14 research outputs found

    A Continuous-Adaptive DDR2 Interface with Flexible Round-Trip-Time and Full Self Loop-Backed AC Test

    No full text

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    Raspberry Pi Technology

    Get PDF

    Profile-driven parallelisation of sequential programs

    Get PDF
    Traditional parallelism detection in compilers is performed by means of static analysis and more specifically data and control dependence analysis. The information that is available at compile time, however, is inherently limited and therefore restricts the parallelisation opportunities. Furthermore, applications written in C – which represent the majority of today’s scientific, embedded and system software – utilise many lowlevel features and an intricate programming style that forces the compiler to even more conservative assumptions. Despite the numerous proposals to handle this uncertainty at compile time using speculative optimisation and parallelisation, the software industry still lacks any pragmatic approaches that extracts coarse-grain parallelism to exploit the multiple processing units of modern commodity hardware. This thesis introduces a novel approach for extracting and exploiting multiple forms of coarse-grain parallelism from sequential applications written in C. We utilise profiling information to overcome the limitations of static data and control-flow analysis enabling more aggressive parallelisation. Profiling is performed using an instrumentation scheme operating at the Intermediate Representation (Ir) level of the compiler. In contrast to existing approaches that depend on low-level binary tools and debugging information, Ir-profiling provides precise and direct correlation of profiling information back to the Ir structures of the compiler. Additionally, our approach is orthogonal to existing automatic parallelisation approaches and additional fine-grain parallelism may be exploited. We demonstrate the applicability and versatility of the proposed methodology using two studies that target different forms of parallelism. First, we focus on the exploitation of loop-level parallelism that is abundant in many scientific and embedded applications. We evaluate our parallelisation strategy against the Nas and Spec Fp benchmarks and two different multi-core platforms (a shared-memory Intel Xeon Smp and a heterogeneous distributed-memory Ibm Cell blade). Empirical evaluation shows that our approach not only yields significant improvements when compared with state-of- the-art parallelising compilers, but comes close to and sometimes exceeds the performance of manually parallelised codes. On average, our methodology achieves 96% of the performance of the hand-tuned parallel benchmarks on the Intel Xeon platform, and a significant speedup for the Cell platform. The second study, addresses the problem of partially sequential loops, typically found in implementations of multimedia codecs. We develop a more powerful whole-program representation based on the Program Dependence Graph (Pdg) that supports profiling, partitioning and codegeneration for pipeline parallelism. In addition we demonstrate how this enhances conventional pipeline parallelisation by incorporating support for multi-level loops and pipeline stage replication in a uniform and automatic way. Experimental results using a set of complex multimedia and stream processing benchmarks confirm the effectiveness of the proposed methodology that yields speedups up to 4.7 on a eight-core Intel Xeon machine

    Distributed Control for Collective Behaviour in Micro-unmanned Aerial Vehicles

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.The work presented herein focuses on the design of distributed autonomous controllers for collective behaviour of Micro-unmanned Aerial Vehicles (MAVs). Two alternative approaches to this topic are introduced: one based upon the Evolutionary Robotics (ER) paradigm, the other one upon flocking principles. Three computer simulators have been developed in order to carry out the required experiments, all of them having their focus on the modelling of fixed-wing aircraft flight dynamics. The employment of fixed-wing aircraft rather than the omni-directional robots typically employed in collective robotics significantly increases the complexity of the challenges that an autonomous controller has to face. This is mostly due to the strict motion constraints associated with fixed-wing platforms, that require a high degree of accuracy by the controller. Concerning the ER approach, the experimental setups elaborated have resulted in controllers that have been evolved in simulation with the following capabilities: (1) navigation across unknown environments, (2) obstacle avoidance, (3) tracking of a moving target, and (4) execution of cooperative and coordinated behaviours based on implicit communication strategies. The design methodology based upon flocking principles has involved tests on computer simulations and subsequent experimentation on real-world robotic platforms. A customised implementation of Reynolds’ flocking algorithm has been developed and successfully validated through flight tests performed with the swinglet MAV. It has been notably demonstrated how the Evolutionary Robotics approach could be successfully extended to the domain of fixed-wing aerial robotics, which has never received a great deal of attention in the past. The investigations performed have also shown that complex and real physics-based computer simulators are not a compulsory requirement when approaching the domain of aerial robotics, as long as proper autopilot systems (taking care of the ”reality gap” issue) are used on the real robots.EOARD (European Office of Aerospace Research & Development), euCognitio

    An Integrated Control and Data Acquisition System for Pharmaceutical Capsule Inspection

    Get PDF
    Pharmaphil Inc. manufactures two-part gelatin capsules for the pharmaceutical industry. Their current methods of quality control of their product is by performing manual inspection of every carton of capsules prior to shipment. In today\u27s modern manufacturing world, more efficient and cost-effective means of quality control exist. It is Pharmaphil\u27s desire to develop a custom machine vision system to replace manual inspection with a potential opportunity in the capsule manufacturing quality control market. In collaboration with the Electrical and Computer Engineering Department at the University of Windsor, a novel system was developed to achieve this goal. The objective was to develop a system capable of inspecting 1000 capsules per minute with the ability to detect holes, cracks, dents, bubble, double caps and incorrect colour or size. Using an antiquated machine vision system for capsule inspection from the mid-nineties as a base, a modern inspection system was developed that performed faster and more thorough inspections. As a measure to minimize the overall system cost as well as to increase flexibility, a full custom design was undertaken. The resulting system follows a traditional machine vision system whereby the main components include an image acquisition component, a processing unit and machine control. The designed system uses custom USB2.0 cameras to acquire images, a standard desktop PC to process image data and a custom machine control board to perform machine control and timing. The system operates with four identical quadrants operating in parallel to increase throughput. The final system developed provided a proof-of-concept for the approach taken. The machine control and image acquisition component of the system yielded a maximum throughput of 1200 capsules per minute. After incorporating image inspection, the final result was a system that was capable of inspecting capsules at a rate of about 800 capsules per minute with high accuracy. With optimizations, the system throughput can be further improved. The findings throughout the development of the prototype system provide an excellent basis from which the first generation commercial unit can be designed

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Topical Workshop on Electronics for Particle Physics

    Get PDF

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin
    corecore