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Today, Global Navigation Satellite Systems (GNSS) provide services that many critical systems
[1] as well as normal users, need in everyday life. These signals are threatened by unintentional
and intentional interference. The received satellite signals are complex-valued by nature, however,
state-of-the-art anomaly detection approaches operate in the real domain. Changing the anomaly
detection into the complex domain allows for preserving the phase component of the signal data.

In this thesis, I developed and tested a fully complex-valued Long Short-Term Memory (LSTM)
based autoencoder for anomaly detection. I also developed a method for scaling of complex-numbers
that forces both real and imaginary units into the range [-1,1] and does not change the direction of
a complex vector. The model is trained and tested both in the time and frequency domains, and
the frequency domain is divided into two parts: real and complex domain. The developed model’s
training data consists only of clean sample data, and the output of the model is the reconstruction
of the model’s input. In testing, it can be determined whether the output is clean or anomalous
based on the reconstruction error and the computed threshold value.

The results show that the autoencoder model in the real domain outperforms the model trained in
the complex domain. This does not indicate that the anomaly detection in the complex domain does
not work; rather, the model’s architecture needs improvements, and the amount of training data
must be increased to reduce the overfitting of the complex domain and thus improve the anomaly
detection capability. It was also investigated that some anomalous sample sequences contain a few
large valued spikes while other values in the same data snapshot are smaller. After scaling, the
values other than in the spikes get closer to zero. This phenomenon causes small reconstruction
errors in the model and yields false predictions in the complex domain.
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1. Introduction

The roots of the idea of using satellites for navigation are from the 1960s, and the first
satellite for the Global Positioning System (GPS) was launched in 1978 [25]. The num-
ber of satellites and the different satellite constellations is increased over the years, and
today, many critical infrastructures are built to rely heavily on accurate positioning,
navigation, and timing (PNT) [1]. For example, financial transactions, communica-
tions, and electricity transmission systems need accurate timing for synchronization,
while aviation, rescue operations, and logistics need accurate positioning services for
safe vehicle operations.

The satellites are located in space, far from the earth’s surface. Hence the signal
power is weak at the time of reaching the receivers on the ground level [33]. Moreover,
the Global Navigation Satellite System (GNSS) was initially designed to be used out-
doors, especially in open areas [13]. Thus, artificial and natural constructions can block
the signal entirely or reflect the signal resulting in multipath signals. In addition, solar
activity may cause disruptions in the ionosphere and thus interfere with the satellite
signals. These unintentional interference types can lead to inaccuracies in estimating
the position or location of a receiver. In addition, unintentional disruption may happen
due to incorrectly installed antennas or broken devices that interfere with the satellite
signals.

The unintentional interference is only part of the problem. Intentional interfer-
ence is an existing threat, and it can be divided into two main types: jamming and
spoofing. Jamming exists, for example, when someone wants to hide their location for
privacy reasons [26]. For this purpose, a jammer is used to send a signal to suppress
or block the original signal sent by satellites [13]. Because the signal is sent near the
earth’s surface it has a higher power level that overpowers the original satellite signal.
Thus, the receiver’s ability to track the satellite signal is reduced, or it is blocked com-
pletely. This event is analogous to the phenomenon in a group of people in which the
loud voices overpower the quiet ones. Instead of trying to block the satellite signal,
spoofers try to trick the receivers to calculate a false position or timing by sending
either clean but delayed signal or a signal containing false information but otherwise
resembling the clean one.
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4 CHAPTER 1. INTRODUCTION

The weak power level of GNSS signals as they reach the receivers makes them
sensitive to both intentional and unintentional interference signals [6]. Interference,
regardless of its type, produces multiple threats in our society. In urban areas, the
multipath signals and other disruptions cause positioning errors, and in the future of
autonomous vehicles, those errors lead to fatal accidents in the worst case. Already
today, the rescue forces utilize navigation to find their destination [1]. The probability
of higher material or bodily injuries increases if the navigation fails and the rescue
services arrive delayed at the target destination. The calculated errors in timing cause
problems in electricity grids as well as in banking transactions. Hence, robust interfer-
ence detection systems are needed to react to the different types of detected anomalies
accordingly and as soon as possible.

In recent years, anomaly detection in GNSS signals has been researched using dif-
ferent approaches; traditional methods, such as regression-based [17] or deep learning-
based methods, like those mentioned in [12, 14]. A more detailed introduction to
state-of-the-art anomaly detection can be found in Chapter 2. The common charac-
teristic of all the studies is that they use real-valued parameters, and if complex values
are involved, the real and imaginary parts are handled separately [2]. Radio frequency
(RF) signals are complex-valued by nature, and transforming them into the real do-
main loses some crucial information about the signal. The existing threats encourage
us to find good and accurate solutions for detecting anomalies in GNSS signals. Thus
far, there are no developed models available that use a fully complex-valued neural
network for this problem.

In my thesis, I developed a fully complex-valued Long Short-Term Memory
(LSTM) based autoencoder for anomaly detection in GNSS to differentiate my work
from the previous research. The input and the output values are in the complex do-
main, and the autoencoder uses only complex-valued parameters in its hidden layers.
Only the output of the loss function must be in the real domain to solve the opti-
mization problem. The developed model is tested with anomalous and clean data and
compared to the real-valued counterpart. My research questions are: Is anomaly de-
tection improved by using deep neural networks directly in the complex domain? Does
a complex-valued neural network model perform better in terms of accuracy? Does it
serve better in terms of computational time, e.g., are fewer epochs needed for training,
and are there any significant differences in used time in each epoch? Are there signifi-
cant differences in the computational time in the predicting phase? Does the usage of
the memory differ from model to model?

The rest of this work is structured as follows: Chapter 2 presents related work
and the state of the art of the current anomaly detection in GNSS signals. Chapter
3 introduces the basic properties of complex values and briefly introduces the effects
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of interference on GNSS signals. Chapter 4 explains the basic structure of a complex-
valued long short-term memory network. In Chapter 5, I will introduce a novel complex
valued autoencoder model I developed for anomaly detection. Chapter 6 presents the
experiments done with the model, and the results are discussed in detail. Finally, in
Chapter 7 I will present my conclusions and possible future works related to this topic.





2. Related work

This section will introduce the state-of-the-art anomaly detection approaches in GNSS
signals. In recent years deep learning based methods for anomaly detection and clas-
sifying has become increasingly popular in the research field. Because of the existing
threats, GNSS signal interference detection, classification, and mitigation have been
studied vastly. In my thesis, I will focus merely on anomaly detection. Thus, pure
classification and mitigation related works are left out.

Even though the popularity of deep learning based approaches is increased, tra-
ditional methods are still used. An integrated moving average (ARIMA) prediction
algorithm is used in [19] to find the satellite time outliers and determine whether the
signal is spoofed. Another statistical analysis based approach used for detecting spoof-
ing with the help of pseudo-error at the time is introduced in [3]. The distribution of
multiple directional antennas in phasor measurement units (PMUs) is used to detect
the presence of antenna-specific timing anomalies caused by the spoofing and to correct
the timing errors to ensure that reliable timing is provided to the PMUs. The PMUs
record the voltage and current phasors in power network systems. This approach is
specialized to work only in PMUs.

Another device-specific jamming and spoofing detection system was developed
for devices using the Android operating system [30]. The anomalies were detected
by comparing together the location and time measurements received from the GNSS
signals and the mobile network, and the classification was done based on the given
thresholds. One more approach takes advantage of external devices [5]. Spoofed signals
can be detected by using a network of low-cost spectrum sensors, while in spoofed areas,
sensors deliver different readings than in non-spoofed regions. The benefit of using this
type of approach is that the affected region can be estimated. However, the network of
sensors must be vast enough that some subset of the sensors is undoubtedly outside of
the possibly spoofed region. Spoofing is also detected in [29] with the help of support
vector machines by using the cross-correlation among statistically significant GNSS
observables and measurements, for example, the Carrier-to-Noise power density ratio
(C/N0). C/N0 is the ratio of carrier signal power C presented in watts to the noise
density N0 in a 1-Hz bandwidth [13]. However, the main limitation is that the models

7



8 CHAPTER 2. RELATED WORK

presented in this and the previous paragraph can detect only one kind of anomaly type
or are device or operating system specific.

Contrary to previous approaches, different kinds of anomalies are detected in
[17]. A regression-based anomaly detection model is developed to determine whether
the satellite signal is anomalous or clean. The model was trained with clean data
from previous days. Based on the statistical rule, the deviation between the predicted
and true values was flagged as either clean or anomalous. The approach is simple and
provides good results. However, before any new predictions, the model must be trained
with the data from previous days, and the collected data must be cleaned from the
anomalous data shown on those days before the training can be started.

As mentioned, deep learning based approaches have become popular in recent
years. Deep learning is claimed to overcome generalization difficulties when working
with high-dimensional data [10]. In this context, generalization means that the model’s
prediction capability is good in situations where new data samples from the same
distribution are introduced. The deep learning methods allow for finding the clean or
anomalous signal characteristics of high dimensional data spaces. Convolutional neural
network (CNN) is a deep learning approach that learns to find underlying patterns in
the given data. For example, CNN was used to detect and classify different kinds
of chirp signals in the time-frequency domain from spectrum image data [18]. Chirp
signals belong to the family of jamming. Another approach used pre-trained CNN
for detecting and classifying different signal disruptions from scalogram image data
[7]. The process transforms complex-valued signal data into the real domain in both
cases. Convolutional neural networks are also used for multipath signal detection:
the network output is either clean, or it contains multipath effects [22]. The most
significant difference from previous approaches is that in the network’s input data, the
intensity of pixels is present for both in-phase (I) and in-quadrature (Q) components
of the signal. The problem with using CNN and especially 2D to 3D data in anomaly
detection and classification is that the image tensors must be created, which is time-
consuming. Additionally, a large number of labeled data is needed to avoid overfitting
and train the model to recognize all kinds of anomalies.

For anomaly detection, often autoencoder-based solutions are meaningful, espe-
cially if the model is trained with clean data. These models detect anomalies based
on the reconstruction error between the input and the output sequence. For example,
in [12], a Long Short-term Memory (LSTM) network is trained with normal data, and
prediction errors over a given threshold are flagged as anomalies. The data consists of
spectral time series received from a satellite transponder. This approach is an example
of an unsupervised learning task, of which the benefits are that there is no need for
labeled data. On the other hand, to make any conclusions about the model’s goodness,
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we have to know which sequences contain anomalies and which are clean of interfer-
ence. Autoencoders that use only clean data in the training phase provide good results
also in other fields: in [32] LSTM-based autoencoder was used for anomaly detection
in CO2 time series data.

However, the related works for anomaly detection use only real-valued signal
measurements or characteristics as the model’s input values. In [22], both I and Q
components are considered, albeit divided into two separate channels. Phase infor-
mation is lost when the satellite signal data is transformed from the complex domain
to the real domain. Complex-valued neural networks have already been studied for
years. For example, the requirements to develop fully complex-valued neural networks
are studied in [15] and in [20]. However, it was not possible to use machine learning
libraries, such as Keras or PyTorch, for training models fully in the complex domain
until recently. That is most likely why many approaches, such as [31] or the approaches
mentioned in [2], split the complex-valued data into real and imaginary components
before forwarding the data to the neural network. Or the input and output values are
kept in the complex domain like in [11], but the values are split into two components in
each model layer to do the multiplications according to the computation rules defined
for complex numbers. Moreover, I was not able to find any fully complex-valued neural
network architectures for anomaly detection in GNSS signals.

To differentiate my work from the previous works, I developed a fully complex-
neural network for anomaly detection in GNSS data. Compared to most of the related
works in anomaly detection in satellite signals, the developed model can detect different
kinds of anomalies and flag the sample either as clean or anomalous based on the input
sequence.





3. Preliminaries

This chapter introduces the basics of complex numbers. Additionally, I will briefly
introduce GNSS and explain the different kinds of GNSS interference types and their
effects on positioning and timing.

3.1 Properties of Complex Numbers

This section introduces the essential characteristics of Complex numbers.

Definition 3.1.1 (Complex numbers). The domain of complex numbers consists of
pairs of two real numbers [21]

C := {(x, y) : x, y ∈ R}.

The common presentation of the complex numbers is z = x + yi, where i is the
root of i2 = −1, x is the real unit, and y represents the imaginary unit. Absolute value
r is commonly known as magnitude and is calculated by using both real and imaginary
parts as follows

r = |z| =
√

x2 + y2 (3.1)

The definition of addition and multiplication in the complex domain is formulated as
follows:

(x1, y1) + (x2, y2) =(x1 + x2, y1 + y2) (3.2)

(x1, y1) · (x2, y2) =(x1x2 − y1y2, x1y2 + y1x2) (3.3)

The addition is straightforward, and only two computations are needed for two variables
that form the complex variable. Multiplication, however, increases the number of
calculations required to get the final product. Complex conjugate is an important
feature in the complex-valued neural networks, as explained in Chapter 4, and it is
derived by changing the sign of the imaginary part of the original number.

z∗ = (x + iy)∗ = x − iy (3.4)

11



12 CHAPTER 3. PRELIMINARIES

In addition to the regular presentation of complex numbers, they can be presented in
polar form

reiθ = r(cos θ + i sin θ), (3.5)

where r is the magnitude and θ is the phase. The magnitude presents the length of
the complex vector starting from the origin, whereas the phase θ =arg y

x
=tan−1 y

x
is

the angle between the real axis and the vector. The polar form presentation is useful
when calculating the natural logarithm of a complex number. The natural logarithm
or the principal branch of the logarithm is defined as follows

ln z = ln reiθ = ln r + iθ (3.6)

for nonzero z ∈ C such that θ ∈ (−π, π]. Computing the natural logarithm changes
the direction of the complex vector that can be seen in 3.1.

(a) 50 different complex values mapped to
Cartesian coordinates.

(b) Same 50 complex numbers as shown in 3.1a after taking
the natural logarithm mapped to Cartesian coordinates.

Figure 3.1: Both figures contains 50 different complex values. In 3.1b natural logarithm is taken of
the numbers before plotting them. The Cartesian coordinates consist of the real and imaginary axis.

Division of a complex number with a positive real value does not change the angle
θ of the complex number as the relation between real and imaginary parts does not
change. If we are given a complex value z = x + yi and c, where x, y ∈ R and c ∈ R+,
the angle θ = tan−1(y/x) of the given value z persists also for the scaled complex value
z/c.

Proof. Assume that z = x+yi with arbitrary values x, y ∈ R exists. The angle between
the complex vector z and real axis is defined as θ = tan−1(y/x). Now, we want to prove
that the equation tan−1(y/x) = tan−1((y/c)/(x/c)) holds for any c ∈ R+. Next, we
choose a multiplier c/c = 1, and according to the calculation rules, we get

θ = tan−1(y/x) = tan−1
(

cy

cx

)
= tan−1

( y
c
x
c

)
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and

θ = tan−1
( y

c
x
c

)
= tan−1

(
cy

cx

)
= tan−1

(
y

x

)

Thus, the assumption tan−1(y/x) = tan−1((y/c)/(x/c)) holds.

3.2 Global Navigation Satellite System

Global Navigation Satellite System (GNSS) consists of four different systems: Global
Positioning Systems (GPS) from the United States, European Galileo, GLONASS from
Russia, and Chinese BeiDou [13]. In addition, there exist other regional satellite navi-
gation systems operating, such as the Japanese Quasi-Zenith Satellite System (QZSS)
and Indian NavIC. For a three-dimensional position of a receiver and the correct tim-
ing, signal information from a minimum number of four satellites is needed. To simplify
the mathematics used for the computations, we can say that position is computed from
the traversed time between a satellite and a receiver.

Satellites transmit navigation signals on different carrier frequencies [13]. For ex-
ample, GPS bands L1 and L2 have their central frequencies at 1575.42 MHz and 1227.6
MHz, whereas Galileo’s E1 and E6 bands have their corresponding central frequencies
at 1575.42 MHz and 1278.75 MHz. As a result, there is overlapping in some central fre-
quencies. The different interference types can affect one or more bands [6]. Interference
can be classified into three categories: narrowband interference (NBI), wideband inter-
ference (WBI), and continuous-wave interference (CWI). This categorization is done
based on the signal characteristics in the frequency domain; that is, each category
differs by how much their spectral occupation is with respect to the GNSS signal band-
width. In NBI, the occupation is smaller than the GNSS signal bandwidth, whereas
WBI occupies approximately the whole bandwidth. In CWI, the occupations are the
smallest; it appears as a single tone in the frequency domain. Interference categories
can be thought of as how the signal looks like when examined in the frequency domain.
In contrast, the interference types can be considered as how the interference happens
or is executed.

The interference types can cause inaccuracies in calculating the position and tim-
ing or even prevent these events completely [13]. For example, unintended interference
can be caused by other RF transmitters out of the band frequencies placed near receiver
antennas. The band frequencies are the frequencies in which the different satellite sys-
tems operate. The signal harmonics may collide with the satellite signal bandwidths,
and if this phenomenon occurs, the signals are disrupted. Irregularities in the iono-
spheric layer can cause a signal distortion phenomenon, which can reduce the tracking
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capability of a receiver for short time periods. Satellite signals may be blocked or
reflected because of artificial or natural constructions in urban areas, mountainous re-
gions, or near water [6]. Multipath occurs if the signal’s echoes are received in addition
to the line-of-sight signal. The line-of-sight (LOS) means the direct signal between the
satellite and the receiver. The multipath can be divided into two categories; specular
and diffuse depending on the surface on which the signal is reflected.

As mentioned before, spoofing is a general term for one type of intentional inter-
ference. Information about message content, frame structure, and signal characteristics
are publicly available for civilian signals, and they can be used to create fake signals
[6]. In general, spoofing is the act in which counterfeit GNSS-like signals are broadcast.
A spoofer generates the signals autonomously and sends them to the target receivers.
Because of the higher signal power level, the user device receives a combination of
both authentic and spoofed signals, which yields a calculation of position and timing
based on incorrect information. The satellite signals can also be intercepted and de-
layed before being sent further. This type of spoofing is called meaconing. The only
differences to the correct transmitted signals are now the positive delay and amplitude
of the signal. In spoofing, the target group is often known beforehand.

It is more challenging to organize a spoofing attack than a jamming attack. This
is because developing and constructing a spoofing device requires deep knowledge and
understanding of the domain [6]. In contrast, a jammer, a piece of equipment used
to transmit the jamming signal, can be purchased online relatively cheaply. With
jammers, high-power interference signals are used to suppress or shield the spectrum
of legitimate satellite signals. For a receiver under a jamming attack, it is difficult to
track the clean signals, or in the worst case, it can not track them at all. Different
jammers have their own spectrum characteristics, which can be used for categorizing
the different jamming types. For example, chirp signals are mapped into WBI because
of their temporal linear variation characteristics over the frequency band. Pulse signals
can be categorized as their own group because they have an on-off status of several
microseconds that alternates in time, which is characteristic of this type of signal.



4. Complex neural networks

Complex-valued neural networks have the same characteristics as their real-valued
counterparts. The familiar functionality in the real domain – sorting numbers by their
magnitude – does not work in the complex domain. This is clearly seen in an example,
where four complex parameters are defined as follows z1 = 1 + 1i, z2 = 1 − 1i, z3 =
−1 + 1i, and z4 = −1 − 1i. Now, with the rules of calculating the modulus in (3.1), we
have |z1| = |z2| = |z3| = |z4| =

√
2. This means that the choice of activation functions

that handle only complex numbers is limited. Moreover, the loss optimization process
needs a real-valued output of a loss function because of the impossibility of minimizing
the loss in the complex domain.

In many previous approaches, the complex numbers are not used directly as a
whole, but real and imaginary units are handled separately [2]. If the numbers are split
into real and imaginary units, a neural network’s input size and parameter space are
doubled. To keep the size of the input and the model’s parameters at the same level
as in the real-valued networks, the neural network parameters and operations must be
switched entirely into the complex domain.

A deep neural network is a generic term for construction that have one or more
hidden layers between the input and output layer [10]. In the forward phase, the neural
network finds characteristic features of the input based on the model’s weights and bias
term. During backpropagation, the model’s parameters are updated to minimize the
loss, or in other words, the error between the model’s predicted and the expected value.
Activation functions are used to introduce non-linearity for the model. Based on the
value from the activation function, a neuron either sends the output into the next layer
of neurons or holds it back.

In this chapter, I first describe the LSTM cell structure, followed by an explana-
tion of the basic components in the LSTM-based neural network architecture from the
perspective of the complex domain.

15
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4.1 LSTM Properties

Long Short-Term Memory (LSTM) is one of the modifications of the recurrent neural
network (RNN). Unlike the basic feedforward neural networks, LSTM has recurrent
connections to the previous hidden units of the network [10]. This character makes
this type of network suitable for handling time series data, such as GNSS signals. This
is because the information from the previous time step of an input sequence can be
used for calculating the output of the current time step. The basic unit of an LSTM

Figure 4.1: LSTM cell. Cell state and hidden state, which is also the output of the cell, are marked
with c and h, respectively. The values received from the forget f and input i gates, estimated cell
state ĉ, and the previous cell state are used to calculate the current cell state. The results from the
output gate o and the tanh activation function are used for calculating the current hidden state and
the cell output.

layer is an LSTM cell. This cell contains hidden state h, cell state c, estimated cell
state ĉ and three different types of gates: input i, forget f , and output o [10]. The main
purpose of the gates is to decide and learn which input information should accumulate
and when the old network state should be set to zero. The structure of the cell is
illustrated in Figure 4.1.

The flow in the LSTM cell is simple: the input of a cell consists of the data
at the current time step and the output from the previous time step. Next, input
is fed to all three gates, in which both input tensors are separately multiplied with
weights, and a bias term b is added to both products. Finally, before calculating
the sigmoid activation, the tensors were added together. Additionally, estimated cell
state ĉ is calculated similarly to the gate values with one exception: this time, a
hyperbolic tangent (tanh) activation function is used. The product of the element-wise
multiplication of ĉ and the input gate is added to the results of the multiplication of
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the forget gate and the previous cell state. This addition results in the current cell
state. The hidden state is obtained by calculating the element-wise product of the
output gate and the result from the tanh activation of the current cell state. There
are different approaches to defining the LSTM cell calculus. For example, only one
bias term can be used in each gate equation and the multiplication can be replaced
with convolution [31]. In this thesis, the equations follow the implementation used in
PyTorch library [23] as they are used in experiments.

The equations for activation and update formulas for the time step t for each gate
and the states are the following [10, 23]

it =σ(Wxixt + bxi + Whiht−1 + bhi) (4.1)

ft =σ(Wxfxt + bxf + Whfht−1 + bhf ) (4.2)

ĉ =tanh(Wxcxt + bxc + Whcht−1 + bhc) (4.3)

ct =ft ◦ ct−1 + it ◦ ĉ (4.4)

ot =σ(Wxoxt + bxo + Whoht−1 + bho) (4.5)

ht =ot ◦ tanh(ct), (4.6)

where it, ot, and ft represent the input, output, and the forget gates, ct and ht

represents the cell and hidden state, and the layer’s input is marked as xt at time
step t. The biases are marked as bxi,xo,xf,xc for input and bhi,ho,hf,hc for the hidden
state. Additionally, Wxi,xo,xf,xc and Whi,ho,hf,hc are the weights for the input value
and previous hidden state, respectively. Hadamard-product or the element-wise
multiplication is marked with ◦.

An LSTM layer contains one or more layers of cells (Figure 4.2). Each layer
contains a cell for each time step in the input sequence. First, weights and bias terms
are initialized based on equations explained in Section 4.3. Both hidden and cell states
are initialized to zero. In the case of a stacked cell layer structure, the input of the
hidden cell layers is the output sequence from the previous layer. Either the final hidden
state or output sequence can be used as input for the following layers. However, the
size of the output tensor differs from the hidden state tensor. This is because the
batch size and the sequence length of the output are the same as the input sequence,
whereas the hidden state size is formed from batch size and the final hidden states
from previous cell layers. The output tensor has to be resized and repeated to get the
correct sequence length for the next layer in the network.
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Figure 4.2: Each LSTM layer can have one or more stacked cell layers. In the picture, a structure
of two stacked cell layers is presented. Both cell and hidden states are initialized to zero for the first
instance of the input sequence. The input of the next cell layer is the output from the previous cell
layer. The final hidden state or output from the last cell layer can be used as an input for the next
layer in the neural network.

4.2 Activation Functions

In the neural network architecture, activation functions introduce non-linearity for the
model. That is, they are used to decide whether a neuron should be activated or not.
In the real domain, there are multiple choices for the activation functions for different
neural network architectures. Some complex characteristics must be considered when
changing the neural networks into the complex domain. For example, one restriction
to complex numbers is that they cannot be sorted by their magnitude. Thus, for
example, Rectified Linear Unit (ReLU) function defined as max(0, z), where z is a
complex number, cannot be directly used in the complex domain. One of the previous
approaches explained in [31, 2] is to split a complex number into its real and imaginary
units and compute any given activation function f for each unit separately.

f(z) = f(Re(z)) + if(Im(z)), where z ∈ C. (4.7)

However, in the approaches that use split-wise activation functions, the real and
imaginary parts of the complex values are often split into separate real-valued input
tensors [31, 2]. Another approach is to separate the tensors into real and imaginary
units inside the network and combine the result of the calculations as a complex-
valued output tensor [11]. Both approaches use the complex multiplication rules (3.3)
to obtain the correct real and imaginary values from the network layers. This doubles
the number of needed parameters, as both units need their own weights. This increases
the complexity of the neural network. Thus, fully complex activation functions are to
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be used to reduce the number of network parameters to the same level as in real-valued
networks.

Generally, no group of activation functions exists that has been deemed the best
for both real and complex neural networks [2]. However, some specific neural network
architectures, such as LSTM, are typically implemented to use sigmoid (4.8) and tanh
(4.9) activation. These two functions can be used directly in the complex domain [28,
23].

σ(z) = 1
1 + e−z

(4.8)

tanh(z) = sinh z

cosh z
= ez − e−z

ez + e−z
(4.9)

where z ∈ C and the sigmoid function is marked as σ. Both functions have singularity
points. For tanh, those points are found when the real part is zero, and the imaginary
part is i(1/2 + n)π, where n ∈ N [28]. For the sigmoid function, the points are defined
for complex numbers i(1 + n)π, and this can be proven with the help of (3.5). Assume
z = x + yi, where x = 0 and y = nπ. Now

σ = 1
1 + e−z

= 1
1 + e−(x+yi) = 1

1 + e−yi
= 1

1 + (cos nπ + i sin nπ)−1

= 1
1 + (−1 + 0)−1 = 1

1 − 1 ⇒ undefined

Thus, it is important to initialize the model’s parameters correctly, but also the complex
input variables must be scaled to avoid singularities during the computation. The
scaling of the complex numbers is discussed in detail in 5.2.

4.3 Model’s Parameter Initialization

The model’s parameters can be initialized in different ways, but there are two main
rules to consider of. First, it is not recommended to initialize parameters, especially
weights, with a constant. Assume that weight tensors W and bias tensors b are
initialized with zero. Now, by examining gate Equations (4.1, 4.2, 4.5), we get, based
on the definition of the sigma function (4.8), the output tensors consists of constant
1/2 because σ(0) = 1/2. Following up Equations (4.9) and (4.3), we see the output
tensor for ĉ is a zero tensor. Hidden and cell states are initialized to be zero tensors,
and thus the cell state update yields zero (4.4). Finally, taking the Hadamard product
from the output gate and tanh(ĉ), we get zero tensors again because tanh(0) = 0. This
denotes that the forwarded cell and hidden states c and h, and thus the final output is
zero tensors, and the network cannot learn.
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Secondly, it is advisable to initialize the parameters with small random initial
values to avoid exploding gradients and to help the model’s changes to find a good
minimum point during the backpropagation [24]. Different types of weight initial-
ization exist. Technically bias can be initialized to be a constant, but for example,
default weight and bias initialization executed in the PyTorch library draw these pa-
rameters from the uniform distribution, e.g. θ ∝ U ∼ (−

√
1/(k),

√
1/(k)), where

k = 1
hidden_dim_size

[23]. Using Rayleigh distribution for drawing the modulus and
uniform distribution for drawing the phase and initializing the weights with the help
of these values is proposed in [31]. Mathematically this weight initialization can be
formulated as follows.

r ∝ Rayleigh ∼ (std) (4.10)

θ ∝ U ∼ (−π, π)

weights = r cos(θ) + i r sin(θ)

where standard deviation std = 1/(ninput + noutput), where ninput and noutput are the
numbers of the input and output units, and finally variables r and θ are the modulus
and the phase, respectively. The main rule by initialization is that the resulting weights
are in reasonable scale to avoid singularities or exploding gradients during the model’s
training.

4.4 Backpropagation

In the neural networks, backpropagation is used to adjust the model parameters based
on the difference between the predicted, and the true value [10]. That is, we want
to optimize the model’s parameters to make better predictions in the future. The
actual learning does happen in this phase of the learning process. We use a loss
function to evaluate the current state of the model’s prediction ability. The model’s
parameters are updated based on the computed gradients from the current epoch’s loss
and the gradients of activation functions. As already mentioned, we can apply neither
minimization nor maximization to complex values because their magnitudes cannot be
compared.

In general, the functions in the neural network designed for the complex domain
can be either holomorphic or non-holomorphic. Holomorphicity means that the func-
tion is differentiable in all points in open set U ∈ C [21]. However, functions that
are differentiable at all points in the real domain might not be entire in the com-
plex domain. For example, both sigmoid and tanh functions have singularities in the
imaginary axis at points i{2n + 1}π and i{n + 1/2}π, respectively as mentioned in
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4.2. Well-defined derivation rules exist, but the functions have to be holomorphic and
satisfy the Cauchy-Riemann conditions

∂u(x, y)
∂x

= ∂v(x, y)
∂y

and ∂v(x, y)
∂x

= −∂u(x, y)
∂y

,

where u and v are the real-valued functions, and parameters x and y are the real
and imaginary units of a complex variable, respectively. However, the output of a
loss function used in the complex-valued neural network must be in the real domain.
Otherwise, the minimization task cannot be done. This yields the situation in which
we obtain v(x, y) = 0 for all points in the complex domain, and thus the Cauchy
Riemann conditions are not satisfied [28]. Hence, the well-defined complex derivation
rules cannot be used in the backpropagation phase for the loss function.

Even though we cannot take advantage of basic complex derivation rules, the
solution to the problem exists. Mathematician Wilhelm Wirtinger derived calculus
named by him that can be used for both holomorphic and non-holomorphic functions
[9]. This calculus can be applied for the backpropagation phase for computing the
gradients of loss and activation functions. The Wirtinger derivative is defined as two
derivatives, both for any arbitrary complex value z and its conjugate z∗ (3.4) as follows

∂f

∂z
=1

2

(
∂

∂x
+ i

∂

∂y

)
(4.11)

∂f

∂z∗ =1
2

(
∂

∂x
− i

∂

∂y

)
. (4.12)

Both of the derivatives (4.11) and (4.12) can be applied to any arbitrary function in
the complex domain, including the holomorphic functions. However, in the specific
case of holomorphic functions, it is important to recognize that they do not depend on
z∗, which yields the results ∂f

∂z∗ = 0 [9]. The gradients can directly be derived from the
Wirtinger derivative and are defined as follows

∂f

∂z
=



∂f
∂z1
∂f
∂z2...
∂f

∂zn

 and ∂f

∂z∗ =



∂f
∂z∗

1
∂f
∂z∗

2...
∂f

∂z∗
n

 (4.13)

Choosing a loss function is an important part of neural network design. Many loss
functions cannot be used directly in complex-valued networks. This is because they
do not deliver real-valued output for a complex-valued input by design. Mean absolute
error (MAE) loss function can be selected straight because it calculates the absolute
value of the difference between two tensors. This procedure converts the complex-
valued tensors into the real domain. Some of the existing loss functions need only
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minor altering to convert them suitable for complex networks. For example, in mean
squared error (MSE) function, before taking the square root of the complex-valued
difference, computation of absolute value is added.

MAE =L(x, y) = (l1 + · · · + lN)/N, where ln = |xn − yn| (4.14)

MSEmodified =L(x, y) = (l1 + · · · + lN)/N, where ln = (|xn − yn|)2 (4.15)

In the equations (4.14) and (4.15), a tensor x corresponds to predicted values of the
network, whereas the tensor y is the true values and N is the total number of the
calculated error values between each variable xn and yn of the tensors, where n ∈
{1, . . . N}.

As mentioned earlier, the output of the loss function is in the real domain even
though all other network parameters are in the complex domain. The update rule that
resembles the real-valued counterpart must be updated to process complex numbers.
The updated rule is defined for stochastic gradient descent optimizer [10] as in Equation
(4.16), but this can be expanded to different optimizer types such as Adam.

θ = θ − ηg, (4.16)

where θ are the model parameters, η learning rate, and g are the gradients of the
model parameters in the previous step. The optimization step that updates the model’s
parameters in the domain C takes advantage of the Wirtinger calculus. In this case,
both real and imaginary units of a complex-valued parameter must be updated. We
can derive the update rule for stochastic gradient descent with the help of (4.12) as
follows:

zt+1 =xt − η · 1
2

∂L
∂x

+ i ·
(

yt − η · 1
2

∂L
∂y

)

=zt − η · 1
2

(
∂L
∂x

+ i
∂L
∂y

)

=zt − η
∂L
∂z∗ (4.17)

where η is the learning rate, zt = xt + iyt is one of the model’s parameters in the
previous step, and L is the loss function to be optimized. The updated rules of different
optimization algorithms, such as Adam, differ from those in Equation (4.17), but those
differences do not affect how the gradient is calculated. The derivative of the loss ∂L

∂z∗

can be rewritten as
∂L
∂z∗ =

(
∂L
∂s

)∗
∂s

∂z∗ + ∂L
∂s

(
∂s

∂z

)∗

(4.18)

where s is the real-valued output of the loss function and z is the complex-valued input
obtained from the linear layer [23]. The derivative of the loss function is not the only
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gradient that has to be computed. In backpropagation, the network is propagated
from the loss back to the start of the network. Basically, gradients are calculated for
all the activation functions. The difference compared to the forward pass is that now
the directions are reversed. While computing the gradient the input of the function
comes from the next network layer or cell.





5. Methodology

The first idea for approaching the problem was to develop a complex-valued neural
network for detecting and classifying anomalies of which input values are the spectro-
grams of the given signals. This idea was based on different papers: complex-valued
convolutional LSTM approaches in [31] for speech spectrum prediction, and in [8] po-
larimetric synthetic aperture radar (PolSAR) image classification, the convolutional
neural network approaches for anomaly classification of different jamming types in [18]
and classification of different kind of interference types in [7]. However, I abandoned
this idea mainly because each of the data files includes sample signals with lengths of
200-250 ms or later a length of 1500 ms. Creating, saving, and reading 200 or 250
spectrogram images for training and testing purposes would have been computation-
ally heavy. Additionally, this would have meant that in case of anomaly detection
from streamed signal data, there would have been 1000 created spectrograms for each
second if each millisecond had been checked for anomalies. Taking a snapshot, for
example, every second would decrease the computational load but increase the delay
of the detection.

The signal data is complex-valued, and the main signal characteristics can be
found efficiently with the Fast Fourier transform (FFT) algorithm. This reduces the
computational time because the network’s input size decreases. Calculating the FFT
from the I/Q data result in complex values, hence, we do not lose the information
coded in the phase element of the signal. The good results in [32] in which autoen-
coders were used for anomaly detection successfully, encouraged to development of
a complex-valued LSTM-based autoencoder for anomaly detection in GNSS signals.
A large number of existing interference types was another reason to approach this
anomaly detection problem with an autoencoder. Thus, if the model is used for binary
classification – a sample is clean or anomalous – only clean data is needed for training,
and the anomalies can be detected based on the reconstruction error computed in the
prediction phase. Compared to other classification models, there is no need to collect
and label a large number of data for training and testing. Because of the novelty of
fully complex-valued neural networks, I was not able to find proper scaling methods
for complex numbers. Therefore, I developed a scaling method for complex numbers

25
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in order to avoid singularity values in used activation functions. In this chapter, I will
describe the data, the developed scaling method, the developed model architecture,
and the workflow of the experiments.

5.1 Experiment Data

As jamming and spoofing are both illegal methods to interfere with the GNSS signals
and collecting such data has its difficulties, I used generated data in the experiments in
this thesis. Moreover, in this way, different kinds of possible interference scenarios can
be provided for testing the trained model. The data was generated with Orolia’s signal
simulator from GSG-8 Series. Each interference file consists of in-phase in-quadrature
(I/Q) signal data, of which in-phase represents the real unit and in-quadrature is the
imaginary unit of the complex number. Each file contains data for 200, 250, or 1500
milliseconds. Each snapshot of one ms second long contains the sampling rate 16224 ·2
fixed in the GNSS simulator during the recording of the data.

The interference types used in the experiments were multipath, spoofing, and
jamming. The six different types of jamming signals or their combinations are con-
tinuous wave interference (CWI), multi-continuous wave interference (MCWI), multi-
continuous wave interference with three spikes in the central frequency region (TM-
CWI), pulse, CWI with chirp interference (CWI-CI), and two types of CWI-pulse-CI.

In time domain presentation, the number of signal frequency features for each
millisecond is large: 32448 complex values. Using I/Q data directly as input is possible
but has some limitations that are explained later on in Chapter 6. Hence, Fast Fourier
transform (FFT) is used to transform the signal snapshots from the time domain to
the frequency domain. The PyTorch library used for computing the FFT computes
the Discrete Fourier Transform (DFT), which is defined as

F (k) =
N−1∑
n=0

f(n)e−i2πkn
N (5.1)

=
N−1∑
n=0

f(n)real cos 2πkn

N
+ f(n)imag sin 2πkn

N

− i

[
N−1∑
n=0

f(n)real sin 2πkn

N
− f(n)imag cos 2πkn

N

]

where f(n) = f(n)real +if(n)imag is the complex time function, N represents the length
of the array produced by FFT, which in our case is set to 128 [4]. The resulting 1-
dimensional array from the FFT function contains the positive frequency terms first.
The fftshift method, also provided by PyTorch, is used to rearrange the vector to have
the center frequency in the middle and the negative frequency terms first.
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(a) Clean type 2 (b) Multipath

(c) Spoofing (d) MCWI

Figure 5.1: Samples of clean type 2 used in training, multipath, spoofing, and MCWI (jamming)
after calculating FFT and fftshift. Each sample is created from a 1 ms snapshot and scaled into dB
by taking the base ten logarithms of the absolute values and multiplying them with a scalar 10. We
can see that different types of signals provide different kinds of magnitude profiles. The illustrated
values are used in the real-valued autoencoder that is used in the comparison.

The transform is shown in Figures 5.2 and 5.3 in which we have together five
sample snapshots of the length 1 ms both in I/Q format and after computing FFT
and fftshift. Especially, clean type 1 (5.3a, 5.3b) and multipath (5.2a, 5.2b) signals
resemble each other when viewing the I/Q data, but changing from the time domain to
frequency one, the differences are easier to see. However, the newer clean signal data,
clean type 2 presented in Figures 5.3c and 5.3d resembles the multipath signal also
in the frequency domain. The difference between both clean types and spoofed (5.2c,
5.2d) signal is clear already in the time domain; in this generated spoofed signal, the
values in real and imaginary units fluctuate between -250 and 250, whereas in the clean
sample the range is approximately between -1500 and 1500. Between both clean types
and MCWI (5.2e, 5.2f), the difference is visible in the time domain, but especially it
can be observed in the frequency domain due to the spikes in the central frequency
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region. For training purposes in the real domain, we have to map the data into real
values. This is done by transforming the unit of measure from amplitude to magnitude
in decibels with the formula

data_in_dB = 10 log10 |z|

where |z| is the absolute value of the complex parameter z. This transformation for
the same four samples discussed in the previous paragraph is illustrated in Figure 5.1.
When comparing the clean sample type 2 (5.1a) and MCWI (5.1d) signals together,
it is clear to see that MCWI appears as single tones in the frequency domain. In
multipath (5.1b), the power level in dB and the shape of the figure are close to the
clean type 2. The spoofed sample represented in Figure 5.1c stays mainly below the
magnitude decibel levels and has a wider occupation on the frequency band compared
to the clean type 2. The figures for the rest of the used anomaly types can be found
in Appendix A.

5.2 Scaling of Complex Values

Because of the activation functions used in the LSTM layers, data needs to be scaled to
avoid singularities and, thus, invalid outputs of the activation functions. For example,
min-max scaling can be used in the real domain to fit the values between given intervals,
typically between 0 and 1 or between -1 and 1. However, when scaling the complex
values, this approach can not be used directly without changing the complex vector’s
direction and angle. Thus, I developed a method for scaling complex numbers.

Dividing a complex value with a scalar preserves the angle as mentioned in Section
3.1. I tested two different scalar types for scaling. The first approach was to use the
maximum absolute value of each complex tensor which values were to be scaled. The
second approach uses a maximum of maximum absolute value of the real or imaginary
unit of the tensor that is to be scaled. The scaling functions are defined as

scaling1 = Z/max(abs(Z)) (5.2)

scaling2 = Z/max(max(abs(Zreal)), max(abs(Zimaginary))) (5.3)

where Z ∈ Cmx1. The first type scales the complex values so that absolute values of the
complex numbers are mapped between -1 and 1. However, real and imaginary units
are often centered closer to zero than by using the scaling2. Based on this, it seems
that the magnitude of the scalar and, thus, the results of scaled numbers can affect
the training and, thus, the prediction ability of the model as explained in Section 6.2.
The latter scaling type assures that both units range between -1 and 1, forcing at least
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one of the complex vectors to have either the imaginary or real part at the rand of the
interval. The results of the two functions are shown in Figure 5.4. We can see that
using maximum absolute value as denominator can sometimes give almost the same
result as by using the function scaling2.

5.3 Complex valued LSTM Autoencoder

Autoencoders consist of two parts: encoder and decoder [10]. First, the input data is
given to the encoder, which seeks the essential patterns in the input sequences. Then,
the decoder unit tries to predict the sequence given to the encoder unit. Ideally, the
output of the autoencoder closely resembles the given input. For anomaly detection,
the network is often trained only with clean data [32, 12] to get the reconstruction error
as high as possible with anomalous data. The high-level architecture of the developed
autoencoder is illustrated in Figure 5.5. In my thesis, I tested the autoencoder model in
real and complex domains. The complex domain can be divided into two subcategories:
Time and frequency. These three variants and their results are described in Chapter
6.

The workflow of a basic autoencoder can be described as follows: Input sequence
that contains signal spectrum or I/Q data for all time steps of the sequence is given to
the first LSTM layer in form (batch size, sequence length, features). The first layer’s
purpose is to encode its input’s main features. The spectrum data at the first time
step is processed in an LSTM cell (Figure 4.1). The hidden and the cell state of the
first cell is forwarded to the next cell, in which the input data from the second time
step is processed. This procedure continues until the whole sequence is processed. The
encoder tries to find a specified number of signal characteristics of which the signal can
be decoded. The number of extracted features is set during the model initialization by
the user. Before moving to the decoder unit, the decoder input must be decided. Both
output and the final hidden state can be used as input.

If the final hidden state is used as an output, it must be reshaped into a form of
(batch size, hidden dimension). The sequence length defines how often the reshaped
tensor is repeated. The repeated tensor is again reshaped into form (batch size, sequence
length, hidden features) before feeding the obtained tensor to the decoder unit that
starts with the second LSTM layer. If the output sequence is chosen, it can be used as
an input of the decoder directly.

In the decoder unit, handling the time steps in the LSTM cells is equal to the
first LSTM layer, but the output feature size will be increased to the size of the sample
features. Finally, the output of the LSTM layer is processed through a linear layer
which produces the final output of the model that can be compared to the input
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sequence.
Mean absolute error (L1Loss in PyTorch) is chosen as the criterion. The purpose

of MAE is to measure the reconstruction error between the true and predicted values.
Instead of a traditional stochastic gradient descent optimizer, we chose the Adam op-
timizer. Adam was chosen because is claimed to have only little memory requirements
and to be computationally efficient [16]. The optimizer is used for updating the model’s
parameters based on the calculated gradient.

The model itself is trained over several epochs. The order of the sample sequences
is shuffled before each epoch. Validation data is used to evaluate the correctness of the
model during the training. As the training is completed, the test sequences, including
clean samples, are tested and classified as an anomaly or clean based on the given
threshold value. This value is determined to be the maximum reconstruction error in
validation data from the last epoch.

The workflow of the whole algorithm is illustrated in Figure 5.6. The user first
defines the FFT length, batch and hidden dimension’s size, number of cell layers and
epochs, and the learning rate. The data is transformed from the time domain to the
frequency domain and scaled. If training is done with I/Q data, only scaling of the
values is executed. For the anomalous data and clean data type 1, only test sequences
are created. For clean data type 2, training, validation, and test sequences are created
so that the model has not seen the test data during the training, and the validation
data does not improve the model. The model is initialized using the used-defined
hyperparameters. The weights are created either with default distribution, which is
the uniform distribution or using Rayleigh and uniform distribution as described in
4.3. The bias term used in each layer is drawn from the uniform distribution. The
training takes n epochs, and on each epoch first, the training set is iterated through
with backpropagation, after which the model is evaluated with a separate validation
set.

When the training is finished, the threshold that classifies the samples as clean
or anomalous is computed from the last training epoch, and it is the maximum of the
validation loss. The model is tested with both clean and anomalous samples that are
unseen for the model. Finally, the totals of the predicted values, clean or anomalous,
are counted for each sample to see the prediction capability of the model.
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(a) Multipath I/Q data for 1 ms (b) Multipath after FFT and fftshift

(c) Spoofing I/Q data for 1 ms (d) Spoofing after FFT and fftshift

(e) MCWI I/Q data for 1 ms (f) MCWI after FFT and fftshift

Figure 5.2: Samples of multipath, spoofing, and MCWI (jamming). We have a snapshot of 1 ms of
I/Q data on the left column. On the right column, the same snapshot is after calculating FFT with
a length of 128 and fftshift. Based on the I/Q data, it is difficult to say the difference between the
samples except the spoofing, but as turned into the frequency domain, more signal characteristics are
shown, and the differences between the samples are easier to see.



32 CHAPTER 5. METHODOLOGY

(a) Clean type 1 I/Q data for 1 ms (b) Clean type 1 after FFT and fftshift

(c) Clean type 2 I/Q data for 1 ms (d) Clean type 2 after FFT and fftshift

(e) Clean type 1 after FFT and fftshift and changing
the signal into real domain

(f) Clean type 2 after FFT and fftshift and changing the
signal into real domain

Figure 5.3: Samples of both clean types presented in the testing. Clean type 2 is used for the
training. The difference between these types is the occupation on the frequency band. We have a
snapshot of 1 ms of I/Q data on the left column. On the right column, the same snapshot is after
calculating FFT with a length of 128 and fftshift. In Figures e and f , both clean data samples are
presented after taking the logarithm base ten from absolute values and multiplying by 10.
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(a) Results of both types of scaling functions in clean
data type 1 (1 ms).

(b) Results of both types of scaling functions in clean
data type 2 (1 ms).

Figure 5.4: Examples of results of the scaled values presented in the Cartesian coordinate system,
where the y-axis and x-axis represent the imaginary and the real unit, respectively. In (a), we can
see that scaling with maximum absolute value can produce nearly the same values as by using the
function scaling2. A clearer difference between those two methods is visible in (b).

Figure 5.5: The final CVAutoencoder architecture. Here to simplify the explanation, it is assumed
that the batch size is one. The model consists of two units: encoder and decoder. The encoder has
only one LSTM layer, of which high-level dimensions are 128 x 96 representing the number of features
in and out, respectively. The output features are fed into the decoder unit as input, and the output
feature dimension from the LSTM layer is increased back to 128. The decoder unit includes a linear
layer in which input and output dimensions are 128. The output of the linear layer consists of the
predicted sequence of size 4 x 128. The only activation functions used in the network are included at
the cell level in LSTM layers.
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Figure 5.6: The workflow of the algorithm. First, the data is read into memory, FFT is calculated,
and fftshift is applied for each millisecond for each sample type. In addition, every complex number is
scaled. Training set consisting is created by only using clean data, and the test set contains all types
of samples. Sequence length – how many milliseconds a sequence consists of – is predefined by the
user. Next, the model is initialized with the pre-defined size of the hidden dimensions and the number
of stacked LSTM cell layers. Hidden and cell state tensors are initialized to contain zeros, and the
other model’s parameters are initialized based on Section 4.3. On each epoch, the model is trained
with the available data given as batches into the model. The user predefines both batch size and the
number of epochs. The threshold value is received by taking the maximum loss value of the validation
set from the final training epoch. Finally, the model is tested with the test samples, of which sequence
length is the same as used in the training phase. The algorithm can determine whether the tested
sample is clean or anomalous by comparing the prediction error and the threshold values.



6. Experiments

PyTorch library [23] version 1.12.1 with CPU is used for the experiments, and while
writing this thesis, it was the latest stable release. Unfortunately, CUDA implemen-
tation for complex-valued LSTM cells was not yet been implemented. Therefore, the
CPU was the only option for training and testing the developed model.

The signal sequences are split into sequences of length 4. Other lengths were
tested, but with the number of available clean data samples, this length provided the
best results. Each sequence is considered an independent sample. The number of clean
train samples in the final tests in the frequency domain is 854, and the number of
test samples is 692, of which 144 clean sequences are from the same distribution as
the training sequences. The validation set used in the frequency domain contains 64
sample sequences. The learning rate is set to 0.0001 for the complex-valued network
in the frequency domain and to 0.001 in all other final model tests. As the tests were
done in the earlier phase of the project, a learning rate of 0.01 was also tried. In some
cases, this resulted in a sudden jump in loss values after a few epochs, and the loss
did not converge as expected. This chapter first presents training in the time domain
and in the frequency domain for real and complex values. Thereafter, the results of
complex and real-valued models are compared.

6.1 Training in Time Domain

Training and prediction can be made directly in the time domain. This, however,
involves a vast parameter space compared to other approaches. Therefore, the input
of the model was set to 4 x 4 x 32448 (batches, sequence length, features), and the size
of the hidden dimension was set to 32. Now, the training time for each epoch was on
average 6 hours, and the prediction time for each sample was 30 seconds. Significantly,
the prediction time per sample sequence is too high if fast anomaly detection at an
early stage is needed. Due to the time consumption, the number of epochs was reduced
to 4, and the reconstruction error did not start to diminish during this time.

Another approach in the time domain was to use only every second frequency
feature of a millisecond. Now, the input size (8,4,16224) with the size of the hidden
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Clean Anomaly
Clean 33 17

Anomaly 195 253

Table 6.1: The best results obtained in time domain experiments. The number of frequency features
was reduced to 16224 for each ms, and the number of epochs was set to 10. At the time of these test
runs, the larger clean data set was not yet in use. Thus, the high number of correct predicted values
may be an effect of overfitting.

dimension being 64. The training epoch time was reduced to an average of 54 minutes
and the prediction time was on average 5 seconds for each sample sequence. With this
reduced approach, the behavior of the reconstruction error was similar to the approach
with all I/Q data. The loss did not start to diminish with a small number of epochs,
and on the other hand, if the number of epochs was over ten, the loss began slowly
to grow. The confusion matrix for the best model trained with I/Q data can be seen
in Table 6.1. For clean data, the prediction was good, with only 17 wrongly classified
samples. However, from the anomalous samples, around 44% were misclassified as
clean. Moreover, during the time the experiments were done in the time domain, the
new clean data file did not exist yet. Hence, the correctly predicted samples may be
caused by overfitting.

Another issue with this approach was the amount of memory needed. Data and
the training parameters are kept in the memory for the calculations. For the first I/Q
approach with all frequency features, the memory utilization was 506 GB, and for the
latter one, the utilization was 128 GB. Because of the vast parameter size of the models
and the computations needed in order to obtain the reconstruction error, the prediction
in environments other than high-performance computers could cause memory issues.
Based on the memory usage, the time needed for the prediction, and the prediction
capability, these approaches in the time domain are unsuitable for fast and accurate
anomaly detection.

6.2 Training in Frequency Domain with Complex
values

As mentioned in Section 5.2, the scalar used in scaling seems to affect the training
results. At first, the scaling method scaling1 (5.2) was chosen. This scaling yields a
situation where the training and prediction results are terrible: all anomalous samples
are detected to be clean, and half of the clean samples are classified as anomalies based
on the computed threshold value. The solution used for this problem was to apply a
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Clean Anomaly
Clean 121 73

Anomaly 138 360

Table 6.2: The results of the final complex-valued Autoencoder model. From the misclassified clean
sample sequences, 50 samples belonged to clean data from a different distribution leaving 23 samples
misclassified from the same distribution. 360 anomalous samples were classified correctly, of which
all sample sequences included in Spoofing, MCWI, CWI, and CWI-CI were classified as anomalous.
From Pulse, there were only three, and from TMCWI, only one sample was classified as clean.

natural logarithm (3.6) for complex tensors. The resulting complex numbers are the
follows: the real part is the magnitude of a complex parameter, and the imaginary
part is the phase. This approach provided better results: All anomalies were classified
correctly, and 38 out of 50 clean samples were classified as clean. Computing the
logarithm changes a complex vector’s direction and angle, which can be seen in Figures
3.1a and 3.1b, which can hide the information that a signal could provide.

Moreover, the changed structure of the complex vectors yields fast overfitting.
After a few epochs, the model starts to predict the same output regardless of the
model’s input. This phenomenon can yield good results, particularly for this data
set, but fail if a new clean sample sequence from the same distribution is used. The
overfitting phenomenon is undesirable because the model works well for only a subset of
the data – the used data set. Still, the model’s performance would most likely increase
with a large amount of data from the same receiver and frequency band.

Because of those issues in the model, new possibilities for scaling were thought of.
The second method, scaling2, was developed and tested. This new scaling approach
provides better results without any tricks to modify the results returned from the
Fast Fourier algorithm. Because the number of training samples is relatively small,
increasing the cell layers to more than one results in overfitting. This phenomenon also
happens if more than one LSTM layer is used in encoder and decoder units.

However, even though it was thought that the overfitting problem was suppressed
with the new scaling method, it turned out that the problem was still there. The first
attempts used the clean data type 1 (Figure 5.3), of which the sample file contained
a length of 200 ms of data. Because of the lack of clean data, the validation set was
not separated, and also, the test set contained samples that were already seen by the
model. This was against all the best practices of training and testing deep learning
models and, thus, a big mistake. This approach still hid the true problem of the model,
namely the overfitting that yielded a situation in which the model could not predict
the clean samples not used in the training phase from the same distribution at all as
clean.
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Clean Anomaly
Clean 133 61

Anomaly 94 404

Table 6.3: Final results from the real-valued Autoencoder model. Almost all sample sequences of
clean type 2 were flagged as clean; that is, 133 out of 144 samples were correctly classified. All the
multipath samples were wrongly flagged as clean, and all the clean samples of type 1 were flagged as
an anomaly.

A sample of 1500 ms clean data was created, but this time it came from a slightly
different distribution compared to previous clean data (Figure 5.3). At the beginning
of the experiments, the FFT length was chosen to be 2048. However, with this length,
only the train data started to converge, yielding a situation in which the mean absolute
loss value of the validation set stayed high. That is, the model still could not predict the
unseen data, although the number of sample sequences was increased. After running
several attempts, the FFT length was decreased to 128, the batch size was decreased
from 64 to 4, and the number of epochs was increased from 250 to 600. Also, the
learning rate was decreased from 0.001 to 0.0001, and the hidden dimension was set
to 96 instead of 64. These adjustments provided the results seen in Table 6.2 and in
Figure 6.1. To compare, the model with the same hyperparameter values was also
trained with default weights drawn from the uniform distribution. The results were
slightly worse, having ten more anomalous samples flagged as clean. The final model’s
user-defined parameters can be found in Table 6.6. With the proper values, the model
still seems slightly overfit but keeps the ability to adjust itself based on the input. More
discussion about the results is found in 6.4.

6.3 Training in Frequency Domain with Real Val-
ues

The same autoencoder structure was used for experiments in the real domain to make
the comparison. In this case, the default weights provided by PyTorch were used, and
the model parameter space was changed to use floats instead of complex numbers. In
the data preparation phase, a base ten logarithm is taken, and the values are multi-
plied by a scalar ten to obtain the dB scale before scaling the values with a min-max
scaler. The same criterion chose the threshold as in the complex domain, which is the
maximum validation loss value from the final training epoch.

At the very beginning, it was seen that the small amount of training data caused
the model to overfit in a manner that starts to predict the same output for each



6.4. DISCUSSION OF THE RESULTS 39

Figure 6.1: The distribution of the loss values for complex-valued autoencoder. The computed
threshold is marked as a red horizontal line. To emphasize, the model cannot predict clean data from
a different distribution as clean, but the model must be trained and used for the (clean) data that
comes from the same distribution, e.g. have the same frequency band occupation. The model has
the most difficulties with the samples containing more than one anomaly type but has the capability
to label the samples containing only one interference type almost with 100% accuracy as anomalous.
The only exception is the multipath signal: only three samples were classified as an anomaly.

sample regardless of the given input. This phenomenon was partly solved when the
new generated clean sample file was used, and the length of the FFT algorithm was
reduced. Also, reducing the number of hidden dimensions, batch size, and epochs
improved the prediction performance of the real-valued autoencoder. As a higher
number of epochs were tested, the model’s capability to predict clean type 2 samples
as clean was improved. However, at the same time, more anomalous samples were
flagged wrongly as clean. The results from the final run are seen in Table 6.3 and 6.2
and are discussed in detail in the next section.

6.4 Discussion of the Results

In terms of anomaly detection accuracy (Table 6.1), and in terms of computational
time and the used memory (Table 6.7), the models tested in the time domain can be
discarded immediately. If only the numbers are looked at, the model trained in the
real domain performs better in terms of the number of epochs needed to get reasonable
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Figure 6.2: Real-valued Autoencoder: The distribution of the loss values received from the pre-
diction. The computed threshold is marked as a red horizontal line. In the real domain, almost all
anomaly sample groups were classified correctly as anomalous. However, samples from Pulse-Chirp-
Continuous interference were partly flagged as clean, and all the multipath samples were classified as
clean.

results. Also, the number of samples classified correctly (Table 6.3) is higher than it
is with a complex-valued model in the frequency domain (Table 6.2). The prediction
time is, in both cases, around 1 millisecond, and the training time for each epoch is
3.09 seconds for complex-valued and 1.31 seconds for real-valued autoencoder. Thus,
in terms of overall time, the real-valued training is clearly better, but when examining
the epoch level and sample-specific time duration, the models are reminiscent. The
slight increase in time is due to the complex multiplication and slightly larger weight
and bias tensors because of the used parameter value for the hidden dimension.

The user-defined parameters for real and complex-valued models are shown in
Table 6.6. Only the hidden-dim parameter differs between the models. During the test
runs, it came visible that a smaller hidden dimension size improved the real-valued
model, whereas a higher one improved the complex-valued model. This resulted in all
weight and bias tensors in the complex-valued encoder and the input-hidden weight
tensor in the complex-valued decoder being bigger than the tensors used in the real
domain (Tables 6.4 and 6.5). The utilized memory during the loading of the data,
creating all three types of sequence sets, and training was for the real-valued model
5.29 GB and for the complex-valued model 5.30 GB. Even though only the training
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and validation tests were used to get the memory utilization numbers in the frequency
domain, the test set was also loaded and kept in memory to see more clearly, do the
complex numbers affect memory utilization. The utilization for the complex-valued
model is slightly higher (Table 6.7). However, this can be explained by the size of the
tensors used in the complex-valued Autoencoder. Also, the representation of the values
may have an effect: the complex values are presented as a type of complex128, which
means that both real and imaginary units are presented as float64, which is also the
presentation of the values in real-valued autoencoder.

The prediction capability of the models was examined with common metrics:
accuracy, precision, recall, and F1-score, the harmonic mean of precision and recall.
The formulas of these metrics are the following [27]

Accuracy = TP + TN

TP + TN + FP + FN

Precision = TP

TP + FP

Recall = TP

TP + FN

F1-score =2 Precision · Recall

Precision + Recall

where TP, FP, TN, and FN represent the values of true positives, false positives, true
negatives, and false negatives, respectively. The metrics of both real and complex-
valued models are presented in Table 6.8. It is clearly visible that the real-valued
model outperforms the complex-valued one in terms of accuracy and other measurement
metrics. I left out the clean samples of type 1 as computing the accuracy metrics. This
decision was done because the samples were from a different distribution and expected
to be flagged as anomalous. Nevertheless, except for the precision values and the real-
valued model’s accuracy, the measurement metrics are below 80 percent. Based on the
results, neither of the trained models is suitable for accurate anomaly detection.

The computed metrics indicate that the model architecture could be improved
and that there are issues with the data. If, for example, Figures A.1b and A.6e are
examined more carefully, we can see a few spikes with high real or imaginary values in
the central region. As the complex vectors are scaled, the values significantly smaller
than in spikes get close to zero. This means that during the training, the tensor
consisting mostly of values of near-zero is multiplied with weight tensors. Thus, the
resulting output tensors are also consisting mostly of near-zero values producing small
reconstruction errors and hence misclassifications. Thus, to improve the prediction
capability a possibility of a new scaling method must be considered.

As mentioned earlier, the validation set in the complex-valued model did not
start to converge during the training, which indicated the overfitting of the model. To
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Parameter type LSTM (encoder) LSTM (decoder) Linear (decoder)
Input-hidden weights 4 x 32 x 128 4 x 128 x 32 -

Hidden-hidden weights 4 x 32 x 32 4 x 128 x 128 -
Input-hidden bias 4 x 32 4 x 128 -

Hidden-hidden bias 4 x 32 4 x 128 -
Weights - - 128 x 128

Bias - - 128

Table 6.4: The parameter space of the final model for the real-valued autoencoder. For the LSTM,
the weights and biases are initialized for all three gates and ĉ independently. Here, 32 is the hidden
dimension parameter, which is the features out from the encoder and the number of features in the
decoder. 128 is the number of features in and features out of the autoencoder.

overcome this problem, the length of the FFT was reduced from 2048 to 128. This
reduction was done step-wise so that FFT lengths 1024 and 256 were also tested,
but either the validation set did not converge, or the results were bad. However, the
resolution of the computed result is lower with a smaller FFT length, and thus some
information may get lost. While some values are dropped out due to shorter FFT
length, some fine learnable patterns may diminish, which can affect the prediction
accuracy negatively. Moreover, when the learning curves of both models are examined
(Figure 6.3) we can see that the behavior of the loss function curves for the validation
set is not what is expected. That is, the validation loss curve follows the loss curve
of the training set closely for 50 first epochs, but after this, there is a cap of 0.01
units between the loss values. This behavior indicates that the model’s generalization
capability could be improved.

To summarize the discussion of the results, we can say that the real-valued model
outperforms the complex-valued one by the measured metrics. Both models are even
when comparing the epoch and prediction times and the utilized memory. However,
the complex-valued autoencoder was able to classify 2 multipath samples as anomalous,
whereas the real-valued autoencoder claimed all of those samples as clean. Also, the
loss curve of the complex-valued autoencoder indicates that there is still a problem
with the amount of data or the model may need changes in the architecture.
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Parameter type LSTM (encoder) LSTM (decoder) Linear (decoder)
Input-hidden weights 4 x 96 x 128 4 x 128 x 96 -

Hidden-hidden weights 4 x 96 x 96 4 x 128 x 128 -
Input-hidden bias 4 x 96 4 x 128 -

Hidden-hidden bias 4 x 96 4 x 128 -
Weights - - 128 x 128

Bias - - 128

Table 6.5: The parameter space of the final model in the frequency domain with a complex-
valued autoencoder. For the LSTM, the weights and biases are initialized for all three gates and ĉ

independently. Here, 96 is the hidden dimension parameter, which is the features out from the encoder
and the number of features in the decoder. 128 is the number of features in and features out of the
autoencoder.

Model Batch size Hidden dim Cell layers Sequence length
CVAutoencoder 4 96 1 4
RVAutoencoder 4 32 1 4

Table 6.6: Final models both in real and complex domain. Both models have otherwise the same
parameter settings, but the hidden dim was set differently. Whilst the lower hidden dim reduced the
overfitting phenomena in the real-valued model, the increased hidden dimension value was needed in
the complex domain to predict the unseen clean data correctly.

Model Epochs used
Epoch time
(avg)

Prediction
time (avg)

Memory
Utilized

CVAutoencoder 600 3.09 s 0.0015 s 5.30 GB
RVAutoencoder 15 1.314 s 0.0007 s 5.29 GB
CVAutoencoder IQ/2 10 54 min 5 s 128 GB
CVAutoencoder IQ 4 370 min 30 s 506 GB

Table 6.7: The complex-valued autoencoders in the time domain had the worst performance. Here
the model CVAutoencoder IQ is the model trained with the feature size of 32448, and the model
CVAutoencoder IQ/2 represents the model in which the previous feature size was reduced to half.
The values in all the columns except the number of epochs are manifold compared to models used
in the frequency domain. The number of epochs used in the complex-valued CVAutoencoder was 40
times bigger than the number of epochs used in training in the real-valued RVAutoencoder. However,
the time used for each epoch and predicted sample is comparable and close to each other. The
memory utilized for creating the datasets and training the models is very close. The difference can
be explained with slightly bigger parameter space for CVAutoencoder and the fact that numbers
were of type complex128, meaning that both real and imaginary units are the type of float64. In
RVAutoencoder, the numbers were the type of float64.
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Model Accuracy Precision Recall F1-score
CVAutoencoder 0.749 0.841 0.467 0.600
RVAutoencoder 0.836 0.924 0.514 0.717

Table 6.8: Accuracy metrics for complex-valuer and real-valued autoencoders. Here the clean
samples of type 1 were left out of the calculations. In all cases, the real-valued model outperforms the
complex-valued one. When looking at the numbers, we can see that the 90 % mark is crossed only in
one metric in the real-valued model. In both domains, most of the metrics are low. That is, neither
of the models can accurately detect anomalies.

(a) The loss curve in the complex domain. (b) The loss curve in the real domain.

Figure 6.3: The final loss curves from the experiments run in the frequency domain. The loss values
in the real-valued autoencoder stay high compared to the complex-valued autoencoder. However, the
losses from these two types of autoencoders are not comparable to each other. This is because of
how the data is prepared for the model to use. The behavior of the loss, though, is comparable. The
wanted behavior is seen in (b). That is, the loss of the validation set is close to the training set. Based
on the loss of the training set, we can see that the model is still overfitting, even though both lines
are converging.



7. Conclusions

In this thesis, a fully complex-valued autoencoder was implemented to detect anoma-
lies in GNSS signals. The current libraries, such as PyTorch, do not provide all the
functionalities in the complex domain, and those existing functionalities do not provide
CUDA compatibility that is required if GPU is used. This set limitations of possible
usage of functionalities without making changes to the existing code base. This is about
to change slowly, and new releases contain more functionalities that can be applied to
complex-valued network architectures.

The layers and activation and loss functions used in the model’s architecture
have full support for complex numbers if operated on CPUs. The developed model
was tested in both the time and frequency domains, and the frequency domain was
further divided into two separate test domains: real and complex-valued. It was shown
that the time domain is unsuitable for fast and effective anomaly detection in GNSS
signals because of the computation time in the prediction phase and the high memory
utilization.

The experiments done in the frequency domain show that with this amount of
data and the model’s architecture, the real-valued model performs better in terms of ac-
curacy metrics. It also needs fewer epochs compared to its complex-valued counterpart.
The complex-valued autoencoder needs approximately 1 ms more time in prediction
for each sample and 1.5 seconds more time for each epoch. On the other hand, these
differences are not significant. Furthermore, for the complex-valued autoencoder, the
hidden dimension was set to 96, whereas the value of the same parameter was set
to 32 in the real-valued counterpart. This resulted in larger weight and bias tensors,
especially in the encoder unit of the complex-valued autoencoder compared to the au-
toencoder used in the real domain. Nevertheless, the difference between the utilized
memory for this data set during the data preparation and training was only 0.01 GB.

The numbers in the previous paragraph show that the real-valued autoencoder
outperforms the complex-valued counterpart at this stage of development. On the other
hand, from the produced loss curves, we can see that some overfitting is still happening
in the autoencoder used in the complex domain. Another current issue is the length of
FFT. As the size was reduced from 2048 to 128, the concern of losing information due
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to the decreasing resolution of FFT was raised. However, this was the only possibility
to make the model recognize unseen data and detect it as clean. In future work, more
clean data is needed for the training to see whether the FFT length could be decreased
while keeping the model recognizing the unseen clean data. Especially if decreasing the
FFT length is not possible, a new scaling method must be developed to overcome the
issue that some of the anomalous data are getting significantly small reconstruction
errors regardless of the trained model’s parameters.

As said, one of the biggest problems throughout the project was the limited
number of clean samples. After introducing the newly generated clean data set and
reducing the FFT length, an improvement in the model’s learning capability was visible.
Before the longer clean data sample file, the overfitting prevented the model predict the
unseen clean data as clean. On the other hand, generating data with the simulator is
easy, but collecting real-world data and filtering out anomalous samples before training
is time-consuming. Thus, there can always be a lack of training data. In future research,
the architecture of the model can be further improved. For example, a 1-dimensional
convolutional layer could extract the frequency patterns familiar for clean data better
than using only LSTM layers.

Based on the results of this work, the complex-valued autoencoder used in
anomaly detection in GNSS signals needs to be improved to outperform the real-valued
one. In the complex domain, decreasing the learning rate from 0.001 to 0.0001 pro-
vided better results; however, the number of training epochs needed to be increased
because of the minor update per each epoch. An adaptive learning rate could reduce
the number of used epochs. Also, more research is needed to see if the learning rate
could be complex-valued.

The most important research question: ”Is anomaly detection improved by using
deep learning networks directly in the complex domain?” cannot be answered based
on the results and faults found in the architecture and the scaling method. Neverthe-
less, the experiments show that using a fully complex-valued autoencoder for anomaly
detection is possible and can provide good results if the issues with architecture and
data can be fixed.
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Appendix A. Data

In this appendix chapter, the rest of the data is illustrated to give the reader the
possibility to get familiar with the different kinds of interference types used in this
thesis. There are small fluctuations between each millisecond because of the noise, but
they resemble each other closely. However, to see the differences I have added here two
samples of length 1 ms. The samples that are not shown in the main text are presented
in Figures A.1, A.2, A.3, A.4, A.5 and A.6. For the samples shown in the main text,
data for the second millisecond is illustrated in Figures A.7, A.8, A.9, A.10, and A.11.

(a) I/Q data for the first ms. (b) Data in the complex domain. (c) Data in the real domain.

(d) I/Q data for the second ms. (e) Data in the complex domain. (f) Data in the real domain.

Figure A.1: Examples of Pulse-Chirp-Continuous wave interference in I/Q-format, after computing
FFT, and after transforming the data representation into magnitude in dB. All samples in the complex
domain and some of the samples in the real domain were classified as clean. When examining the
figures we can see that the shape of data in the real domain (c) resembles the shape of the clean data
type 2, which can confuse the model to predict wrongly. In the complex domain, the values are scaled
with the maximum value of either the absolute value of a real or imaginary unit, depending on which
one is bigger. In this case, all the values around the spikes are scaled to be close to zero. This means
that because of the input tensor, the outputs of the cell computations producing tensors close to zero,
yielding the reconstruction error to be close to zero.
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(a) I/Q data for the first ms. (b) Data in the complex domain. (c) Data in the real domain.

(d) I/Q data for the second ms. (e) Data in the complex domain. (f) Data in the real domain.

Figure A.2: Examples of Continuous wave-Pulse-Chirp-interference (a, d) in I/Q-format, (b, e) after
computing FFT, and (c, f) after transforming the data representation into magnitude in dB.

(a) I/Q data for the first ms. (b) Data in the complex domain. (c) Data in the real domain.

(d) I/Q data for the second ms. (e) Data in the complex domain. (f) Data in the real domain.

Figure A.3: Examples of Continuous wave-Chirp interference (a, d) in I/Q-format, (b, e) after
computing FFT, and (c, f) after transforming the data representation into magnitude in dB.
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(a) I/Q data for the first ms. (b) Data in the complex domain. (c) Data in the real domain.

(d) I/Q data for the second ms. (e) Data in the complex domain. (f) Data in the real domain.

Figure A.4: Examples of pulse jamming interference (a, d) in I/Q-format, (b, e) after computing
FFT, and (c, f) after transforming the data representation into magnitude in dB.

(a) I/Q data for the first ms. (b) Data in the complex domain. (c) Data in the real domain.

(d) I/Q data for the second ms. (e) Data in the complex domain. (f) Data in the real domain.

Figure A.5: Examples of Continuous wave interference (a, d) in I/Q-format, (b, e) after computing
FFT, and (c, f) after transforming the data representation into magnitude in dB.
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(a) I/Q data for the first ms. (b) Data in the complex domain. (c) Data in the real domain.

(d) I/Q data for the second ms. (e) Data in the complex domain. (f) Data in the real domain.

Figure A.6: Examples of continuous wave interference with three interfering tone frequencies (a, d)
in I/Q-format, (b, e) after computing FFT, and (c, f) after transforming the data representation into
magnitude in dB.

(a) I/Q data for the second ms. (b) Data in the complex domain. (c) Data in the real domain.

Figure A.7: Example of clean type 2 for the second millisecond of data in (a) I/Q-format, (b) after
computing FFT, (c) and after transforming the data representation into magnitude in dB. This clean
signal was used in training

(a) I/Q data for the second ms. (b) Data in the complex domain. (c) Data in the real domain.

Figure A.8: Example of clean type 1 for the second millisecond of data (a) in I/Q-format, (b) after
computing FFT, and (c) after transforming the data representation into magnitude in dB.
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(a) I/Q data for the second ms. (b) Data in the complex domain. (c) Data in the real domain.

Figure A.9: Example of continuous wave interference with two interfering tone frequencies for the
second millisecond of data (a) in I/Q-format, (b) after computing FFT, and (c) after transforming
the data representation into magnitude in dB.

(a) I/Q data for the second ms. (b) Data in the complex domain. (c) Data in the real domain.

Figure A.10: Example of multipath interference for the second millisecond of data (a) in I/Q-format,
(b) after computing FFT, and (c) after transforming the data representation into magnitude in dB.

(a) I/Q data for the second ms. (b) Data in the complex domain. (c) Data in the real domain.

Figure A.11: Example of spoofing interference for the second millisecond of data (a) in I/Q-format,
(b) after computing FFT, and (c) after transforming the data representation into magnitude in dB.
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