15,233 research outputs found

    The Complexity of Rooted Phylogeny Problems

    Full text link
    Several computational problems in phylogenetic reconstruction can be formulated as restrictions of the following general problem: given a formula in conjunctive normal form where the literals are rooted triples, is there a rooted binary tree that satisfies the formula? If the formulas do not contain disjunctions, the problem becomes the famous rooted triple consistency problem, which can be solved in polynomial time by an algorithm of Aho, Sagiv, Szymanski, and Ullman. If the clauses in the formulas are restricted to disjunctions of negated triples, Ng, Steel, and Wormald showed that the problem remains NP-complete. We systematically study the computational complexity of the problem for all such restrictions of the clauses in the input formula. For certain restricted disjunctions of triples we present an algorithm that has sub-quadratic running time and is asymptotically as fast as the fastest known algorithm for the rooted triple consistency problem. We also show that any restriction of the general rooted phylogeny problem that does not fall into our tractable class is NP-complete, using known results about the complexity of Boolean constraint satisfaction problems. Finally, we present a pebble game argument that shows that the rooted triple consistency problem (and also all generalizations studied in this paper) cannot be solved by Datalog

    Quantum walk speedup of backtracking algorithms

    Full text link
    We describe a general method to obtain quantum speedups of classical algorithms which are based on the technique of backtracking, a standard approach for solving constraint satisfaction problems (CSPs). Backtracking algorithms explore a tree whose vertices are partial solutions to a CSP in an attempt to find a complete solution. Assume there is a classical backtracking algorithm which finds a solution to a CSP on n variables, or outputs that none exists, and whose corresponding tree contains T vertices, each vertex corresponding to a test of a partial solution. Then we show that there is a bounded-error quantum algorithm which completes the same task using O(sqrt(T) n^(3/2) log n) tests. In particular, this quantum algorithm can be used to speed up the DPLL algorithm, which is the basis of many of the most efficient SAT solvers used in practice. The quantum algorithm is based on the use of a quantum walk algorithm of Belovs to search in the backtracking tree. We also discuss how, for certain distributions on the inputs, the algorithm can lead to an exponential reduction in expected runtime.Comment: 23 pages; v2: minor changes to presentatio

    The Power of Linear Programming for Valued CSPs

    Full text link
    A class of valued constraint satisfaction problems (VCSPs) is characterised by a valued constraint language, a fixed set of cost functions on a finite domain. An instance of the problem is specified by a sum of cost functions from the language with the goal to minimise the sum. This framework includes and generalises well-studied constraint satisfaction problems (CSPs) and maximum constraint satisfaction problems (Max-CSPs). Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation. Using this result, we obtain tractability of several novel and previously widely-open classes of VCSPs, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) bisubmodular (also known as k-submodular) on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: Corrected a few typo

    Quiet Planting in the Locked Constraint Satisfaction Problems

    Full text link
    We study the planted ensemble of locked constraint satisfaction problems. We describe the connection between the random and planted ensembles. The use of the cavity method is combined with arguments from reconstruction on trees and first and second moment considerations; in particular the connection with the reconstruction on trees appears to be crucial. Our main result is the location of the hard region in the planted ensemble. In a part of that hard region instances have with high probability a single satisfying assignment.Comment: 21 pages, revised versio

    Nested quantum search and NP-complete problems

    Full text link
    A quantum algorithm is known that solves an unstructured search problem in a number of iterations of order d\sqrt{d}, where dd is the dimension of the search space, whereas any classical algorithm necessarily scales as O(d)O(d). It is shown here that an improved quantum search algorithm can be devised that exploits the structure of a tree search problem by nesting this standard search algorithm. The number of iterations required to find the solution of an average instance of a constraint satisfaction problem scales as dα\sqrt{d^\alpha}, with a constant α<1\alpha<1 depending on the nesting depth and the problem considered. When applying a single nesting level to a problem with constraints of size 2 such as the graph coloring problem, this constant α\alpha is estimated to be around 0.62 for average instances of maximum difficulty. This corresponds to a square-root speedup over a classical nested search algorithm, of which our presented algorithm is the quantum counterpart.Comment: 18 pages RevTeX, 3 Postscript figure

    A multipopulation parallel genetic simulated annealing based QoS routing and wavelength assignment integration algorithm for multicast in optical networks

    Get PDF
    Copyright @ 2008 Elsevier B.V. All rights reserved.In this paper, we propose an integrated Quality of Service (QoS) routing algorithm for optical networks. Given a QoS multicast request and the delay interval specified by users, the proposed algorithm can find a flexible-QoS-based cost suboptimal routing tree. The algorithm first constructs the multicast tree based on the multipopulation parallel genetic simulated annealing algorithm, and then assigns wavelengths to the tree based on the wavelength graph. In the algorithm, routing and wavelength assignment are integrated into a single process. For routing, the objective is to find a cost suboptimal multicast tree. For wavelength assignment, the objective is to minimize the delay of the multicast tree, which is achieved by minimizing the number of wavelength conversion. Thus both the cost of multicast tree and the user QoS satisfaction degree can approach the optimal. Our algorithm also considers load balance. Simulation results show that the proposed algorithm is feasible and effective. We also discuss the practical realization mechanisms of the algorithm.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant nos. 60673159 and 70671020, the National High-Tech Research and Development Plan of China under Grant no. 2006AA01Z214, Program for New Century Excellent Talents in University, and the Key Project of Chinese Ministry of Education under Grant no. 108040

    A Partial Taxonomy of Substitutability and Interchangeability

    Get PDF
    Substitutability, interchangeability and related concepts in Constraint Programming were introduced approximately twenty years ago and have given rise to considerable subsequent research. We survey this work, classify, and relate the different concepts, and indicate directions for future work, in particular with respect to making connections with research into symmetry breaking. This paper is a condensed version of a larger work in progress.Comment: 18 pages, The 10th International Workshop on Symmetry in Constraint Satisfaction Problems (SymCon'10
    • …
    corecore