341 research outputs found

    Designing and testing a molecularly targeted glioblastoma theranostic: experimental and computational studies

    Get PDF
    With an extremely poor patient prognosis glioblastoma multiforme (GBM) is one of the most aggressive forms of brain tumor with a median patient survival of less than 15 months. While new diagnostic and therapeutic approaches continue to emerge, the progress to reduce the mortality associated with the disease is insufficient. Thus, developing new methods having the potential to overcome problems that limit effective imaging and therapeutic efficacy in GBM is still a critical need. The overall goal of this research was therefore to develop targeted glioblastoma theranostics capable of imaging disease progression and simultaneously killing cancer cells. To achieve this, the state of the art of liposome based cancer theranostics are reviewed in detail and potential glioblastoma biomarkers for theranostic delivery are identified by querying different databases and by reviewing the literature. Then tumor targeting liposomes loaded with Gd3N@C80 and doxorubicin (DXR) are developed and tested in vitro. Finally, the stability of these formulations in different physiological salt solutions is evaluated using computational techniques including area per lipid, lipid interdigitaion, carbon-deuterium order parameter, radial distribution of ions as well as steered molecular dynamic simulations. In conclusion the experimental and computational studies of this dissertation demonstrated that DXR and Gd3N@C80-OH loaded and lactoferrin & transferrin dual-tagged, PEGylated liposomes might be potential drug and imaging agent delivery systems for GBM treatment

    Investigating New Drug Options for Temozolomide Resistant IDH1 Mutant Glioma

    Get PDF
    Gliomas, a prevalent form of malignant brain tumors in adults, often exhibit mutations in the isocitrate dehydrogenase 1 (IDH1) gene. Temozolomide (TMZ) is a commonly used chemotherapy drug for treating gliomas; however, the development of drug resistance poses a significant challenge to its effectiveness. My study aimed to investigate new drug options for IDH1 mutant gliomas and was divided into two main parts. The first part focused on reversing TMZ resistance and identifying synergistic drugs, while the second part sought alternative treatments for IDH1 mutant TMZ-resistant gliomas. To achieve the objectives of the first part, patient-derived glioma tumorspheres (PDTs) harboring IDH1 mutations were utilized. Vehicle and TMZ treated tumor models were subjected to transcriptional, metabolic, and epigenetic analyses. Transcriptome analysis revealed the upregulation of the p53 signaling pathway and its associated transcription factor, TP53. Notably, combining the p53 activator RITA with TMZ demonstrated strong synergy in certain PDTs. Metabolome analysis uncovered that glycolytic inhibition with the glucose analog 2-DG (2-Deoxy-D-glucose) or combining Mildronate, L-carnitine biosynthesis inhibitor, with TMZ treatment showed efficacy in specific PDTs. Additionally, employing epigenetic approaches using decitabine (DAC) in combination with TMZ revealed robust synergistic effects in select PDTs. These findings underscore the significance of genetic and metabolic heterogeneity among cells in gliomas. In the pursuit of alternative drugs, a high-throughput miniaturized screening identified more than 20 potential candidate drugs, among which the YAP inhibitor Verteporfin (VP) emerged as a promising option. VP exhibited anti-tumor activity in IDH1 mutant PDTs independent of the YAP1 protein. It downregulated the nucleocytoplasmic transport pathway, with NUP107 identified as an upstream regulator associated with VP response. In conclusion, this study elucidated the intricate interplay of signaling pathways and their impact on drug sensitivity in diverse glioma cell populations. It emphasized the need to consider the complexities inherent to gliomas when devising effective therapeutic strategies. The findings provide valuable insights into the development of alternative treatments and strategies to overcome TMZ resistance in IDH1 mutant gliomas

    Brain Tumors

    Get PDF
    Brain tumors comprise a spectrum of histological patterns. Their presentation and management depend on their location, size, and grade of lesions. This book is a collection of high-quality research work from global experts on brain tumors, including meningiomas, and their treatment

    The Interaction of Temozolomide with Blood Components Suggests the Potential Use of Human Serum Albumin as a Biomimetic Carrier for the Drug

    Get PDF
    The interaction of temozolomide (TMZ) (the main chemotherapeutic agent for brain tumors) with blood components has not been studied at the molecular level to date, even though such information is essential in the design of dosage forms for optimal therapy. This work explores the binding of TMZ to human serum albumin (HSA) and alpha-1-acid glycoprotein (AGP), as well as to blood cell-mimicking membrane systems. Absorption and fluorescence experiments with model membranes indicate that TMZ does not penetrate into the lipid bilayer, but binds to the membrane surface with very low affinity. Fluorescence experiments performed with the plasma proteins suggest that in human plasma, most of the bound TMZ is attached to HSA rather than to AGP. This interaction is moderate and likely mediated by hydrogen-bonding and hydrophobic forces, which increase the hydrolytic stability of the drug. These experiments are supported by docking and molecular dynamics simulations, which reveal that TMZ is mainly inserted in the subdomain IIA of HSA, establishing -stacking interactions with the tryptophan residue. Considering the overexpression of albumin receptors in tumor cells, our results propose that part of the administered TMZ may reach its target bound to plasma albumin and suggest that HSA-based nanocarriers are suitable candidates for designing biomimetic delivery systems that selectively transport TMZ to tumor cells

    Patient-specific, mechanistic models of tumor growth incorporating artificial intelligence and big data

    Full text link
    Despite the remarkable advances in cancer diagnosis, treatment, and management that have occurred over the past decade, malignant tumors remain a major public health problem. Further progress in combating cancer may be enabled by personalizing the delivery of therapies according to the predicted response for each individual patient. The design of personalized therapies requires patient-specific information integrated into an appropriate mathematical model of tumor response. A fundamental barrier to realizing this paradigm is the current lack of a rigorous, yet practical, mathematical theory of tumor initiation, development, invasion, and response to therapy. In this review, we begin by providing an overview of different approaches to modeling tumor growth and treatment, including mechanistic as well as data-driven models based on ``big data" and artificial intelligence. Next, we present illustrative examples of mathematical models manifesting their utility and discussing the limitations of stand-alone mechanistic and data-driven models. We further discuss the potential of mechanistic models for not only predicting, but also optimizing response to therapy on a patient-specific basis. We then discuss current efforts and future possibilities to integrate mechanistic and data-driven models. We conclude by proposing five fundamental challenges that must be addressed to fully realize personalized care for cancer patients driven by computational models

    OTX015 PROTACs: Emerging Novel Therapeutic Agents in Cancer Treatment

    Get PDF
    Cancer is a wide-spreading disease. Its count goes on increasing and became the second leading cause of death in respect of diseases. New cancer-targeting molecules are explored. In this study, we tried to collect information about one such molecule, OTX015. Articles were searched across reputed search engines and publishers such as Cochrane, EMBASE, The Lancet, PubMed, GoogleScholar, ScienceDirect, Wiley Online, Springer and Bentham Science by using different keywords: “OTX015”, “Cancer”, “Small molecule PROTACs”, “BRD/BET” and “BET inhibitors”. The quality papers were retrieved, studied, categorized into different sections, analyzed, and used for article writing.OTX015 is a novel molecule in clinical trials. It showed some promising results in various cancers as well as other diseases like latent-HIV with the least side-effects.This article will give an insight into Small Molecules as PROTACs, their advantages and disadvantages, OTX015 and its PROTAC ARV- 825. It is advised that more research/studies are required to be carried out to know more about OTX015 and other PROTACs, their advancements, receptors, and mechanism/ mode of action to know their abilities to work against proteins involving diseases

    Characterization of vascular heterogeneity of astrocytomas grade 4 for supporting patient prognosis estimation, and treatment response assessment

    Full text link
    [ES] Los tumores cerebrales son una de las enfermedades más devastadoras en la actualidad por el importante deterioro cognitivo que sufren los pacientes, la elevada tasa de mortalidad y el mal pronóstico. Los astrocitomas de grado 4 conllevan una supervivencia de cinco años en aproximadamente el 5% de los pacientes diagnosticados, siendo los tumores más agresivos y letales del Sistema Nervioso Central (SNC). Los astrocitomas de grado 4 siguen siendo un problema médico complejo aún sin resolver. A pesar de representar más del 60% de los tumores cerebrales malignos en adultos, estos tumores tienen una baja prevalencia relativa y se consideran una enfermedad huérfana, lo que dificulta el desarrollo de nuevos fármacos o tratamientos que puedan beneficiar a los pacientes. La agresividad de estos tumores se debe a diferentes características, como la fuerte angiogénesis, la necrosis, la microproliferación vascular, la capacidad de invasión e infiltración de las células tumorales y un microambiente inmunológico particular. Además, debido a la rápida progresión de los astrocitomas de grado 4, en la zona de la lesión coexisten diferentes regiones específicas que cambian con el tiempo. Esta naturaleza compleja, junto con la marcada heterogeneidad interpaciente, intratumoral y longitudinal, complica el éxito de un único tratamiento eficaz para todos los pacientes. La imagen de resonancia magnética (MRI) supone una técnica útil para caracterizar la morfología y la vascularidad del tumor. El uso de métodos avanzados y robustos para analizar las imágenes de MR recogidas en las fases iniciales del tratamiento de los pacientes permite la delimitación de las diferentes regiones de los astrocitomas de grado 4, convirtiéndose en herramientas útiles para investigadores, radiólogos y neurocirujanos. Además, el cálculo de biomarcadores vasculares de imagen, como los propuestos en esta tesis, facilitaría la caracterización del tumor, la estimación del pronóstico y los enfoques de tratamiento más personalizados. Esta tesis propone cuatro pilares fundamentales para avanzar en el manejo de los astrocitomas de grado 4. Estos incluyen I) la caracterización multinivel del tumor para mejorar las clasificaciones de los gliomas de alto grado del SNC; II) la búsqueda y desarrollo de biomarcadores robustos para estimar el pronóstico de los pacientes desde el momento prequirúrgico; III) así como para evaluar la respuesta a los tratamientos y la selección de los pacientes que pueden beneficiarse de terapias específicas; y IV) el diseño e implementación de estudios clínicos y protocolos para la recogida de datos a largo plazo de cohortes de pacientes notables a nivel internacional. Para abordar estos cuatro pilares, se ha utilizado un enfoque interdisciplinario que combina el análisis de imágenes médicas, técnicas avanzadas de inteligencia artificial y variables moleculares, histopatológicas y clínicas. En conclusión, hemos abordado la influencia de la heterogeneidad interpaciente e intratumoral del astrocitoma de grado 4 para la caracterización y clasificación del tumor, la estimación del pronóstico del paciente y la predicción de las respuestas al tratamiento. Además, se han diseñado e implementado diferentes estudios clínicos que permiten la recogida de datos multinivel de cohortes internacionales de pacientes con astrocitoma de grado 4.[CA] Els tumors cerebrals són una de les malalties més devastadores en l'actualitat per la important deterioració cognitiva que pateixen els pacients, l'elevada taxa de mortalitat i el mal pronòstic. Els astrocitomes de grau 4 comporten una supervivència de cinc anys en aproximadament el 5% dels pacients diagnosticats, sent els tumors més agressius i letals del Sistema Nerviós Central (SNC). Els astrocitomes de grau 4 continuen sent un problema mèdic complex encara sense resoldre. Malgrat representar més del 60% dels tumors cerebrals malignes en adults, aquests tumors tenen una baixa prevalença relativa i es consideren una malaltia òrfena, la qual cosa dificulta el desenvolupament de nous fàrmacs o tractaments que puguen beneficiar als pacients. L'agressivitat d'aquests tumors es deu a diferents característiques, com la forta angiogènesis, la necrosi, la microproliferació vascular, la capacitat d'invasió i infiltració de les cèl·lules tumorals i un microambient immunològic particular. A més, a causa de la ràpida progressió dels astrocitomes de grau 4, en la zona de la lesió coexisteixen diferents regions específiques que canvien amb el temps. Aquesta naturalesa complexa, juntament amb la marcada heterogeneïtat interpacient, intratumoral i longitudinal fa que es complique l'èxit d'un únic tractament eficaç per a tots els pacients. L'imatge de ressonància magnètica (MRI) suposa una tècnica útil per a caracteritzar la morfologia i la vascularitat del tumor. L'ús de mètodes avançats i robustos per a analitzar les imatges de MR recollides en les fases inicials del tractament dels pacients permet la delimitació de les diferents regions dels astrocitomes de grau 4, convertint-se en eines útils per a investigadors, radiòlegs i neurocirugians. A més, el càlcul de biomarcadors vasculars d'imatge, com els proposats en aquesta tesi, facilitaria la caracterització del tumor, l'estimació del pronòstic i els enfocaments de tractament més personalitzats. Aquesta tesi proposa quatre pilars fonamentals per a avançar en el maneig dels astrocitomes de grau 4. Aquests inclouen I) la caracterització multinivell del tumor per a millorar les classificacions dels gliomes d'alt grau del SNC; II) la cerca i desenvolupament de biomarcadors robustos per a estimar el pronòstic dels pacients des del moment prequirúrgic; III) així com per a avaluar la resposta als tractaments i la selecció dels pacients que poden beneficiar-se de teràpies específiques; i IV) el disseny i implementació d'estudis clínics i protocols per a la recollida de dades a llarg termini de cohorts de pacients notables a nivell internacional. Per a abordar aquests quatre pilars, s'ha utilitzat un enfocament interdisciplinari que combina l'anàlisi d'imatges mèdiques, tècniques avançades d'intel·ligència artificial i variables moleculars, histopatològiques i clíniques. En conclusió, hem abordat la influència de l'heterogeneïtat interpacient i intratumoral del astrocitoma de grau 4 per a la caracterització i classificació del tumor, l'estimació del pronòstic del pacient i la predicció de les respostes al tractament. A més, s'han dissenyat i implementat diferents estudis clínics que permeten la recollida de dades multinivell de cohorts internacionals de pacients amb astrocitoma de grau 4.[EN] Brain tumors are one of the most devastating diseases today because of the significant cognitive impairment suffered by patients, high mortality rates, and poor prognosis. Astrocytomas grade 4 bring five-year survival in approximately 5% of diagnosed patients, being the most aggressive and lethal tumors of the Central Nervous System (CNS). Astrocytomas grade 4 continue to be an unresolved complex medical problem. Despite accounting for more than 60% of malignant brain tumors in adults, these tumors have a low relative prevalence and are considered an orphan disease, making difficult developing new drugs or treatments that might benefit patients. The aggressiveness of these tumors is due to different characteristics, such as strong angiogenesis, necrosis, vascular microproliferation, the capacity of the tumor cells to invade and infiltrate, and a particular immune microenvironment. In addition, due to the rapid progression of astrocytomas grade 4, different specific regions coexist in the lesion area which change over time. This complex nature, along with the marked interpatient, intratumor, and longitudinal heterogeneity, makes complicate the success of a single efficient treatment for all patients. Magnetic Resonance Imaging (MRI) represents a useful technique to characterize tumor morphology and vascularity. Using advanced and robust methods to analyze MR images collected from initial stages of patient management allows the delineation of different regions of astrocytomas grade 4, becoming useful tools for researchers, radiologists and neurosurgeons. In addition, the calculation of imaging vascular biomarkers, such as those proposed in this thesis, would facilitate tumor characterization, prognosis estimation and more personalized treatment approaches. This thesis proposes four fundamental pillars to advance the management of astrocytomas grade 4. These include I) the multilevel characterization of the tumor to improve classifications of high-grade CNS gliomas; II) the search and development of robust biomarkers for estimating patient prognosis from the presurgical moment; III) as well as for evaluating the response to treatments and the selection of patients who may benefit from specific therapies; and IV) the design and implementation of clinical studies and protocols for long-term collecting data from internationally remarkable cohorts of patients. To address these four pillars, an interdisciplinary approach has been used that combines medical imaging analysis, advanced artificial intelligence techniques, and molecular, histopathological, and clinical variables. Concluding, we have addressed the influence of both interpatient and intratumor heterogeneity of astrocytoma grade 4 for tumor characterization and classification, patient prognosis estimation and predicting treatment responses. In addition, different clinical studies have been designed and implemented allowing the collection of multilevel data from international cohorts of patients with astrocytoma grade 4.Álvarez Torres, MDM. (2022). Characterization of vascular heterogeneity of astrocytomas grade 4 for supporting patient prognosis estimation, and treatment response assessment [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18895
    corecore