
A Consistent Foundation for Isabelle/HOL

Ondřej Kunčar1 and Andrei Popescu2

1 Fakultät für Informatik, Technische Universität München, Germany
2 Department of Computer Science, School of Science and Technology,

Middlesex University, UK

Abstract. The interactive theorem prover Isabelle/HOL is based on well under-
stood Higher-Order Logic (HOL), which is widely believed to be consistent (and
provably consistent in set theory by a standard semantic argument). However,
Isabelle/HOL brings its own personal touch to HOL: overloaded constant defini-
tions, used to achieve Haskell-like type classes in the user space. These features
are a delight for the users, but unfortunately are not easy to get right as an ex-
tension of HOL—they have a history of inconsistent behavior. It has been an
open question under which criteria overloaded constant definitions and type defi-
nitions can be combined together while still guaranteeing consistency. This paper
presents a solution to this problem: non-overlapping definitions and termination
of the definition-dependency relation (tracked not only through constants but also
through types) ensures relative consistency of Isabelle/HOL.

1 Introduction

Polymorphic HOL, more precisely, Classic Higher-Order Logic with Infinity, Hilbert
Choice and Rank-1 Polymorphism, endowed with a mechanism for constant and type
definitions, was proposed in the nineties as a logic for interactive theorem provers by
Mike Gordon, who also implemented the seminal HOL theorem prover [9]. This system
has produced many successors and emulators known under the umbrella term “HOL-
based provers” (e.g., [2,20,11,4,3]), lounching a very successful paradigm in interactive
theorem proving.

A main strength of HOL-based provers is a sweet spot in expressiveness versus
complexity: HOL on the one hand is sufficient for most mainstream mathematics and
computer science applications, and on the other is a well-understood logic. In particu-
lar, the consistency of HOL has a standard semantic argument, comprehensible to any
science graduate: one interprets its types as sets, in particular the function types as sets
of functions, and the terms as elements of these sets, in a natural way; the rules of the
logic are easily seen to hold in this model. The definitional mechanism has two flavors:

– New constants c are introduced by equations c ≡ t, where t is a closed term not
containing c

– New types τ are introduced by “typedef” equations τ ≡ p, where p : σ⇒ bool is
a predicate on an existing type σ (not containing τ anywhere in the types of its
subterms)—intuitively, the type τ is carved out as a subset of σ

Again, this mechanism is manifestly consistent by an immediate semantic argument
[23]; alternatively, its consistency can be established by regarding definitions as mere
abbreviations (which are non-cyclic by construction).

Polymorphic HOL with Ad Hoc Overloading Isabelle/HOL [20,19] adds its personal
touch to the aforementioned sweet spot: it extends polymorphic HOL with a mechanism
for (ad hoc) overloading. As an example, consider the following Nominal-style [27]
definitions, where prm is the type of finite-support bijections on an infinite type atom,
and where we write apply pi a for the application of a bijection pi to an atom a:

Example 1 consts perm : prm ⇒ α ⇒ α
defs perm_atom: perm pi (a : atom) ≡ apply pi a
defs perm_nat: perm pi (n : nat) ≡ n
defs perm_list: perm pi (xs : α list) ≡ map (perm pi) xs

Above, the constant perm is declared using the keyword “consts”—its intended be-
havior is the application of a permutation to all atoms contained in an element of a
type α. Then, using the keyword “defs”, several overloaded definitions of perm are
performed for different instances of α. For atoms, perm applies the permutation; for
numbers (which don’t have atoms), perm is the identity function; for α list, the instance
of perm is defined in terms of the instances for the component α. All these definitions
are non-overlapping and their type-based recursion is terminating, hence Isabelle is fine
with them.

Inconsistency Of course, one may not be able to specify all the relevant instances
immediately after declaring a constant like perm—at a later point, a user may define
their own atom-container type, such as3

datatype myTree = Atom atom | LNode atom list | FNode nat => atom

and instantiate perm to this type. (In fact, the Nominal package automates instanti-
ations for user-requested datatypes, including terms with bindings.) To support such
delayed instantiations, which are crucial for the implementation of type classes [29,10],
Isabelle/HOL allows intermixing definitions of instances of an overloaded constant with
definitions of other constants and types. Unfortunately, the improper management of the
intermixture leads to inconsistency: Isabelle/HOL accepts the following definitions4

Example 2 consts c : α
typedef T = {True, c} by blast
defs c_bool_def: c:bool ≡ ¬ (∀(x:T) y. x = y)

which immediately yield a proof of False:

lemma L: (∀(x:T) y. x = y) ↔ c
using Rep_T Rep_T_inject Abs_T_inject by (cases c:bool) force+

theorem False
using L unfolding c_bool_def by auto

3 In Isabelle/HOL, as in any HOL-based prover, the “datatype” command is not primitive, but
is compiled into “typedef.”

4 This example works in Isabelle2014; our correction patch [1] based on the results of this paper
and in its predecessor [14] is being evaluated at the Isabelle headquarters.

2

The inconsistency argument takes advantage of the circularity T cbool T in
the dependency relation introduced by the definitions: one first defines T to contain
only one element just in case cbool is True, and then defines c to beTrue just in case T
contains more than one element.

Our Contribution In this paper, we provide the following, in the context of polymor-
phic HOL extended with ad hoc overloading (§3):

– A definitional dependency relation that factors in both constant and type definitions
in a sensible fashion (§4.1)

– A proof of consistency of any set of constant and type definitions whose depen-
dency relation satisfies reasonable conditions, which accept Example 1 and reject
Example 2 (§4)

– A new semantics for polymorphic HOL (§4.4) that guides both our definition of the
dependency relation and our proof of consistency

We hope that our work settles the consistency problem for Isabelle/HOL’s extension
of HOL, while showing that the mechanisms of this logic admit a natural and “well-
understandable” semantics. We start with a discussion of related work, including pre-
vious attempts to establish consistency (§2). Later we also show how this work fits
together with previous work by the first author (§5).

2 Related Work

Type Classes and Overloading Type classes were introduced in Haskell by Wadler
and Blott [28]—they allow programmers to write functions that operate generically on
types endowed with operations. For example, assuming a type α which is a semigroup
(i.e., comes with a binary associative operation +), one can write a program that com-
putes the sum of all the elements in an α-list. Then the program can be run on any con-
crete type T that replaces α provided T has this binary operation +. Prover-powered
type classes were introduced by Nipkow and Snelting [21] in Isabelle/HOL and by
Sozeau and Oury [25] in Coq—they additionally feature verifiability of the type-class
conditions upon instantiation: a type T is deemed a member of the semigroup class only
if associativity can be proved for its + operation.

Whereas Coq implements type classes directly by virtue of its powerful type system,
Isabelle/HOL relies on arbitrary ad hoc overloading: to introduce the semigroup class,
the system declares a “global” constant + : α⇒ α⇒ α and defines the associativity
predicate; then different instance types T are registered after defining the corresponding
overloaded operation + : T ⇒ T ⇒ T and verifying the condition. Our current paper
focuses on the consistency of the mechanism of ad hoc overloading, which makes type
classes in Isabelle/HOL possible.

Previous Consistency Attempts The settling of this consistency problem has been
previously attempted by Wenzel [29] and Obua [22]. In 1997, Wenzel defined a notion
of safe theory extension and showed that overloading conforms to this notion. But he did
not consider type definitions and worked with a simplified version of the system where
all overloadings for a constant c are provided at once. Years later, when Obua took over

3

the problem, he found that the overloadings were almost completely unchecked—the
following trivial inconsistency was accepted by Isabelle2005:

consts c : α ⇒ bool
defs c (x : α list × α) ≡ c (snd x # fst x)
defs c (x : α list) ≡ ¬ c (tl x, hd x)

lemma c [x] = ¬ c([], x) = ¬ c[x]

Obua noticed that termination of the rewrite system produced by the definitions has
to terminate to avoid inconsistency, and implemented a private extension based on a
termination checker. He did consider intermixing overloaded constant definitions and
type definitions but his syntactic proof sketch misses out inconsistency through type
definitions.

Triggered by Obua’s observations, Wenzel implemented a simpler and more struc-
tural solution based on work of Haftmann, Obua and Urban: fewer overloadings are
accepted in order to make the consistency/termination check decidable (which Obua’s
original check is not). Wenzel’s solution has been part of the kernel since Isabelle2007
without any important changes—parts of this solution (which still misses out depen-
dencies through types) are described by Haftmann and Wenzel [10].

In 2014, we discovered that the dependencies through types are not covered (Exam-
ple 2), as well as an unrelated issue in the termination checker that led to an inconsis-
tency even without exploiting types. Kunčar [14] amended the latter issue by presenting
a modified version of the termination checker and proving its correctness. The proof is
general enough to cover termination of the definition dependency relation through types
as well. Our current paper complements this result by showing that termination leads to
consistency.

Inconsistency Club Inconsistency problems arise quite frequently with provers that
step outside the safety of a simple and well-understood logic kernel. The various proofs
of False in the early PVS system [24] are folklore. Coq’s [5] current stable version5

is inconsistent in the presence of Propositional Extensionality; this problem stood un-
detected by the Coq users and developers for 17 years; interestingly, just like the Is-
abelle/HOL problem under scrutiny, it is due to an error in the termination checker [8].
Agda [7] suffers from similar problems [17] The recent Dafny prover [15] proposes an
innovative combination of recursion and corecursion whose initial version turned out to
be inconsistent [6].

Of course, such “dangerous” experiments are often motivated by better support for
the users’ formal developments. The Isabelle/HOL type class experiment was practi-
cally successful: substantial developments such as the Nominal [27,13] and HOLCF
[18] packages and Isabelle’s mathematical analysis library [12] rely heavily on type
classes. One of Isabelle’s power users writes [16]: “Thanks to type classes and refine-
ment during code generation, our light-weight framework is flexible, extensible, and
easy to use.”

5 Namely, Coq 8.4pl5; the inconsistency is reported as being fixed in Coq 8.5 beta.

4

3 Polymorphic HOL with Ad Hoc Overloading
Next we present syntactic aspects of our logic of interest (syntax, deduction and defini-
tions) and its consistency problem.

3.1 Syntax

All throughout this section, we fix the following countable sets:

– A set TVar, of type variables, ranged over by α, β
– A set Var, of (term) variables, ranged over by x, y, z
– A set K of symbols, ranged over by k, called type constructors, containing three

special symbols: bool, ind and⇒

We also fix a function arOf : K → N associating an arity to each type constructor,
such that arOf(bool) = arOf(ind) = 0 and arOf(⇒) = 2. We define the set Type, ranged
over by σ, τ, of types, inductively as follows:

– TVar ⊆ Type
– (σ1, . . . , σn)k ∈ Type if σ1, . . . , σn ∈ Type and k ∈ K such that arOf(k) = n

A typed variable is a pair of a variable x and a type σ, written xσ. Given T ⊆ Type, we
write VarT for the set of typed variables xσ with σ ∈ T . Finally, we fix the following:

– A countable set Const, ranged over by c, of symbols called constants, containing
the special symbols:→, zero, suc, = and some

– A function tpOf : Const→ Type associating a type to every constant, such that:

tpOf(→) = bool⇒ bool⇒ bool
tpOf(zero) = ind
tpOf(suc) = ind⇒ ind

tpOf(=) = α⇒ α⇒ bool
tpOf(some) = (α⇒ bool)⇒ α

A type-variable substitution is a function ρ : TVar→ Type; we let TSubst denote
the set of type-variable substitutions. Each ρ ∈ TSubst is naturally extended to a func-
tion ρ : Type→ Type by defining ρ((σ1, . . . , σn)k) = (ρ(σ1), . . . , ρ(σn))k.

We say that σ is an instance of τ via ρ ∈ TSubst, written σ ≤ρ τ, if ρ(τ) = σ. We
say that σ is an instance of τ, written σ ≤ τ, if there exists ρ such that σ ≤ρ τ. Two
types σ and τ are called orthogonal, written σ # τ, if they have no common instance.

We define the type variables of a type, TV : Type→P(TVar), as expected. A typeσ
is called ground if TV(σ)= /0. We let GType be the set of ground types and GTSubst the
set of all ground type-variable substitutions θ : TVar→ GType. We can again naturally
extended each θ ∈ GTSubst to a homonymous function θ : Type→ GType.

The tuple (K, tpOf,C, arOf), which will be fixed in what follows, is called a signa-
ture. The terms, ranged over by t, are defined by the following grammar:

t = xσ | cσ | t1 t2 | λxσ. t

Thus, a term is either a variable, or a constant, or an application, or an abstraction. As
usual, we identify the terms modulo alpha-equivalence.

5

Typing of terms is defined in the expected way (by assigning the most general type
possible); we write Term for the set of well-typed terms and, given t ∈ Term, we write
tpOf(t) for its (unique) type. Given a term t, we write FV(t) for the set of its free (term)
variables. t is closed if FV(t) = /0. We let types(t) denote the set of types of all constants
and (free or bound) variables that occur in t. Then TV(t), the set of type variables of t,
is defined as

⋃
σ∈types(t) TV(σ). A term t is called type-ground if TV(t) = /0. Note that

being type-ground is a stronger condition than having a ground type: (λxα. x) cbool has
the ground type bool, but is not type-ground.

A formula is a well-typed term of type bool. We let Fmla, ranged over by ϕ, ψ, χ,
denote the set of formulas. The formula connectives and quantifiers are defined in the
standard way, starting from implication and equality primitives.

3.2 Built-Ins and Non-Built-Ins

The distinction between built-in and non-built-in types will be important for us, since
we will employ a slightly non-standard semantics only for the latter.

A built-in type is any type of the form bool, ind, or σ1⇒ σ2 for σ1, σ2 ∈ Type. We
let Type• denote the set of types that are not built-in types. Note that a non-built-in type
can have a built-in type as a subtype, and vice versa; e.g., if list is a type constructor,
then bool list and (α⇒ β) list are non-built types, whereas α⇒ β list is a built-in type.
We let GType• = GType∩Type• denote the set of non-built-in ground types.

Given a type σ, we let types•(σ), the set of non-built-in types of σ, as follows:

types•(bool) = types•(ind) = /0
types•((σ1, . . . , σn) k) = {(σ1, . . . , σn) k}, if k is different from⇒
types•(σ1⇒ σ2) = types•(σ1) ∪ types•(σ2)

Thus, types•(σ) is the smallest set of non-built-in types that can produce σ by repeated
application of the built-in type constructors. E.g., if the type constructors prm (0-ary)
and list (unary) are in the signature and if σ is (bool⇒ α list)⇒ prm⇒ (bool⇒
ind) list, then types•(σ) has three elements: α list, prm and (bool⇒ ind) list.

A built-in constant is a constant of the form→, =, some, zero or suc. We let CInst•
be the set of constant instances that are not instances of built-in constants. We define
GCInst• analogously.

Given T ⊆ Type•, we define BIC(T), the built-in constants of T to be the set of
built-in constants whose types are in Cl(T).

Given c ∈ Const such that σ ≤ tpOf(c), we call the pair (c, σ), written cσ, an
instance of c. We let CInst be the set of all constant instances, and GCInst be the set
of constant instances whose type is ground. We extend ≤ to constant instances: let
cτ, dσ ∈ CInst, cτ ≤ dσ iff c = d and τ≤ σ. We also extend tpOf to constant instances
as tpOf(cσ) = σ.

Given a term t, we let consts•(t) ⊆ CInst• be the set of all non-built-in constant
instances occurring in t and types•(t) ⊆ Type• be the set of all non-built-in types that
compose the types of non-built-in constants and (free or bound) variables occurring in

6

t. More precisely:

consts•(xσ) = /0 types•(xσ) = types•(σ)

consts•(cσ) =
{
{cσ} , if cσ ∈ CInst•

/0 , otherwise types•(cσ) = types•(σ)

consts•(t1 t2) = consts•(t1)∪ consts•(t2) types•(t1 t2) = types•(t1)∪ types•(t2)
consts•(λxσ. t) = consts•(t) types•(λxσ. t) = types•(σ)∪ types•(t)

3.3 Deduction

The notion of (proof) context is defined inductively as follows:

– the empty sequence [] is a context
– if Γ is a context and fix(xσ) does not appear in Γ, then Γ, xσ is a context
– if Γ is a context and fix(xσ) appears in Γ for each xσ ∈ FV(ϕ) , then Γ, assume(ϕ)

is a context

Thus, a context Γ is a sequence k1, . . . , kn where each ki represents either a “fixed”
variable xσ or an assumption ϕ, subject to the following requirements:

– the fixed variables are distinct
– the assumptions have their free variables fixed beforehand

Deduction of a formula ϕ in a context Γ, written Γ ` ϕ, is defined using the standard
polymorphic HOL axioms and deduction rules. If Γ contains only assumptions (and no
“fixes”), it is easy to see that all its assumptions are closed formulas and that the order
of these assumptions does not affect deduction. Hence, if D is a finite set of closed
formulas, a.k.a. a theory, we write D ` ϕ for the deducibility of ϕ from D. A theory
D is called consistent if D 6` False, or equivalently if there exists ϕ such that D 6` ϕ.
(Isabelle/HOL distinguishes between theory contexts and proof contexts—we ignore
this distinction here, since it does not affect our consistency argument.)

3.4 Definitional Theories

We are interested in the consistency of theories arising from constant-instance and type
definitions.

Given cσ ∈ CInst• and a closed term t ∈ Termσ, we let cσ ≡ t denote the formula
cσ = t. We call cσ ≡ t a constant definition provided TV(t) ⊆ TV(cσ) (i.e., TV(t) ⊆
TV(σ)). Notice that we do not require that c is a fresh symbol as in the traditional
constant definition mechanism without overloading.

Given the types τ ∈ Type• and σ ∈ Type and the closed well-typed term p whose
type is σ⇒ bool, we let τ≡ p denote the formula

(∃xσ. p x)→
∃repτ⇒σ. ∃absσ⇒τ.
(∀xτ. p (rep x)) ∧ (∀xτ. abs (rep x) = x) ∧ (∀yσ. p y→ rep (abs y) = y).

We call τ≡ p a type definition, provided TV(p)⊆TV(τ) (which also implies TV(σ)⊆
TV(τ)).

In general, a definition will have the form u ≡ t, where u is either a constant or a
type and t is a term (subject to the specific constraints of constant and type definitions).
u and t are said to be the left-hand and right-hand sides of the definition. A definitional
theory is a finite set of definitions.

7

3.5 The Consistency Problem

An Isabelle/HOL development proceeds by:

1. declaring constants and types
2. defining constant instances and types
3. stating and proving theorems using the deduction rules of polymorphic HOL

Consequently, at any point in the development, one has:

1. a signature (K, arOf : K→ N, Const, tpOf : Const→ Type)
2. a definitional theory D
3. other proved theorems

In our abstract formulation of Isabelle/HOL’s logic, we do not represent explicitly point
3, namely the stored theorems that are not produced as a result of definitions, i.e., are
not in D. The reason is that, in Isabelle/HOL, the theorems in D are not influenced by
the others. Indeed, note we defined τ≡ p (where tpOf(p) = σ⇒ bool) not to mean:

(*): The type σ is isomorphic, via abs and rep, to the subset of σ given by p

as customary in most HOL-based systems, but rather to mean:

If p gives a nonempty subset of σ, then (*) holds

After this point, Isabelle/HOL’s behavior converges with standard HOL behavior since
the user is immediately required to prove that p gives a nonempty subset (i.e., that
∃xσ. p x holds); then the system infers (*). However, this last inference step is nor-
mal deduction, having nothing to do with the definition itself—this very useful trick,
due to Wenzel, cleanly separates definitions from proofs. In summary, we only need to
guarantee the consistency of D:

The Consistency Problem: Find a sufficient criterion for a definitional theory
D to be consistent (while allowing flexible overloading).

4 Our Solution to the Consistency Problem

Assume for a moment we have a proper dependency relation between defined items,
where the defined items can be types or constant instances. Obviously, the closure of
this relation under type substitutions needs to terminate, otherwise inconsistency arises
immediately: defining cα⇒bool to be ¬ cbool⇒α yields cbool⇒bool = ¬ cbool⇒bool. More-
over, it is clear that the definitions need to be orthogonal: defining cα⇒bool to be False
and cbool⇒α to be True yields again cbool⇒bool = ¬ cbool⇒bool.

It turns out that these necessary criteria are also sufficient for consistency. This was
also believed by Wenzel and Obua; what they were missing was a proper dependency
relation and a transparent argument for its consistency, which is what we provide next.

8

4.1 Definitional Dependency Relation

Given any binary relation R on Type• ∪CInst•, we write R+ for its transitive closure,
R∗ for its reflexive-transitive closure and R↓ for its (type-)substitutive closure, defined
as follows: p R↓ q iff there exist p′, q′ and a type substitution ρ such that p = ρ(p′) ,
q = ρ(q′) and p′ R q′. We say that a relation R is terminating if there exists no sequence
(pi)i∈N such that pi R pi+1 for all i.

Let us fix a definitional theory D. We say D is orthogonal if for all distinct defini-
tions u≡ t and u′ ≡ t′ in D, u # u′.

We define the binary relation on Type•∪CInst• as follows: u v iff one of the
following hold:

1. there exists a definition in D of the form u≡ t such that v ∈ consts•(t)∪ types•(t)
2. there exists no definition in D with u as left-hand side, and there exists c ∈ Const•

such that u = ctpOf(c) and v ∈ types•(tpOf(c))

We call the dependency relation (associated to D).
We illustrate the choices behind our definition of through the following example,

where the definition of α k is omitted:

Example 3 consts c : α d : α
typedef α k = ...
consts c (x : ind k ⇒ bool) ≡ (d : bool k k ⇒ ind k ⇒ bool) (d : bool k k)

It is clear which constant instances cind k⇒bool depends on after its definition, namely
dbool k k⇒ind k⇒bool and dbool k k. But what are the types on which cind k⇒bool depends?
A conservative answer would be: all the subtypes of the types of the constants and
variables used in the definition, namely: bool k k ⇒ ind k ⇒ bool, bool k k, ind k ⇒
bool, bool k, ind k, bool and ind.6

Some of these dependencies are indeed crucial: if we omit to register that cind k⇒bool
depends on any of bool k k, ind k and bool, we can easily reach an inconsistency in the
style of Example 2 by suitable choices of k’s definition and d’s overloaded definitions.
However, the others seem harmless:

– the built-in types ind and bool
– the types built from the “crucial” ones by the function type constructor—any in-

consistency achievable using these needs to go through the “crucial” components
– the types only appearing below a non-built-in type constructor, such as bool k (cov-

ered by bool k k)—the only way to reach these is through constants that have them
uncovered (i.e., only covered by function types)

In other words, it appears that we only need to record the dependency on the non-
built-in types reachable from the occurring types, i.e., those in types•(t) where t is the
right-hand side of the definition. This intuition will receive a rigorous justification in

6 The precise granularity of the dependency relation is not relevant here; e.g., it does not matter
whether we decide to have cind k⇒bool bool k k directly or cind k⇒bool dbool k k bool k k;
so in this discussion we interpret “depends on” as +.

9

our new semantics for HOL, where a polymorphic type will be interpreted as the family
of all its ground-instance interpretations, which for non-built-in types will be mutually
independent; e.g., the interpretations of bool k k and bool k will be unrelated.

4.2 The Consistency Theorem

We can now state our main result. We call a definitional theory D well-formed if it is
orthogonal and the substitutive closure of its dependency relation, ↓, is terminating.

Theorem 1. If D is well-formed, then D is consistent.

Previous attempts to prove consistency employed syntactic methods [29,22]. In-
stead, we will give a semantic proof:

1. We define a new semantics of Polymorphic HOL, suitable for overloading and for
which standard HOL deduction is sound (§4.4)

2. We prove that D has a model according to our semantics (§4.5)

Then 1 and 2 immediately imply consistency.

4.3 Inadequacy of the Standard Semantics of Polymorphic HOL

But why define a new semantics? Recall that our goal is to make sense of definitions as
in Example 1. In the standard (Pitts) semantics [23], one chooses a “universe” collection
of sets U closed under suitable set operations (function space, an infinite set, etc.) and
interprets:

1. the built-in type constructors and constants as their standard counterparts in U :
– [bool] and [ind] are some chosen two-element set and infinite set in U
– [⇒] : U → U → U takes two sets A1, A2 ∈ U to the set of functions A1→ A2

– [True] and [False] are the two distinct elements of [bool], etc.
2. the non-built-in type constructors similarly:

– a defined type prm or type constructor list as an element [prm] ∈ U or operator
[list] : U → U , produced according to their “typedef”

– a polymorphic constant such as perm : prm→ α→ α as a family [perm] ∈
∏A∈U [prm]→ A→ A

In standard polymorphic HOL, perm would be either completely unspecified, or com-
pletely defined in terms of previously existing constants—this has a faithful semantic
counterpart in U . But now how to represent the overloaded definitions of perm from
Example 1? In U , they would become:

[perm][atom] pi a = [apply] pi a
[perm][nat] pi n = n
[perm][list](A) pi xs = [map]A (permA pi) xs

10

There are two problems with these semantic definitions. First, given B∈ U , the value of
[perm]B is different depending on whether B has the form [atom], or [nat], or [list](A)
for some A ∈ U ; hence the interpretations of the type constructors need to be non-
overlapping—this is not guaranteed by the assumptions about U , so we would need
to perform some low-level set-theoretic tricks to achieve the desired property. Second,
even though the definitions are syntactically terminating, their semantic counterparts
may not be: unless we again delve into low-level tricks in set theory (based on the
axiom of foundation), it is not guaranteed that decomposing a set A0 as [list](A1), then
A1 as [list](A2), and so on (as prescribed by equation 3) is a terminating process.

Even worse, termination is in general a global property, possibly involving both
constants and type constructors, as shown in the following example where c and k are
mutually defined (so that a copy of ebool kn is in bool kn+1 iff n is even):

Example 4 consts c : α ⇒ bool d : α e : α
typedef α k = {d:α} ∪ {e : α . c (d : α)}
c (x : α k) ≡ ¬ c (d : α)
c (x : bool) ≡ True

The above would require a set-theoretic setting where such fixpoint equations have solu-
tions; this is in principle possible, provided we tag the semantic equations with enough
syntactic annotations to guide the fixpoint construction. However, such a construction
seems excessive given the original intuitive justification: the definitions are “OK” be-
cause they do not overlap and they terminate. On the other hand, a purely syntactic
(proof-theoretic) argument also seems difficult due to the mixture of constant defini-
tions and (conditional) type definitions.

Therefore, we decide to go for a natural syntactic-semantic blend, which avoids
stunt performance in set theory: we do not semantically interpret the polymorphic types,
but only the ground types, thinking of the former as “macros” for families of the latter.
For example, α⇒ α list represents the family (τ⇒ τ list)τ∈GType.

4.4 Ground Semantics of Polymorphic HOL

We fix a singleton set {∗} and a global choice function choice that assigns to each
nonempty set A an element choice(a) ∈ A.

A ground type interpretation is a family ([τ])τ∈GType• where each [τ] is a nonempty
set. We extend [τ] inductively to ground types by interpreting the built-in types:

[bool] = {0, 1} (where we think of 0 as “false” and of 1 as “true”)
[ind] =N
[σ⇒ τ] = [σ]→ [τ] (the set of functions from [σ] to [τ])

An interpretation is a pair I = (([τ])τ∈GType• , ([cσ])cσ∈GCInst•) such that the family
([τ])τ∈GType• is a type interpretation and [cσ] ∈ [σ]I for every [cσ] from the family
([cσ])cσ∈GCInst• , which we call a ground constant interpretation.

We extend [cσ] to ground constant instances by interpreting the built-in constants:

– [→bool⇒bool⇒bool]
I is the logical implication on {0, 1}

11

– [=σ⇒σ⇒bool]
I is the equality predicate of the type [σ]I → [σ]I →{0, 1}

– [zeroind]
I is zero for N and [sucind⇒ind] is the successor function for N

– [some(σ⇒bool)⇒σ]
I is defined as follows, where, for each f : [σ]I → {0, 1}, A f =

{a ∈ [σ]I | f (a) = 1}:

[some(σ⇒bool)⇒σ]
I(f) =

{
choice(A f) , if A f is non-empty
choice([σ]I) , otherwise

A valuation ξ : VarGType→ Set is called compatible if ξ(xσ) ∈ [σ]I for each xσ ∈
VarGType. We write CompI for the set of compatible valuations.

Given an interpretation I, we extend an interpretation of ground constant instances
[cσ]I to an interpretation of ground terms: For each t ∈ GTerm, [t]I is a function

[t]I : CompI → [tpOf(t)]I

defined recursively over terms as follows (we write [.]Iξ for [.]I(ξ)):

[xσ]Iξ = ξ(xσ)
[cσ]Iξ = [cσ]I

[t1 t2]Iξ = [t1]Iξ [t2]Iξ
[λxσ. t]Iξ is the function sending each a ∈ [σ]I to [t]Iξ[xσ←a]

Lemma 5. For each t ∈ GTerm, [t]I is a function that only depends on the restriction
of its inputs to FV(t), which means ∀ξ, ξ′ ∈ CompI . ξ =FV(t) ξ

′→ [t]Iξ = [t]Iξ′ .

Given Γ, ϕ, θ ∈ GTSubst and ξ ∈ CompI , we say that I satisfies (Γ, ϕ) under the
valuations θ and ξ, written I |=θ,ξ (Γ, ϕ), if [θ(ϕ)]Iξ = 1 whenever [θ(ψ)]Iξ = 1 for all
assumptions ψ ∈ Γ.

We say that I satisfies (Γ, ϕ), written I |=(Γ, ϕ), if I |=θ,ξ (Γ, ϕ) for all θ∈GTSubst
and ξ ∈ CompI . If Γ = [], we write simply write I |=θ,ξ ϕ and I |= ϕ. Finally, if E is a
set of formulas, I |= E is defined as I |= ϕ for all ϕ ∈ E.

It is routine to verify that deduction is sound with respect to the semantics:

Theorem 2. (Soundness) If Γ ` ϕ, then I |= (Γ, ϕ) for all interpretations I.

4.5 The Model Construction

We say that a definitional theory D has a model if there exists an interpretation I such
that I |= D. In this section, we fix a well-formed D and construct its model.

The construction will be in principle guided by the dependency relation introduced
in Section 4.1. Let us recall that in order to provide an interpretation, we have to define
a meaning of all u ∈ GType• ∪GCInst•, i.e., how to interpret u. In order to do so, we
employ a ground dependency relation defined as G= (↓) �GType•∪GCInst• . This G
gives us an order in which we should define an interpretation of u ∈ GType•∪GCInst•
because for each u, u G v identifies the syntactic items v that are needed to define u.

Notice that well-foundedness of D guarantees termination of G.

Lemma 6. G terminates iff ↓ terminates.

12

Proof. Sufficiency: ↓⊇ (↓) �GType•∪GCInst•= G. Necessity: If ↓ does not termi-
nate, there exists a non-terminating sequence, which we can make ground by substitut-
ing bool for all type variables in it. But then G does not terminate either.

Thus, we can construct a model for D by well-founded recursion on G when we
extend a (partial) interpretation I for bigger and bigger U ⊆GType•∪GCInst•. On this
account, we need a formal notion of a signature fragment and a partial interpretation.
Moreover, we would need to merge partial interpretations from the recursion for all
vs that u depends on in order to construct an interpretation for u. Thus, we will work
only with strict interpretations that provide such conflict-free merges. We will define
the notions of partial and strict interpretations in the next two subsections.

Partial Interpretations Recall that we have a fixed signature (K, arOf, Const, tpOf),
from which we derive the set of ground non-built-in types GType• and the set of ground
non-built-in constant instances GCInst•. For each term t, we will be interested in certain
signature fragments that are sufficient for interpreting t semantically.

A (signature) fragment is a pair (T,C) with T ⊆ GType• and C ⊆ GCInst• such
that σ ∈ Cl(T) for all cσ ∈ C. Let F = (T,C) be a fragment. We let TypeF denote
the set of types generated by this fragment, namely Cl(T). We let TermF denote the
set of well-typed terms that fall within this fragment, i.e., such that types•(t) ⊆ T and
consts•(t)⊆C.

lemmafragpropsr If t ∈ TermF , then tpOf(t) ∈ TypeF .
Note that fragments F = (T,C) are self-contained entities, since the types of all

constant instances in C can be constructed from T and the built-in type construc-
tors. Since the interpretation of the built-in type-constructors and constants is fixed,
F-interpretation will have all the ingredients to interpret the terms in TermF .

Formally, an F-interpretation is a pair I = (([σ])σ∈T , ([cτ])cτ∈C) such that each
[σ] is a non-empty set and [cτ] ∈ [τ]I for all cτ ∈ C. Similarly to the case of (total)
interpretations, we can recursively extend any F-interpretation I to the interpretation
[t]I : (VarTypeF →Set)→ [tpOf(t)] for all t ∈ TermF . Note that a (total) interpretation
is a particular case of an F-interpretation, where F = (GType•, GCInst•).

Given u∈GType•∪GCInst•, we define u∈ F = (T,C) to mean that u∈ T or u∈C.
Union, interjection and set difference for fragments are defined componentwise. Given
a family of fragments (F j) j∈J , their union

⋃
j∈J F j is clearly again a fragment.

Let I1 be an F1-interpretation and I2 an F2-interpretation I2. I1 and I2 are said to
be compatible if they coincide on items in F1 ∩ F2, i.e., [u]I1 = [u]I2 for all u ∈ F1 ∩
F2. Given a family (F j) j∈J of fragments and a family (I j) j∈J of mutually compatible
interpretations for them, i.e., such that each I j is an F j-interpretation and any two I j and
I j′ are compatible, we define the union I =

⋃
j∈J I j as expected, by setting [u]I = [u]I j

whenever u ∈ F j.

Lemma 7.
⋃

j∈J I j is a (
⋃

j∈J F j)-interpretation.

In order to define the meaning of u ∈ GType• ∪GCInst•, we need a notion of a
definition prescribing the meaning of u (in case there is such a definition). Let D be
orthogonal and u ∈ GType•∪GCInst•, we define a u-definition def(u) as follows:

13

– If there exits u′ ≡ t in D such that u≤ρ u′, def(u) = (u≡ ρ(t)).
– Otherwise, def(u) = True.

def(u) is well-defined because due to orthogonality, there exists at most one matching
definition u′ ≡ t. Notice that due to definitionality ρ(t) ∈ GTerm.

Although we defined fragments generally, we will be mainly interested in one spe-
cific type of them—in fragments containing vs that u depends on: If u ∈ GType• ∪
GCInst•, we define Fu, the definitional fragment associated to u, to be (T u,Cu), where:

– T u = {τ ∈ GType• | u ∗G τ}
– Cu = {cσ ∈ GCInst• | u ∗G cσ}

The following lemma captures our intuition which syntactic material is necessary
in order to define the meaning of a type or a constant instance u. lemmasyntdepthm Let
u ∈ GType•∪GCInst•, V = {v | u G v} and F =

⋃
v∈V Fv.

1. If u = cσ, then σ ∈ TypeF

2. If def(u) = (u≡ t), then t ∈ TermF .

Proof. From the definition of , well-formedness of D and that Fu is a fragment. ut

Strict Interpretations Recall that we have a fixed singleton set {∗} and a fixed choice
function choice on sets. Given a fragment F, an F-interpretation I is called strict if the
following hold:

– If τ ∈ F and def(τ) = True, i.e., there exists no matching definition for τ in D, then
[τ]I = {∗}.

– If cσ ∈ F and def(cσ) = True, then [cσ]I = choice([σ]I).
– If u ∈ F and def(u) = (u≡ t), then I |= def(u)

Notice that any (total) strict interpretation is a model. lemmagroundmodel Let D be an
orthogonal, definitional theory. I |= {def(u) | u∈GType•∪GCInst•} iff I |= D. As we
already mentioned, strict interpretations are useful because they will allow us to merge
interpretations from different branches in the well-founded recursion:

Lemma 8. Let G be terminating and U ⊆ GType•∪GCInst• and let us have families
(Iu)u∈U and (Fu)u∈U , where Iu is a strict interpretation for Fu for all u ∈ U. Then⋃

u∈U Iu is a strict interpretation for
⋃

u∈U Fu.

Proof. Observe that each Fu has at most one strict Fu-interpretation, from which we
obtain that all Iu are pairwise compatible. Apply Lemma 7 and the fact that the strict-
ness is clearly preserved under union. ut

The Model Construction Now we are ready to state the main result of this section:

Lemma 9. If D is well-formed, then D has a model.

14

Proof. For each u∈GType•∪GCInst•, we define Iu, a strict Fu-interpretation, by well-
founded recursion on G, which terminates by Lemma 6 and well-foundedness of
D. Let V = {v | u G v} and let us obtain (Iv)v∈V and (Fv)v∈V from the induction
hypothesis, such that Iv is a strict interpretation for Fv for all v ∈ V . Let us define
IF =

⋃
v∈V Iv and F =

⋃
v∈V Fv. IF is a strict F-interpretation by Lemma 8.

We define Iu, an interpretation of Fu, as an extension of IF . There are three cases:

1. def(u) = True, i.e., no matching definition for u in D exists. We set [u]Iu to
– the singleton set {∗} if u ∈ GType•,
– choice([σ]IF), if u = cσ ∈ GCInst•.

2. u = cσ ∈ GCInst• and def(cσ) = (cσ ≡ t). We set [cσ]Iu = [t]IF .

3. u = τ ∈ GType•, def(τ) = (τ≡ p). Let σ be a type such that p ∈ TermF
σ:

– If [∃xσ. p x]IF = 0, we set [τ]Iu = {∗}.
– If [∃xσ. p x]IF = 1, we set [τ]Iu = {a ∈ [σ]IF | [p]IF a = 1}.

Iu is an Fu-interpretation: u /∈ F, otherwise G would not terminate. Fu \F = {u},
therefore we can obtain Iu as an extension of IF by defining only [u]Iu . The key step:
[u]Iu is well-defined because σ ∈ TypeF (by Lemma 7.1) in the case 1. and σ ∈ TypeF

and p, t ∈ TermF (by Lemma 4.5 and 7.2) in the case 2. and 3. Finally, [u]Iu is always
non-empty if u is a type and [u]Iu ∈ [σ]Iu if u = cσ. Moreover, Iu is strict since IF is
strict and [u]Iu was defined strictly.

(Iu)u∈GType•∪GCInst• is a family of strict interpretations. Let I denote the union of
this family. By Lemma 8, I is a strict interpretation for GType• ∪GCInst• and hence
I |= def(u) for all u ∈ GType• ∪GCInst•. Finally Lemma 4.5 tells us that I is the
desired model for D. ut

5 Deciding Well-Formedness

We proved that every well-formed theory is consistent. From the implementation per-
spective, we can ask ourselves how difficult it is to check that the given theory is well-
formed. We can check that D is definitional and orthogonal by simple polynomial al-
gorithms. On the other hand, Obua [22] showed that a dependency relation generated
by overloaded definitions can encode the Post correspondence problem and therefore
termination of such a relation is not even a semi-decidable problem.

Kunčar [14] presented the following approach: let us impose a syntactic restriction
on accepted overloaded definitions such that the termination of the dependency relation
becomes decidable but the restriction still permits all use cases of overloading in Is-
abelle. The restriction is composability: Let be a substitutive and transitive closure7

of the dependency relation , then D is called composable if for all u, u′ that are left-
hand sides of some definitions from D and for all v such that u v, u′ and v do not have
a non-trivial common instance, i.e., there does not exist w such that w ≤ u′, w ≤ v and
u′ 6≤ v and v 6≤ u′.

7 set to ↓+ and prove that this is a substitutive relation

15

The paper [14] presents a quadratic algorithm (in the size of) CHECK that checks
that D is definitional, orthogonal and composable, and that terminates.8

Theorem 3. The property of D of being composable and well-formed is decidable.

Proof. Notice that = ↓+ terminates iff ↓ terminates. Thus, CHECK decides
whether D is composable and well-formed. ut

For efficiency reasons, we optimize size of the relation that the quadratic algorithm
works with. Let 1 be the relation defined like , but only retaining clause 1 in its
definition. Since ↓1 is terminating iff ↓ is terminating, it suffices to check whether
the transitive and substitutive closure of 1 terminates.

6 Conclusion

We have provided a solution to the consistency problem for Isabelle/HOL’s logic, namely
Polymorphic HOL with Ad Hoc Overloading. Consistency is an important, but rather
weak property—a suitable notion of conservativeness (perhaps in the style of Wenzel
[29], but covering type definitions as well) is left as future work. Independently of Is-
abelle/HOL, our results show that Gordon-style type definitions and ad hoc overloading
can be soundly combined and naturally interpreted semantically.

References

1. http://www21.in.tum.de/~kuncar/documents/patch.html
2. The HOL4 Theorem Prover, http://hol.sourceforge.net/
3. Adams, M.: Introducing HOL Zero (extended abstract). In: ICMS ’10. Springer (2010)
4. Arthan, R.D.: Some Mathematical Case Studies in ProofPower–HOL. In: TPHOLs 2004
5. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development. Coq’Art:

The Calculus of Inductive Constructions. Springer (2004)
6. Blanchette, J.C., Popescu, A., Traytel, D.: Foundational Extensible Corecursion, draft avail-

able at www.eis.mdx.ac.uk/staffpages/andreipopescu/pdf/fouco.pdf
7. Bove, A., Dybjer, P., Norell, U.: A Brief Overview of Agda—A Functional Language with

Dependent Types. In: TPHOLs 2009
8. Dénès, M.: [Coq-Club] Propositional extensionality is inconsistent in Coq, archived at

https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html
9. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment

for Higher Order Logic. Cambridge University Press (1993)
10. Haftmann, F., Wenzel, M.: Constructive Type Classes in Isabelle. In: TYPES (2006)
11. Harrison, J.: HOL Light: A Tutorial Introduction. In: FMCAD ’96. Springer (1996)
12. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical analysis in is-

abelle/hol. In: ITP ’13
13. Huffman, B., Urban, C.: Proof pearl: A new foundation for Nominal Isabelle. In: ITP ’10
14. Kunčar, O.: Correctness of Isabelle’s Cyclicity Checker: Implementability of Overloading in

Proof Assistants. CPP ’15, ACM (2015)

8 In fact, the algorithm checks if is acyclic, which is under composability equivalent to the
question whether terminates.

16

http://www21.in.tum.de/~kuncar/documents/patch.html
www.eis.mdx.ac.uk/staffpages/andreipopescu/pdf/fouco.pdf
https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html

15. Leino, K.R.M., Moskal, M.: Co-induction simply—automatic co-inductive proofs in a pro-
gram verifier. In: FM 2014

16. Lochbihler, A.: Light-weight containers for isabelle: Efficient, extensible, nestable. In: ITP
’13

17. McBride, C., et al.: [HoTT] Newbie questions about homotopy theory and advantage of
UF/Coq, archived at http://article.gmane.org/gmane.comp.lang.agda/6106

18. Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF. J. Funct.
Program. 9, 191–223 (1999)

19. Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL. Springer (2014)
20. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-Order

Logic, vol. 2283 (2002)
21. Nipkow, T., Snelting, G.: Type classes and overloading resolution via order-sorted unifica-

tion. In: Functional Programming Languages and Computer Architecture (1991)
22. Obua, S.: Checking Conservativity of Overloaded Definitions in Higher-Order Logic. In:

RTA. Springer (2006)
23. Pitts, A.: Introduction to HOL: A Theorem Proving Environment for Higher Order Logic,

chap. The HOL Logic, pp. 191–232. In: Gordon and Melham [9] (1993)
24. Shankar, N., Owre, S., Rushby, J.M.: PVS Tutorial. Computer Science Laboratory, SRI In-

ternational (1993)
25. Sozeau, M., Oury, N.: First-class type classes. In: TPHOLs 2008
26. Traytel, D.: [Agda] Agda’s copatterns incompatible with initial algebras, archived at https:

//lists.chalmers.se/pipermail/agda/2014/006759.html
27. Urban, C.: Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4) (2008)
28. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: POPL (1989)
29. Wenzel, M.: Type Classes and Overloading in Higher-Order Logic. In: TPHOLS ’97

17

http://article.gmane.org/gmane.comp.lang.agda/6106
https://lists.chalmers.se/pipermail/agda/2014/006759.html
https://lists.chalmers.se/pipermail/agda/2014/006759.html

APPENDIX

This appendix gives more technical details about our constructions and proofs. It is only
included for the reviewers’ convenience. In case the paper is accepted, the appendix will
be made part of a technical report available online and cited from the paper.

A Convention and Notations

Given f , f ′ : A→ B and C ⊆ A, we write f =C f ′ to indicate that f and f ′ coincide on
C, namely ∀a∈C. f (a) = f ′(a). f [a→ b] is the function that sends each a′ 6= a to f (a′)
and a to b.

The image of a function under a set is defined as f [A] = { f (x) | x∈ A}. If f : A→ B
and C ⊆ A, the restriction of f to C is a function f �C : C→ B defined as f �C (x) = f (x)
for all x ∈C.

A restriction of a relation R to a set X, written R �X , is defined as R �X= {(x, y) ∈
R | x ∈ X∧ y ∈ X}.

B More Details on Polymorphic HOL

B.1 Typing of Terms in Polymorphic HOL

We define the sets Termσ, the set of terms of type σ, inductively as follows:

xσ ∈ Termσ

cσ ∈ Termσ

if t1 ∈ Termσ1⇒σ2 and t2 ∈ Termσ1 , then t1 t2 ∈ Termσ2

if t ∈ Termσ2 , then λxσ1 . t ∈ Termσ1⇒σ2

We let Term =
⋃
σ∈Type Termσ be the set of all well-typed terms. We once more extend

θ ∈ Type→ Type naturally to a homonymous function θ : Term→ Term by applying
θ to types in the term with the proviso that if two distinct bound variables become
identified, we replace the term by an alpha-equivalent term where the variables stay
distinct.

Lemma 10. 1. If ρ ∈ TSubst, t ∈ Termσ, then ρ(t) ∈ Termρ(σ).

2. t ∈ Termσ and t ∈ Termσ′ , then σ= σ′.
3. If ρ, ρ′ ∈ TSubst, t ∈ Term and ρ=TV(t) ρ

′, then ρ(t) = ρ′(t).

In light of Lemma 10.2, we extend tpOf to tpOf : Term→Type such that tpOf(t) gives
the unique type σ of t.

Lemma 11. Cl is monotone, i.e., if A⊆ B, then Cl(A)⊆ Cl(B).

Proof. By induction on the inductive definition of Cl.

18

B.2 Other definitions

The operator giving the types of a term is defined recursively as follows:

types(xσ) = types(cσ) = {σ}
types(t1 t2) = types(t1)∪ types(t2)
types(λxσ. t) = {σ}∪ types(t)

B.3 More On Non-Built-In Constants and Types

All the next lemmas follow easily by structural induction on types or terms:

Lemma 12. 1. If cσ ∈ consts•(t), then σ ∈ Cl(types•(t))
2. If t ∈ Termσ, then σ ∈ Cl(types•(t))

Lemma 13. Let ρ ∈ TSubst.

1. Let σ ∈ Type. If types•(σ) = T , then types•(ρ(σ)) = ρ[T].
2. Let t ∈ Term. If types•(t) = T , then types•(ρ(t)) = ρ[T].

B.4 Deduction System for Polymorphic HOL

When spelling out concrete terms, we take the following conventions:

– we apply the constants → and = in an infix manner, e.g., we shall write t1 → t2
instead of→ t1 t2.

– we omit redundantly indicating the types of the variables, e.g., we shall write λxσ. x
instead of λxσ. xσ and xσ (yτ x) instead of xσ (yτ xσ).

– We write λxσ yτ. t instead of λxσ. λyτ. t

We define the following terms:

True = (λxbool. x) = (λxbool. x)
All = λpα⇒bool. (p = (λxα. True))
Ex = λpα⇒bool. All(λqα⇒bool. (λxα. p x→ q)→ q)
False = All(λpbool. p)
not = λpbool. p→ False
and = λpbool qbool. All(λrbool. (p→ q→ r)→ r)
or = λpbool qbool. All(λrbool. (p→ r)→ (q→ r)→ r)
Ex1 = λpα⇒bool. Ex(λxα. and (p x) (All (λyα. p y→ y = x)))

It is easy to see that the above terms are closed and well-typed as follows:

– tpOf(True) = tpOf(False) = bool
– tpOf(not) = bool⇒ bool
– tpOf(and) = tpOf(or) = bool⇒ bool⇒ bool
– tpOf(All) = tpOf(Ex) = tpOf(Ex1) = α⇒ bool

As customary, we shall write:

19

the xα. t instead of the(λxα. t) some xα. t instead of some(λxα. t)
¬ ϕ instead of not ϕ ∀xα. t instead of All(λxα. t)
ϕ∧χ instead of and ϕ χ ∃xα. t instead of Ex(λxα. t)
ϕ∨χ instead of or ϕ χ ∃!xα. t instead of Ex1(λxα. t)

We consider the following formulas, where t1 ∈ Typeα1
and t2 ∈ Typeα2

:

beta = (λxα2 . t1) t2 = t1[t2/xα2]
refl = xα = x
subst = xα = yα→ Pα→bool x→ Pα→bool y
iff = (p→ q)→ (q→ p)→ (p = q)
True_or_False = True∨False
the_eq = (the xα. x = a) = a
some_intro = xα. pα⇒bool x→ p (some p)
suc_inj = suc xind = suc yind→ x = y
suc_not_zero = ¬ (suc xind = zero)

We let Ax denote the set of the above closed formulas, which we call axioms.
Since boolean-typed variables are themselves formula, it is important to formally

distinguish between fixed variables and formulas, hence the labels fix and assume. How-
ever, to ease notation, in what follows we omit the labels when the intended meaning
is clear from our notation, e.g., writing xσ, ϕ, yτ for fix(xσ), assume(ϕ), fix(yτ). More-
over, even though technically Γ is a sequence (i.e., a list), we shall use set theoretic
notations, e.g., writing xσ ∈ Γ for “fix(xσ) appears in Γ”, etc.

We define deduction as a relation ` between contexts and formulas as follows:

·
Γ ` ϕ

(Axiom)
[ϕ ∈ Ax, FV(ϕ)⊆ Γ]

·
Γ ` ϕ

(Assum)
[ϕ ∈ Γ]

Γ, ϕ ` χ
Γ ` ϕ→ χ

(ImpI)

Γ ` ϕ→ χ Γ ` ϕ
Γ ` χ

(MP) Γ, xσ ` fσ→τ xσ = gσ→τ xσ
Γ ` fσ→τ = gσ→τ

(Ext)
[xσ /∈ Γ]

Γ ` ϕ
Γ ` (ϕ[σ/α])[t/xτ]

(INST)
[α /∈ Γ; xτ /∈ Γ; ti ∈ Termτi]

The substitution operator _[_/_] for types (and terms) is the usual simultaneous substi-
tution with renaming of bound variables if they get identified (or captured).9

C More Details on the Construction of the Model

We fix D, a well-formed theory, in this section.
We prove Lemma 4.5. *

Proof. Let F = (T,C). If t ∈ TermF , then types•(t) ⊆ T . Recall that TypeF = Cl(T)
and apply Lemmas 11 and 12.2.

9 Isabelle uses De Bruijn indices to represent bound variables therefore no renaming is needed.
But this is just an implementation detail.

20

Lemma 14. Let u ∈ GType•∪GCInst• and V = {v | u G v}.

1. If u = cσ then types•(cσ)⊆ V .
2. If def(u) = (u≡ t), then types•(t)⊆ V and consts•(t)⊆ V .

Proof. 1. Let σ′ = tpOf(c). The equality types•(σ′) = {v | cσ′ v} follows from the
definition of . Let σ≤ρ σ′. Since cσ ∈GCInst•, we get σ∈GType and by Lemma 13
also types•(σ) = types•(ρ(σ′)) = {ρ(v) | cσ′ v}= {u | cρ(σ′) G u}= V .
2. Let (u′ ≡ t′) ∈ D such that u ≤ρ u′. Since D is well-formed and therefore TV(u′) ⊇
TV(t′), we obtain ρ(t′) ∈ GTerm. Again, The equality types•(t′)∪ consts•(t′) = {v |
t′ v} follows from the definition of . By Lemma 13 and similar reasoning as in 1.,
we finally derive types•(t)∪ consts•(t) = V . ut

We present a more detailed proof of Lemma 4.5. *

Proof. 1. By Lemmas 12.1,11 and 14.1, we get σ ∈ Cl(types•(cσ))⊆ Cl(V)⊆ TypeF .
2. Let F = (T,C). From definition of TermF , we have to show that types•(t) ⊆ T and
consts•(t)⊆C: Let VT = V �GType and VC = V �GCInst. Since v∈ Fv, we obtain VT ⊆ T
and VC ⊆C. Finally by Lemma 14.2, we get types•(t)⊆ VT and consts•(t)⊆ VC . ut

We prove Lemma 4.5. *

Proof. From the definition of satisfaction I |= D iff for all θ ∈ GTSubst and all ψ ∈ D
it holds [θ(ψ)]I = 1. We omitted ξ ∈ CompI since all ψ ∈ D are closed formulas and
therefore the evaluation ξ is irrelevant by Lemma 5. But the family (θ(ψ))θ∈GTSubst,ψ∈D
equals to {def(u) | u ∈ GType•∪GCInst•}.

The following facts are used in the proof of Lemma8.

Lemma 15. Let G be terminating.

1. There exists at most one strict Fu-interpretation I.
2. Let u1, u2 ∈ GType• ∪GCInst•, I1 a strict Fu1 -interpretation and I2 a strict Fu2 -

interpretation. Then I1 and I2 are compatible.

Proof. 1. Let I1 and I2 be two strict Fu-interpretations. It follows by well-founded
induction on G that [v]I1 = [v]I2 for all v ∈ Fu.
2. If they are not compatible, there exists v ∈ Fu1 ∩Fu2 such that [v]I1 6= [v]I2 . But this
is a contradiction with 1. ut

21

	A Consistent Foundation for Isabelle/HOL
	1 Introduction
	2 Related Work
	3 Polymorphic HOL with Ad Hoc Overloading
	3.1 Syntax
	3.2 Built-Ins and Non-Built-Ins
	3.3 Deduction
	3.4 Definitional Theories
	3.5 The Consistency Problem

	4 Our Solution to the Consistency Problem
	4.1 Definitional Dependency Relation
	4.2 The Consistency Theorem
	4.3 Inadequacy of the Standard Semantics of Polymorphic HOL
	4.4 Ground Semantics of Polymorphic HOL
	4.5 The Model Construction

	5 Deciding Well-Formedness
	6 Conclusion
	A Convention and Notations
	B More Details on Polymorphic HOL
	B.1 Typing of Terms in Polymorphic HOL
	B.2 Other definitions
	B.3 More On Non-Built-In Constants and Types
	B.4 Deduction System for Polymorphic HOL

	C More Details on the Construction of the Model

