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Abstract The interactive theorem prover Isabelle/HOL is based on the well understood

Higher-Order Logic (HOL), which is widely believed to be consistent (and provably consistent

in set theory by a standard semantic argument). However, Isabelle/HOL brings its own

personal touch to HOL: overloaded constant definitions, used to provide the users with

Haskell-like type classes. These features are a delight for the users, but unfortunately are

not easy to get right as an extension of HOL—they have a history of inconsistent behavior.

It has been an open question under which criteria overloaded constant definitions and type

definitions can be combined together while still guaranteeing consistency. This paper presents

a solution to this problem: non-overlapping definitions and termination of the definition-

dependency relation (tracked not only through constants but also through types) ensures

relative consistency of Isabelle/HOL.

1 Introduction

Polymorphic HOL, more precisely, Classic Higher-Order Logic with Infinity, Hilbert Choice

and Rank-1 Polymorphism, endowed with a mechanism for constant and type definitions, was

proposed at the end of the eighties as a logic for interactive theorem provers by Mike Gordon,

who also implemented the seminal HOL theorem prover [12]. This system has produced

many successors and emulators known under the umbrella term “HOL-based provers” (e.g.,

HOL4 [2], HOL Light [15], ProofPower [5] and HOL Zero [3]), launching a very successful

paradigm in interactive theorem proving.

A main strength of HOL-based provers is a sweet spot in expressiveness versus com-

plexity: on the one hand HOL is sufficient for most mainstream mathematics and computer

science applications, and on the other hand it is a well-understood logic. In particular, the
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consistency of HOL has a standard semantic argument, comprehensible to any science gradu-

ate: one interprets its types as sets, in particular the function types as sets of functions, and

the terms as elements of these sets, in a natural way; the rules of the logic are easily seen to

hold in this model.

The definitional mechanism has two flavors:

– New constants c are introduced by equations c≡ t, with t a closed term not containing c

– New types τ are introduced by typedef equations τ≡ t, where t : σ→ bool is a predicate

on an existing type σ (not containing τ anywhere in the types of its subterms)

Again, this mechanism is manifestly consistent by an immediate semantic argument [33];

alternatively, its consistency can be established by regarding definitions as mere abbreviations

(which here are non-cyclic by construction).

1.1 Polymorphic HOL with Ad Hoc Overloading

Isabelle/HOL [30, 39] adds its personal touch to the aforementioned sweet spot: it extends

polymorphic HOL with a mechanism for (ad hoc) overloading. As an example, consider the

following Nominal-style [36] definitions, where prm is the type of finite-support bijections on

an infinite type atom, and where we write apply π a for the application of a bijection π to an

atom a and π−1 for the inverse of π. The intended behavior of the constant • : prm→ α→ α
(which we use with infix notation) is the application of a permutation to all atoms contained

in an element of a type α:

Example 1.

consts • : prm→ α→ α

defs •prm→atom→atom = λπ a. apply π a

defs •prm→nat→nat = λπ n. n

defs •prm→α list→α list = λπ xs.map (λx. π • x) xs

defs •prm→(α→β)→α→β = λπ f x. π • f (π−1 • x)

Above, the constant • is declared using the keyword consts. Then, using the keyword

defs, several overloaded definitions of • are performed for different instances of α. For

atoms, • applies the permutation; for numbers (which don’t have atoms), • is the identity

function; for α list and α→ β, the instance of • is defined in terms of the instance for the

components α and β. All these definitions are non-overlapping and their type-based recursion

is terminating, hence Isabelle is fine with them.

1.2 Inconsistency

Of course, one may not be able to specify all the relevant instances immediately after declaring

a constant like •. For example, at a later point a user may define their own atom-container

type, such as

datatype myTree = Leaf atom | LNode atom list | FNode nat→ atom

and instantiate • for this type. (In fact, the Nominal tool automates instantiations for user-

requested datatypes, including terms with bindings.) To support such delayed instantiations,

which are also crucial for the implementation of type classes, Isabelle/HOL allows intermixing
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definitions of instances of an overloaded constant with definitions of other constants and

types. Unfortunately, the improper management of the intermixture leads to inconsistency.

Isabelle/HOL used to accept the following definitions:1

Example 2.

consts c : α

typedef τ= {True, cbool} by blast

defs cbool = ¬ (∀xτ y. x = y)

Thus, one first declares a constant c of type α; then, one defines a type that contains the

following elements of bool: True and cbool, the latter being the instance of c for type bool.

(The “by blast” part performs a trivial proof of non-emptiness of the set {True, cbool}, which

is required for registering τ as a type.) How many elements does τ have? It has either one,

in case cbool is True, or two, otherwise. Finally, one defines the instance cbool to stand in

contrast with the above cardinality analysis for τ: cbool will be the truth value of “the type τ

does not have precisely one element.” This immediately yield a proof of False:

lemma L : (∀xτ y. x = y)←→ c

using Repτ Repτ inject Absτ inject by (cases cbool) force+

theorem False

using L unfolding c bool def by auto

The inconsistency argument takes advantage of the circularity τ⇝ cbool⇝ τ in the depen-

dencies introduced by the definitions: one first defines τ to contain only one element just in

case cbool is True, and then defines cbool to be True just in case τ contains more than one

element.

1.3 Design Decisions

Before settling the consistency problem for the overloading mechanism, it is instructive to

analyze the design decisions that have led to this feature.

Why allow constant overloading in the first place? Because overloading lies at the heart

of type classes, which turned out to be a very useful and popular feature of Isabelle/HOL.

Substantial developments such as the Nominal [18, 36] and HOLCF [28] tools and Isabelle’s

mathematical analysis library [17] rely heavily on type classes. One of Isabelle’s power users

writes [26]: “Thanks to type classes [. . .] our light-weight framework is flexible, extensible,

and easy to use.”

Why allow types to depend on constants that are undefined or partially defined (via

overloading)? (This is essentially the offending feature in Example 2.) The answer is: To

enable users to take full advantage of the type-class convenience. For example, the system

allows to reason about types that carry a ring structure (which is achieved by overloading

the constants +, ∗, 0, 1 and implicitly assuming the ring axioms for them). But then it is

useful to also allow constructions that operate generically on rings, such as the type of

polynomials. Besides algebraic structures, other motivating examples come from the world

of data structures. Thus, the type (α, β) rbt, of red-black trees storing β-values accessible via

α-keys, is carved out of the type of binary trees over α×β by a condition involving a linear

1 This example works in versions of Isabelle prior to Isabelle2016. A correction patch [1], based on the

results reported in this paper and in [21], has been integrated in Isabelle2016.
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order on α. In other words, the definition of the type (α, β) rbt depends on the overloaded

constant ≤α→α→bool:

typedef (α, β) rbt = {t(α×β) binary tree | . . .≤α→α→bool . . .}

Why not derive type-class overloading from the existing HOL mechanisms? Indeed,

reducing overloading to the (overloading-free) logic core would prevent consistency problems.

For example, in the Coq proof assistant, type-class overloading (implemented by Sozeau and

Oury [35]) uses a dictionary construction. Unfortunately, the dictionary construction is not

expressible in HOL. Indeed, with this approach the type rbt would depend on a term variable

le that represents the linear order:

typedef (α, β, leα→α→bool) rbt = {t(α×β) binary tree | . . . le . . .}

It appears that dependent types, not supported by HOL (and to a large extent incompatible

with the HOL philosophy of keeping all types non-empty), would be necessary for compiling

out overloading from the logic.

1.4 Our Contribution

In this paper, we provide the following, in the context of polymorphic HOL extended with ad

hoc overloading (Section 3):

– a definitional dependency relation that factors in both constant and type definitions in a

sensible fashion (Section 4.1)

– a proof of consistency of any set of constant and type definitions whose dependency

relation satisfies reasonable conditions, which accept Example 1 and reject Example 2

(Section 4)

– a new semantics for polymorphic HOL (Section 4.4) which guides both our definition of

the dependency relation and our proof of consistency

We hope that our work settles the consistency problem for Isabelle/HOL’s extension of HOL,

while showing that the mechanisms of this logic admit a natural and well-understandable

semantics. We start with a discussion of related work, including previous attempts to establish

consistency (Section 2). Later we also show how this work fits together with previous work

by the first author (Section 5).

2 Related Work

2.1 Type Classes and Overloading

Type classes were introduced in Haskell by Wadler and Blott [37]. They allow programmers to

write functions that act generically on types endowed with operations. For example, assuming

a type α which is a semigroup (i.e., comes with a binary associative operation +), one can

write a program that computes the sum of all the elements in a non-empty α-list. Then the

program can be run on any concrete type T that replaces α if T provides this binary operation

+. Prover-powered type classes in Isabelle were introduced by Nipkow and Snelting [31]—in

addition to programming language type classes, these enable verifiability of the type-class

conditions upon instantiation: a type T is accepted as a member of the semigroup class only

if associativity can be proved for its + operation.
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Isabelle’s type classes rely on arbitrary ad hoc overloading and axiomatic type classes,

two primitives of Isabelle’s logic, as follows: to introduce the semigroup class, the system

declares a global constant + : α→ α→ α and defines an axiomatic type class that consists

of the associativity predicate; then different instance types T are registered after defining the

corresponding overloaded operation + : T → T → T and verifying the condition.

Overloading is most useful in conjunction with axiomatic type classes, but it really is

an orthogonal feature, which is used also independently of type classes in Isabelle. Further-

more, it is overloading that has been causing consistency problems in Isabelle/HOL, not

the axiomatic type classes. Moreover, Wenzel [38] showed how to compile out axiomatic

type classes by interpreting them as predicates on types in Isabelle/Pure and therefore; as

Wenzel explains, this mechanism is only an addition to the user convenience aspect, without

changing the expressiveness of the logic. This is why our current paper focuses not on the

Isabelle/HOL type classes, but on the consistency of the mechanism of ad hoc overloading

which makes them possible.

We have already mentioned that overloading was introduced in Coq by Sozeau and

Oury [35] and uses the dictionary construction to compile out overloaded constants.

Mizar provides overloading for functions, types and other entities of the system (see a

description by Grabowski et al. [13]). Moreover, there are two kinds of overloading: ad hoc

and parameter overloading. The whole mechanism of retrieving the meaning of an overloaded

symbol is rather involved. However, after the theory has been processed, each overloaded

symbol is resolved to a unique logical symbol.

Concerning other proof assistants, to the best of our knowledge, there exists no notion of

overloading in ACL2, Agda, HOL4, HOL Light, Lean or PVS.

2.2 Previous Consistency Attempts

Establishing the consistency of the mechanism for ad hoc overloading has been previously

attempted by Wenzel [38] and Obua [32]. In 1997, Wenzel defined a notion of a safe theory

extension and showed that overloading conforms to this notion. But he did not consider type

definitions and worked with a simplified version of the system where all overloadings for

a constant c are provided at once. Years later, when Obua took over the problem, he found

that the overloadings were almost completely unchecked—the following trivial inconsistency

was accepted by Isabelle2005:

Example 3.

consts c : α→ bool

defs cα list×α→bool = λx. c(snd x # fst x)

defs cα list→bool = λx. ¬ c(tail x, head x)

lemma c [x] = ¬ c([], x) = ¬ c[x]

Obua noticed that the rewrite system produced by the definitions has to terminate to avoid

inconsistency, and implemented a separate extension based on a termination checker. He did

consider intermixing overloaded constant definitions and type definitions but his syntactic

proof sketch failed to consider inconsistency through type definitions.

Triggered by Obua’s observations, Wenzel implemented a simpler and more modular

solution based on the work of Haftmann, Obua and Urban: fewer overloadings are accepted in

order to make the consistency/termination problem decidable (which Obua’s original problem

is not). Wenzel’s solution has been part of the kernel starting from Isabelle2007—aspects
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of this solution (which still does not consider dependencies through types) are described by

Haftmann and Wenzel [14].

In 2014, we discovered that the dependencies through types are not covered (Example 2),

as well as an unrelated issue in the termination checker that led to an inconsistency even

without exploiting types. Kunčar [21] amended the latter issue by presenting a modified

version of the termination checker and proving its correctness. The proof is general enough

to cover termination of the definition dependency relation through types as well. In the

conference paper [22] (of which the current paper is an extended version), we complement

this result by showing that termination and orthogonality lead to consistency—as detailed

in the current paper, the proof of consistency is based on a non-standard notion of model.

More recently, we have provided an alternative proof of consistency by means of a syntactic

construction [23].

Consistency is a crucial, but rather weak property. In very recent work [24], we prove

conservativity of definitions in HOL and Isabelle/HOL, by first proving a stronger property,

stating that all definitions can be compiled away from proofs, reducing them to proofs in

pure HOL (without definitions). This property generalizes Wenzel’s safe theory extension

property [38] to cope with type definitions in addition to constant definitions.

2.3 Inconsistency Club

Inconsistency problems arise quite frequently with provers that step outside the safety of

a simple and well-understood logic kernel. The various proofs of False in the early PVS

system [34] are folklore. Coq’s [8] previous stable version2 is inconsistent in the presence of

Propositional Extensionality; this problem stood undetected by the Coq users and developers

for 17 years; interestingly, just like the Isabelle/HOL problem under scrutiny, it is due to

an error in the termination checker [11]. Agda [10] suffers from similar problems [27]. The

recent Dafny prover [25] proposes an innovative combination of recursion and corecursion

whose initial version turned out to be inconsistent [9].

Of course, such “dangerous” experiments are often motivated by better support for

the users’ formal developments. As we already mentioned, the Isabelle/HOL type class

experiment was practically successful.

2.4 Consistency Club

Members of this select club try to avoid inconsistencies by impressive efforts of proving

soundness of logics and provers by means of interactive theorem provers themselves. Haris-

son’s pioneering work [16] uses HOL Light to give semantic proofs of soundness of the

HOL logic without definitional mechanisms, in two flavors: either after removing the infinity

axiom from the object HOL logic, or after adding a “universe” axiom to HOL Light; a proof

that the OCaml implementation of the core of HOL Light correctly implements this logic is

also included.

Kumar et al. [20] formalized in HOL4 the semantics and the soundness proof of HOL,

with its definitional principles included; from this formalization, they extract a verified

implementation of a HOL theorem prover in CakeML, an ML-like language featuring a

verified compiler. None of the above verified systems factor in ad hoc overloading, the

starting point of our work.

2 Namely, Coq 8.4pl6; the inconsistency is now fixed in Coq 8.5.
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Krauss and Schropp [19] implemented an automated translation of theories from Isa-

belle/HOL to Isabelle/ZF—Zermelo–Fraenkel set theory with the axiom of choice. They

translate recorded proof terms (the translated proofs are rechecked) and in principle follow

the standard semantics approach [33]. Overloaded constants are compiled out by the dictio-

nary construction but their implementation does not support types depending on overloaded

constants.

Outside the HOL-based prover family, there are formalizations of Milawa [29], Nuprl [4]

and fragments of Coq [6, 7].

3 Polymorphic HOL with Ad Hoc Overloading

Next we present syntactic aspects of our logic of interest (syntax, deduction and definitions)

and formulate its consistency problem.

3.1 Syntax

In what follows, by “countable set” we mean “either finite or countably infinite set.” Through-

out the development, we fix the following:

– A countably infinite set TVar, of type variables, ranged over by α, β.

– A countably infinite set Var, of (term) variables, ranged over by x, y, z

– A countable set K of symbols, ranged over by k, called type constructors, containing four

special symbols: “bool”, “ind” and “→” (aimed at representing the type of booleans, an

infinite type, a set type and the function type constructor, respectively).

We also fix a function arOf : K→ N associating an arity to each type constructor, such that

arOf(bool) = arOf(ind) = 0 and arOf(→) = 2. We define the set Type, ranged over by σ, τ,

of types, inductively as follows:

– TVar ⊆ Type

– (σ1, . . . , σn) k ∈ Type if σ1, . . . , σn ∈ Type and k ∈ K such that arOf(k) = n

Thus, we use postfix notation for the application of an n-ary type constructor k to the types

σ1, . . . , σn. If n = 1, instead of (σ) k we write σ k (e.g., σ list).

A typed variable is a pair of a term variable x and a type σ, written xσ. Given T ⊆ Type,

we write VarT for the set of typed variables xσ with σ ∈ T . Finally, we fix the following:

– A countable set Const, ranged over by c, of symbols called constants, containing five spe-

cial symbols: “−→”, “=”, “ε”, “zero”, “suc” (aimed at representing logical implication,

equality, Hilbert choice of some element from a type, zero and successor, respectively)

– A function tpOf : Const→ Type associating a type to every constant, such that:

tpOf(−→) = bool→ bool→ bool

tpOf(=) = α→ α→ bool

tpOf(ε) = (α→ bool)→ α
tpOf(zero) = ind

tpOf(suc) = ind→ ind

We define the type variables of a type, TV : Type→P(TVar), as expected: TV(α) = {α},
TV((σ1, . . . , σn) k) =

⋃

1≤i≤n TV(σi).
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A type substitution is a function ρ : TVar→ Type; we let TSubst denote the set of type

substitutions. Each ρ ∈ TSubst extends to a homonymous function ρ : Type→ Type by

defining ρ((σ1, . . . , σn) k) = (ρ(σ1), . . . , ρ(σn)) k.

We say that σ is an instance of τ via a substitution of ρ ∈ TSubst, written σ ≤ρ τ, if

ρ(τ) = σ. We say that σ is an instance of τ, written σ≤ τ, if there exists ρ ∈ TSubst such

that σ≤ρ τ.
We write σ[τ/α] for ρ(σ), where ρ is the type substitution that sends α to τ and each

β ̸= α to β. Thus, σ[τ/α] is obtained from σ by substituting τ for all occurrences of α.

Two types τ1 and τ2 are called orthogonal, written τ1 # τ2, if they have no common

instance; i.e., there exists no τ such that τ≤ τ1 and τ≤ τ2.

Given c ∈ Const and σ ∈ Type such that σ ≤ tpOf(c), we call the pair (c, σ), written

cσ, an instance of c. A constant instance is therefore any such pair cσ. We let CInst be the

set of all constant instances, and we extend the notions of being an instance (≤) and being

orthogonal (#) from types to constant instances, as follows:

cτ ≤ dσ iff c = d and τ≤ σ cτ # dσ iff c ̸= d or τ # σ

We also extend tpOf to constant instances by tpOf(cσ) = σ.

The tuple (K, arOf, Const, tpOf), which will be fixed in what follows, is called a signa-

ture. This signature’s pre-terms are defined by the grammar:

t = xσ | cσ | t1 t2 | λxσ. t

Thus, a pre-term is either a typed variable, or a constant instance, or an application, or an

abstraction. As usual, we identify pre-terms modulo alpha-equivalence.

The typing relation for pre-terms t : σ is defined inductively in the expected way:

xσ : σ cσ : σ

t1 : σ→ τ t2 : σ

t1 t2 : τ

t : τ

λxσ. t : σ→ τ

A term is a well-typed pre-term, and Term, ranged over by s and t, denotes the set of

terms. Given t ∈ Term, we write tpOf(t) for its (uniquely determined) type and FV(t) for the

set of its free (term) variables. We call t closed if FV(t) = /0. We let TV(t) denote the set of

type variables occurring in t.

We can apply a type substitution ρ to a term t, written ρ(t), by applying ρ to all the

type variables occurring in t with the proviso that if two distinct bound variables become

identified, we replace the term by an alpha-equivalent term where the variables stay distinct.

A well-typed term substitution is function δ : VarType→ Term such that tpOf(δ(xσ)) = σ
for all xσ ∈ VarType. The application of a substitution δ to a term t, written δ(t), is defined

as the term obtained from t by simultaneously substituting each free variable xσ with the

term δ(xσ) and renaming bound variables if they get captured. Thus, whereas types σ can be

subjects to type substitutions, ρ(σ), terms t can be subjects to both type substitutions, ρ(t),
and (well-typed) term substitutions, δ(t).

We write s[t/xσ] for δ(s), where δ is the type substitution that sends each xσ to t and all

other type variables to themselves. Thus, s[t/xσ] is the term obtained from s by substituting t

for xσ.

A formula is a term of type bool. We let Fmla, ranged over by ϕ and χ, denote the set of

formulas. When writing concrete terms or formulas, we take the following conventions:

– We may omit redundantly indicating the types of the variables and constants in terms

if they can be inferred by typing rules, e.g., we shall write λx. (yσ→τ x) instead of

λxσ. (yσ→τ x) and ε (λxσ. p x) instead of ε(σ→bool)→σ(λxσ. pσ→bool x).
– We write λxσ yτ. t instead of λxσ. λyτ. t.
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– We apply the constants −→ and = in an infix manner, e.g., we write tσ = s instead of

= tσ s.

– We write←→ for =bool→bool→bool.

3.2 Deduction System

The formula connectives and quantifiers are defined in the standard way, starting from the

implication and equality primitives:

True = (λxbool. x) = (λxbool. x)

All = λpα→bool. (p = (λx. True))

Ex = λpα→bool. All (λq. (All (λx. p x−→ q))−→ q)

False = All (λpbool. p)

not = λp. p−→ False

and = λp q. All (λr. (p−→ (q−→ r))−→ r)

or = λp q. All (λr. (p−→ r)−→ ((q−→ r)−→ r))

It is easy to see that the above terms are closed and well-typed as follows:

– tpOf(True) = tpOf(False) = bool

– tpOf(not) = bool→ bool

– tpOf(and) = tpOf(or) = bool→ bool→ bool

– tpOf(All) = tpOf(Ex) = (α→ bool)→ bool

As customary, we shall write:

– ∀xα. t instead of All (λxα. t)
– ∃xα. t instead of Ex (λxα. t)
– ¬ ϕ instead of not ϕ

– ϕ∧χ instead of and ϕ χ

– ϕ∨χ instead of or ϕ χ

We consider the following formulas:

refl = xα = x

subst = xα = yα −→ pα→bool x−→ pα→bool y

iff = (pbool −→ qbool)−→ (q−→ p)−→ (p ←→ q)

True_or_False = (bbool = True)∨ (b = False)

some_intro = pα→bool xα −→ p (ε p)

suc_inj = suc xind = suc yind −→ x = y

suc_not_zero = ¬ (suc xind = zero)

We let Ax denote the set of the above formulas, which we call axioms.

Deduction. A theory is a set of formulas. A context Γ is a finite set of closed formulas. We

define deduction by the rules shown in Figure 1, as a ternary relation ⊢ between theories D,

contexts Γ and formulas ϕ, written D; Γ ⊢ ϕ. These rules are a variant of the standard ones

for HOL (as in, e.g., [12, 16]).

Note that HOL deduction is parametrized by an arbitrary theory D. (However, we will

only be interested in theories consisting of constant and type definitions—which will be

defined later.) A theory D is called consistent if D; /0 ̸⊢ False.
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[ϕ ∈ Ax∪D] (FACT)
D; Γ ⊢ ϕ

[ϕ ∈ Γ] (ASSUM)
D; Γ ⊢ ϕ

D; Γ ⊢ ϕ
[α /∈ TV(Γ)] (T-INST)

D; Γ ⊢ ϕ[σ/α]

D; Γ ⊢ ϕ
[xσ /∈ FV(Γ)] (INST)

D; Γ ⊢ ϕ[t/xσ]

(BETA)
D; Γ ⊢ (λxσ. t) s = t[s/xσ]

D; Γ ⊢ ϕ−→ χ D; Γ ⊢ ϕ
(MP)

D; Γ ⊢ χ

D; Γ∪{ϕ} ⊢ χ
(IMPI)

D; Γ ⊢ ϕ−→ χ

D; Γ ⊢ yσ→τ xσ = zσ→τ xσ
[xσ /∈ FV(Γ)] (EXT)

D; Γ ⊢ yσ→τ = zσ→τ

Fig. 1: HOL deduction

3.3 Built-In and Non-Built-In Types and Constants

The distinction between built-in and non-built-in types and constants will be important, since

we will employ a non-standard semantics only for the latter.

A built-in type is any type of the form bool, ind or σ→ τ for σ, τ ∈ Type. We let Type•

denote the set of non-built-in types, i.e., types that are not built-in. Note that we look only at

the topmost type constructor to decide if a given type is built-in or non-built-in. Therefore, a

non-built-in type can have a built-in type as a subexpression, and vice versa; e.g., if list is a

type constructor, then bool list and (α→ β) list are non-built-in types, whereas α→ β list is

a built-in type. Also, note that we consider type variables to be non-built-in types.

Given a type σ, we define types•(σ), the set of non-built-in types of σ, as follows:3

types•(α) = {α}

types•(bool) = /0

types•(ind) = /0

types•(σ1→ σ2) = types•(σ1) ∪ types•(σ2)

types•((σ1, . . . , σn) k) = {(σ1, . . . , σn) k}, if k ̸= bool, ind,→

Thus, types•(σ) is the smallest set of non-built-in types that can produce σ by repeated

application of the built-in type constructors. For example, if the type constructors prm

(nullary) and list (unary) are in the signature and if σ is (bool→ α list)→ prm→ (bool→
ind) list, then types•(σ) has three elements: α list, prm and (bool→ ind) list.

A built-in constant is a constant of the form −→, =, ε, zero or suc. We let CInst• be the

set of constant instances that are not instances of built-in constants.

In our semantics (Section 4.4), we will stick to the standard interpretation of built-in

items, whereas for non-built-in items we will allow an interpretation looser than customary.

Given a term t, we let consts•(t)⊆ CInst• be the set of all non-built-in constant instances

occurring in t and types•(t) ⊆ Type• be the set of all non-built-in types that compose the

types of non-built-in constants and (free or bound) variables occurring in t. Note that the

3 We shall consistently use • to indicate non-built-in items.
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types• operator is overloaded for types and terms.

types•(xσ) = types•(σ)
types•(cσ) = types•(σ)
types•(t1 t2) = types•(t1)∪ types•(t2)
types•(λxσ. t) = types•(σ)∪ types•(t)

consts•(xσ) = /0

consts•(cσ) =

{

{cσ} if cσ ∈ CInst•

/0 otherwise

consts•(t1 t2) = consts•(t1)∪ consts•(t2)
consts•(λxσ. t) = consts•(t)

The operators consts• and types• commute with type substitutions and behave well w.r.t. free

variables, subterms and term substitution.

Lemma 4 The following hold:

(1) types•(ρ(τ)) = {ρ(σ) | σ ∈ types•(τ)}
(2) types•(ρ(t)) = {ρ(σ) | σ ∈ types•(t)}
(3) consts•(ρ(t)) = {cρ(σ) | cσ ∈ consts•(t)}
(4) If xσ ∈ FV(t), then types•(σ)⊆ types•(t)
(5) If t′ is a subterm of t, then types•(t′)⊆ types•(t) and consts•(t′)⊆ consts•(t)
(6) If tpOf(t′) = σ, then types•(t[t′/xσ]) ⊆ types•(t)∪ types•(t′) and consts•(t[t′/xσ]) ⊆
consts•(t)∪ consts•(t′)

Proof. By straightforward induction on the type τ or the term t, noticing that the application

of a type or term substitution leaves unchanged the top type or term constructor. For example,

the non-built-in case in the induction for point (1) goes as follows. Assume k ̸= bool, ind,→.

Then, applying the definitions of substitution and of types• and writing ρ(τ) for the tuple

obtained from τ by applying ρ componentwise, we have:

types•(ρ(τ k)) = types•((ρ(τ)) k) = types•({(ρ(τ)) k}) = {ρ(σ) | σ ∈ types•(τ k)}

⊓⊔

3.4 Isabelle/HOL Definitions

We are interested in the consistency of theories arising from constant-instance and type

definitions.

Given cσ ∈ CInst• and a closed term t such that tpOf(t) = σ, we let cσ ≡ t denote the

formula cσ = t. We call cσ ≡ t a constant-instance definition provided TV(t)⊆ TV(cσ) (i.e.,

TV(t)⊆ TV(σ)).
Given the types τ ∈ Type• and σ ∈ Type and the closed term t such that tpOf(t) = σ→

bool, we let τ≡ t denote the formula

(∃xσ. t x)−→

∃repτ→σ. ∃absσ→τ.

(∀xτ. t (rep x)) ∧

(∀xτ. abs (rep x) = x) ∧

(∀yσ. t y−→ rep (abs y) = y).

We call τ ≡ t a type definition, provided TV(t) ⊆ TV(τ) (which also implies TV(σ) ⊆
TV(τ)).

Note that we defined τ≡ t not to mean:

(*): The type τ is isomorphic, via abs and rep, to t, the subset of σ.
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as customary in most HOL-based systems, but rather to mean:

If t is a nonempty subset of σ, then (*) holds

Moreover, note that we do not require τ to have the form (α1, . . . , αn) k, as is currently

required in Isabelle/HOL and the other HOL provers, but, more generally, allow any τ ∈
Type•.4 This enables an interesting feature: ad hoc overloading for type definitions. For

example, given a unary type constructor tree, we can have totally different definitions for

nat tree, bool tree and α list tree.

In general, a definition will have the form u ≡ t, where u is either a constant instance

or a type and t is a term (subject to the specific constraints of constant-instance and type

definitions). u and t are said to be the left-hand and right-hand sides of the definition.

3.5 The Consistency Problem

An Isabelle/HOL development proceeds by:

1. declaring constants and types

2. defining constant instances and types

3. stating and proving theorems using the deduction rules of polymorphic HOL

Consequently, at any point in the development, one has:

1. a signature (K, arOf : K→ N, Const, tpOf : Const→ Type)
2. a set of definitions D

3. other proved theorems (i.e., formulas ϕ such that D; /0 ⊢ ϕ)

In our abstract formulation of Isabelle/HOL’s logic, we do not represent explicitly point

3, namely the stored theorems that are not produced as a result of definitions, i.e., are not

in D. The reason is that, in Isabelle/HOL, the theorems in D (i.e., the definitions) are not

influenced by theorems from outside D. Note that this non-influence property does not hold

in other HOL provers—there, a type definition τ≡ t (with tpOf(t) =σ→ bool) is introduced

directly in the unconditional form (*) after prompting the user to prove that t yields a

nonempty subset (i.e., that ∃xσ. t x holds). Ultimately, Isabelle/HOL’s behavior converges

with standard HOL behavior since it also prompts the user to prove non-emptiness, after

which (*) is inferred by the system—however, this last inference step is normal deduction,

being completely decoupled from the definition mechanism. This very useful trick, due to

Makarius Wenzel, cleanly separates definitions from proofs. In summary, we only need to

guarantee the consistency of D:

The Consistency Problem: Find a sufficient criterion for a set of definitions D to

be consistent (while allowing flexible ad hoc overloading for constant definitions).

4 Our Solution to the Consistency Problem

Assume for a moment we have a proper dependency relation between defined items, where

the defined items can be types or constant instances. Obviously, the closure of this relation

under type substitutions needs to terminate, otherwise inconsistency arises immediately, as

4 To ensure consistency, we will also require that τ has no common instance with the left-hand side of any

other type definition.
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shown in Example 3. Moreover, it is clear that the left-hand sides of the definitions need to be

orthogonal: defining cα×bool→bool to be λxα×bool.False and cbool×α→bool to be λxbool×α.True

yields λxbool×bool.False = cbool×bool→bool = λxbool×bool.True and hence False = True.

It turns out that these necessary criteria are also sufficient for consistency. This was also

believed by Wenzel and Obua; what they were missing was a proper dependency relation and

a transparent argument for its consistency, which is what we provide next.

4.1 Definitional Dependency Relation

Given any binary relation R on Type•∪CInst•, we write R+ for its transitive closure, R∗ for

its reflexive-transitive closure and R↓ for its (type-)substitutive closure, defined as follows:

p R↓ q iff there exist p′, q′ and a type substitution ρ such that p = ρ(p′), q = ρ(q′) and p′ R q′.

We say that a relation R is terminating if there exists no sequence (pi)i∈N such that pi R pi+1

for all i.

Let us fix a set of definitions D. We say D is orthogonal if for all distinct definitions u≡ t

and u′ ≡ t′ in D, one of the following cases holds:

– either one of {u, u′} is a type and the other is constant instance,

– or both u and u′ are types and are orthogonal (u # u′),

– or both u and u′ are constant instances and are orthogonal (u # u′).

We define the binary relation ⇝ on Type• ∪CInst• by setting u⇝ v iff one of the

following holds:

1. there exists a (constant-instance or type) definition in D of the form u ≡ t such that

v ∈ types•(t) ∪ consts•(t);
2. u = ctpOf(c) and v ∈ types•(tpOf(c)) for some c ∈ Const•.

We call⇝ the dependency relation (associated to D).

Thus, when defining an item u by means of t (as in u ≡ t), we naturally record that

u depends on the constants and types appearing in t (clause 1); moreover, any constant c

should depend on the components of its type (clause 2). But notice the bullets! We only

record dependencies on the non-built-in items—intuitively, the built-in items have a pre-

determined semantics which cannot be redefined or overloaded, and hence by themselves

cannot introduce inconsistencies. Moreover, we do not dig for dependencies under any non-

built-in type constructor—this can be seen from the definition of the types• operator on types

which yields a singleton whenever it meets a non-built-in type constructor; the rationale for

this is that a non-built-in type constructor has an “opaque” semantics which does not expose

the components (as does the function type constructor). These intuitions will be made precise

by our semantics in Section 4.4.

Consider the following example, where the definition of α k is omitted:

Example 5.

consts c : α d : α

typedef α k = . . .

defs cind k→bool = dbool k k→ind k→bool dbool k k

We record that the constant cind k→bool depends on the non-built-in constants dbool k k and

dbool k k→ind k→bool, and on the non-built-in types bool k k and ind k. We do not record any

dependency on the built-in types bool k k→ ind k→ bool, ind k→ bool or bool. Also, we

do not record any dependency on bool k, which can only be reached by digging under k in

bool k k.
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4.2 The Consistency Theorem

We can now state our main result. We call a set of definitions D a definitional theory5 if it is

orthogonal and the substitutive closure of its dependency relation,⇝↓, is terminating.

Note that a definitional theory is allowed to contain definitions of two different (but

orthogonal) instances of the same constant—as discussed, this ad hoc overloading facility is

a distinguishing feature of Isabelle/HOL among the HOL provers.

Theorem 6 If D is a definitional theory, then D is consistent.

Previous attempts to prove consistency employed syntactic methods [32, 38]. Instead, we

will give a semantic proof:

1. We define a new semantics of Polymorphic HOL that is suitable for overloading and in

which False is not a valid formula (Section 4.4).

2. We prove that models of our semantics are preserved by Isabelle’s deduction rules—

soundness (Section 4.5).

3. We prove that D has a model according to our semantics (Section 4.6).

Then 1-3 immediately imply consistency.

4.3 Inadequacy of the Standard Semantics of Polymorphic HOL

But why define a new semantics? Recall that our goal is to make sense of definitions as in

Example 1. In the standard (Pitts) semantics [33], one chooses a universe collection of sets

U closed under suitable set operations (function space, an infinite set, etc.) and interprets:

1. the built-in type constructors and constants as their standard counterparts in U :

– [bool] and [ind] are some chosen two-element set and infinite set in U

– [→] : U → U → U takes two sets A1, A2 ∈ U to the set of functions A1→ A2

– [True] and [False] are the two distinct elements of [bool], etc.

2. the non-built-in type constructors and constants similarly:

– defined type constructors such as prm (nullary) and list (unary) as elements [prm] ∈
U and operators [list] : U → U , respectively, produced according to their typedef

definitions

– a polymorphic constant such as • : prm→ α→ α as a family [•] ∈∏A∈U [prm]→
A→ A

In standard polymorphic HOL, • would be either completely unspecified, or completely

defined in terms of previously existing constants—this has a faithful semantic counterpart in

U . But what should be the semantics in U of the overloaded definitions of • from Example 1?

The natural attempt would be:

[•][atom] π a = [apply] π a

[•][nat] π n = n

[•][list](A) π xs = [map]A ([•]A π) xs

[•]A→B π f x = [•]B π ( f ([•]A ([inv] π) x))

5 In the conference paper [22], what we call here “definitional theory” was called “well-formed definitional

theory.” We have slightly changed terminology in order to align more faithfully to the official Isabelle

documentation [39].
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There are several problems with this semantic definition attempt. First, given B ∈ U , the

value of [•]B varies depending on whether B has the form [atom], or [nat], [list](A) or

A→ B for some A, B ∈ U ; hence the interpretations of the type constructors need to be

non-overlapping—this is not guaranteed by the assumptions about U , so we would need to

perform some low-level set-theoretic tricks to achieve the desired property (such as labeling

the interpretation sets with tokens identifying uniquely the intended type constructor). Second,

even though the definitions are syntactically terminating, their semantic counterparts may

not be: unless we again delve into low-level tricks in set theory (based on the axiom of

foundation), it is not guaranteed that decomposing a set A0 as [list](A1), then A1 as [list](A2),
and so on (as prescribed by the third equation for [•]) is a terminating process.

Even worse, the desired semantic termination is in general a global property, simultane-

ously involving any number of constants and type constructors. In the following example, c

and k are mutually defined (so that a copy of ebool kn is in bool kn+1 iff n is even):

Example 7.

consts c : α→ bool d : α e : α

typedef α k = {dα}∪{eα | c dα}

defs cα k→bool = λxα k. ¬ (c dα)

defs cbool→bool = λx. True

The above would require a set-theoretic setting where such fixpoint equations have

solutions; this is, in principle, possible, provided we tag the semantic equations with enough

syntactic annotations to guide the fixpoint construction. However, such a construction seems

excessive given the original intuitive justification: the definitions are “OK” because they

do not overlap and they terminate. On the other hand, a purely syntactic (proof-theoretic)

argument also seems difficult due to the mixture of constant definitions and (conditional)

type definitions.

Therefore, we decide to go for a natural syntactic-semantic blend, which avoids stunt

performance in set theory: we do not semantically interpret the polymorphic types, but only

the ground types—a type σ is called ground if TV(σ) = /0 and we let GType be the set of

ground types. We think of polymorphic types as “macros” for families of ground types. For

example, α→ α list represents the family (τ→ τ list)τ∈GType. Consequently, we think of

the meaning of α→ α list not as ∏A∈U (A→ [list](A)), but rather as ∏τ∈GType([τ]→ [τ list]).
Moreover, a polymorphic formula ϕ of type, say, (α→ α list)→ bool, is considered true if

and only if all its ground instances of types (τ→ τ list)→ bool are true. It will turn out that

(polymorphic) HOL deduction is perfectly happy with this view!

Another (small) departure from standard HOL semantics is motivated by our goal to

construct a model for a definitional theory. Whereas in standard semantics one first interprets

all type constructors and constants and only afterwards extends the interpretation to terms,

here we need to interpret some of the terms eagerly before some of the types and constants.

Namely, given a definition u≡ t, we interpret t before we interpret u (according to t). This

requires a straightforward refinement of the notion of semantic interpretation: to interpret a

term, we only need the interpretations for a sufficient fragment of the signature containing all

the items appearing in t.
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4.4 Ground, Fragment-Localized Semantics

Let us start with definitions regarding the ground part of the semantics. Recall that GType

is the set of ground types. We let GType• = GType∩Type• denote the set of ground non-

built-in types. Clearly GType• ⊂ Type. We let GCInst be the set of constant instances whose

type is ground and GCInst• = GCInst∩CInst• be its subset of ground non-built-in instances.

As a general notation rule, the prefix “G” will consistently indicate ground items (while

the superscript • will indicate non-built-in items), where an item can be either a type or a

constant instance.

A ground type substitution is a function θ : TVar→ GType, which again extends to a

homonymous function θ : Type→ GType. Note that ground type substitutions can be seen as

a particular kind of substitutions, and therefore facts such as Lemma 4(1,2) hold for ground

type substitutions as well.

A term t is called ground if TV(t) = /0. Thus, closedness refers to the absence of free

(term) variables in a term, whereas groundness refers to the absence of type variables in

a type or a term. Note that, for a term, being ground is a stronger condition than having a

ground type: (λxα. cbool) xα has the ground type bool, but is not ground.

Recall that we can apply a type substitution ρ to a term t, written ρ(t), by applying ρ to

all the type variables occurring in t; we use the same notation for ground type substitutions θ;

note that θ(t) is always a ground term.

Given T ⊆ Type, we define Cl(T ) ⊆ Type, the built-in closure of T , inductively as

follows:

T ⊆ Cl(T )

{bool, ind} ⊆ Cl(T )

σ→ τ ∈ Cl(T ) if σ ∈ Cl(T ) and τ ∈ Cl(T )

This means that Cl(T ) is the smallest set of types built from T by repeatedly applying built-in

type constructors.

Lemma 8 Assume T ⊆ GType•. The following hold:

(1) If types•(σ)⊆ T , then σ ∈ Cl(T ).
(2) If types•(t)⊆ T , then tpOf(t) ∈ Cl(T ).
(3) Cl(T )⊆ GType.

Proof. (1) By a straightforward induction on the type σ.

(2) By induction on the term t. The base cases xσ and cσ follow from point (1).

The application case: Assume types•(t1 t2) ⊆ T . From the definition of types•, we obtain

types•(t1) ⊆ T , hence tpOf(t1) ∈ Cl(T ) by the induction hypothesis. By the definition of

typing, we have tpOf(t1) = tpOf(t2)→ tpOf(t1 t2), and hence tpOf(t2)→ tpOf(t1 t2) ∈
Cl(T ). From this, the definition of Cl and the fact that T does not contain types of the form

σ1→ σ2 (since T ⊆ GType•), we obtain tpOf(t1 t2) ∈ Cl(T ), as desired.

The λ-abstraction case: Assume types•(λxσ. t)⊆ T . From the definition of types•, we obtain

types•(σ) ⊆ T and types•(t) ⊆ T , hence σ ∈ Cl(T ) and tpOf(t) ∈ Cl(T ) by point (1) and

the induction hypothesis. By the definitions of typing and of Cl, we obtain tpOf(λxσ. t) =
σ→ tpOf(t) ∈ Cl(T ), as desired.

(3): Immediate by induction on the definition of Cl. ⊓⊔

A (signature) fragment is a pair (T,C) with T ⊆ GType• and C ⊆ GCInst• such that

σ ∈ Cl(T ) for all cσ ∈C.

Let F = (T,C) be a fragment. We write:
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– TypeF, for the set of types generated by this fragment, namely Cl(T )
– TermF, for the set of terms that fall within this fragment, namely {t ∈ Term | types•(t)⊆

T ∧ consts•(t)⊆C}
– FmlaF, for Fmla∩TermF

Lemma 9 The following hold:

(1) TypeF ⊆ GType.

(2) TermF ⊆ GTerm.

(3) If t ∈ TermF , then tpOf(t) ∈ TypeF .

(4) If t ∈ TermF , then FV(t)⊆ TermF .

(5) If t ∈ TermF , then each subterm of t is also in TermF .

(6) If t, t′ ∈ TermF , tpOf(t′) = σ and xσ ∈ VarTypeF , then t[t′/xσ] ∈ TermF .

Proof. In what follows, we assume F = (T,C).
(1): Since T ⊆ GType•, we have TypeF = Cl(T )⊆ GType by Lemma 8.(3).

(2): Let t ∈ TermF . Since types•(t) ⊆ T ⊆ GType•, in particular we have t ∈ GTerm, as

desired.

(3): Let t ∈ TermF . Since types•(t) ⊆ T ⊆ GType•, from Lemma 8.(2) we have tpOf(t) ∈
Cl(T ) = TypeF , as desired.

(4): Assume t ∈TermF and xσ ∈ FV(t). Then σ∈ types•(t)⊆ T , and therefore types•(xσ) =
types•(σ)⊆ T by Lemma 4.(4). And since consts•(xσ) = /0, it follows that x ∈ TermF , as

desired.

(5) If t′ is a subterm of t, then types•(t′) ⊆ types•(t) and consts•(t′) ⊆ consts•(t) by

Lemma 4.(5). Hence t′ ∈ TermF follows from t ∈ TermF .

(6) We have that types•(t[t′/xσ])⊆ types•(t)∪types•(t′) and consts•(t[t′/xσ])⊆ consts•(t)∪
consts•(t′) by Lemma 4.(6). Hence t[t′/xσ] ∈ TermF follows from t, t′ ∈ TermF . ⊓⊔

The above lemma shows that fragments F include only ground items (points (1) and (2))

and they are “autonomous” parts of signatures: the type of a term from F is also in F (3),

and similarly for the free (term) variables (4), subterms (5) and substituted terms (6). This

autonomy allows us to define semantic interpretations for fragments.

For the rest of this section, we fix the following:

– a singleton set {∗}
– a two-element set {true, false}
– a global choice function, choice, that assigns to each nonempty set A an element

choice(a) ∈ A

Let F = (T,C) be a fragment. An F-interpretation is a pair I = (([τ])τ∈T , ([cτ])cτ∈C)
such that:

1. ([τ])τ∈T is a family such that [τ] is a nonempty set for all τ ∈ T .

We extend this to a family ([τ])τ∈Cl(T ) by interpreting the built-in type constructors as

expected:

[bool] = {true, false}
[ind] = N (the set of natural numbers)6

[σ→ τ] = [σ]→ [τ] (the set of functions from [σ] to [τ])
2. ([cτ])cτ∈C is a family such that [cτ] ∈ [τ] for all cτ ∈C

6 Any infinite (not necessarily countable) set would do here; we only choose N for simplicity.
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(Note that, in condition 2 above, [τ] refers to the extension described at point 1.)

Let GBIF be the set of ground built-in constant instances cτ with τ ∈ TypeF . We extend

the family ([cτ])cτ∈C to a family ([cτ])cτ∈C ∪ GBIF , by interpreting the built-in constants as

expected:

– [−→bool→bool→bool] as the logical implication on {true, false}
– [=τ→τ→bool] as the equality predicate in [τ]→ [τ]→{true, false}
– [ε(τ→bool)→τ] as the following function, where, for each f : [τ]→ {true, false}, we let

A f = {a ∈ [τ] | f (a) = true}:

[ε(τ→bool)→τ]( f ) =

{

choice(A f ) if A f is nonempty

choice([τ]) otherwise

– [zeroind] as 0 and [sucind→ind] as the successor function for N

To summarize, given an interpretation I, which is a pair of families

(([τ])τ∈T , ([cτ])cτ∈C),

we can always obtain an extended pair of families

(([τ])τ∈Cl(T ), ([cτ])cτ∈C ∪ GBIF ).

Now we are ready to interpret the terms in TermF according to I. A valuation ξ :

VarTypeF → Set is called I-compatible if ξ(xσ) ∈ [σ]I for all xσ ∈ VarGType. We write

CompI for the set of compatible valuations. For each t ∈ TermF , we define a function

[t] : CompI → [tpOf(t)]

recursively over terms as expected:

[xσ](ξ) = ξ(xσ)

[cσ](ξ) = [cσ]

[t1 t2](ξ) = [t1](ξ) ([t2](ξ))

[λxσ. t](ξ) = Λa∈[σ][t](ξ⟨xσ← a⟩)

Above, Λa∈[σ]([t](ξ⟨xσ← a⟩)) denotes the function sending each a ∈ [σ] to [t](ξ⟨xσ← a⟩),
where ξ⟨xσ← a⟩ is ξ updated with a at xσ. Note that the recursive definition of [t] is correct

thanks to Lemma 9.(5). The above concepts are parametrized by a fragment F and an F-

interpretation I. If I or F are not clear from the context, we may write [u]I or [u]F,I instead

of [u].
Given a formula ϕ ∈ FmlaF , we say that I satisfies ϕ via ξ, written I |=ξ ϕ, if [ϕ]I(ξ) =

true. We define I |= ϕ, read I satisfies ϕ or I is a model of ϕ, to mean that I |=ξ ϕ for all

valuations ξ ∈ CompI .

The pairs (F, I), consisting of fragments and associated interpretations, are naturally

ordered: Given fragments F1 = (T1,C1) and F2 = (T2,C2), F1-interpretation I1 and F2-

interpretation I2, we define (F1, I1)≤ (F2, I2) to mean T1 ⊆ T2, C1 ⊆C2 and [u]I1 = [u]I2

for all u ∈ T1 ∪C1. The total fragment ⊤ = (GType•, GCInst•) is the top element in this

order. Note that Type⊤ = GType and Term⊤ = GTerm.

Lemma 10 If (F1, I1)≤ (F2, I2), then the following hold:

(1) TypeF1 ⊆ TypeF2

(2) TermF1 ⊆ TermF2

(3) [τ]F1,I1 = [τ]F2,I2 for all τ ∈ TypeF1

(4) [t]F1,I1 = [t]F2,I2 for all t ∈ TermF1
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Proof. (1),(2): Immediate from definitions.

(3),(4): By straightforward inductions on τ and t. ⊓⊔

So far, I |= ϕ, the notion of I being a model of ϕ, was only defined for formulas ϕ that

belong to FmlaF , in particular, that are ground formulas. As promised, we extend this to

polymorphic formulas by quantifying universally over all ground type substitutions. However,

we shall only be interested in the case where I is a ⊤-interpretation.

Let I be a ⊤-interpretation. Given a (possibly polymorphic) formula ϕ, a ground type

substitution θ and a valuation ξ ∈ CompI , we say that I satisfies ϕ via θ and ξ, written

I |=θ,ξ ϕ, if I |=ξ θ(ϕ) (i.e., if [θ(ϕ)]I(ξ) = true). This is extended to sets Γ of formulas in

the expected fashion: I |=θ,ξ Γ if I |=θ,ξ ϕ for all ϕ ∈ Γ. Furthermore, we define I |=θ,ξ (Γ, ϕ)
to mean that I |=θ,ξ Γ implies I |=θ,ξ ϕ.

We define I |= (Γ, ϕ), read I satisfies (Γ, ϕ) or I is a model of (Γ, ϕ), to mean that

I |=θ,ξ (Γ, ϕ) for all ground type substitution θ and valuations ξ ∈ CompI . When Γ = /0, we

write I |= ϕ instead of I |= (Γ, ϕ). We define I |= D as I |= ϕ for all ϕ ∈ D. Finally, we

define I |= (D; Γ, ϕ) to mean that I |= D implies I |= (Γ, ϕ).
Note that the definitions leading to I |= (D; Γ, ϕ) mirror the structure of the HOL de-

duction relation, D; Γ ⊢ ϕ. Namely, Γ and ϕ are connected through their common type

variables and free term variables (as seen in the definition of I |= (Γ, ϕ) which is based

on I |=θ,ξ (Γ, ϕ)), whereas D is disconnected from Γ and ϕ w.r.t. variables (as seen in the

definition of I |= (D; Γ, ϕ)).

4.5 Soundness

We shall only care about the soundness of the HOL rules w.r.t. the total fragment ⊤ (which

corresponds to what is being considered in traditional HOL in the first place).

We say that a deduction rule

D; Γ1 ⊢ ϕ1 . . . D; Γn ⊢ ϕn

D; Γ ⊢ ϕ

is sound (w.r.t. our ground semantics) if, for every ⊤-interpretation I, we have that I |=
(D; Γ, ϕ) holds whenever I |= (D; Γi, ϕi) holds for all i ∈ {1, . . . , n}.

In order to prove the soundness of the HOL rules, we need some basic facts about

substitutions, valuations and free variables. These facts follow fairly standard patterns,

showing how substitutions can be composed with substitutions and with term interpretations

and stating that the substitution and interpretation of a term only depend on its free variables.

Lemma 11 Let θ, θ′ be ground substitutions, I a ⊤-interpretation, ξ and ξ′ I-compatible

valuations, σ type, τ ground type, s, t terms such that tpOf(s) = σ, and s′, t′ ground terms

such that tpOf(s′) = τ. Then the following hold:7

(1) θ (t[σ/α]) = θ⟨α← θ(σ)⟩ (t)
(2) θ (t[s/xσ]) = θ(t) [θ(s)/xθ(σ)]

(3) [t′[s′/xτ]]
I(ξ) = [t′]I(ξ⟨xτ← [s′]I(ξ)⟩)

(4) If θ and θ′ coincide on TV(t), then θ(t) = θ′(t)
(5) If ξ and ξ′ coincide on FV(t′), then [t′]I(ξ) = [t′]I(ξ′)

7 Recall that f ⟨a← b⟩ denotes function update: f ⟨a← b⟩ is the function that acts like f except that it sends

a to b.
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Proof. All points follow by straightforward induction on t or t′. ⊓⊔

Thanks to Lemma 11(2), if t′ is a ground term that is also closed, then [t′]I(ξ) does not

really depend on ξ, and therefore we can write [t′]I instead of [t′]I(ξ). Now we are ready for

the soundness proof.

Lemma 12 The following hold:

(1) The deduction rules of Isabelle/HOL are sound.

(2) If D ⊢ ϕ and I is a ⊤-interpretation such that I |= D, then I |= ϕ.

Proof. (1): The soundness of all the rules follows routinely from the definition of satisfaction.

The only slightly interesting rules are (EXT), (T-INST) and (INST), which need Lemma 11.

(EXT): We assume xσ /∈ FV(Γ) (*) and I |= (D; Γ, yσ→τ xσ = zσ→τ xσ) (**), and need

to prove I |= (D; Γ, yσ→τ = zσ→τ); i.e., we assume I |= D (***) and need to prove I |=
(Γ, yσ→τ = zσ→τ).

To this end, let θ be a ground type substitution and ξ ∈ CompI ; we assume I |=θ,ξ Γ
(****) and need to prove I |=θ,ξ yσ→τ = zσ→τ, i.e., ξ(yθ(σ)→θ(τ)) = ξ(zθ(σ)→θ(τ)). It would

suffice to fix an arbitrary a ∈ [θ(σ)]I and prove that ξ(yθ(σ)→θ(τ))(a) = ξ(zθ(σ)→θ(τ))(a).
In order to prove this last fact, let ξ′ = ξ⟨xσ← a⟩. From (**) and (***), we have I |=

(Γ, yσ→τ xσ = zσ→τ xσ), hence I |=θ,ξ′ (Γ, yσ→τ xσ = zσ→τ xσ) (*****). From (*), (****)

and Lemma 11(4), we obtain I |=θ,ξ′ Γ. With (*****), we obtain [yθ(σ)→θ(τ) xθ(σ)]
I(ξ′) =

[zθ(σ)→θ(τ) xθ(σ)]
I(ξ′), i.e., ξ′(yθ(σ)→θ(τ)) (ξ

′(xθ(σ))) = ξ
′(yθ(σ)→θ(τ)) (ξ

′(xθ(σ))), i.e.,

ξ(yθ(σ)→θ(τ))(a) = ξ(zθ(σ)→θ(τ))(a), as desired.

(T-INST): We assume α /∈ FV(Γ) (*) and I |= (D; Γ, ϕ) (**) and need to prove I |=
(D; Γ, ϕ[σ/α]); i.e., assume I |= D (***) and need to prove I |= (Γ, ϕ[σ/α]). For this,

let θ be a ground type substitution and ξ ∈ CompI ; we assume I |=θ,ξ Γ (****) and

need to prove I |=θ,ξ ϕ[σ/α], i.e., I |=ξ θ(ϕ[σ/α]). By Lemma 11(1), this amounts to

I |=ξ (θ⟨α← θ(σ)⟩) (ϕ), i.e., I |=θ⟨α←θ(σ)⟩,ξ ϕ.

To prove this last fact, we note that, thanks to (*), we have that (****) is equivalent

to I |=θ⟨α←θ(σ)⟩,ξ Γ (*****). (This is because, for all χ ∈ Γ, Lemma 11(4) and (*) imply

θ(χ) = θ⟨α← . . .⟩ (χ).) Finally, (**), (***) and (*****) imply I |=θ⟨α←θ(σ)⟩,ξ ϕ, as desired.

(INST): We assume xσ /∈ FV(Γ) (*) and I |= (D; Γ, ϕ) (**) and need to prove that I |=
(D; Γ, ϕ[t/xσ]); i.e., assume I |= D (***) and need to prove I |= (Γ, ϕ[t/xσ]). For this,

let θ be a ground type substitution and ξ ∈ CompI ; we assume I |=θ,ξ Γ (****) and

need to prove I |=θ,ξ ϕ[t/xσ], i.e., I |=ξ θ(ϕ[t/xσ]). By Lemma 11(2), this amounts to

I |=ξ θ(ϕ) [θ(t)/xθ(σ)]; by Lemma 11(3), the latter amounts to I |=ξ⟨xθ(σ)←[θ(t)](ξ)⟩ θ(ϕ), i.e.,

I |=θ,ξ⟨xθ(σ)←[θ(t)](ξ)⟩ ϕ.

To prove this last fact, we note that, thanks to (*), we have that (****) is equivalent to

I |=θ,ξ⟨xθ(σ)←[θ(t)](ξ)⟩ Γ (*****). (This is because, for all χ ∈ Γ, (*) implies xθ(σ) /∈ FV(θ(χ)),

which by Lemma 11(5) further implies [θ(χ)](ξ) = [θ(χ)](ξ⟨xθ(σ) ← . . .⟩).) Finally, (**),

(***) and (*****) imply I |=θ,ξ⟨xσ←[θ(t)](ξ)⟩ ϕ, as desired.

(2): Follows immediately from (1). ⊓⊔

Theorem 13 Let D be a theory that has a total-fragment model, i.e., there exists a ⊤-

interpretation I such that I |= D. Then D is consistent.
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Proof. Immediate from Lemma 12(2): Assume by absurd that D is inconsistent, in that

D ⊢ False. Since I |= D, by Lemma 12(2) it follows that I |= False, meaning [False]I = true.

But this is a contradiction, since by definition [False]I = false ̸= true. ⊓⊔

4.6 The Model Construction

The only missing piece in the proof of consistency is the existence of a total-fragment model

for a definitional theory D. For this, we need some preparations.

Lemma 14 Assume cσ ∈ CInst• and τ ∈ types•(σ). Then cσ⇝
↓ τ.

Proof. Letσ′= tpOf(c). Thenσ≤σ′, hence we obtain θ such thatσ= θ(σ′). By Lemma 4(1),

from τ ∈ types•(θ(σ′)) we obtain τ′ ∈ types•(σ′) such that τ= θ(τ′). Now, from the defini-

tion of⇝ we have cσ′ ⇝ τ
′, hence cθ(σ′)⇝

↓ θ(τ′). But this means cσ⇝
↓ τ, as desired. ⊓⊔

Given u ∈ Type•∪Const•, we define Fu, the fragment generated by u (via D), as follows:

– Vu = {v | u⇝
↓+ v}

– Tu = Vu∩Type

– Cu = Vu∩CInst

– Fu = (Tu,Cu)

Lemma 15 (1) Fu is indeed a fragment.

(2) If w≡ s is in D and u = θ(w), then θ(s) ∈ TermFu .

Proof. (1): Let cσ ∈ Cu. We need to prove σ ∈ Cl(Tu). By Lemma 8(1), it suffices that

types•(σ)⊆ Tu. So let τ∈ types•(σ). By Lemma 14, we have cσ⇝
↓ τ. And since u⇝↓+ cσ,

we obtain u⇝↓+ τ. But this means τ ∈ Tu, as desired.

(2): Let τ∈ types•(θ(s)). By Lemma 4(2), we obtain τ′ ∈ types•(s) such that τ= θ(τ′). From

the definition of⇝, we have w⇝ τ′, hence θ(w)⇝↓ θ(τ′), i.e., u⇝↓ τ. We thus obtained

types•(θ(s))⊆ Tu.

Similarly, but using Lemma 4(3) instead of Lemma 4(2), we obtain consts•(θ(s))⊆Cu.

Together with types•(θ(s))⊆ Tu, this means θ(s) ∈ TermFu , as desired. ⊓⊔

Now we are ready to prove the aforementioned missing piece:

Theorem 16 Assume D is a definitional theory. Then it has a total-fragment model, i.e.,

there exists a ⊤-interpretation I such that I |= D.

Proof. Since⇝↓ is terminating,⇝↓+ is also terminating. By well-founded recursion and

induction on⇝↓+, for each u∈GType•∪GCInst•, we define [u] simultaneously with proving

that the following hold:

Au: Iu = (([v])v∈Tu , ([v])v∈Cu) is an Fu-interpretation.8

Bu: If u ∈ GType• (i.e., u is a type) then [u] ̸= /0; and if u has the form cτ (i.e., u is a

constant) then [u] ∈ [τ].

8 Note that, by Lemma 15(1), we have that Fu = (Tu,Cu) is a fragment.
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We assume that, for all v ∈ GType• ∪GCInst• such that u⇝↓+ v holds, [v] has been

defined and Av and Bv hold.

We first show that Au holds. For this, we first assume τ ∈ Tu and need to prove [τ] ̸= /0;

but this is precisely Bcτ , which holds by the induction hypothesis, since u⇝↓+ τ. Now, we

assume cτ ∈ Cu and need to prove [cτ] ∈ [τ]; but this is precisely Bcτ , which holds by the

induction hypothesis, since u⇝↓+ cτ.

Next, we define [u]. We say that a definition w≡ s matches u if there exists a ground type

substitution θ with u = θ(w). We distinguish the following cases:

1. There exists no definition in D that matches u. Here we have two subcases:

– u ∈ GType•. Then we define [u] = {∗}.
– u ∈ GCInst•. Say u has the form cσ. By Lemma 14, we have that cσ ⇝

↓ τ for all

τ ∈ types•(σ). Hence types•(σ)⊆ Tu, which means σ ∈ TypeFu . Therefore, using

also Au, we can speak of the value [σ]Fu,Iu (obtained from the Fu-interpretation Iu).

We define [u] = choice([σ]Fu,Iu).

2. There exists a definition w ≡ s in D that matches u. Then let θ be such that u = θ(w),
and let t = θ(s). By Lemma 15(2) we have t ∈ TermFu . Therefore, using also Au, we can

speak of the value [t]Fu,Iu . We have two subcases:

– u ∈ GCInst•. Then we define [u] = [t]Fu,Iu .

– u ∈ GType•. Then the type of t has the form σ→ bool. And since types•(σ) ⊆
types•(t)⊆ Tu, by Lemma 8(1) we obtain σ ∈ Cl(Tu), i.e., σ ∈ TypeFu . Therefore,

using also Au, we can speak of the value [σ]Fu,Iu . We have two subsubcases:

– [∃xσ. t x]Fu,Iu = false. Then we define [u] = {∗}.
– [∃xσ. t x]Fu,Iu = true. Then we define [u] = {a ∈ [σ]Fu,Iu | [t](a) = true}.

Next, we prove Bu. For this, first assume u ∈ GType•; then [u] ̸= /0 follows immediately

from the definition of [u]: in case 1 it is {∗} and in case 2 it is either {∗} or a nonempty set.

Now, assume u has the form cτ. If u matches no definition in D, then [u] ∈ [τ] holds by the

definition of of the choice operator. On the other hand, if u matches a definition in D as in the

above case 2, we have [u] = [t]Fu,Iu , and the desired fact follows from [t]Fu,Iu ∈ [tpOf(t)]Fu,Iu

and tpOf(t) = τ. This concludes the definition of [u] and the proof that Au and Bu hold.

Next, we note that I = (([u])u∈GType• , ([u])u∈GCInst•) is a ⊤-interpretation. Indeed, assuming

cτ ∈ GCInst•, we have that [cτ] ∈ [τ] holds thanks to Bcτ .

It remains to show that I |= D. To this end, let w ≡ s be in D and let θ′ be a ground type

substitution. We need to show I |= θ′(w≡ s), i.e., I |= θ′(w)≡ θ′(s).

Let u = θ′(w); then u matches w≡ s, and by orthogonality this is the only definition in

D that it matches. So the definition of [u] proceeds with case 2 above, using w ≡ s—let θ

be the ground type substitution considered there. Since θ′(w) = θ(w), it follows that θ′ and

θ coincide on TV(w), and hence on TV(s) (since TV(s)⊆ TV(w) holds for any definition

s≡ w in D); hence, by Lemma 11(4), θ′(s) = θ(s).

So we need to prove I |= u≡ t, i.e., [u≡ t]⊤,I = true, where u = θ(w) and t = θ(s). From

case 2 of the definition of [u], we can see that [u] was chosen precisely so that [u≡ t]Fu,Iu =
true. (In particular, for the case when u is a type and [∃xσ. t x] = false, [u ≡ t]Fu,Iu = true

holds thanks to the Makarius Wenzel trick, since the implication premise is false.) Finally,

since (Fu, Iu)≤ (⊤, I), by Lemma 10(3,4) we obtain [u≡ t]⊤,I = true, as desired. ⊓⊔
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5 Deciding Definitionality

We proved that every definitional theory is consistent. From the implementation perspective,

we can ask ourselves how difficult it is to check that the given set of axioms D forms

a definitional theory. We can check that D consists of definitions and is orthogonal by

simple polynomial algorithms. On the other hand, Obua [32] showed that a dependency

relation generated by overloaded definitions can encode the Post correspondence problem

and therefore termination of such a relation is not even a semi-decidable problem.

Kunčar [21] takes the following approach: Let us impose a syntactic restriction, called

compositionality, on accepted overloaded definitions which makes the termination of the

dependency relation decidable while still permitting all use cases of overloading in Isabelle.

Namely, let ⇝⇝ be the substitutive and transitive closure of the dependency relation⇝ (which

is in fact equal to⇝↓+). Then D is called composable if for all u, u′ that are left-hand sides

of some definitions from D and for all v such that u⇝⇝ v, it holds that either u′ ≤ v, or v≤ u′,

or u′ # v. Under composability, termination of ⇝⇝ is equivalent to acyclicity of⇝, which is a

decidable condition.

Composability reduces the search space when we are looking for the cycle—it tells us

that there exist three cases on how to extend a path (to possibly close a cycle): in two cases

we can still (easily) extend the path (v≤ u′ or u′ ≤ v) and in one case we cannot (v # u′). The

fourth case (v and u′ have a non-trivial common instance; formally u′ ̸≤ v and v ̸≤ u′ and

there exists w such that w≤ u′, w≤ v), which complicates the extension of the path, is ruled

out by composability. More about composability can be found in [21].

Theorem 17 The property “D is composable and is a definitional theory” is decidable.9

Proof. The paper [21] presents a quadratic algorithm (in the size of ⇝), CHECK, that

checks that D consists of definitions, is orthogonal and composable, and that its dependency

relation ⇝⇝ terminates. The correctness proof is relatively general and works for any ⇝⇝ :

UΣ → UΣ → bool on a set UΣ endowed with a certain structure—namely, three functions

= : UΣ → UΣ → bool, App : (Type→ Type)→ UΣ → UΣ and size : UΣ → N, indicating how

to compare for equality, type-substitute and measure the elements of UΣ . In this paper, we

set Σ = (K, arOf,C, tpOf) and UΣ = Type• ∪CInst•. The definition of =, App and size is

then straightforward: two elements of Type• ∪CInst• are equal iff they are both constant

instances and they are equal or they are both types and they are equal; App ρ τ= ρ(τ) and

App ρ cτ = cρ(τ); finally, size(τ) counts the number of type constructors in τ and size(cτ) =

size(τ). Notice that ⇝⇝ =⇝↓+ terminates iff⇝↓ terminates. Thus, CHECK decides whether

D is composable and is a definitional theory. ⊓⊔

For efficiency reasons, we optimize the size of the relation that the quadratic algorithm

works with. Let⇝1 be the relation defined like⇝, but only retaining clause 1 in the definition

of⇝. Since⇝↓ is terminating iff⇝
↓
1 is terminating, it suffices to check termination of the

latter.

6 Conclusion

We have provided a solution to the consistency problem for Isabelle/HOL’s logic, namely,

polymorphic HOL with ad hoc overloading. The solution has been incorporated in Isa-

9 Note that the property “D is a definitional theory” is not decidable; it is the conjunction with the

composability property that ensures decidability.



24 O. Kunčar, A. Popescu

belle2016. Independently of Isabelle/HOL, our results show that Gordon-style type definitions

and ad hoc overloading can be soundly combined and naturally interpreted semantically.
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23. Kunčar, O., Popescu, A.: Comprehending Isabelle/HOL’s consistency. In: H. Yang (ed.) ESOP 2017,

LNCS, vol. 10201, pp. 724–749. Springer (2017)



A Consistent Foundation for Isabelle/HOL 25
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