12,563 research outputs found

    Automated REA (AREA): a software toolset for a machine-readable resource-event-agent (REA) ontology specification

    Get PDF
    This paper demonstrates a toolset developed by the authors to enable a machine-readable REA ontology specification. Information modelling tech-niques are used to provide a unified enterprise ontology by capturing the busi-ness semantics using Conceptual Graphs (CGs) using Common Logic (CL) and the Conceptual Graph Interchange Format (CGIF) dialect for information ex-change and transmission. Formal Concept Analysis (FCA) is used for model verification, knowledge discovery and extraction. The enterprise design follows the Open Groups definition of the TOGAF Architecture Development Method (ADM) to define the system architecture and subsequently provide a method for defining and automating the (REA) design models for; Business Architecture, Information System Architecture and Technology Architecture

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Knowledge formalization in experience feedback processes : an ontology-based approach

    Get PDF
    Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations. Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably represent knowledge relating to the concerned system. Consequently, knowledge management (KM) is an increasingly important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the formalization of an experience feedback (EF) process aiming at transforming information or understanding gained by experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving themissions of companies. However, the means of describing the knowledge objects of an experience generally remain informal. Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are significant, correct and applicable

    Knowledge-based support in Non-Destructive Testing for health monitoring of aircraft structures

    Get PDF
    Maintenance manuals include general methods and procedures for industrial maintenance and they contain information about principles of maintenance methods. Particularly, Non-Destructive Testing (NDT) methods are important for the detection of aeronautical defects and they can be used for various kinds of material and in different environments. Conventional non-destructive evaluation inspections are done at periodic maintenance checks. Usually, the list of tools used in a maintenance program is simply located in the introduction of manuals, without any precision as regards to their characteristics, except for a short description of the manufacturer and tasks in which they are employed. Improving the identification concepts of the maintenance tools is needed to manage the set of equipments and establish a system of equivalence: it is necessary to have a consistent maintenance conceptualization, flexible enough to fit all current equipment, but also all those likely to be added/used in the future. Our contribution is related to the formal specification of the system of functional equivalences that can facilitate the maintenance activities with means to determine whether a tool can be substituted for another by observing their key parameters in the identified characteristics. Reasoning mechanisms of conceptual graphs constitute the baseline elements to measure the fit or unfit between an equipment model and a maintenance activity model. Graph operations are used for processing answers to a query and this graph-based approach to the search method is in-line with the logical view of information retrieval. The methodology described supports knowledge formalization and capitalization of experienced NDT practitioners. As a result, it enables the selection of a NDT technique and outlines its capabilities with acceptable alternatives

    A commentary on standardization in the Semantic Web, Common Logic and MultiAgent Systems

    Get PDF
    Given the ubiquity of the Web, the Semantic Web (SW) offers MultiAgent Systems (MAS) a most wide-ranging platform by which they could intercommunicate. It can be argued however that MAS require levels of logic that the current Semantic Web has yet to provide. As ISO Common Logic (CL) ISO/IEC IS 24707:2007 provides a firstorder logic capability for MAS in an interoperable way, it seems natural to investigate how CL may itself integrate with the SW thus providing a more expressive means by which MAS can interoperate effectively across the SW. A commentary is accordingly presented on how this may be achieved. Whilst it notes that certain limitations remain to be addressed, the commentary proposes that standardising the SW with CL provides the vehicle by which MAS can achieve their potential.</p

    Conceptual graph-based knowledge representation for supporting reasoning in African traditional medicine

    Get PDF
    Although African patients use both conventional or modern and traditional healthcare simultaneously, it has been proven that 80% of people rely on African traditional medicine (ATM). ATM includes medical activities stemming from practices, customs and traditions which were integral to the distinctive African cultures. It is based mainly on the oral transfer of knowledge, with the risk of losing critical knowledge. Moreover, practices differ according to the regions and the availability of medicinal plants. Therefore, it is necessary to compile tacit, disseminated and complex knowledge from various Tradi-Practitioners (TP) in order to determine interesting patterns for treating a given disease. Knowledge engineering methods for traditional medicine are useful to model suitably complex information needs, formalize knowledge of domain experts and highlight the effective practices for their integration to conventional medicine. The work described in this paper presents an approach which addresses two issues. First it aims at proposing a formal representation model of ATM knowledge and practices to facilitate their sharing and reusing. Then, it aims at providing a visual reasoning mechanism for selecting best available procedures and medicinal plants to treat diseases. The approach is based on the use of the Delphi method for capturing knowledge from various experts which necessitate reaching a consensus. Conceptual graph formalism is used to model ATM knowledge with visual reasoning capabilities and processes. The nested conceptual graphs are used to visually express the semantic meaning of Computational Tree Logic (CTL) constructs that are useful for formal specification of temporal properties of ATM domain knowledge. Our approach presents the advantage of mitigating knowledge loss with conceptual development assistance to improve the quality of ATM care (medical diagnosis and therapeutics), but also patient safety (drug monitoring)

    Challenges in Bridging Social Semantics and Formal Semantics on the Web

    Get PDF
    This paper describes several results of Wimmics, a research lab which names stands for: web-instrumented man-machine interactions, communities, and semantics. The approaches introduced here rely on graph-oriented knowledge representation, reasoning and operationalization to model and support actors, actions and interactions in web-based epistemic communities. The re-search results are applied to support and foster interactions in online communities and manage their resources

    25 years development of knowledge graph theory: the results and the challenge

    Get PDF
    The project on knowledge graph theory was begun in 1982. At the initial stage, the goal was to use graphs to represent knowledge in the form of an expert system. By the end of the 80's expert systems in medical and social science were developed successfully using knowledge graph theory. In the following stage, the goal of the project was broadened to represent natural language by knowledge graphs. Since then, this theory can be considered as one of the methods to deal with natural language processing. At the present time knowledge graph representation has been proven to be a method that is language independent. The theory can be applied to represent almost any characteristic feature in various languages.\ud The objective of the paper is to summarize the results of 25 years of development of knowledge graph theory and to point out some challenges to be dealt with in the next stage of the development of the theory. The paper will give some highlight on the difference between this theory and other theories like that of conceptual graphs which has been developed and presented by Sowa in 1984 and other theories like that of formal concept analysis by Wille or semantic networks
    corecore