2,408 research outputs found

    A consistent foundation for Isabelle/HOL

    Get PDF
    The interactive theorem prover Isabelle/HOL is based on well understood Higher-Order Logic (HOL), which is widely believed to be consistent (and provably consistent in set theory by a standard semantic argument). However, Isabelle/HOL brings its own personal touch to HOL: overloaded constant definitions, used to achieve Haskell-like type classes in the user space. These features are a delight for the users, but unfortunately are not easy to get right as an extension of HOL—they have a history of inconsistent behavior. It has been an open question under which criteria overloaded constant definitions and type definitions can be combined together while still guaranteeing consistency. This paper presents a solution to this problem: non-overlapping definitions and termination of the definition-dependency relation (tracked not only through constants but also through types) ensures relative consistency of Isabelle/HOL

    A consistent foundation for Isabelle/HOL

    Get PDF
    The interactive theorem prover Isabelle/HOL is based on well understood Higher-Order Logic (HOL), which is widely believed to be consistent (and provably consistent in set theory by a standard semantic argument). However, Isabelle/HOL brings its own personal touch to HOL: overloaded constant definitions, used to achieve Haskell-like type classes in the user space. These features are a delight for the users, but unfortunately are not easy to get right as an extension of HOL—they have a history of inconsistent behavior. It has been an open question under which criteria overloaded constant definitions and type definitions can be combined together while still guaranteeing consistency. This paper presents a solution to this problem: non-overlapping definitions and termination of the definition-dependency relation (tracked not only through constants but also through types) ensures relative consistency of Isabelle/HOL

    A consistent foundation for Isabelle/HOL

    Get PDF
    The interactive theorem prover Isabelle/HOL is based on the well understood higher-order logic (HOL), which is widely believed to be consistent (and provably consistent in set theory by a standard semantic argument). However, Isabelle/HOL brings its own personal touch to HOL: overloaded constant definitions, used to provide the users with Haskell-like type classes. These features are a delight for the users, but unfortunately are not easy to get right as an extension of HOL—they have a history of inconsistent behavior. It has been an open question under which criteria overloaded constant definitions and type definitions can be combined together while still guaranteeing consistency. This paper presents a solution to this problem: non-overlapping definitions and termination of the definition-dependency relation (tracked not only through constants but also through types) ensures relative consistency of Isabelle/HOL

    Harnessing Higher-Order (Meta-)Logic to Represent and Reason with Complex Ethical Theories

    Get PDF
    The computer-mechanization of an ambitious explicit ethical theory, Gewirth's Principle of Generic Consistency, is used to showcase an approach for representing and reasoning with ethical theories exhibiting complex logical features like alethic and deontic modalities, indexicals, higher-order quantification, among others. Harnessing the high expressive power of Church's type theory as a meta-logic to semantically embed a combination of quantified non-classical logics, our work pushes existing boundaries in knowledge representation and reasoning. We demonstrate that intuitive encodings of complex ethical theories and their automation on the computer are no longer antipodes.Comment: 14 page

    Equivariant ZFA with Choice: a position paper

    Full text link
    We propose Equivariant ZFA with Choice as a foundation for nominal techniques that is stronger than ZFC and weaker than FM, and why this may be particularly helpful in the context of automated reasoning.Comment: In ARW 201

    Mathematizing C++ concurrency

    Get PDF
    Shared-memory concurrency in C and C++ is pervasive in systems programming, but has long been poorly defined. This motivated an ongoing shared effort by the standards committees to specify concurrent behaviour in the next versions of both languages. They aim to provide strong guarantees for race-free programs, together with new (but subtle) relaxed-memory atomic primitives for high-performance concurrent code. However, the current draft standards, while the result of careful deliberation, are not yet clear and rigorous definitions, and harbour substantial problems in their details. In this paper we establish a mathematical (yet readable) semantics for C++ concurrency. We aim to capture the intent of the current (`Final Committee') Draft as closely as possible, but discuss changes that fix many of its problems. We prove that a proposed x86 implementation of the concurrency primitives is correct with respect to the x86-TSO model, and describe our Cppmem tool for exploring the semantics of examples, using code generated from our Isabelle/HOL definitions. Having already motivated changes to the draft standard, this work will aid discussion of any further changes, provide a correctness condition for compilers, and give a much-needed basis for analysis and verification of concurrent C and C++ programs
    corecore