4,061 research outputs found

    FMCW rail-mounted SAR: Porting spotlight SAR imaging from MATLAB to FPGA

    Get PDF
    In this work, a low-cost laptop-based radar platform derived from the MIT open courseware has been implemented. It can perform ranging, Doppler measurement and SAR imaging using MATLAB as the processor. In this work, porting the signal processing algorithms onto a FPGA platform will be addressed as well as differences between results obtained using MATLAB and those obtained using the FPGA platform. The target FPGA platforms were a Virtex6 DSP kit and Spartan3A starter kit, the latter was also low-cost to further reduce the cost for students to access radar technology

    Design of High Speed Memory-Based FFT Processor Using 90nm Technology

    Get PDF
    In order to enhance performance, the Fast Fourier Transformation is a important operation in Digital Signal Processing (DSP) systems had been extensively studied. State-of-the-art transmission technology uses Orthogonal frequency division multiplexing (OFDM), which primary operation is the Fast fourier transform (FFT). This analysis presents the design of a high-speed memory-based FFT processor using 90nm technology. The novel hybrid multiplier and hybrid adder is used in this analysis. The main objective of this method is to develop an efficient, memory-efficient FFT processor that requires less area.  Using 90nm CMOS (Complementary Metal Oxide Semiconductor) technology, the proposed FFT processor was created and implemented in process. With reduced processing time, this means that the proposed FFT processor performs better than the prior memory-based FFT processors in terms of performance and the number of LUTs required which reduces area and memory utilization

    Anomalien havaitseminen GNSS signaaleissa kompleksiarvoisilla LSTM neuroverkoilla

    Get PDF
    Today, Global Navigation Satellite Systems (GNSS) provide services that many critical systems [1] as well as normal users, need in everyday life. These signals are threatened by unintentional and intentional interference. The received satellite signals are complex-valued by nature, however, state-of-the-art anomaly detection approaches operate in the real domain. Changing the anomaly detection into the complex domain allows for preserving the phase component of the signal data. In this thesis, I developed and tested a fully complex-valued Long Short-Term Memory (LSTM) based autoencoder for anomaly detection. I also developed a method for scaling of complex-numbers that forces both real and imaginary units into the range [-1,1] and does not change the direction of a complex vector. The model is trained and tested both in the time and frequency domains, and the frequency domain is divided into two parts: real and complex domain. The developed model’s training data consists only of clean sample data, and the output of the model is the reconstruction of the model’s input. In testing, it can be determined whether the output is clean or anomalous based on the reconstruction error and the computed threshold value. The results show that the autoencoder model in the real domain outperforms the model trained in the complex domain. This does not indicate that the anomaly detection in the complex domain does not work; rather, the model’s architecture needs improvements, and the amount of training data must be increased to reduce the overfitting of the complex domain and thus improve the anomaly detection capability. It was also investigated that some anomalous sample sequences contain a few large valued spikes while other values in the same data snapshot are smaller. After scaling, the values other than in the spikes get closer to zero. This phenomenon causes small reconstruction errors in the model and yields false predictions in the complex domain

    Fast Fourier Transform algorithm design and tradeoffs

    Get PDF
    The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program

    KAVUAKA: a low-power application-specific processor architecture for digital hearing aids

    Get PDF
    The power consumption of digital hearing aids is very restricted due to their small physical size and the available hardware resources for signal processing are limited. However, there is a demand for more processing performance to make future hearing aids more useful and smarter. Future hearing aids should be able to detect, localize, and recognize target speakers in complex acoustic environments to further improve the speech intelligibility of the individual hearing aid user. Computationally intensive algorithms are required for this task. To maintain acceptable battery life, the hearing aid processing architecture must be highly optimized for extremely low-power consumption and high processing performance.The integration of application-specific instruction-set processors (ASIPs) into hearing aids enables a wide range of architectural customizations to meet the stringent power consumption and performance requirements. In this thesis, the application-specific hearing aid processor KAVUAKA is presented, which is customized and optimized with state-of-the-art hearing aid algorithms such as speaker localization, noise reduction, beamforming algorithms, and speech recognition. Specialized and application-specific instructions are designed and added to the baseline instruction set architecture (ISA). Among the major contributions are a multiply-accumulate (MAC) unit for real- and complex-valued numbers, architectures for power reduction during register accesses, co-processors and a low-latency audio interface. With the proposed MAC architecture, the KAVUAKA processor requires 16 % less cycles for the computation of a 128-point fast Fourier transform (FFT) compared to related programmable digital signal processors. The power consumption during register file accesses is decreased by 6 %to 17 % with isolation and by-pass techniques. The hardware-induced audio latency is 34 %lower compared to related audio interfaces for frame size of 64 samples.The final hearing aid system-on-chip (SoC) with four KAVUAKA processor cores and ten co-processors is integrated as an application-specific integrated circuit (ASIC) using a 40 nm low-power technology. The die size is 3.6 mm2. Each of the processors and co-processors contains individual customizations and hardware features with a varying datapath width between 24-bit to 64-bit. The core area of the 64-bit processor configuration is 0.134 mm2. The processors are organized in two clusters that share memory, an audio interface, co-processors and serial interfaces. The average power consumption at a clock speed of 10 MHz is 2.4 mW for SoC and 0.6 mW for the 64-bit processor.Case studies with four reference hearing aid algorithms are used to present and evaluate the proposed hardware architectures and optimizations. The program code for each processor and co-processor is generated and optimized with evolutionary algorithms for operation merging,instruction scheduling and register allocation. The KAVUAKA processor architecture is com-pared to related processor architectures in terms of processing performance, average power consumption, and silicon area requirements

    An Architecture for On board Frequency Domain Analysis of Launch Vehicle Vibration Signals

    Get PDF
    The dynamic properties of the airborne structures plays a crucial role in the stability of the vehicle during flight. Modal and spectral behaviour of the structures are simulated and analysed. Ground tests are carried out with environmental conditions close to the flight conditions, with some assumptions. Subsequently, based on the flight telemetered data, the on-board mission algorithm and the auto-pilot filter coefficients are fine tuned. An attempt is made in this paper to design a novel architecture for analysing the modal and spectral random vibration signals on-board the flight vehicle and to identify the dominant frequencies. Based on the analysed results, the mission mode algorithm and the filter coefficients can be fine tuned on-board for better effectiveness in control and providing more stability. Three types of windows viz. Hann, Hamming and Blackman-Harris are configured with a generalised equation using FIR filter structure. The overlapping of the input signal data for better inclusiveness of the real-time data is implemented with BRAM. The domain conversion of the data from time domain to frequency domain is carried out with FFT using Radix-2 BF architecture. The FFT output data are processed for calculating the power spectral density. The dominant frequency is identified using the array search method and Goldschmidt algorithm is utilised for the averaging of the PSDs for better precision. The proposed architecture is synthesised, implemented and tested with both Synthetic and doppler signal of 300 Hz spot frequency padded with Gaussian white noise. The results are highly satisfactory in identifying the spot frequency and generating the PSD array
    • …
    corecore