

Melnikov, A., Le Kernec, J., and Gray, D. (2014) FMCW rail-mounted SAR:
Porting spotlight SAR imaging from MATLAB to FPGA. In: 2014 IEEE
International Conference on Signal Processing, Communications and Computing
(ICSPCC), Guilin, 5-8 Aug. 2014, pp. 780-785. ISBN 9781479952724.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/114460/

Deposited on: 13 July 2016

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

FMCW Rail-mounted SAR: porting spotlight SAR
imaging from MATLAB to FPGA

A. Melnikov, J. Le Kernec
EEE Dept., University of Nottingham Ningbo China

Ningbo, China
julien.lekernec@nottingham.edu.cn

D. Gray
EEE Dept., Xi’an Jiatong Liverpool University

Suzhou, China
derek.gray@xjtlu.edu.cn

Abstract—In this work, a low-cost laptop-based radar

platform derived from the MIT open courseware has been
implemented. It can perform ranging, Doppler measurement
and SAR imaging using MATLAB as the processor. In this
work, porting the signal processing algorithms onto a FPGA
platform will be addressed as well as differences between
results obtained using MATLAB and those obtained using the
FPGA platform. The target FPGA platforms are a Virtex6
DSP kit and Spartan3A starter kit, the latter is also low-cost to
further reduce the cost for students to access radar technology.

Index Terms—SAR, Doppler, ranging, FPGA, radar

I. INTRODUCTION

This project is based on the MIT open course project
“Build a small radar system capable of sensing Range,
Doppler and Synthetic Aperture Radar Imaging” [1].

This laptop-based radar is capable of measuring Range,
Doppler and performing SAR Imaging. FPGA platforms like
Virtex 6 or Spartan-3A starter kit [2] could be used to
replace the laptop and provide real-time processing
capability onboard, for example, a multi-rotor UAV in
flight to reduce the data sent to the control station for
applications such as urban mapping.

In section II, the modifications to the MIT radar frontend
will be covered. In section III, the signal processing
algorithms will be briefly introduced. Section IV will discuss
the implementation of those algorithms on FPGA. Finally
section V will compare results obtained using MATLAB
against the real-time implementation on FPGA.

II. HARDWARE MODIFICATIONS

The radar front end for the most part is similar to the
MIT radar. However, the signal modulator used a XR-2206
[3] which is no longer manufactured and has been replaced
here with the next generation XR2209 [3]. The modification
to the circuit is shown in Fig. 1.

The triangular wave output is fed to the voltage-
controlled oscillator yielding an up- and down-chirp of
92MHz bandwidth (2.405MHz to 2.497MHz – ISM band)
with a period of 40ms.

The radar can be switched between Frequency-
Modulated Continuous Wave (FMCW) operation for ranging
and SAR to CW for Doppler measurement by simply

reconnecting the voltage-controlled oscillator input to a
constant voltage of 2.455V to produce a constant 2.413GHz.

The antenna has been modified slightly to have a
smoother surface using a 1-liter beer can as opposed to a
coffee can and losing the lid to reduce losses. The DIY
dipole in cylindrical waveguide “can-tenna” (shown in Fig. 2)
has an inner radius of 42.5 mm, an outer radius of 43 mm, a
length of 28.1mm, the dipole-to-short circuit distance was
19mm and the dipole arms were 23.5 mm long and 4 mm
wide. The measured directivity was about 8dBi determined
experimentally at 2.45 GHz, and the return loss of the
Transmitter (Tx) and Receiver (Rx) antennas were measured
using a VNA, Fig. 3 respectively dipole 01 and 02. The S11
d -10dB bandwidth was about 200MHz from 2.35 GHz to
2.55 GHz which fitted the requirements for the radar. The
Tx and Rx antennas were used in VV polarization to reduce
mutual coupling. The radar Tx power was about 12dBm. The
experimental frontend is depicted in Fig.4.

Fig1. Modified function generator using XR2209.

Fig2. Endfire dipole cantenna

Fig3. Measured return loss of the antennas: Tx “dipole 01” & Rx

“dipole 02.”

Fig4. Radar frontend implementation

III. SIGNAL PROCESSING: MATLAB CODE ANALYSIS

This radar can measure range, Doppler for moving
targets and perform SAR imaging. The following
subsections will introduce the details of the processing
algorithms.

This type of frontend uses “stretch processing” [4] and is
used to process Linear Frequency Modulated (LFM)
waveforms to relax constraints on the analog-to-digital
converter (ADC). Decomposing it in a few steps first, it
down-converts the received signal with a reference LFM
waveform then goes through an anti-aliasing low-pass filter
and is fed to an ADC and the subsequent signal processing
algorithms are based on filtering using banks of Narrow
Band Filters (NBF) as shown in Fig. 5.

A. Ranging and Doppler

In this case, the processing algorithm will extract the
frequency tones, proportional to the target range and the
stretch processing effectively converts the time delay in a
received signal into a beat frequency.

Considering the case when the radar receives returns
from a few close (in range) targets, the transmitted up-chirp
is given by:

𝑠𝑡(𝑡) = 𝑐𝑜𝑠 �2𝜋 �𝑓0𝑡 + 𝐵𝑡2

2𝜏
�� (1)

 where Ä is the half priod of the up- and down- chirp
20ms, f0 is the start frequency, B is the signal bandwidth and
t Є [0, Ä].

Fig5. Stretch processing block diagram

The beat frequency deviation for Range is:

𝑓𝑏 = 2𝐵𝑅
𝑐𝜏

↔ 𝑅 = 𝑓𝑏𝑐𝜏
2𝐵

 (2)

 where R is the target range. The beat frequency
deviation for Doppler is:

𝑓𝑑 = ± 2𝑣
𝑐−𝑣

𝑓0 ≈ ± 2𝑣
𝜆
↔ 𝑣 ≈ ± 𝑓𝑑𝜆

2
. (3)

 where 𝑣 is the target velocity, c the speed of light
and » is the wavelength of the carrier frequency f0.

1) Ranging
For ranging, the radar operates in FMCW mode. Chirp

suffers from range-Doppler coupling thus with up and down
chirp the distance and Doppler can be determined
unambiguously. However, here, it is assumed that the
distortion caused by the observed targets is negligible and
only the up chirp was used to simplify the processing.

The first step of the signal processor must extract the up-
chirps from the raw echo signal, making use of the
synchronization pulses.

The data is split into vectors of 20ms and arranged in
rows to form a Range-time matrix. Then a 2-pulse moving
target indicator (MTI) filter was used to suppress clutter
coherently. Finally, an “Along-range” FFT implements the
filter bank. Resolution along the time axis equal to the size
of the window, i.e. 0.02 s and range resolution is defined as
the ratio of sampling frequency to the FFT length times
scaling factor, relating the frequency and range (2) and
yields about 0.09 m (0.3 ft) with an ADC sampling
frequency of 44.1 kHz.

2) Doppler
For Doppler signal processing the radar works in CW

mode. The recorded data is split into vectors, corresponding
to a set time (in this case 0.1s) and arrange those vectors as
rows to form a Doppler-time matrix.

Then, the DC component was subtracted from every
vector to remove stationary targets’ (clutter) echoes.

Finally, a bank of narrowband bandpass filters were
implemented using fast Fourier Transform (FFT) along the
rows of the Doppler matrix, which processed the whole
spectrum of every vector, with the length of FFT having
determined the bandwidth of the individual filters. The
output was the Doppler information from the targets present
in the field of view of the radar against time.

B. SAR imaging

The radar transmits and receives a series of pulses as it
moves along its path. Every time when the pulse is
transmitted the radar occupies a new along-track position.
The numbers of elements that constitute the “synthetic array”
are dependent on the antenna beam pattern and the distance
between measurements.

The coherent processing of the radar returns will produce
a narrow azimuth beamwidth, for cross-range (along-track)
and allow the generation of 2D images (range and cross-
range).

Spotlight Range Migration Algorithm (SRMA) is used
for SAR imaging and its main features are explored next.

1) Spotlight Range Migration Algorithm
The Spotlight Range Migration Algorithm (SRMA)

compared to some other SAR algorithms (Polar Formation
Algorithm, for instance) has an important advantage
assuming that the illuminating wave fronts are not planar,
that allows to avoid space-variant defocusing and geometric
distortion of the final image.

The image processing can be split in two parts: pre-
processing and image formation.

a) Pre-processing
Before the image formation matrix is created, where the

rows will be populated with the echo signals received by
different synthetic array elements and the columns will
contain those scatterings in range direction.

The MATLAB program provided in [1] for SAR imaging
presents some technical issues that were identified as follows:

• to separate the data coming from the different array
elements and parse the data within a single array element a
triggering threshold was used, but this approach did not take
into account that the mechanical switch used to control the
reference signal ON/OFF is not debounced, producing
oscillations during “start-up”, which made the approach to
search for the start of up-chirp was unreliable;

• to average the spectrum of the signal, obtained
within a single array element a fractional number of impulses
were used where it should be an integer number of impulses
to avoid distortions in the results;

• to perform the Hilbert transform, an inverse FFT
(IFFT) and then a FFT on half of IFFT result was used; in
spite of the fact that this approach is correct [5], it does not
produce exactly same result as its mathematical analog and
limits the amount of data available for further processing by
half and increases computational load on the processor.

The modified program used in this work corrected the
identified problems and now averages 8 pulses per array
element, the synthetic aperture has 55 elements and uses the
Hilbert function provided by MATLAB or a Finite Impulse
Response (FIR) filter implementation of the Hilbert
transform [5] to compare with hardware (HW)
implementation).

b) Image formation
Image formation processor (IFP) for the SRMA is given

in Fig. 6 and it comprises 4 stages: along-track FFT,
Matched filtering, Stolt interpolation and 2D iFFT that are
detailed in [6].

 Fig6. 2D-SAR images of data from [1]; (left) original algorithm, (right)
modified algorithm.

Based on the dataset from [1], the 2D image obtained
with the modified algorithm (Fig.7) is comparable to the
image provided in [1]. All the features are present although
some differences can be seen, which result from changes
implemented in the modified algorithm.

IV. FPGA IMPLEMENTATION

For speed, the HDL code was designed using System
Generator (SysGen), a design tool by Xilinx ISE, which is
highly suitable for algorithm exploration, design prototyping
and model analysis. This tool is based on MATLAB
Simulink, but uses Xilinx HDL block functions to design the
system which can then be synthesized and ported on the
intended platform [7] in this case a Virtex-6 DSP kit
(US$4000) and a Spartan 3A Starter kit (US$242).

In order to validate the HW design, the results were
benchmarked against the output from the programs in [1]
and the programs and the HW designs use the datasets
provided in [1] to produce images.

A. Range processor

The range processor, employs a 3-pulse MTI filter [4]
instead of 2-pulse MTI filter in the original program.

It was decided to replace the 2-pulse by the 3-pulse MTI
filter in a HW design, because of its better performance in
terms of noise cancellation. The 3-pulse MTI filter has a
broader null at the clutter frequency than the 2-pulse, which
gives better rejection, but on the other hand it distorts the
spectrum of the signal to the less extent than proposed in [1]
magnitude canceller.

The HDL flow is as follows. First, the up-chirps are
extracted from the raw data in chunks of 882 samples (0.02 s)
at 44.1 kHz . Then, the data goes through a 3-pulse MTI
filter. The data is then zero-padded before being processed
by a Radix-2 Fast-Fourier Transform (FFT) and then the
magnitude of the response is calculated to display the range
intensity against time.

B. Doppler processor

The Doppler processor takes in 4410 raw samples, which
were then zero-padded to a length of 16384 before the FFT.
The magnitude was calculated after clutter cancellation.

C. SAR processor

The SAR processor comprises a pre-processor and an
image-processor.

The raw data was fed to the pre-processor where the up-
chirps were extracted. 8 chirps were averaged per array
element. Then the data went through a clutter canceller for
the FIR implementation of the Hilbert transform [5].

The output of the Hilbert transform went to the image
processor. The signal was first windowed (in this case
Hanning). The matrix was then transposed and then zero-
padded for the along-track FFT. The result was matched
filtered against coefficients stored in memory. The next step
is the Stolt interpolation [6] was used to correct the range
curvatures for scatterers at different ranges. After
interpolation, windowing is once again applied (in this case
Hanning) before the 2D-inverse FFT to finally generate the
image.

Here it must be mentioned that the second part of the
SAR processor was extremely memory consuming since it
performed operations in both range and cross range
dimensions and the data flow rearrangement requires usage
of the memory. This imposed limitations on the maximum
amount of data being processed, since the depth of the RAM
blocks in the Virtex-6 board is limited to 64 Kb only [8].
This limits the maximum possible size of FFT, and causes
degradation in image resolution in cross-range.

Since every array element contains 882 samples and
there are 55 array elements overall, the maximum possible
FFT size in the cross range direction is 64, which will hold in
the available memory to rearrange the signal order from
range to cross-range wise flow (882×64= 56Kb < 64 Kb),
but a small FFT length in the cross-range does not allow to
build a final image with good resolution as in Fig.7.

Another problem was that the SAR processor of such a
moderate size requires more memory than the board (Virtex-
6 DSP kit) can provide and even though the HDL code for
the corresponding SysGen design was generated it cannot be
mapped onto the FPGA platform (the number of RAM

blocks required to map the design was 577, which is 138%
of the available blocks – 416).

Table I summarizes the characteristics of the
implemented processors mapped on the target platforms.
From the results in Table I, it can be clearly seen that the
FPGA platform Virtex-6 and is not feasible on Spartan-3A
without modification is capable of processing the data in
real-time for the range and Doppler processors as well as the
SAR-pre-processor. The image processor clearly needs to be
redesigned to fit on any of the platforms. To fit the Doppler
processor on Spartan 3A, an algorithm based on zoom-FFT1
[5] was used.

Table I: HW implementation synthesis2

Signal
processor Range Doppler SAR PP SAR

IP3

Platform V6 S3 V6 S3 S3
zoom V6 V6

Max Freq
(MHz) 20.02 n/a 17.92 n/a 33.33 86 n/a

Slice flip-
flops n/a 132% n/a 105% 14% n/a n/a

Slice
registers 3% 789% 2% 609% 38% 1% 5%

Slice LUTs 6% 479% 4% 388% 51% 9% 10%
Memory 4% 825% 1% 500% 45% 9% 138%

IO 29% 45% 28% 44% 23% 57% 114%

V. COMPARING THE RESULTS FROM MATLAB AND FPGA

PROCESSOR

Both SW and HW implementations use the original
datasets provided in [1] for the validation of the HW
implementation. The results for the three processors: Range,
Doppler and SAR are presented in this section.

A. Range processor results

Using the dataset “Two People Walking in the Woods”
from [1], the results for the HW implementation of the
Range processor are shown in Fig. 8 and the relative error is
shown in Fig.9. Further analysis shows that 99.97% of errors
are within ±5% of the mean error.

B. Doppler processor results

Using the dataset “Tremont Street off Newton Corner”
from [1], the results for the HW implementation of the
Doppler processor are shown in Fig. 9 and the relative error
is shown in Fig.10. Further analysis shows that 98.2% of
errors are within ±5% of the mean error. The results for the
zoom-FFT processor on Spartan3A are shown in Fig.11.

1 zoom FFT is a DSP technique useful in case when only a small portion of
a signal’s bandwidth, over the full frequency range, contains the valuable

information for any particular application.
2 V6: Virtex 6 DSP kit, S3: Spartn 3A starter kit, PP: pre-processor, IP:

image processor
3
 Estimated with the down-sized image processor because the current

algorithm can’t be mapped on the target platform because it exceeds the
available resources and the full-sized image can’t be simulated

C. SAR processing results

Using the dataset “Back of Warehouse” from [1], the
results for the HW implementation of the Doppler processor
are shown in Fig. 12 and the relative error is shown in Fig.13.

Fig7.HW range processor result for “Two People Walking in the
Woods” data from [1] on Virtex 6.

Fig8.Relative error distribution of HW vs SW implementations (mean
error -27.2dB) for range on Virtex 6.

Fig.9.HW Doppler processor result for “Tremont Street off
Newton Corner” data from [1] on Virtex6.

It can be seen that the results produced using HW
presents all the features present in Matlab for all three

processors. The error between the two are mainly due to the
difference between fixed and floating point notations,
different FFT sizes, zero-padding and the extra noise effect,
introduced by FFT FPGA block, when it performs a real-
valued transform [9].

Fig.10.Relative error distribution of HW vs SW implementations (mean

error -30.3dB) for Doppler on Virtex6

Fig.11.HW Doppler processor result for “Tremont Street off Newton

Corner” data from [1] on Spartan 3.

Table II: Error range in dB between MAtlab and HW Virtex6

implementation in fixed point

Error dB Doppler Range SAR PP SAR IFP
Max -24.4 -17.8 -36 -12.5
Mean -30.3 -27.2 -70.7 -28.2

VI. CONCLUSION

During this project, the theoretical basics of the FMCW
radar were considered and an experimental radar setup was
implemented. The software (SW) signal processors, based on
the high-level code, proposed in [1], were used to verify the
radar’s functionality and the results obtained using modified
MATLAB programs from [1] were used to validate the
results of the signal processed with FPGA.

A comparison of the results of the range signal processor
in both HW and SW, proved the validity of the FPGA-based
design with a mean error of -27.2dB.

Fug12. HW SAR processor result for “Back of Warehouse” data from

[1].

Fig.13.Relative error distribution of HW vs SW implementations (mean
error -28.2dB) for IFP on Virtex 6.

The Doppler HW processor when compared to the SW

implementation yields a mean error of -30.3dB results
obtained are similar.

Also based on the design summary reports for Range and
Doppler, the designs can’t be fitted on Spartan3A [2] without
modifications. The Doppler processor was ported on Spartan
with a zoom-FFT based algorithm.

The SAR Image processing algorithm in HW, following
the flow of the modified SW processor, was subdivided into
2 parts – signal pre-processing and image formation routine.
The latter was implemented in HW but the limitations in the
memory architecture of the FPGA board imposed a
downsized copy of the SW processor, i.e. the signal
processing blocks are identical but used a reduced dataset.
Even though the resolution of the final image obtained in the
HW is much poorer than the one produced in MATLAB, the
digital signal processing algorithms yielded a mean error
compared to MATLAB of -28.2dB.

This project proved the concept of the HW
implementation of the Doppler, Range and SAR Image
processing algorithm simulating the designs in the SW
environment. Future research activities will focus on further
validation of the signal processing techniques using HW co-

simulation, followed by optimization it is expected that
Sysgen automatic HDL coding yields similar results to
MATLAB did when generating C code automatically. A
complete HW implementation of the FMCW radar on the
target Virtex-6 or Spartan-3 for Range DSPs using the on-
board interfaces: ADCs and displaying the results in real-
time on a VGA monitor.

Also, the separate research efforts may be undertaken on
further DSP optimization, in particular in SAR Image
processing, by making better use of memory resources or
enhancement of the FFT algorithm for Range and Doppler
processors.

The main disadvantage of the standard FFT is that it
requires zero-padding to achieve a finer resolution and has to
process the whole spectrum of the signal, whereas quite
often we are only interested in a small fraction of the
spectrum. A promising solution to improve efficiency could
be a zoom-FFT, which allows the implementation of a
standard FFT of smaller size to only “zoom” on the desired
part of the spectrum, also indirectly improving the DSP
efficiency by reducing amount of zero-padding required [5].
It was shown that using a zoom-FFT based algorithm the
Doppler processor could fit on Spartan 3A with LUTs. The
LUTs to implement the log10 calculations is the main cause
of the degradation in image quality.

The cost of the frontend plus the Spartan 3A starter kit
platform would bring the Doppler (and maybe Range)
processor(s) together to about US$500. However it would
seem that implementing the SAR processor on Spartan 3A
starter kit might prove to be more challenging.

ACKNOWLEDGMENT

The authors thank the Faculty of Science and
Engineering and the EEE Department of University of
Nottingham Ningbo for funding the equipment that allowed
the authors to undertake the reported experimental work.

REFERENCES

[1] G. Charvat et al., “RES.LL-003 Build a Small Radar System
Capable of Sensing Range, Doppler, and Synthetic Aperture
Radar Imaging”, January IAP 2011. (MIT OpenCourseWare:
Massachusetts Institute of Technology),

[2] www.xilinx.com, Spartan-3A starter kit & Virtex-6 DSP kit

[3] www.exar.com, XR2206(obsolete), XR2209

[4] “Radar systems analysis and design using MATLAB”, B.R.
Mahafsa, 2000, editor Chapman and Hall/CRC

[5] L. Lyons, “Understanding Digital Signal Processing”, 2001,
Prentice Hall, USA

[6] “Spotlight Synthetic Aperture Radar Signal Processing
Algorithms”, W. Carrara, R. Goodman, R. Majewski, 1995,
Artech House, USA.

[7] Xilinx, “UG UG626. Synthesis and Simulation Design
Guide”, 2012, www.xilinx.com

[8] Xilinx, “UG363. Virtex-6 FPGA Memory Recources”, 2014, ,
www.xilinx.com

[9] Xilinx, “Datasheet. LogiCore IP FFT v7.1”, 2011,
www.xilinx.com

	I. Introduction
	II. Hardware modifications
	III. Signal processing: MATLAB code Analysis
	A. Ranging and Doppler
	1) Ranging
	2) Doppler

	B. SAR imaging
	1) Spotlight Range Migration Algorithm
	a) Pre-processing
	b) Image formation

	IV. FPGA implementation
	A. Range processor
	B. Doppler processor
	C. SAR processor

	V. Comparing the results from MATLAB and FPGA processor
	A. Range processor results
	B. Doppler processor results
	C. SAR processing results

	VI. Conclusion
	Acknowledgment
	References

