to higher capacities. This implies

V (η,Q,Qm,m, 0, τ
+
up) =

max
[
V (η,Q,Qm,m, 0, τ

−
up), TMP (η,Q,Qm, u, lmax, τ

−
up)− Cm→u(τ−)0→lmax

]
, (6.27)

for u = m + 1, . . . ,mmax − 1, τ+
up = τup + ε, and τ−up = τup − ε, ε > 0, and ε << 1.

Equation (6.27) indicates that a decision to add capacity will only be taken if the value of

the investment with the extra capacity exceeds the value of the investment without it. An

important assumption implicit in equation (6.27) is that while new equipment is ordered,

installed, and tested, the current stream of revenue is not interrupted. In other words, while

there is lead time, there is no down time. It would be straightforward to extend the analysis

in this thesis to the case of finite down time.

Following the financial option valuation literature, the implication of the extra state

variables m, l, and u is that we have to solve a set of partial differential equations of the

form of equation (6.22), one for each upgrade possibility. Let V (η,Q, τ)m,u,l denote the

value of an investment given the continuous variables η, Q, and the discrete variables m, u,



CHAPTER 6. A REAL OPTIONS APPROACH TO NETWORK MANAGEMENT: AN
APPLICATION TO WIRELESS NETWORKS 123

and l. Then we have to solve a collection of problems

∂Vm,u,l

∂τ
= α(η −Q)

∂Vm,u,l

∂Q
+R(η,Q,Qm, τ) + λ

∫ ∞

0
V (η,QJ, τ)g(J)dJ

+
1
2
η2σ2∂

2Vm,u,l

∂η2
+ η(µ− ζσ)

∂Vm,u,l

∂η
− (r + λ)Vm,u,l, (6.28)

where the revenue function R(·) now explicitly depends on the capacity level via m, and

updating rules analogous to equations (6.23) for maintenance costs3, (6.25) for upgrade

costs, and (6.27) for upgrade decisions are also applied.

6.3.1 Further Details About the Algorithm

In this section, a more complete description of the algorithm that we use is presented. For

simplicity, we assume that ∆τobs = ∆τmaint = ∆τup so that τobs = τmaint = τup. Note

that ∆τup corresponds to the time interval between upgrade decisions (e.g. one month, six

months, one year). At observation times, then any of the following events can take place:

• maintenance costs are paid;

• partial or complete payments are made for capital expenditures;

• decisions about possible upgrades are made; and

• upgrades come on-line.

In our application, the exact sequence of events at observation times is as follows. Working

backwards in time, we assume that maintenance costs are paid first, followed by upgrade

costs, partially completed upgrades move one step closer to completion, then upgrade deci-

sions are made, and finally upgrades come on-line. Figure 6.3 graphically presents the order

of events that could happen at any observation times.

3Note that the maintenance costs are assumed to depend on the capacity level, i.e. M = Mm.
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Forward time

Backward time

Maintenance cost payments

Upgrade cost payments

Upgrade decisions

Upgrades come-on line (previously decided)

Figure 6.3: Sequence of events at observation times. Working backwards in time, we assume that
maintenance costs are paid first, followed by upgrade costs, partially completed upgrades move one
step closer to completion, then upgrade decisions are made, and finally upgrades come on-line.

We now give some more details about the revenue function. As noted above, it is

assumed that the owner of the cluster receives continuous payments. For the maximum

capacity Q (measured in minutes per bouncing busy hour), we have

R(η,Q,Qm, τ) = min(Q,Qm)P (τ). (6.29)

The price function P (τ) is given by

P (τ) = P0 exp (−ϕ(T − τ)) , (6.30)

where P0Q has units of dollars per year and ϕ is a decay parameter. The payment received

can be no larger than the maximum capacity of the cluster multiplied by the price. Con-

sistent with our earlier observation (see Figure 2.2 in Chapter 2), we assume that price is a
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known decreasing function of time.

Turning to upgrade costs, recall that Cm→u(τ)l→l−1 is a designated partial payment of

the upgrade cost from a cluster of maximum capacity Qm to one with maximum capacity

Qu. These upgrade costs are assumed to decay exponentially over time with the same

parameter β as the price term above.4

Next we provide a more complete summary of our algorithm. As noted above, a variety

of events can occur at observation times, but for simplicity we denote the time (working

backwards) before any of these events as τ− and the time following the event as τ+. The

length of time between observation times is ∆τ = 1 month. For illustrative purposes, we

assume here that the lead time required for the upgrade is 3 months. We can think of the

algorithm as having the following steps:

• Step 1: Impose the condition Vm,u,l(η,Q, 0) = f(Q) at the investment horizon date

τ = 0.

• Step 2: Solve the collection of PDEs (6.28) to the first observation time.

• Step 3: Consider the observation time as a time when maintenance costs are paid.

Update the solution by subtracting these costs, as described in the pseudo-code given

in Algorithm 6.2.

• Step 4: Consider the observation time as partially completed upgrades move one

step closer to completion, upgrade costs are paid and completed upgrades to higher

capacity levels become available. The solution updating is shown graphically in Figure

6.5. Pseudo-code is given in Algorithm 6.3.

• Step 5: Consider the observation time as an upgrade decision date and apply equa-

4More precisely, only the total cost of an upgrade is assumed to decline over time. If the upgrade costs are
paid at observation dates throughout the lead time interval, then the individual payments for a particular
upgrade do not decay exponentially.
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tion (6.27). This is sketched in the pseudo-code provided in Algorithm 6.4, and

depicted graphically in Figure 6.4.

• Step 6: If τ = T , terminate. Otherwise, solve the collection of PDEs to the next

observation date and repeat Steps 3-6.

Q
m

l = 0

l = 0

l = 3

l = 2

l = 1

Q
m+1 Q

m+2 Q
m+3

Figure 6.4: Illustration of the upgrade decision. At each upgrade decision date, the value of the in-
vestment at the current level of capacity Qm and the current level of capacity usage, V (η,Q, τ)m,m,0,
is compared with the values of possible completed investments to various higher levels of capac-
ity, V (η,Q, τ)m,u,3. In this case, we are considering upgrades to 1, 2, or 3 higher levels (i.e.
u ∈ m+ 1,m+ 2,m+ 3), and it takes 3 months to complete the investment. In other words, working
backwards in time, we start 3 months before the upgrade decision date with the values of completed
investments corresponding to the different higher capacity levels. The counter variable l is incre-
mented at each observation date (and appropriate adjustments are made to the value, arising from
items such as capital costs being paid). When 3 months have elapsed, we have reached the upgrade
decision date, so we compare the values of the various investments into higher levels of capacity with
the current level, and choose the highest value at this time. Note that for ease of exposition η was
not indicated in this figure.
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Algorithm 6.2 At each maintenance cost payment date, V is reduced by the amount of
these costs.

for m = 0, . . . ,mmax − 1 do
Vm,m,0(η,Q, τ+) = Vm,m,0(η,Q, τ−)−Mm∆τ
// loop over the different clusters
for u = m+ 1, . . . ,mmax − 1 do

// update the solution with the appropriate maintenance cost
for l = 1, . . . , lmax do
Vm,u,l(η,Q, τ+) = Vm,u,l(η,Q, τ−)−Mm∆τ

end for
end for

end for

Algorithm 6.3 At each observation date, update the solution of the potential upgrades
from the cluster with maximum capacity Qm to that with maximum capacity Qu.

for m = 0, . . . ,mmax − 2 do
// loop over the different clusters
for u = m+ 1, . . . ,mmax − 1 do

//copy solution of lmax into a temporary variable
TMPm,u,lmax(η,Q, τ−) = Vm,u,lmax(η,Q, τ

−)
// loop over the upgrade possibilities for cluster m
for l = lmax, . . . , 2 do

// loop over the elapsed time since the upgrade was completed
Vm,u,l(η,Q, τ+) = Vm,u,l−1(η,Q, τ−)− Cm→u(τ−)l→l−1

end for
//at l=1 (upgrade cost are prepaid in forward time)
Vm,u,1(η,Q, τ+) = Vu,u,0(η,Q, τ−)

end for
end for

6.4 Parameter Estimation

This section describes the estimation of parameter values for the no-jump case. Details

regarding estimates of the growth rate µ and the volatility σ can be found in Chapter 2,

Table 2.3. The volatility σ and the growth rate µ for the minutes per bouncing busy hour

have been estimated by averaging σ and µ for the different time series presented in Table

2.3. Smoothing anomalous jumps in capacity usage, it is found that µ ≈ .30 per year and

σ ≈ .65 per year
1
2 .
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Algorithm 6.4 At each upgrade decision date, compare the value of the investment if a
decision is taken to upgrade to a higher level of capacity with the value of the existing level
of capacity.

for m = 0, . . . ,mmax − 2 do
// loop over the cluster with capacity Qm

for u = m+ 1, . . . ,mmax − 1 do
// loop over the upgrade possibilities for cluster m
Vm,m,0(η,Q, τ+) = max [Vm,m,0(η,Q, τ−), TMPm,u,lmax(η,Q, τ

−)− Cm→u(τ−)0→lmax ]
end for

end for

6.4.1 Revenue

We assume that the owner of the cluster receives continuous payments. The data underlying

Figure 2.2 (see Chapter 2) indicates that the average revenue per user (ARPU) is approx-

imatively .229$/min. However, this value corresponds to the total revenue received based

on daily traffic, and not net revenue based on bouncing busy hour traffic. Consequently,

to estimate P0 we need to adjust the average revenue per user (ARPU) appropriately. The

total revenue producing minutes in a day is approximately ten times the bouncing busy

hour minutes [64] and net revenue per user represents approximately seventy percent of the

average revenue per user: .229× .7 ≈ .1603 [64]. P0 is given by

P0 = ARPU× 10 (busy hr factor adjustment [64])

× .7 (marginal revenue)× 250 (weekends not revenue producing),

where P0 has units
[

dollars
minutes

bbhr
year

]
. The maximum total revenue per year for various increment

levels for a cluster is given in Table 6.2.

6.4.2 Market price of risk

We next consider the market price of risk ζ. In Appendix G (G.1, G.2), two approaches are

presented to estimate the market price of risk. The market price of risk is estimated assum-
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Single Level Upgrade

Q
m

Q
m+1

Q
mmax−1

Q (demand)

l (time (going backwards)

l = 0

l = 1

l = 2

l = 3

until upgrade decision)

cluster
capacity
levels

Multi-Level Upgrade

Q
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Q
m+1

Q
mmax−1

Q (demand)

l (time (going backwards)
until upgrade decision)

l = 0

l = 1

l = 2

l = 3

cluster
capacity
levels

Figure 6.5: Flow of information at observation dates. In the left panel, a possible upgrade decision
from level Qm to the next higher level, Qm+1 is being evaluated. In the right panel, the potential
upgrade is to the highest possible level, Qmmax−1. Time is running in the backwards direction, and
it is assumed that it takes three months for a capacity upgrade to be implemented once the decision
has been taken. Consider, for example, the left panel. The value of a completed investment into
the higher capacity level Qm+1 is shown along the line along the Q-axis (i.e the l = 0 line) in the
Qm+1 plane. At the next monthly observation date, the value is moved one step in to the l = 1
line. Note that on this line, the capacity in use is actually Qm, because the upgrade is incomplete.
Similar updating occurs at the succeeding observation dates, until the l = 3 line is reached. At this
point, the decision of whether or not to upgrade to this capacity level is made by comparing the value
of the investment along this line with that along the Q-axis for the existing Qm capacity level. If a
decision is made to upgrade to capacity level Qm+1, the value from the Qm+1 level along the l = 3
line migrates down to the l = 0 line in the Qm plane, as indicated by the dashed line. The evaluation
of the possible multi-level upgrade in the right panel is similar. Note that for ease of exposition η
was not indicated in the Figure.

Table 6.2 Maximum total revenue per year for a cluster based on bouncing busy hour
traffic.

Cluster increment level Revenue for a cluster in $ per year
0 19,043,640
1 44,723,700
2 71,557,920
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ing that traffic demand Q follows a geometric Brownian motion stochastic process. In the

case where we ignore jumps in demand to determine today’s upgrade decision percentage,

the methods presented in Appendix G are reasonable. In contrast, when considering jumps

in demand it is recognized that the methods used to estimate the market price of risk may

no longer be appropriate. However, given the number of data points available, we think

that these methods (Appendix G) are enough to provide a rough estimate of the market

price of risk.

Using these two approaches, we find that ζ lies between .03 and .17, ζ ≈ .1 corresponding

to the average value. This interval of values is due to several factors such as tax rate

assumptions, and available number of data points; details can be found in Appendix G.

While these estimates may be seen as quite different, it turns out that our results (in terms

of when it is optimal to upgrade capacity) are not too sensitive to ζ ∈ {.03, .10, .17}.

6.4.3 Upgrade and Maintenance Costs

The hardware cost of a single capacity increment to a base station is approximately $150, 000.

Consequently adding capacity for each base station of the cluster would cost $150, 000×20 =

$3, 000, 000.

Once an order has been placed to upgrade a cluster with additional capacity, it takes

approximately two months before the hardware is delivered, one month to install the hard-

ware, and one month to set up and optimize the equipment. Hence, it takes about four

months from order placement until the equipment is on-line.

The monthly maintenance fee of a cluster is the cost of a base station technician and

a T1 cable connection. A technician maintains approximately 20 base stations. The cost

of a base station technician is assumed to $150,000 per year. Base station leasing costs are

approximately $1,500 per month and T1 back-haul costs are approximately $500 per month

per T1, and there are three T1 connections per base station. Electricity and warranty costs
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are respectively estimated as $250 and $200 per base station. Thus the total maintenance

cost for the cluster cost per year is about $150,000 + $1,500 × 20 × 12 + $500 × 20 × 12 +

($250 + $200) × 20 × 12 = $738,000. Table 6.3 contains a summary of the maintenance

costs.

Table 6.3 Maintenance costs for a cluster in dollars per year. The maintenance costs vary
depending on capacity installed on the cluster.

Cluster increment level Annual cluster maintenance cost
0 $738,000
1 $858,000
2 $978,000

For voice traffic, the equipment price is decreasing every year, but not by a significant

amount. Vendors offer features to increase the traffic handling capability of each base station

every couple of years. By offering enhancements, the vendor feels justified in keeping the

dollars per new equipment per base station rate relatively stable. Consequently, we assume

that the upgrade costs decrease by the same percentage as the spot price (i.e. 5% per year)

[64]. Table 6.4 presents the maximum number of minutes of traffic that can be handled for

different cluster capacities.

Table 6.4 Maximum number of minutes of traffic in the hour that can be handled at 2%
blocking for the cluster (20 base stations).

Increment level One base station Cluster (20 base stations)
0 2376 47520
1 5580 111600
2 8928 178560
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6.5 Results

We now provide some illustrative results. Before proceeding any further, the following two

observations should be made. First, we are concentrating on the upgrade decision, not the

value of the investment. Our algorithm determines both of these to maximize the value of

the investment, hence we can determine the optimal upgrade decision. This is equivalent

to identifying the location of a free boundary. This boundary will move over time. In

fact, it will generally increase as time moves forward, as shown in the bandwidth capacity

management context evaluated in [31]. The intuition for this is straightforward. As we

get closer to the investment horizon T , there is less time available for the higher revenues

associated with higher traffic and expanded capacity to cover the costs of upgrading. Of

course, things are more complicated due to factors such as upgrade costs decreasing over

time and the possibility of upgrading to more than a single higher capacity level, but

this is the basic idea. Note, however, that if we get close enough to T (within the lead

time required to install the extra capacity), we will never upgrade, no matter how high

demand is, simply because the new capacity will never provide any revenue to offset the

expansion costs. Keeping this in mind, we will present results only for the upgrade decision

at t = 0.5 Second, we will not concentrate here on the effects of the parameters of the

traffic time series, µ and σ. The effects of these two parameters are qualitatively similar

to those reported in [31] in the bandwidth context. Faster rates of the growth parameter

µ obviously give rise to faster upgrades to capture the extra revenue earlier. Higher levels

of the volatility parameter σ work in the opposite direction, with increased uncertainty, it

is better to wait longer before upgrading. This is because the probability of traffic demand

decreasing substantially is higher with higher volatility.

5In fact, the optimal upgrade decision as a percentage of existing capacity in use does not change too
much for 0 ≤ t ≤ 2, provided we are considering fairly frequent evaluations of the upgrade decision. If we
suppose that upgrade decisions are made only on annual basis, then we find more significant differences.
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Since we are solving the set of partial differential equations (6.28) on a discrete grid

of points and over a discrete set of timesteps, we must study the convergence rate of our

different numerical schemes (i.e. implicit, Crank-Nicolson or BDF). The convergence ratio

R is defined in the following way. For each test, as we double the number of grid points in

both the η and Q directions, we cut the timesteps (∆τ) in half. Let ∆τ = max(τn+1− τn),

∆Qmax = max(Qj+1 −Qj). If we then carry out a convergence study, letting h→ 0, where

∆ηmax = Const. h, ∆Qmax = Const. h, and ∆τ = Const. h. then we can assume that the

error in the solution (at a given node) is

Vapprox(h) = Vexact + Const. hξ.

The convergence ratio is then defined as

R =
Vapprox(h/2)− Vapprox(h)
Vapprox(h/4)− Vapprox(h/2)

. (6.31)

In the case of quadratic convergence (ξ = 2), then R = 4, while for linear convergence

(ξ = 1), R = 2.

6.5.1 No Jump Case

Table 6.5 Model parameters.

Investment horizon (T ) 5 years
Decay in price (β) .05/year
Growth rate (µ) .3/year
Volatility (σ) .65/year

1
2

Risk free rate (r) .04/year
Market price of risk (ζ) [.03; .10; .17]/year
Speed of reversion (α) 106/year
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We begin by considering the case where jumps in traffic Q are ignored, and thus α = ∞

and λ = 0. (In the actual computation, the parameter α (i.e speed of reversion) is set to 106

(effectively infinity)). In effect we are assuming that demand Q is following the geometric

Brownian motion process of mean η (6.1) and ignoring jumps (λ = 0). Table 6.5 presents

a summary of the estimated parameters. We assume that all the cluster capacity (at 2%

blocking) is available and the stream of revenues is capped when the maximum capacity is

reached.

It was found in Chapter 5 that for continuously observed fixed strike Asian options, the

initial discontinuity in the initial condition and the absence of convection led to suboptimal

quadratic convergence. However, when solving the investment timing problem, the initial

conditions are smooth and as a consequence quadratic convergence should be recovered.

Table 6.6 presents our convergence results for different timestepping schemes. As expected

linear convergence is found for implicit timestepping (i.e. R = 2) and quadratic convergence

is obtained for both Crank-Nicolson and second order backward differencing (i.e. R = 4).

Table 6.6 Investment value at η = Q = 100 = Q
2 when considering upgrading a cluster

of maximum capacity Q = 47520 and ζ = .03. Constant timestepping is used and the
timestep dt = 5./250 (i.e. one week). At each grid refinement, the timestep is halved. The
input parameters are provided in Table 6.5. The convergence ratio R is defined in equation
(6.31). The equipment lead time is four months and upgrade decisions are taken monthly.

Implicit timestepping CN timestepping BDF timestepping
Size of

η and Q grids Value (×107) R Value (×107) R Value (×107) R

71 5.3130 n.a. 5.3037 n.a. 5.3034 n.a.
141 5.3045 n.a. 5.2852 n.a. 5.2849 n.a.
281 5.3000 1.908 5.2792 3.048 5.2788 3.055
561 5.2984 2.760 5.2775 3.657 5.2772 3.670

We also studied the effect of the grid size on today’s optimal upgrade percentage. It is

found that for grids larger than 281 points, today’s upgrade percentage does not change by
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more than one percent. Consequently, in the following, the effect of the upgrade decision

frequency on today’s upgrade decision is studied with a grid containing 281 points in both

the capacity usage Q and mean η direction.

Table 6.7 Today’s upgrade decision in terms of upgrade percentage with respect to the
maximum capacity Q = 47520 of the cluster at 2% blocking. We allow 100% usage of the
total cluster capacity. Above 100%, the revenue stream is capped by the cluster maximum
capacity. The input parameters are provided in Table 6.5. It takes four months between
the time the equipment is ordered and the time it is on-line. 281 points are used for both
the η and Q grids. The results are accurate to within plus or minus one percent.

Upgrade decision One increment level Two increment level
interval ζ = .03 ζ = .1 ζ = .17 ζ = .03 ζ = .1 ζ = .17

monthly 90% 94.75% 99.5% 101.25% 106.75% 112.5 %
quarterly 77.5% 82 % 86.5% 87.5% 92.25% 97.5%

semi-annually 72.5% 76.25% 81% 81% 86% 91%
annually 60% 65% 70% 67.5% 72.5% 77.5%

Table 6.7 contains results for three different values of the market price of risk ζ, for a

variety of upgrade decision intervals, ranging from monthly to annually. We notice that for

the higher value of ζ = .17, the percentage, in terms of the maximal cluster capacity at

which it is optimal to upgrade, is higher than when ζ = .03. This result is in accordance

with our modeling framework, since as ζ increases, the drift term (µ − ζσ) of equation

(6.22) decreases, and the upgrade should occur later. In Table 6.7, we observe that the

difference between ζ = .03 and the average value of the market price of risk ζ = .1, in terms

of the optimal upgrade percentage, is approximately 5%. Similar results are found when

comparing ζ = .17 and ζ = .1. This indicates that our upgrade timing results are not too

sensitive to our estimate of ζ, however the value of the investment on the other hand is

quite sensitive to ζ.

In Table 6.7, we find that today it would be optimal to add one level of capacity to each
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base station of the cluster if 90−99% of its maximum capacity is reached when considering

monthly upgrade decision dates. As the upgrade decision interval is changed from monthly

upgrade decisions to annual upgrade decisions, the upgrade percentage decreases from 90%

to 60%. Intuitively, this simply reflects the fact that with less frequent decision opportunities

it is better to upgrade earlier. This behavior is consistent with the results found in [26,

33, 31]. In Table 6.7, we observe that in some cases it is optimal to wait before upgrading

the cluster until traffic demand is above its maximum capacity (e.g. monthly upgrade,

κ = .17, > 100%). While these levels may appear somewhat surprising and unrealistic, we

are in effect simply saying that customers must be experiencing a lot of blocking before it

is optimal to upgrade the cluster. In practice, since there is a financial penalty associated

with poor quality of service, this level of blocking would probably not occur.

As a final comment about Table 6.7, we observe that in some circumstances it can be

optimal to add two new carriers per cell site, rather than one. This is the case if traffic

demand is quite high, and particularly if upgrade decisions are made relatively infrequently.

6.5.2 Jump Case

We now consider the case when jumps in capacity usage are no longer ignored. Before pro-

ceeding any further, jumps in capacity usage must be characterized. We assume jumps are

log normally distributed (this prevents negative demand and this is a common assumption

in financial applications [66])

g(J) =
exp

(
− (log(J)−ν)2

2γ2

)
√

2πγJ
, (6.32)

where ν corresponds to the mean and γ to the standard deviation.

In Appendix H, an empirical method to estimate the jump frequency mean and standard

deviation is derived. This method assumes that the demand Q follows a geometric Brownian
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motion stochastic process and the jumps corresponds to extreme events. However, since

only large deviations from the mean are considered, the standard deviation for the traffic

jumps is certainly biased upward. It is recognized that the approach used here may not be

complete, other approaches exist (see [1, 6, 38, 40, 49, 51] and references therein). However

given the number of data points available, we believe that our procedure is sufficient to

assess the effects of jumps in traffic on the optimal wireless investment decision problem

Table 6.8 presents our parameter estimates. Recall that the time series considered

represents week to week capacity usage. To prevent intra-week usage patterns, the day of

the week with highest average capacity usage was selected and that same day was chosen

for the rest of the time series. As such, when estimating jump frequency only one day

per week was considered. Consequently, to adjust the value of the jump frequency, we

assume that jumps are uniformly distributed for each day of the week and thus multiply

the jump frequency obtained in Appendix H by five (bouncing busy hour traffic is only

monitored during business days). Admittedly, this is a very crude estimation. With this

assumption, it is found that there are approximately 28 jumps in traffic per year, with mean

ν ≈ −.0508/year and standard deviation γ ≈ .2372/year.

Table 6.8 Jump parameters summary table for different time series (representing different
switches in Toronto). This table shows the estimates of jumps which occur on only one
business day (Thursdays). To estimate the jump frequency on any business day, we multiply
the Thursday jump frequency by five.

Time series # iterations Jump frequency (Thursday) per year Jump mean ν Jump standard deviation γ
A 1 5 -0.1284 0.3961
B 3 6 -0.0121 0.2304
C 4 6 -0.0119 0.0850

Average n.a. ≈ 5.6 ≈ -.0508 ≈ 0.2372

Note that for the time series B and C, jumps in traffic that were previously considered as

part of the “normal” capacity usage have been discovered. As a consequence, the volatility
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Table 6.9 Drift rate and volatility summary table for different time series (different switches
in Toronto).

Time series Drift rate µ %/(year) Volatility σ per %/(year)
1
2

A -24.75 90.69
B 21.72 41.91
C 69.35 21.22

Average ≈ 22.11 ≈ 51.27

σ and drift rate µ have to be adjusted. Table 6.9 presents these new values which can be

compared with the drift rate and volatility numbers reported in Table 2.3. The speed of

reversion α is estimated by inspecting the different time series A, B and C. It is empirically

observed that when there is a jump in capacity usage Q, traffic usage returns to the vicinity

of its pre-jump values the next day. Thus, α is estimated to be ≈ 250. Table 6.10 presents

a summary of the input parameters when considering jumps in traffic.

Table 6.10 Model parameters.

Investment horizon (T ) 5 years
Decay in price (β) .05/year
Growth rate (µ) .2211/year
Volatility (σ) .5127/year

1
2

Risk free rate (r) .04/year
Market price of risk (ζ) [.03;.10;.17]/year
Speed of reversion (α) 250/year
Jump frequency (λ) 28/year

Jump mean (ν) -.0508/year
Jump standard deviation (γ) .02372/year

Since we are solving a set of partial differential equations on a discrete grid of points

and over a discrete set of timesteps, as in the previous section convergence testing must be

carried out. Linear convergence is found for implicit timestepping (i.e. R = 2) and quadratic

convergence is obtained for both Crank-Nicolson and second order backward differencing
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(i.e. R = 4, tables are omitted).

Table 6.11 Today’s upgrade decision in terms of upgrade percentage with respect to the
maximum capacity Q = 47520 of the cluster at 2% blocking. We allow 100% usage of the
total cluster capacity. Above 100%, the revenue stream is capped by the cluster maximum
capacity. The input parameters are provided in Table 6.10. It takes four months between
the time the equipment is ordered and the time it is on-line. 281 points are used for both
the η and Q grids. These results are accurate to within plus or minus one percent.

Upgrade decision One increment level Two increment level
interval ζ = .03 ζ = .1 ζ = .17 ζ = .03 ζ = .1 ζ = .17

monthly 95.75% 99.75% 103.75% 106.5% 111.% 116.%
quarterly 85.5% 89.% 93% 95% 99.5% 104%

semi-annually 81% 84% 88% 90% 94% 98.75%
annually 70% 73.75% 77.5% 77.5% 82% 87%

Next, we study the influence of jumps on today’s upgrade decision when considering

different upgrade decision intervals and market prices of risk. Comparing Table 6.11 with

Table 6.7, we observe that adding jumps in capacity usage delays today’s upgrade decision

by approximately 7%. These results are not surprising since both the drift rate and volatility

have changed and, furthermore, jumps in capacity usage have been included. These jumps

are on average negative in size. This implies that jumps in capacity usage do have a

significant effect on today’s upgrade decision (see Tables 6.11 and Table 6.7).

However, a concern which could be raised regarding this analysis is that the assump-

tion of 100% allowed capacity usage (at 2% blocking) is quite aggressive. However, our

framework allows us to take into account criteria such as quality of service. For instance,

it is conceivable that engineers prefer a safety buffer between the maximum capacity (at

2% blocking) and the capacity available to customers. Once this threshold is reached, the

quality of service deteriorates. To compensate, customers may receive rebates or free calls.

Of course, customers may also seek other vendors. These effects are explored in the next
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section.

6.5.3 Quality of Service Modeling

We adopt the following simple model to investigate how quality of service can affect the

upgrade decision. Let φ be the safety factor, representing a percentage of the maximum

capacity of the cluster. Then revenue is specified as

R(η,Q,Qm, τ) =


R(η,Q,Qm, τ) (= Q× P (τ)) if Q ≤ φQj

P (τ)Qm max(1− Q−φQm

φQm
, 0.0) otherwise.

(6.33)

For example, φ = .9 implies that only 90% of the maximum capacity of any given cluster (at

2% blocking) can be used. Note that the above expression implies that revenues eventually

drop to zero as capacity usage keeps increasing. Effectively, we are adding a financial

penalty as the quality of service deteriorates. It might also be possible to develop penalty

functions based on the effect of quality of service on customer “churn rates” (i.e. the loss of

customers to other vendors as a result of poor service), or other criteria. This differs from

the cases considered above in Table 6.7 where revenue was simply capped once capacity was

reached.

In Table 6.12, we present the results for several simulations with the safety level ranging

from 100% to 80% when the upgrade decision is considered every six months for ζ = .1.

The table considers the case where we add a single carrier to each cell site. Similar results

are obtained when upgrading involves adding two carriers per cell site. The first row in

the table, where the safety factor is indicated as “none”, corresponds to the situation in

the previous tables where revenue is simply capped when demand is higher than available

capacity.

We observe that as the safety level decreases, the upgrade occurs sooner in terms of the



CHAPTER 6. A REAL OPTIONS APPROACH TO NETWORK MANAGEMENT: AN
APPLICATION TO WIRELESS NETWORKS 141

Table 6.12 Today’s upgrade decision with different safety factor (6.33) values in terms of
upgrade percentage with respect to the maximum capacity of the cluster at 2% blocking.
Input parameters are provided in Table 6.5 and the market price of risk is given by ζ = .1.
The equipment lead time is four months. 281 points are used for both η and Q grids. Jumps
in traffic are assumed to follow a lognormal distribution [65]. Upgrade decisions are taken
every six months.

One cluster level
Safety factor (λ = 0, α = 106, σ = .65, µ = .3) (λ = 28, α = 250, σ = .5127, µ = .2211)

None 76.25% 84%
100% 65% 72.5%
90% 62.5% 70%
80% 60% 67.5%

percentage of the total capacity of the cluster. Similar behavior is reported when upgrade

decisions are made for shorter time intervals (e.g. quarterly, or monthly). This phenomenon

is intuitively correct: if there is a financial penalty for poor quality of service, upgrades will

occur sooner. Once again we find that adding jumps does affect today’s upgrade decision .

When comparing the columns of Table 6.12, we note that jumps in capacity usage tend to

delay the decision to upgrade.

6.6 Summary

In this chapter several contributions are put forward.

• We considered the issue of management of a wireless network under uncertain capacity

usage. While the method presented here is similar to the one described in [31], the

limitations embedded in the algorithm in that work are alleviated by developing a

five factor algorithm. This enables us to consider different upgrade decision intervals

independent of equipment lead time.
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• We showed that today’s upgrade decision, in terms of the optimal upgrade percentage,

is affected by the value of the market price of risk. As the value of the market price of

risk increases, today’s upgrade decision percentage increases effectively delaying the

decision to upgrade.

• We studied the effect of jumps in capacity usage on today’s upgrade decision. It is

found that jumps in capacity usage delays today’s upgrade decision by approximately

7%.

• We have demonstrated that by developing appropriate penalty functions which assign

a cost to poor quality of service, we can combine both financial and quality of service

criteria. This approach requires managers to assign a cost to quality of service issues.

Penalty functions could be real financial incentives provided to users (e.g. during high

blocking periods, all calls are free), or they could be based on customer churn rates.



Chapter 7

Conclusion

In this thesis, a model for investment in wireless network capacity was developed. Based on

a real options approach, a two dimensional partial integro-differential equation (PIDE) was

derived to determine the value of an investment into a wireless network under uncertain ca-

pacity usage. This PIDE presented several numerical challenges. In particular, the integral

term of the PIDE had to be solved accurately and quickly enough such that the general

PIDE solution was reasonably accurate. The absence of diffusion in the capacity usage

direction of the two dimensional PIDE also had to be handled carefully to avoid stability

and accuracy problems. To validate our numerical algorithms, problems from the financial

derivative pricing literature were used.

To address the numerical problems due to the integral term of the PIDE, we considered

the one dimensional pricing PIDE used when pricing American options under the jump

diffusion process. We developed an iterative method for solving the discrete penalized

equations. We derived sufficient conditions for the global convergence of this iteration (at

each timestep). Unlike previous work, the method developed here used implicit timestepping

for both the correlation integral term and the American constraint. As a result we obtained

high order convergence (in terms of timestepping error). A sufficient condition for global
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convergence of the iterative method for solving the discretized penalized jump diffusion

equations (at each timestep) was developed.

To address the numerical problems due to the absence of diffusion in the two dimen-

sional real options PIDE, we considered the two dimensional PIDE for pricing continuously

observed fixed strike Asian options under jump diffusion. We demonstrated that a semi-

Lagrangian method could be used effectively. The implementation suggested reduced this

problem to solving a decoupled set of one dimensional discrete partial integral differential

equations (PIDEs) at each timestep. We showed that in the fully implicit case, the semi-

Lagrangian method was algebraically identical to a standard numerical method for pricing

discretely observed Asian options, when the observation interval was equal to the discrete

timestep. Furthermore, since the discretized problem at each timestep reduced to a set of

decoupled one dimensional PIDEs, we proved convergence of the iterative method used to

solve the implicit discrete equations.

A five factor algorithm was developed to determine the optimal timing of capacity

investment in a wireless network. We computed the optimal time to upgrade in terms of

the ratio of observed usage to existing capacity. This optimal upgrade algorithm maximized

the value of the investment to the network operator. We showed that today’s upgrade

decision, in terms of the optimal upgrade percentage, increases as the value of the market

price of risk increases. We studied the effect of jumps in capacity usage on today’s upgrade

decision, it was found that jumps in capacity usage delayed today’s upgrade decision. We

also demonstrated that by developing appropriate penalty functions which assigned a cost to

poor quality of service, we could combine both financial and quality of service criteria. This

approach requires managers to assign a cost to quality of service issues. Penalty functions

could be real financial incentives provided to users (e.g. during high blocking periods, all

calls are free), or they could be based on customer churn rates.

Although, we were initially motivated by the PIDE results from the real options model
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of wireless network investments. The numerical algorithms developed in this thesis have

immediate application in finance. Specifically, we have developed robust numerical methods

for pricing continuously observed path dependent options, where the underlying follows a

jump diffusion process.

7.1 Future Work

There are several possible avenues for future research.

• A detailed analysis of pricing and hedging various types of exotic options under a

jump diffusion process could be carried out.

• It would be interesting to extend the analysis to more complex models for the evolution

of the underlying state variable. Among the candidates here are more general Lévy

processes than the jump diffusion case, or multifactor models such as those recently

explored in [42], which feature stochastic volatility with Poisson jumps in both the

state variable itself and its volatility.

• It would be desirable to prove convergence of iterative schemes without the use of M -

matrices. For single factor options, the commonly used VSS = 0 boundary condition

destroys the M-matrix property. For two factor options (such as stochastic volatility

models), the M-matrix property no longer holds if there is a non-zero correlation

between the asset price and the volatility [93]. However, we have observed that the

penalty method for imposing the American constraint appears to be globally (and

rapidly) convergent for models with stochastic volatility, but no jumps [93].

• Finally, the real options modelling framework could be extended to include uncertain

parameters, along the same lines as used for uncertain volatility [74].



Appendix A

Jump Diffusion PIDE Derivation

Let S represent the underlying stock price. Movements in this variable over time are

assumed to be described by a jump diffusion process of the form

dS

S
= µdt+ σdZ + (J − 1)dY, (A.1)

where µ is the drift rate, σ is the volatility associated with the continuous (Brownian)

component of the process, dZ is the increment of a Gauss-Wiener process, dY is a Poisson

process. Let V (S, t) be the value of a contingent claim that depends on the underlying

stock price S (A.1) and time t.

Let Π be a portfolio of derivatives in the presence of jumps, containing the option V

and −∆ of the underlying stock:

Π = V −∆S. (A.2)

Using the extended version of Ito’s lemma [89], the change in value of the portfolio

defined by equation (A.2) is given by

dΠ = dV −∆dS, (A.3)
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or

dΠ =
(
Vt +

1
2
σ2S2VSS

)
dt+ (Vs −∆) dS + (V (SJ, t)− V (S, t)− S∆(J − 1)) dY. (A.4)

Equation (A.4) contains two sources of uncertainty. The first source of uncertainty is due to

the Wiener part of the stock dZ, while the second source of uncertainty is due to the Poisson

process dY . Setting ∆ = Vs eliminates the diffusive risk, and equation (A.5) becomes

dΠ =
(
Vt +

1
2
σ2S2VSS

)
dt+ (V (SJ, t)− V (S, t)− S∆(J − 1)) dY. (A.5)

The portfolio Π evolves deterministically except for the Poisson part. In [66] it is argued

that if the jumps in the asset price (A.1) are uncorrelated with the market as a whole, then

the risk of jumps should not be priced into the options. Diversifiable risk should not be

rewarded. Consequently, taking the expectation equation (A.5) becomes

dΠ =
(
Vt +

1
2
σ2S2VSS

)
dt+ E [V (SJ, t)− V (S, t)]λdt− VsSE[(J − 1)]λdt, (A.6)

where E[.] is the expectation operator such that

E[x] =
∫
xg(x)dx,

where g(x) a probability density function. Consequently during the time interval dt, the

portfolio Π of derivatives must grow at the risk free rate dΠ = rΠdt. Equation (A.6)

becomes

Vt +
1
2
σ2S2VSS + (r − λκ)SVS + λE [V (SJ, t)− V (S, t)]− rV, (A.7)

where κ = E[J − 1]. For future convenience, note that equation (A.7) can be rewritten in
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a slightly different form as

Vt +
1
2
σ2S2VSS + (r − λκ)SVS − (r + λ)V + λ

∫ ∞

0
V (SJ, t)g(J)dJ = 0. (A.8)

Merton’s assumption about jump risk being diversifiable does not hold for index based

options, and in this case one must use an equilibrium based method [60] or a mean variance

hedging approach [9]. The partial integro differential equations resulting in either case are

essentially identical. In this case, the parameters λ, and κ are risk adjusted not historical

[5].



Appendix B

Error Estimates for Correlation

Integral

In this Appendix, we show how to extend the domain of integration of the integral (3.67)

such that FFT wrap-around effects are less than a user specified tolerance. To avoid alge-

braic complication, we derive the results in an informal way. We focus on the error due to

the FFT wrap-around. We assume that any other errors (interpolation, discretization of

the integral, etc.) are second order in the asset grid spacing, and we ignore such errors in

the following.
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We make the assumptions

ymin < 0

ymax > 0

V (y) ≥ 0

V (y) ≤ max(A2, A1e
y)

f(y) ≤ A3e
−γ|y|, ∀y, γ > 2

maxV (y) ≤ A4 ; y ∈ [ymin, ymax] (B.1)

where A1, A2, A3, A4 are constants independent of y. We assume that V (y) is only given at

discrete points on the interval y ∈ [ymin, ymax].

Recall that we wish to compute an approximation to

I(x) =
∫ ymax

ymin

V (x+ y)f(y)dy. (B.2)

Considering the case where x = ymax, equation (B.2) becomes

I(ymax) =
∫ ymax

ymin

V (ymax + y)f(y) dy

=
∫ 0

ymin

V (ymax + y)f(y) dy +
∫ ymax

0
V (ymax + y)f(y) dy. (B.3)

When using an FFT to evaluate the correlation integral, the term

∫ ymax

0
V (ymax + y)f(y) dy

is actually evaluated using ∫ ymax

0
V (ymin + y)f(y) dy (B.4)
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due to the wrap-around effect of the discrete FFT. The idea here is to extend the definition

of V to the interval y ∈ [ymin−∆y−, ymax +∆y+]. We make the assumption that the values

of V can be obtained in the extended regions correct to second order, and we ignore these

errors in the following. Setting ∆y− = 0 for the time being, equation (B.3) becomes

I(ymax) =
∫ ∆y+

ymin

V (ymax + y)f(y) dy +
∫ ymax

∆y+

V (ymax + y)f(y) dy. (B.5)

Now, the wrap-around error E(ymax) which will occur using an FFT will be

E(ymax) '
∫ ymax

∆y+

|V (ymax + y)− V (ymin + {y −∆y+})|f(y) dy

≤ max
[∫ ymax

∆y+

A1e
(ymax+y)f(y) dy , A2

∫ ymax

∆y+

f(y) dy
]

≤ max
[
A1e

ymax

∫ ymax

∆y+

eyA3e
−γy dy , A2

∫ ymax

∆y+

A3e
−γy dy

]
≤ max

[
A1e

ymax
e∆y+

A3e
−γ∆y+

γ − 1
, A2A3

e−γ∆y+

γ

]

≤ A3e
∆y+

e−γ∆y+
max [A1e

ymax , A2]

≤ A3e
−γ∆y+

e∆y+
A4 (B.6)

So, if we require that the relative error at x = ymax be less than a given tolerance, then we

select ∆y+ such that
E(ymax)
A4

≤ A3e
−γ∆y+

e∆y+
< tolR. (B.7)

For practical purposes, we assume that f(∆y+) ' A3e
−γ∆y+

, so that we can approximate

equation (B.7) by

E(ymax)
A4

' f(∆y+)e∆y+
< tolR. (B.8)

Note that a relative error criteria is a reasonable choice at x = ymax since V (ymax) may be
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O(eymax).

Following the same reasoning at x = ymin, assuming that ∆y+ = 0 for simplicity, we

now extend the domain of V to the left by ∆y−, and we assume that we can determine V

in [ymin −∆y−, ymin] correct to second order. The error in I(ymin) due to wrap-around is

given by

E(ymin) '
∫ −∆y−

ymin

|V (ymin + y)− V (ymax + y + ∆y−)|f(y) dy

≤ max

[∫ −∆y−

ymin

A1e
(ymax+y+∆y−)f(y) dy , A2

∫ −∆y−

ymin

f(y) dy

]

≤ max

[
A1e

(ymax+∆y−)

∫ −∆y−

ymin

eyA3e
γy dy , A2A3

e−γ∆y−

γ

]

≤ max

[
A1e

(ymax+∆y−)A3e
−γ∆y−

(
e−∆y−

1 + γ

)
, A2A3

e−γ∆y−

γ

]

≤ A3e
−γ∆y− max [A2, A1e

ymax ]

≤ A3e
−γ∆y−A4 (B.9)

Therefore we can require that the absolute error at x = ymin be less than a specified tolerance

if we select ∆y− such that

E(ymin) ≤ A4A3e
−γ∆y− < tolL. (B.10)

Again, for practical purposes we assume that f(−∆y−) ' A3e
−γ∆y− and so we approximate

equation (B.7) to obtain

E(ymin) ≤ A4f(−∆y−) < tolL. (B.11)

An estimate of A4 can be obtained from

A4 ' max
0≤S≤Smax

V (S, τ = 0). (B.12)
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Note that an absolute error criteria is appropriate near x = ymin since V is bounded at

y = ymin.

Typically, we chose tolL = tolR = 10−6. Since the wrap-around errors are largest at

x = ymin, x = ymax, selecting the domain extensions which satisfy equations (B.7) and

(B.10) will bound these errors at all other points. The domain extensions are illustrated in

Figures B.1-B.2.

log(Smax)

Domain
is expanded

Log stock price

Option Value on the log grid

0

Option Value

Stock price

Strike

Payoff

Smax

Figure B.1: The value of the option is interpolated onto the log-spaced grid. The right hand
side boundary of the log-spaced grid ymax = log(Smax) is expanded by ∆y+, where ∆y+ is given by
equation (B.7).
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log(Smax)

Domain
is expanded

Log stock price

Option Value on the log grid

0

Option Value

Stock price

SmaxStrike

Payoff

Figure B.2: The value of the option is interpolated onto the log-spaced grid. However, the value
of the option V (S, τ) at S = 0 is not used. The left hand side boundary grid point is chosen to be
logS1 where S1 is the grid point nearest to S = 0. This left boundary is then expanded by ∆y−,
which is given by equation (B.10).



Appendix C

Von Neumann Stability Analysis

In this Appendix, we will carry out a Von Neumann stability analysis for Crank-Nicolson

timestepping in the special case of constant parameters and an equally spaced grid in logS

coordinates.

From equations (3.5) and (3.13),

Vτ =
1
2
σ2S2VSS + (r − λκ)SVS − (r + λ)V + λ

∫ ∞

−∞
V (y)f (y − logS) dy. (C.1)

where V (x, τ) = V (exp(x), τ) and f(y) = f(exp(y)). Using the change of variable x =

log(S) and substituting into (C.1), we obtain

V τ =
1
2
σ2V xx + (r − λκ− 1

2
σ2)V x − (r + λ)V + λ

∫ ∞

−∞
V (y)f(y − x)dy. (C.2)

From equation (C.2), it can be observed that the integral part of the PIDE is simply a

correlation product. Using the correlation operator ⊗ from equation (3.14), equation (C.2)

can be written as

V τ =
1
2
σ2V xx + (r − λκ− 1

2
σ2)V x − (r + λ)V + λV ⊗ f. (C.3)
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A Crank-Nicolson discretization of equation (C.3) is

V
n+1
i − V

n
i

∆τ
=
λ

2
[
(V ⊗ f)n

i + (V ⊗ f)n+1
i

]
+

1
2

[
1
2
σ2

(
V

n+1
i+1 − 2V n+1

i + V
n+1
i−1

∆x2

)
+
(
r − λκ− 1

2
σ2

)(
V

n+1
i+1 − V

n+1
i−1

2∆x

)
− (r + λ)V n+1

i

]
+

1
2

[
1
2
σ2

(
V

n
i+1 − 2V n

i + V
n
i−1

∆x2

)
+
(
r − λκ− 1

2
σ2

)(
V

n
i+1 − V

n
i−1

2∆x

)
− (r + λ)V n

i

]
. (C.4)

Equation (C.4) can be written as

V
n+1
i

[
1 + (α+ β + r + λ)

∆τ
2

]
− ∆τ

2
βV

n+1
i+1 −

∆τ
2
αV

n+1
i−1

= V
n
i

[
1− (α+ β + r + λ)

∆τ
2

]
+

∆τ
2
βV

n
i+1+

∆τ
2
αV

n
i−1+

∆τ
2
λ
[
(V ⊗ f)n

i + (V ⊗ f)n+1
i

]
,

(C.5)

where

α =
σ2

2∆x2
−
r − λκ− σ2

2

2∆x
(C.6)

β =
σ2

2∆x2
+
r − λκ− σ2

2

2∆x
. (C.7)

Let V̂ n = [V n
0 , V

n
1 , . . . , V

n
p ]′ be the discrete solution vector to equation (C.3). Suppose

the initial solution vector is perturbed, i.e. V̂ 0 = V
0 +E0, where En = [En

0 , . . . , E
n
p ]′ is the

perturbation vector. Note that En
p = 0 since Dirichlet boundary conditions are imposed at

this node. Then, from equation (C.5), we obtain the following equation for the propagation
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of the perturbation

En+1
i

[
1 + (α+ β + r + λ)

∆τ
2

]
− ∆τ

2
βEn+1

i+1 −
∆τ
2
αEn+1

i−1

= En
i

[
1− (α+ β + r + λ)

∆τ
2

]
+

∆τ
2
βEn

i+1+
∆τ
2
αEn

i−1+
∆τ
2
λ
[
(E ⊗ f)n

i + (E ⊗ f)n+1
i

]
.

(C.8)

In the following we determine the stability of our discretization scheme using the von

Neumann approach [80]. In order to apply the Fourier transform method, we assume that

the boundary conditions can be replaced by periodicity conditions. We define the inverse

discrete Fourier transform (DFT) as follows (note that we have selected a particular scaling

factor)

En
i =

1
XN

N
2∑

k=−N
2

+1

Cn
k exp

(√
−1

2π
N
ik

)
(C.9)

fi =
1
XN

N
2∑

l=−N
2

+1

Fl exp
(√

−1
2π
N
il

)
, (C.10)

where Ck and Fl correspond respectively to the discrete Fourier coefficients of E and f , and

XN = xN/2 − x−N/2+1 is the width of the domain along the x-axis. Note that the notation

Cn
k should be interpreted as (Ck)n, i.e. in this case n is a power, not a superscript.

The forward transforms are

Cn
k =

XN

N

N
2∑

i=−N
2

+1

En
i exp

(
−
√
−1

2π
N
ik

)
(C.11)

Fl =
XN

N

N
2∑

i=−N
2

+1

fi exp
(
−
√
−1

2π
N
il

)
. (C.12)
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The discrete correlation is given by

(E ⊗ f)n
i =

XN

N

N
2∑

j=−N
2

+1

En
j fj−i, (C.13)

which is second order accurate. Substituting (C.9) and (C.10) into (C.13), we obtain

(E ⊗ f)n
i =

XN

N

N
2∑

j=−N
2

+1

1
XN

N
2∑

k=−N
2

+1

Cn
k exp

(√
−1

2π
N
jk

)
1
XN

N
2∑

l=−N
2

+1

Fl exp
(√

−1
2π
N

(j − i)l
)

=
1
XN

1
N

N
2∑

k=−N
2

+1

N
2∑

l=−N
2

+1

Cn
kFl exp

(
−
√
−1

2π
N
il

)

×

N
2∑

j=−N
2

+1

exp
(√

−1
2π
N
jk

)
exp

(√
−1

2π
N
jl

)
.

Using the orthogonality condition

N
2∑

j=−N
2

+1

exp
(√

−1
2π
N
jk

)
exp

(√
−1

2π
N
jl

)
=


N if l = −k

0 otherwise
, (C.14)

we find that

(E ⊗ f)n
i =

1
XN

N
2∑

k=−N
2

+1

Cn
kF−k exp

(√
−1

2π
N
ik

)
. (C.15)
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Substituting (C.9) and (C.15) into (C.8) gives

1
XN

N
2∑

k=−N
2

+1

Cn+1
k exp

(√
−1

2π
N
ik

)[
1 + (α+ β + r + λ)

∆τ
2

]

−∆τ
2
β

1
XN

N
2∑

k=−N
2

+1

Cn+1
k exp

(√
−1

2π
N

(i+ 1)k
)
−∆τ

2
α

1
XN

N
2∑

k=−N
2

+1

Cn+1
k exp

(√
−1

2π
N

(i− 1)k
)

=

1
XN

N
2∑

k=−N
2

+1

Cn
k exp

(√
−1

2π
N
ik

)[
1− (α+ β + r + λ)

∆τ
2

]

+
∆τ
2
β

1
XN

N
2∑

k=−N
2

+1

Cn
k exp

(√
−1

2π
N

(i+ 1)k
)

+
∆τ
2
α

1
XN

N
2∑

k=−N
2

+1

Cn
k exp

(√
−1

2π
N

(i− 1)k
)

+
∆τ
2
λ

 1
XN

N
2∑

k=−N
2

Cn
kF−k exp

(√
−1

2π
N
ik

)
+

1
XN

N
2∑

k=−N
2

Cn+1
k F−k exp

(√
−1

2π
N
ik

)
(C.16)

Because of linearity, each Fourier component can be treated separately. Equation (C.16)
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becomes

Cn+1
k exp

(√
−1

2π
N
ik

)[
1 + (α+ β + r + λ)

∆τ
2

]
− ∆τ

2
βCn+1

k exp
(√

−1
2π
N

(i+ 1)k
)
− ∆τ

2
αCn+1

k exp
(√

−1
2π
N

(i− 1)k
)

=

Cn
k exp

(√
−1

2π
N
ik

)[
1− (α+ β + r + λ)

∆τ
2

]
+

∆τ
2
βCn

k exp
(√

−1
2π
N

(i+ 1)k
)

+
∆τ
2
αCn

k exp
(√

−1
2π
N

(i− 1)k
)

+
∆τ
2
λ

[
Cn

kF−k exp
(√

−1
2π
N
ik

)
+ Cn+1

k F−k exp
(√

−1
2π
N
ik

)]
. (C.17)

Dividing equation (C.17) by Cn
k exp

(√
−1 2π

N ik
)
, we obtain

Ck

[
1 + (α+ β + r + λ)

∆τ
2

]
− ∆τ

2
βCk exp

(√
−1

2π
N
k

)
−

∆τ
2
αCk exp

(
−
√
−1

2π
N
k

)
− Ck

λ∆τ
2

F−k

=[
1− (α+ β + r + λ)

∆τ
2

]
+

∆τ
2
β exp

(√
−1

2π
N
k

)
+

∆τ
2
α exp

(
−
√
−1

2π
N
k

)
+

∆τ
2
λF−k. (C.18)

Factoring the Ck term, equation C.18 becomes

Ck =

[
1− (α+ β + r + λ)∆τ

2

]
+ ∆τ

2 β exp
(√
−1 2π

N k
)

+ ∆τ
2 α exp

(
−
√
−1 2π

N k
)

+ ∆τ
2 λF−k[

1 + (α+ β + r + λ)∆τ
2

]
− ∆τ

2 β exp
(√
−1 2π

N k
)
− ∆τ

2 α exp
(
−
√
−1 2π

N k
)
− ∆τ

2 λF−k

.

(C.19)
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Recalling (C.7), it follows that

α+ β + r + λ =
σ2

2∆x2
−
(
r − λκ− 1

2σ
2
)

2∆x
+

σ2

2∆x2
+

(
r − λκ− 1

2σ
2
)

2∆x
+ r + λ

=
σ2

∆x2
+ r + λ,

and

∆τβ exp
(√

−1
2π
N
k

)
+ ∆τα exp

(
−
√
−1

2π
N
k

)
=

σ2∆τ
2∆x2

[
exp

(√
−1

2π
N
k

)
+ exp

(
−
√
−1

2π
N
k

)]
+

∆τ
(
r − λκ− 1

2σ
2
)

2∆x
×
[
exp

(√
−1

2π
N
k

)
+ exp

(
−
√
−1

2π
N
k

)]
=
σ2∆τ
∆x2

cos
(

2π
N
k

)
+

√
−1 ∆τ

(
r − λκ− 1

2σ
2
)

∆x
sin
(

2π
N
k

)
.

Using the above results in (C.19), we find

Ck =[
1−

(
σ2

∆x2 + r + λ
)

∆τ
2

]
+ 1

2

[
σ2∆τ
∆x2 cos

(
2π
N k
)

+
√
−1 ∆τ

∆x

(
r − λκ− 1

2σ
2
)
sin
(

2π
N k
)

+ ∆τλF−k

]
[
1 + 1

2

(
σ2

∆x2 + r + λ
)
∆τ
]
− 1

2

[
σ2∆τ
∆x2 cos

(
2π
N k
)

+
√
−1 ∆τ

∆x

(
r − λκ− 1

2σ
2
)
sin
(

2π
N k
)

+ ∆τλF−k)
] .

(C.20)

Letting

FR
−k = Re(F−k)

F I
−k = Im(F−k),
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equation (C.20) gives

|Ck|2 =[
1−

(
σ2

∆x2 + r + λ
)

∆τ
2 + σ2∆τ

2∆x2 cos
(

2π
N k
)

+ ∆τ
2 λF

R
−k

]2
+
[

∆τ
2∆x

(
r − λκ− 1

2σ
2
)
sin
(

2π
N k
)

+ λ∆τ
2 F

I
−k

]2[
1 +

(
σ2

∆x2 + r + λ
)

∆τ
2 − σ2∆τ

2∆x2 cos
(

2π
N k
)
− ∆τ

2 λF
R
−k

]2
+
[

∆τ
2∆x

(
r − λκ− 1

2σ
2
)
sin
(

2π
N k
)

+ λ∆τ
2 F

I
−k

]2 ,
(C.21)

or

|Ck|2 =[
1− r∆τ

2 − σ2∆τ
2∆x2

(
1− cos

(
2π
N k
))
− ∆τλ

2

(
1− FR

−k

)]2
+
[

∆τ
2∆x

(
r − λκ− 1

2σ
2
)
sin
(

2π
N k
)

+ λ∆τ
2 F

I
−k

]2[
1 + r∆τ

2 + σ2∆τ
2∆x2

(
1− cos

(
2π
N k
))

+ ∆τλ
2

(
1− FR

−k

)]2
+
[

∆τ
2∆x

(
r − λκ− 1

2σ
2
)
sin
(

2π
N k
)

+ λ∆τ
2 F

I
−k

]2 .
(C.22)

Note that

F−k =
XN

N

N
2∑

j=−N
2

+1

f j exp
(√

−1
2π
N
kj

)
. (C.23)

Then, from (3.22), we have

XN

N

N
2∑

j=−N
2

+1

f j ≤ 1, (C.24)

so that

|F−k| ≤ 1, (C.25)

and hence

−1 ≤ FR
−k ≤ +1. (C.26)
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It then follows that (∀k ∈ −N/2 + 1, . . . ,+N/2)

∣∣∣∣1 +
r∆τ

2
+
σ2∆τ
2∆x2

(
1− cos

(
2π
N
k

))
+

∆τλ
2
(
1− FR

−k

)∣∣∣∣ ≥∣∣∣∣1− r∆τ
2

− σ2∆τ
2∆x2

(
1− cos

(
2π
N
k

))
− ∆τλ

2
(
1− FR

−k

)∣∣∣∣ ,
(C.27)

and consequently |Ck| < 1,∀k. As a result the scheme is unconditionally strictly stable.



Appendix D

American Options Under Jump

Diffusion

In the following, we consider the problem of convergence of the iteration scheme (D.1).

Convergence is proved by a number of properties of the intermediate quantities V̂ k.

Algorithm D.1 Fixed point iteration scheme to solve the free boundary problem under
the diffusion process.

Let (V n+1)0 = V n

Let V̂ k = (V n+1)k

Let P̂ k = P ((V n+1)k)
for k = 0, 1, 2, . . . until convergence do

Solve[
I − (1− θ)L+ P̂ k

]
V̂ k+1 = [I + θL]V n + P̂ kV ∗ + (1− θ)λ∆τBV̂ k + θλ∆τBV n

if maxi
|V̂ k+1

i −V̂ k
i |

max(1,|V̂ k+1
i |)

< tolerance then

Quit
end if

end for

Lemma D.1 (Bounded iterates). Suppose that αi, βi ≥ 0 for all i in the discretization

(3.51) and that B has the properties (3.54). Then, for a given timestep, all iterates V̂ k+1

164
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in scheme (D.1) are bounded independent of k.

Proof. Writing iteration (D.1) in component form gives

[
1 + (1− θ)(αi + βi + λ+ r)∆τ + P̂ k

ii

]
V̂ k+1

i =

ci + P̂ k
iiV

∗
i + (1− θ)λ∆τ

∑
j

bijV̂
k
j + (1− θ)∆τ

[
αiV̂

k+1
i−1 + βiV̂

k+1
i+1

]
, (D.1)

where

ci = ([I + θL]V n + θλ∆τBV n)i . (D.2)

From the component form (D.1), it follows that (i < imax)

[
1 + (1− θ)(αi + βi + λ+ r)∆τ + P̂ k

ii

]
|V̂ k+1

i | ≤ ‖c‖∞ + P̂ k
ii‖V ∗‖∞ + (1− θ)λ∆τ‖V̂ k‖∞

+(1− θ)∆τ [αi + βi] ‖V̂ k+1‖∞. (D.3)

Let m be an index such that

|V̂ k+1
m | = max

i
|V̂ k+1

i | = ‖V̂ k+1‖∞. (D.4)

Note that if m = imax then we have

‖V̂ k+1‖∞ = |V n
imax| ≤ ‖V n‖∞. (D.5)

Assume now that m < imax. Then from equations (D.3) and (D.4) we obtain

[
1 + (1− θ)(λ+ r)∆τ + P̂ k

mm

]
‖V̂ k+1‖∞ ≤ ‖c‖∞ + P̂ k

mm‖V ∗‖∞ + (1 − θ)λ∆τ‖V̂ k‖∞.

(D.6)
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Equation (D.6) then gives

‖V̂ k+1‖∞ ≤ ‖c‖∞ + P k
mm‖V ∗‖∞

1 + (1− θ)(λ+ r)∆τ + P k
mm

+
(1− θ)λ∆τ‖V̂ k‖∞

1 + (1− θ)(λ+ r)∆τ + P k
mm

.

(D.7)

Let

C1 = max(‖c‖∞, ‖V ∗‖∞) and C2 =
(1− θ)λ∆τ

1 + (1− θ)(λ+ r)∆τ
(D.8)

so that

‖V̂ k+1‖∞ ≤ C1 +
(1− θ)λ∆τ‖V̂ k‖∞

1 + (1− θ)(λ+ r)∆τ + P k
mm

≤ C1 + C2‖V̂ k‖∞. (D.9)

Summing over the index k, equation (D.9) gives

‖V̂ k+1‖∞ ≤ C1

k∑
i=0

Ci
2 + Ck+1

2 ‖V̂ 0‖∞.

(D.10)

Noting that V̂ 0 = V n and that C2 < 1, equation (D.10) then gives

‖V̂ k+1‖∞ ≤ ‖V n‖∞ +
C1

1− C2
, (D.11)

where C1, C2 are independent of k. From equation (D.5) we see that bound (D.11) is also

valid for m = imax and therefore for all m.

After some manipulation, we can write iteration (D.1) as

[
I − (1− θ)L+ P̂ k

]
(V̂ k+1− V̂ k) = (P̂ k− P̂ k−1)(V ∗− V̂ k)+(1−θ)λ∆τB(V̂ k− V̂ k−1) .

(D.12)
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In order to prove convergence of the scheme (D.1), it will be convenient to determine the

sign of (P̂ k − P̂ k−1)(V ∗ − V̂ k) in equation (D.12).

Lemma D.2 (Positive penalty term). Given the definition of the penalty matrix P̂ k

from equation (3.63), and the iteration scheme (D.1), we have that

(P̂ k − P̂ k−1)(V ∗ − V̂ k) ≥ 0 for all k ≥ 1 . (D.13)

Proof. For each index i we have two possible cases. If V̂ k
i < V ∗i for component i then

P̂ k
ii = Large so that

(P̂ k
ii − P̂ k−1

ii )(V ∗ − V̂ k)i = (Large − P̂ k−1
ii )(V ∗ − V̂ k)i ≥ 0.

On the other hand if V̂ k
i ≥ V ∗i then P̂ k

ii = 0 hence

(P̂ k
ii − P̂ k−1

ii )(V ∗ − V̂ k)i = −P̂ k−1
ii (V ∗ − V̂ k)i ≥ 0.

Thus for all k ≥ 1 we always have

(P̂ k − P̂ k−1)(V ∗ − V̂ k) ≥ 0. (D.14)

Recall that an M-matrix has positive diagonals, non-positive off-diagonals, the row sums

are non-negative with at least one such sum being positive. Such a matrix has the useful

property that all the entries in its inverse are non-negative.

Lemma D.3 (M-matrices). Let L, B and P̂ k be given by (3.51), (3.52) and (3.63),

respectively. Assume that αi ≥ 0, βi ≥ 0 in equation (3.51), that B has the properties (3.54)
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and that we use a Dirichlet boundary condition in (3.65). Then both

[I − (1− θ)L+ P k] and [I − (1− θ)L+ P k − (1− θ)λ∆τB] (D.15)

are M matrices.

Proof. It follows from equations (3.51), (3.52) and (3.52) that both of the above matrices

have positive diagonals, non-positive off-diagonals and with row sum non-negative. Since a

Dirichlet condition is imposed at i = imax (3.65), for both matrices there is at least one

row which has a strictly positive row sum.

Recall that the discrete equations can be written as (θ = θJ)

[I − (1− θ)L+ P̂n+1− (1− θ)λ∆τB]V n+1 = [I + θL]V n + θλ∆τBV n + P̂n+1V ∗. (D.16)

We can now prove the following result:

Theorem D.1 (Uniqueness of solution). Under the conditions required for Lemmas D.2

and D.3, any solution to equation (D.16) for a given timestep is unique.

Proof. Suppose that we have two solutions V1, V2 to equation (D.16). Let P̂1 ≡ P (V1) and

P̂2 ≡ P (V2) so that

[I − (1− θ)L+ P̂1 − (1− θ)λ∆τB]V1 = [I + θL]V n + θλ∆τBV n + P̂1V
∗ (D.17)

and

[I − (1− θ)L+ P̂2 − (1− θ)λ∆τB]V2 = [I + θL]V n + θλ∆τBV n + P̂2V
∗. (D.18)
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Equation (D.17) can be written as

[I − (1− θ)L+ P̂2 − (1− θ)λ∆τB]V1 + (P̂1 − P̂2)V1 = [I + θL]V n + θλ∆τBV n + P̂1V
∗

(D.19)

which after subtracting (D.18) from D.19 gives

[I − (1− θ)L+ P̂2 − (1− θ)λ∆τB](V1 − V2) = (P̂1 − P̂2)(V ∗ − V1) . (D.20)

Using the same arguments as in the proof of Lemma D.2 we have that (P̂1−P̂2)(V ∗−V1) ≥ 0.

From Lemma D.3 it follows that I− (1− θ)L+ P̂2− (1− θ)λ∆τB is an M-matrix and hence

(V1 − V2) ≥ 0. Interchanging subscripts, we also have that (V2 − V1) ≥ 0 and hence

V1 = V2.

Before we prove our main convergence result, we need the following Lemma.

Lemma D.4 (Norm of an iteration matrix). Let A, B and P̂ k be given by (3.51),

(3.52) and (3.63), respectively. Assume that αi ≥ 0, βi ≥ 0 in equation (3.51), that B has

the properties (3.54) and that we use a Dirichlet boundary condition in (3.65). Then for

Ok = [I − (1− θ)L+ P k] we have

‖[Ok]−1B‖∞ ≤ 1
1 + (1− θ)(r + λ)∆τ

. (D.21)

Proof. Let y, z be vectors, z arbitrary, satisfying Oky = Bz. Then in component form we

have that yimax = 0 and for i < imax:

[1+ (1− θ)(αi +βi + r+λ)∆τ + P̂ k
ii]yi = (1− θ)αi∆τyi−1 +(1− θ)βi∆τyi+1 +

∑
j

bijzj .

(D.22)
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From the properties of αi, βi, P̂
k, B, we then immediately have that

‖y‖∞ ≤ ‖z‖∞
1 + (1− θ)(r + λ)∆τ

, (D.23)

giving (D.21).

We are now in a position to prove our main convergence result

Theorem D.2 (Convergence of iteration (D.1)). Let A, B and P̂ k be given by (3.51),

(3.52) and (3.63), respectively. Assume that αi ≥ 0, βi ≥ 0 in equation (3.51), that B has

the properties (3.54) and that we use a Dirichlet boundary condition in (3.65). Then the

iteration Algorithm D.1 is globally convergent to the unique solution of equation (D.16) for

any initial iterate V̂ 0.

Proof. Iteration (D.1) can be written as

Ok(V̂ k+1 − V̂ k) = (P̂ k − P̂ k−1)(V ∗ − V̂ k)

+ (1− θ)λ∆τB(V̂ k − V̂ k−1), k ≥ 1, (D.24)

where Ok ≡ I − (1− θ)A+ P̂ k. For any k ≥ 1 we can then write

(V̂ k+1 − V̂ k) = Uk +W k · (V̂ 1 − V̂ 0), (D.25)
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with

Uk = [Ok]−1(P̂ k − P̂ k−1)[V ∗ − V̂ k]

+(1− θ)λ∆τ [Ok]−1B[Ok−1]−1(P̂ k−1 − P̂ k−2)[V ∗ − V̂ k−1]

+ . . .

+[(1− θ)λ∆τ ]k−1[Ok]−1B[Ok−1]−1B . . . [O1]−1B(P̂ 1 − P̂ 0)[V ∗ − V̂ 1],

W k = [(1− θ)λ∆τ ]k[Ok]−1B[Ok−1]−1B . . . [O1]−1B. (D.26)

We show that both Uk and W k tend to zero as k gets large.

Note first that both Uk ≥ 0 and W k ≥ 0. To show this we have that Lemma D.2 implies

(P̂ k − P̂ k−1)(V ∗ − V̂ k) ≥ 0 for all k ≥ 1 while from Lemma D.3, we have that [Ok]−1 ≥ 0.

Since B ≥ 0 we have that all the components in Uk are non-negative. A similar statement

is true for W k since Ok is an M-matrix and since B ≥ 0.

From Lemma D.4 and equation (D.26) we have that for each i

‖W i‖∞ ≤
[

(1− θ)λ∆τ
1 + (1− θ)(r + λ)∆τ

]i

, (D.27)

and hence

‖
k∑

i=1

W i‖∞ ≤
k∑

i=1

[
(1− θ)λ∆τ

1 + (1− θ)(r + λ)∆τ

]i

≤
[

(1− θ)λ∆τ
1 + (1− θ)r∆τ

]
. (D.28)

Thus {
∑k

i=1W
i}k=1,... is a sequence of non-decreasing terms which are bounded from above.

As such, the sequence converges. In particular we have that W k tends to zero as k tends

to infinity.
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Summing over the index k equation (D.25) gives

V̂ k+1 = V̂ 1 +
k∑

i=1

U i +
k∑

i=1

W i · (V̂ 1 − V̂ 0). (D.29)

From equation (D.27) we have that (
∑k

i=1W
i · (V̂ 1 − V̂ 0) ) converges to a finite value,

furthermore from Lemma D.1 the left hand side of equation (D.29) is bounded from above.

Thus the sequence {
∑k

i=1 U
i}k=1,... is both non-decreasing and bounded from above. Hence

this sequence also converges and so Uk approaches zero as k approaches infinity.

Thus a convergent limit exists, and from Theorem D.1, this is the unique solution to

equation (D.16).

Remark D.1 (Monotonicity of convergence). Previous convergence results for penalty

methods have typically required that the quantities V k are monotonic (cf. [44]). From

equation (D.25) we see that we do not necessarily have this property if V̂ 1 < V̂ 0. Of course

we could ensure monotonicity by forcing V̂ 1 ≥ V̂ 0. However the proof of Theorem D.2

shows that this is not really required. In addition, numerical experiments demonstrate that

forcing monotonicity does not improve convergence.

Remark D.2 (Speed of convergence). Typically we have that λ∆τ � 1. For example,

for S&P 500 data, λ ' .1 [5], and a typical timestep is ∆τ < .1, giving λ∆τ ' .01. For

λ∆τ � 1, equation (D.27) becomes

‖W i‖∞ ' ((1− θ)λ∆τ)i ,

so that the term
k∑

i=1

W i · (V̂ 1 − V̂ 0),

in equation (D.29) converges very rapidly. Experience with the penalty method for American
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options with Brownian motion [44] (no jumps) indicates that the term

k∑
i=1

U i,

in equation (D.29) also converges rapidly. This rapid convergence will be confirmed with

the numerical examples in Chapter 4.

Remark D.3 (Non M-matrices). Our proof of convergence relies on the fact that the

discretization of the PDE resulted in an M-matrix. However, we have observed (experimen-

tally) that convergence is still rapid even if the coefficient matrix is not an M-matrix.

An example where our discretization is not an M-matrix appears naturally as follows.

It is often convenient to impose an asymptotic linearity boundary condition [89]

VSS = 0 ; S →∞. (D.30)

This boundary condition is particularly useful in complex path dependent cases where it is

difficult to determine the asymptotic form of the solution [90].

Condition (D.30) is enforced by setting (VSS)n
i = 0 at i = imax, and using a backward

difference approximation for VS. A little thought shows that for r > 0, this corresponds

to using downwind weighting of the first order term at i = imax. This method can be

shown to be stable [91], and the matrix solution can be obtained using Gaussian elimination

without pivoting as long as the order of elimination is i = 0, 1, ... . However, in this case the

coefficient matrix is no longer an M-matrix. In fact standard iterative methods for obtaining

complementarity solutions may fail due to a small pivot since these methods [25] require

repeated elimination steps in the forward (i = 0, 1, ...) and reverse (i = imax, imax− 1, ...)

directions.



Appendix E

Fast Gauss Transform

The basics of the fast Gauss transform (FGT) algorithm (see [50]) are presented as an

alternative to the fast Fourier transform (FFT) method to evaluate

I(S) =
∫ ∞

0
V (Sη)g(η)dη. (E.1)

This algorithm is of particular interest since it only requires O(N) work, where N is the

number of points used to approximate (E.1) by means of a quadrature formula and does

not require a uniformly spaced grid. In comparison, the fast Fourier transform algorithm

would require O(N logN) work as well as a uniform grid. While we limit our description

to the one dimensional case, the FGT algorithm can be extended to higher dimensions (see

[50]).

The basis of the fast Gauss transform algorithm is that the Gauss transform integral of

a function f as given by

G(x) =
∫
f(y)e−

(xi−yj)2

ω dy, (E.2)

174
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can be approximated by

Gi ≈
N+1∑
j=0

qje
−

(xi−yj)2

ω , (E.3)

where qj depends on both the weights of the chosen quadrature formula as well as f(yj), and

ω > 0. Equation (E.3) can then be transformed into an infinite series in terms of Hermite

functions as follows

Gi =
N+1∑
j=0

qj
∑
m≥0

∑
n≥0

1
m!

1
n!

(
yj − y0√

ω

)n

hn+m

(
x0 − y0√

ω

)(
xi − x0√

ω

)m

,

=
∑
m≥0

1
m!

(
xi − x0√

ω

)m∑
n≥0

hn+m

(
x0 − y0√

ω

) 1
n!

N+1∑
j=0

qj

(
yj − y0√

ω

)n
 (E.4)

where the Hermite function hn(x) is defined by

hn(x) = (−1)n

(
d

dx

)n

e−x2
. (E.5)

Since the expansion series given by (E.4) converges very quickly [50], it is possible to de-

termine the number of terms in the infinite series that are necessary to ensure that the

truncation error meets an established tolerance depending on the quadrature weights (see

[50] for details). Taking advantage of this fact and that e−(x−y)2 decreases very rapidly, L.

Greengard and J. Strain [50] devised the fast Gauss transform algorithm to evaluate (E.2)

in O(N) time.

For our financial pricing problem, it is possible to write (E.1) as

I(x) =
∫ ∞

−∞
V (y)e

−(x−y)2

ω dy, (E.6)

where x = log(S), ω > 0 and V (y) = V (ey). Note that this transformation is only obtainable

for some probability density functions (e.g. [66] and [55]).
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Table E.1 Input data used to value a European call option under the lognormal jump
diffusion process. These parameters are approximately the same as those reported in [5]
while fitting European call options on the S&P 500 stock index in April of 1999.

σ 0.15 r 0.05
γ 0.45 ν 0.0
λ 0.10 T 0.25
K 100.00

In the following, we compare the fast Fourier transform approach with the fast Gauss

transform approach. We use the implementation of the algorithm from [50]. We compare

speed and accuracy of the FFT and FGT methods for a European put option while using

the lognormal probability density function described in [66]. All of our tests were performed

on a Sun ultra Sparc machine using the SUN C++ version 5.2 compiler and the F77 version

4.2 Fortran compiler. The input data is given by Table E.1.

Table E.2 Value of a European put option using Crank-Nicolson with constant timestep-
ping with the FFT method to evaluate the integral. The input parameters are provided
in Table E.1. The convergence ratio R is defined in equation (4.2). The exact solution
is 2.781578 at S = 100. The number of points used for the FFT grid is 2α, where α is
the smallest integer such that the number of nodes in the non-uniform S grid N ≤ 2α.
Quadratic interpolation is used. The CPU time reported represents the average processing
time of 10 consecutive runs when pricing a European option on a given grid size.

Size of No. of CPU S = 100
S grid timesteps time (sec.) Value R

128 25 0.036 2.778662 n.a.
255 50 0.095 2.780837 n.a.
509 100 0.292 2.781387 3.953
1017 200 1.138 2.781530 3.857
2033 400 4.496 2.781566 3.917
4065 800 18.172 2.781575 3.972

We begin by comparing the accuracy of the solution between the FFT method (see
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Table E.2) and the FGT method (see Table E.3). Three different quadrature approaches are

used for the FGT method, that is trapezoidal, Simpson and Simpson 3/8 rules. We notice

that the accuracy of the solution is relatively unaffected by the choice of the quadrature

rule independently of the tolerance used. For sufficiently small tolerance, the exact value of

the European put option defined by the input parameters in Table E.1 is recovered. With

255 points and a tolerance equal to 10−4, penny accuracy is obtained.

Next, we compare the speed and accuracy of the FGT and FFT methods. The CPU

time reported in tables E.2 and E.4 represents the average processing time of 10 consecutive

runs when pricing a European option on a given grid size. For the FGT method we use the

trapezoidal quadrature rule (see Table E.3). In table E.2, we observe quadratic convergence

to the exact solution when the FFT algorithm is used. Similarly for the FGT algorithm

(see Table E.4), quadratic convergence is also recovered if a sufficiently small tolerance (i.e.

tol = 10−6) is chosen. Any tolerance larger than tol > 10−6 did not result in quadratic

convergence.

In Table E.5, we report the CPU time for different tolerances for the FGT algorithms.

Before going any further, we must emphasize that the FFT algorithm requires a uniform

x = log(S) grid, while the FGT algorithm does not. Thus, for each fixed point iteration

two interpolation steps are required for the FFT while none are necessary for the FGT.

As such, we could expect the FGT to be a better method to approximate equation (E.6),

assuming that the constant of the running time complexity is not too large.

However, we find that the FFT method is much faster than the FGT approach (see

Table E.5). From an option pricing perspective, it takes one tenth of a second to obtain

penny accuracy when using the FFT algorithm, while it takes approximately half a second

for the FGT algorithm with a tolerance of 10−4.

Based on these observations, we conclude that the fast Fourier transform is a more

appropriate choice for our particular problems. Further experiments lead us to determine
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Table E.3 Value of a European put option using Crank-Nicolson with constant timestep-
ping with the FGT algorithm to evaluate the integral (E.6). Convergence tests are presented
for different tolerance values and integration schemes. The input parameters are provided
in Table E.1. The exact solution is 2.781578 at S = 100.

Size of Trapezoidal Simpson’s Simpson’s
S grid rule rule 3/8 rule
128 2.778658 2.777844 2.779892
255 2.794691 2.795355 2.794930
509 2.795703 2.795660 2.795670
1017 2.795905 2.795931 2.795903
2033 2.796220 2.796150 2.796242
4065 2.796121 2.796126 2.796113

(a) tol = 10−2.

Size of Trapezoidal Simpson’s Simpson’s
S grid rule rule 3/8 rule
128 2.778662 2.777849 2.779894
255 2.780078 2.780103 2.780171
509 2.780611 2.780610 2.780613
1017 2.780749 2.780749 2.780749
2033 2.780779 2.780780 2.780779
4065 2.780790 2.780789 2.780790

(b) tol = 10−4.

Size of Trapezoidal Simpson’s Simpson’s
S grid rule rule 3/8 rule
128 2.778662 2.777849 2.779894
255 2.780837 2.780875 2.780937
509 2.781418 2.781417 2.781420
1017 2.781561 2.781561 2.781561
2033 2.781598 2.781598 2.781598
4065 2.781607 2.781607 2.781607

(c) tol = 10−6.

Size of Trapezoidal Simpson’s Simpson’s
S grid rule rule 3/8 rule
128 2.778662 2.777849 2.779894
255 2.780837 2.780875 2.780937
509 2.781385 2.781385 2.781388
1017 2.781528 2.781528 2.781528
2033 2.781565 2.781565 2.781565
4065 2.781574 2.781574 2.781574

(d) tol = 10−8.

Size of Trapezoidal Simpson’s Simpson’s
S grid rule rule 3/8 rule
128 2.778662 2.777849 2.779894
255 2.780837 2.780875 2.780937
509 2.781386 2.781385 2.781388
1017 2.781529 2.781529 2.781529
2033 2.781565 2.781565 2.781565
4065 2.781575 2.781575 2.781575

(e) tol = 10−10.

Size of Trapezoidal Simpson’s Simpson’s
S grid rule rule 3/8 rule
128 2.778662 2.777849 2.779894
256 2.780837 2.780875 2.780937
510 2.781387 2.781386 2.781389
1018 2.781530 2.781530 2.781529
2034 2.781566 2.781566 2.781566
4066 2.781575 2.781575 2.781575

(f) tol = 10−12.

that for very large problems the fast Gauss transform algorithm was actually faster than

the fast Fourier transform. However, the size at which O(N) complexity is superior of

0(N logN) is large. Nonetheless, we must emphasize that our FFT framework can be

applied to arbitrary jump probability densities, while the FGT algorithm can only be applied

to specific probability density functions.
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Table E.4 Value of a European put option using Crank-Nicolson with constant timestep-
ping with the FGT algorithm to evaluate the integral (E.6). Convergence tests are presented
for different tolerance values. The tolerance value indicates at which point the infinite sums
(E.4) must be truncated. The input parameters are provided in Table E.1. The convergence
ratio R is defined in equation (4.2). The exact solution is 2.781578 at S = 100. The CPU
time reported represents the average processing time of 10 consecutive runs when pricing a
European option on a given grid size.

Size of CPU S = 100
S grid time (sec.) Value R
128 0.188 2.778658 n.a.
255 0.36 2.794691 n.a
509 0.95 2.795703 5.006
1017 2.945 2.795905 0.640
2033 9.963 2.796220 0.640
4065 39.811 2.796121 -3.167

(a) tol = 10−2.

Size of CPU S = 100
S grid time (sec.) Value R
128 0.241 2.778662 n.a.
255 0.487 2.780078 n.a.
509 1.37 2.780611 2.660
1017 4.439 2.780749 3.841
2033 16.318 2.780779 4.676
4065 85.966 2.780790 2.793

(b) tol = 10−4.

Size of CPU S = 100
S grid time (sec.) Value R
128 0.317 2.778662 n.a.
255 0.656 2.780837 n.a.
509 1.936 2.781418 3.742
1017 6.491 2.781561 4.068
2033 33.186 2.781598 3.908
4065 155.798 2.781607 3.955

(c) tol = 10−6.

Size of CPU S = 100
S grid time (sec.) Value R
128 0.359 2.778662 n.a.
255 0.772 2.780837 n.a.
509 2.364 2.781385 3.965
1017 8.639 2.781528 3.845
2033 44.929 2.781565 3.919
4065 195.953 2.781574 3.948

(d) tol = 10−8.

Size of CPU S = 100
S grid time (sec.) Value R
128 0.367 2.778662 n.a.
255 0.727 2.780837 n.a.
509 2.463 2.781386 3.960
1017 11.065 2.781529 3.851
2033 55.282 2.781565 3.917
4065 239.711 2.781575 3.973

(e) tol = 10−10.

Size of CPU S = 100
S grid time (sec.) Value R
128 0.45 2.778662 n.a.
256 1.004 2.780837 n.a.
510 3.414 2.781387 3.953
1018 18.729 2.781530 3.857
2034 80.909 2.781566 3.917
4066 341.184 2.781575 3.971

(f) tol = 10−12.

However, it should be pointed out that it may be possible to improve the implementation

of [50], so that the FGT method could be more competitive with the FFT method. It

is unlikely that the implementation of the FFT algorithm can be improved significantly.



APPENDIX E. FAST GAUSS TRANSFORM 180

Table E.5 CPU time comparison between the FFT and the FGT algorithms when pricing
a European put option using Crank-Nicolson with constant timestepping for different tol-
erance values. The input parameters are provided in Table E.1. The CPU time reported
represents the average processing time of 10 consecutive runs when pricing a European
option on a given grid size.

CPU time (sec.)
Size of FFT FGT
S grid tol = 10−2 tol = 10−4 tol = 10−6 tol = 10−8 tol = 10−10 tol = 10−12

128 0.036 0.188 0.241 0.317 0.359 0.367 0.45
255 0.095 0.36 0.487 0.656 0.778 0.727 1.004
509 0.292 0.95 1.37 1.936 2.364 2.463 3.414
1017 1.138 2.945 4.439 6.491 8.639 11.065 18.729
2033 4.496 9.963 16.318 33.186 44.929 55.282 80.909
4065 18.172 39.811 85.966 155.798 195.953 239.711 341.184

Furthermore, it may be possible to devise a high accuracy quadrature rule with very few

points such that penny accuracy can be obtained for grids with few points [4]. However,

in this case it may be necessary to interpolate the solution V (S, τ) back and forth between

two different grids, which may in turn affect the speed of the algorithm.



Appendix F

Non-uniform FFT

Recall that in order to evaluate the correlation integral (3.10), we used an FFT method.

This requires that the nodal values V i be equally spaced on a logS grid. However, since

this is not efficient for solving the PDE, we interpolate from the PDE grid to an equally

spaced logS grid. After evaluating the correlation integral, we interpolate from the equally

spaced logS grid back to the original PDE grid.

However, there have been several recent papers concerning the problem of using Fourier

methods on unequally spaced grids. There are two basic problems

181



APPENDIX F. NON-UNIFORM FFT 182

Forward Given discrete values fi, i = −N/2 + 1, ...,+N/2, then determine Fk,

k = −N/2 + 1, ...,+N/2, such that

fi =
1
XN

N
2∑

l=−N
2

+1

Fl exp(
√
−1

2π
XN

xil), (F.1)

where XN = xN/2− x−N/2+1.

Reverse Given discrete values Fk, k = −N/2 + 1, ...,+N/2, determine fi, i =

−N/2 + 1, ...,+N/2, such that

fi =
1
XN

N
2∑

l=−N
2

+1

Fl exp(
√
−1

2π
XN

xil), (F.2)

Note that if the nodes xi are at locations xi = iXN/N , then both the forward and reverse

problems are easily computed using the discrete orthogonality conditions (C.14). However,

if the xi are arbitrary nodes, then a direct evaluation of the forward algorithm requires

O(N3) operations, and the reverse algorithm requires O(N2) operations.

There are several algorithms for carrying out the Reverse problem. In [88], several

methods are tested for computing an approximation to the Reverse problem (F.2). In fact,

the straightforward method of simply computing

f̂j =
1
XN

N
2∑

l=−N
2

+1

Fl exp(
√
−1

2π
N
jl), (F.3)

at f̂j = f(jXN/N) using an FFT, and then using Lagrange interpolation to determine the

required values at f(xi), is quite competitive with other methods.

The Forward problem (F.1) can be posed as a linear algebra problem, i.e. if f =

[f−N/2+1, ..., fN/2]′, and F = [F−N/2+1, ..., FN/2]′, then the Forward problem can be stated



APPENDIX F. NON-UNIFORM FFT 183

as given the right hand side vector f , solve the system

AF = f (F.4)

for F , where

[A]ij =
1
XN

exp(
√
−1

2π
XN

xij) (F.5)

Several methods have been proposed for solving (F.4). The most efficient method ap-

pears to the technique suggested in [7] , which uses a preconditioned GMRES approach.

However, as pointed out in [7], the pre-conditioner suggested results in rapid convergence

only in cases where the xi are small perturbations from a grid with xi = iXN/N . We

have carried out numerical experiments, using the method in [7], and for the clustered grids

which are typically used in option pricing, the number of GMRES iterations required for

convergence is unacceptably large.

An alternative method for the Forward problem is suggested in [39]. This method uses

a Fast Multipole method. However, in [76], the authors indicate that this method has

problems unless the nodes are also almost equally spaced.

In any case, it should be recalled that the discrete approximation for the integral (3.10) is

only second order correct. Consequently, we do not need to evaluate the Fourier coefficients

to high accuracy.



Appendix G

Estimation of the Market Price of

Risk

G.1 The Schwartz and Moon Approach

We follow the approach described in [82], which uses stock market data. However, Bell

Mobility is not a publicly traded company, so we need to find public Canadian companies

which are in the wireless communications business. Two such firms are Rogers Wireless

Communications Inc. and Microcell Telecommunications Inc.

For each company, we must first compute the systematic risk exposure using the standard

capital asset pricing model.1 Because each firm has significant amounts of debt outstanding,

we will initially use the “levered” equity beta β as the measure of the systematic risk. To

estimate β, we run linear regressions of returns for each stock versus the return on the

market. We use the Toronto Stock Exchange (TSE) 300 index as a proxy for the return on

the market. We obtain daily total return data for the TSE 300 index and each firm from

the Canadian Financial Markets Research Centre database. The sample for Microcell runs

1Readers unfamiliar with these concepts should consult a corporate finance text such as [81].
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from October 9, 1997 to December 29, 2000. The sample for Rogers runs from August 9,

1991 through December 29, 2000. Figure G.1 provides plots of the return for the market

versus the return for Microcell and Rogers.
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Figure G.1: Daily return on TSE 300 index (horizontal axis) versus daily return on wireless
telecommunications firm (vertical axis).

Figure G.2 shows the line of best fit superimposed on each point representing pairs of

daily return data. For Microcell, we find β = 1.0455, while β = .5603 for Rogers.

Having estimated the levered betas for both firms, we next undo the effects of leverage

by calculating the beta for a hypothetical unlevered (i.e. no debt) version of each firm.2 To

compute the unlevered firm’s beta from the levered equity beta, the market value of the

firm’s debt and equity must be estimated, along with its corporate tax rate. The unlevered

firm’s beta is then given by

βunlevered =
E

E + (1− Tc)D
β, (G.1)

2Note that the calculations to follow involve some simplifying approximations commonly used in corporate
finance (such as the assumption that each firm’s debt is perpetual).
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(a) Microcell. The slope of the regression line
β = 1 .0455 . The regression R2 = .3301 .

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04

−0.1

−0.05

0

0.05

0.1

0.15

Return on market

R
et

ur
n 

on
 s

to
ck

Best Linear Fit:  A = (0.56) T + (0.000138)

R = 0.215

Data Points
Best Linear Fit
y = x
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Figure G.2: Regressions of daily returns for wireless communications firms on TSE 300 index.

where

E = market value of equity (total number of shares times share price),

D = market value of long term debt,

Tc = corporate tax rate.

As an initial approximation, for each company we will assume a tax rate of 40%. Tables G.1

and G.2 contain the information we use to calculate the unlevered beta for each company.

Using equation (G.1), we find that

βunlevered
Microcell =

2.68× 240
2.68× 240 + (1.− .4)× 1887.048

× 1.0455

= .37876,
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Table G.1 Microcell Telecommunications Inc. corporate data. Dollar figures are in Cana-
dian funds. The data was obtained from http://www.globeinvestor.com/ on February
13, 2002 and Microcell’s quarterly financial reports.

Long term debt $1,887,048,000
Corporate tax rate 40%

Stock price (on February 13, 2002) $2.68
Number of shares 240,000,000

Table G.2 Rogers Wireless Telecommunications Inc. corporate data. Dollar figures are in
Canadian funds. The data was obtained from http://www.globeinvestor.com/ on April
18, 2002 and Rogers’ quarterly financial reports.

Long term debt $2,305,638,000
Corporate tax rate 40%

Stock price (on April 18, 2002) $17.78
Number of shares 144,400,000

and

βunlevered
Rogers =

17.78× 144.4
17.78× 144.4 + (1.− .4)× 2305.638

× .5603

= .36411.

These two values are remarkably close. Averaging them, we estimate that the unlevered

Bell Mobility β is given by βunlevered
Bell Mobility = .3714. Note that our use of unlevered betas means

that our real option valuation is biased low for an investment project financed with debt,

as interest tax shields have not been accounted for. The value of these tax shields could

be added later, if desired. However, it might be argued that, given the current financial

situation in the telecommunications sector, new debt financing is unlikely to be available

at present.
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Now that we have estimated the unlevered beta for Bell Mobility, we can compute

the market price of risk ζ. As mentioned, we follow the methodology described in [82].

For readers unfamiliar with this approach, we provide a short and somewhat simplified

description here.

Suppose there is a single stochastic factor X (in our context this is Q), which follows

the risk-adjusted process:

dX = (µ− ψ)Xdt+ σXdz, (G.2)

where µ is the real world drift, σ is the volatility, ψ is the risk premium, and dz is the

increment of a Wiener process. Note that the risk premium ψ = ζσ (i.e. the market price

of risk multiplied by the volatility). Let the firm’s stock price be S. From Itô’s lemma, we

have:
dS

S
=

[
1
2σ

2X2SXX + (µ− ψ)XSX + St

]
S

dt+
σXSX

S
dz, (G.3)

where the risk premium is:
ψXSX

S
. (G.4)

The intertemporal capital asset pricing model (ICAPM) is then applied in the following

way. The firm’s stock β, denoted by βS , depends on the covariance between returns on the

market portfolio M and returns on the stock. This can be written as a function of the “β”

of the stochastic factor X:

βS =
σSM

σ2
M

=
XSX

S

σXM

σ2
M

=
XSX

S
βX , (G.5)

where σSM is the covariance between changes in S and M and similarly for σXM . In the

ICAPM, the expected return on the stock is:

rS = rf + βS(rM − rf ) = rf +
XSX

S
βX(rM − rf ) (G.6)
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where rf denotes the risk free rate of interest and rM is the expected return on the market

portfolio. Equating the risk premium from (G.4) with that implied in (G.6) gives:

ψXSX

S
=
XSX

S
βX(rM − rf )

⇒ ψ = βX(rM − rf ). (G.7)

Using (G.5), we have:

ψ =
SβS

XSX
(rM − rf ), (G.8)

i.e. the risk premium is a function of the expected excess market return, the firm’s current

stock price, the β of the firm’s stock price, the current level of the stochastic factor X, and

SX .

Returning to our context, we then have:

ψ = ζσ =
Sβunlevered

Bell Mobility

QSQ
(rM − rf ), (G.9)

where S is Bell Canada Enterprises (BCE)’s current stock price, Q is the current level of

traffic, and SQ is the first derivative of the stock price with respect to the level of traffic.

All the parameters from equation (G.9) are known (or have been estimated previously)

except SQ, rM and rf . For the risk free rate rf , we assume a value of rf = .04. We assume

that the expected market return rM is 6% higher than the risk free rate (consistent with

the average level for the past 50 years of Canadian data). Thus we have rM = .10. SQ is a

more challenging parameter since there is no direct data from which we can determine it.

Consequently, to estimate SQ, we run linear regressions of BCE’s stock price on the traffic

data for the various time series. Our estimates of SQ are the slope coefficients of these

regressions. We obtain SQ = 1.8656× 10−4 for time series A, 9.0057× 10−5 for time series

B, and 8.4996× 10−5 for time series C.
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On August 2, 2002, BCE’s stock price was $39.08. Combining this information with our

estimated values of SQ and using Q = 1.9197× 105 (the level of bouncing busy hour traffic

on August 2, 2002) and equation (G.9) gives

ψ =



39.08×.3714
1.9197 105×1.8656 10−4 × (.1− .04) = .0243 (Time series A)

39.08×.3714
1.9197 105×9.0057 10−5 × (.1− .04) = .0504 (Time series B)

39.08×.3714
1.9197 105×8.4996 10−5 × (.1− .04) = .0534 (Time series C)

Hence, using the estimates of σ for each time series from Table 2.3 and the values of ψ

calculated above, equation (G.9) gives estimates of ζ ≈ .05 (based on time series A), ≈ .07

(based on time series B), and ≈ .17 (based on time series C). Averaging these gives a value

of around .10.

One of the key assumptions above was that both Microcell Telecommunications and

Rogers Wireless Communications face corporate tax rates of 40%. This is potentially prob-

lematic, especially for Microcell, which has been in financial difficulty and may not be likely

to be in a tax paying position. Repeating our calculations, but assuming that each firm

has a tax rate of 0%, we obtain ζ ≈ .04 (based on time series A), ≈ .05 (based on time

series B), and ≈ .13 (based on time series C), with an average of about .075. Any other

combination of tax rates for the two firms lying between 0% and the statutory rate of 40%

gives rise to estimates of ζ lying between the values calculated when both firms have rates

of 0% and 40%.
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G.2 An Alternative Approach to Estimate the Market Price

of Risk

In this appendix we present a more traditional approach to estimate the market price of

risk. This is described in standard texts such as [52]. It is based on the correlation between

market returns (i.e. TSE 300 index) and changes in the bouncing busy hour traffic levels.

Using this approach, it is possible to estimate the market price of risk as

ζ = ρζM , (G.10)

where ρ is the correlation between the bouncing busy hour changes and market returns

and ζM is the market price of risk for the stock market. Using the capital asset pricing

model, the market price of risk is ζM = (rM − rf )/σM , where rM is the market return, rf

is the risk free rate and σM is the market volatility. We assume (as in Appendix G that

rM − rf = .06. We calculate σM = .2383, using historical market data over the same time

period as our network traffic data series. Over this period, we find estimates of ρ of .1367

for time series A, .1171 for time series B, and .1188 for time series C. Using equation (G.10)

we obtain estimates for ζ of .0344 for time series A, .0295 for time series B, and .0299 for

time series C. Consequently, our estimates of ζ range from a high value of ≈ .17 (based on

one particular time series in Appendix G) to a low of around .03 (based on all time series

in Appendix G.1).



Appendix H

Estimation of the Jump

Parameters for the Real Options

Investment Management Problem

In this chapter, given wireless traffic data time series, an empirical method is developed to

estimate the first two moments of the wireless traffic jump distribution. It is recognized

that the approach presented here may not be complete, other approaches can be found

in [1, 6, 38, 40, 49, 51] and references therein. However given the number of data points

available, we believe that our procedure is sufficient to assess the effects of jumps in traffic

on the optimal wireless investment decision problem (see Chapter 6).

In Chapter 2, we showed that a geometric Brownian motion (GBM) stochastic process,

given by

dQ = µQdt+ σQdZ, (H.1)

was a good fit to model traffic demand Q (µ represents the drift rate or growth rate, σ

represents the volatility and dZ is the increment of a Gauss-Wiener process [52, 89]). When
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estimating both the drift rate µ and the volatility σ, vacation periods and the qualitatively

observed sudden jumps in traffic were smoothed out from the time series. Table H.1 presents

a summary of estimates for the drift rate µ and the volatility σ.

Table H.1 Result summary table for different time series (different switches in Toronto).
The Ljung-Box test is realized at the 5% significance level. The Ljung-Box test H = 0
indicates random data, i.e. equation (H.1) is a good fit to the data.

Time series Drift rate µ %/(year) Volatility (filtered data) σ %/(year)
1
2 Ljung-Box test

A -24.75 90.69 0
B 40.84 74.7 0
C 72.46 32.74 0

We assume that the jumps J in wireless traffic are lognormally distributed [66] and are

given by

g(J) =
exp

(
− (log(J)−ν)2

2γ2

)
√

2πγJ
, (H.2)

where ν corresponds to the mean and γ to the standard deviation. To estimate ν and γ we

proceed as follows for each time series:

• Step 1 Estimate the drift rate µ and volatility σ ignoring vacation periods and sudden

jumps in traffic.

• Step 2 Compute the logarithm of the traffic time series y = log(Q) ignoring vacation

periods but including the sudden large jumps in traffic (i.e. the jumps that were

ignored in Step 1). Using Ito’s lemma [89], equation (H.1) becomes

dy = (µ− σ2

2
)dt+ σdZ. (H.3)

• Step 3 Let the spacing between sampling dates be ∆t. Then the conditional dis-

tribution of yt, given yt−1 is normal with mean yt−1 + (µ − 0.5σ2)∆t and standard
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deviation σ
√

∆t. Consequently,

z =
yt − [yt−1 + (µ− 0.5σ2)∆t]

σ
√

∆t
, (H.4)

z is normally distributed with mean zero and unit variance. Values of |z| which

deviates more than 1.94 standard deviations of the mean are assumed to be jumps in

traffic. Basically, we are assuming that capacity usage follows a geometric Brownian

motion process (H.1) (i.e. P (−1.94 ≤ z ≤ 1.94) = .95), and the jumps corresponds

to extreme events 1 − P (−1.94 ≤ z ≤ 1.94). However, since only large deviations

from the mean are considered, the standard deviation for the traffic jumps is certainly

biased upward. The jumps frequency λ, the mean ν and the standard deviation γ are

then estimated.

• Step 4 Iterate back to Step 2 taking into account the jumps in traffic that have just

been detected. If no new jumps are detected terminate.

Table H.2 Jump parameters summary table for different time series (different switches in
Toronto).

Time series # iterations Jump frequency per year Jump mean ν Jump standard deviation γ
A 1 5 -0.1284 0.3961
B 3 6 -0.0121 0.2304
C 4 6 -0.0119 0.0850

Average n.a. ≈ 5.6 ≈ -.0508 ≈ 0.2372

Table H.2 presents our jump parameter estimates. Note that for the wireless time series

B and C, a larger number of jumps in traffic were discovered resulting in new values for the

drift rate and lower volatility, see Tables H.1 and H.3. Since we are only examining jumps

on a single day of each week, we estimate the number of jumps in traffic per year (occurring

on business day) by multiplying the estimates in Table H.2 by five. Consequently, we have
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Table H.3 Drift rate and volatility summary table for different time series (different
switches in Toronto).

Time series Drift rate µ %/(year) Volatility σ per %/(year)
1
2

A -24.75 90.69
B 21.72 41.91
C 69.35 21.22

Average ≈ 22.11 ≈ 51.27

that λ ≈ 28/year, for jumps which can occur on any business day.



Appendix I

Semi-Lagrangian Approach for

Path Dependent Options

When pricing continuously observed Asian options, we use the same unequally spaced grid

in the A and S directions, on the domain [0, Simax]× [0, Ajmax], with Ajmax = Simax. For

completeness, the discretization grid that was used in Section 5.6 is presented below. Note

that this grid needs to be scaled by the value of the strike of the option considered.

const int n = 53;

double Xarray[n] = {

.0, .10, .20, .30, .40,.50, .60, .70, .75, .80, .84,

.86, .88, .90, .91, .92, .93, .94, .95,.96, .97, .98, .99,

1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09,

1.10, 1.12, 1.14, 1.16, 1.18, 1.20, 1.23, 1.26, 1.30, 1.40,

1.50, 1.75, 2.00, 2.50, 3.00, 5.00, 10.00, 50.00, 250.00, 2.e+5};

When testing convergence, the number of points of the above grid is doubled (i.e. 2N−1)

at each iteration by inserting new nodes at grid midpoints.
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