402 research outputs found

    Modeling and Compensation of Rate-Dependent Asymmetric Hysteresis Nonlinearities of Magnetostrictive Actuators

    Get PDF
    Smart material actuators are increasingly being explored for various micropositioning applications. Magnetostrictive actuators, in particular, are considered attractive for micro/nano positioning and high speed precision machining due to their high energy density, resolution and force capacity. The magnetostrictive actuators, similar to other smart material actuators, however, exhibit considerable hysteresis and output saturation nonlinearities that tend to become far more significant under high rates of input. Such nonlinearities cause response oscillations and errors in the positioning tasks. Reliable compensation of such nonlinearities is thus highly desirable to enhance micro/nano positioning performance of the actuator over a wide range of operating conditions. This dissertation research is concerned with characterization of output-input nonlinearities of a magnetostrictive actuator and control of hysteresis nonlinearities under a wide range of inputs. A comprehensive experimental study was performed to characterize output-input characteristics of a magnetostrictive actuator under a wide range of excitation conditions include amplitude, frequency, and bias of the input and the mechanical loading of the actuator. The measured data were analyzed to characterize output-input properties and to formulate a hysteresis model, to describe the hysteresis properties of these actuators. A Prandtl-Ishlinskii model was considered due to its continuous nature and thereby the invertability to seek hysteresis compensation. A rate-dependent threshold function was proposed to describe hysteresis properties of the actuator over a wide range of input frequencies. The inverse of the proposed rate-dependent hysteresis model was subsequently formulated for compensation of rate-dependent symmetric hysteresis nonlinearities. The effectiveness of the inverse model was investigated through simulations and hardware-in-the-loop test methods considering a 100 μm magnetostrictive actuator acquired from Etrema Inc. The results clearly illustrated effective compensation of symmetric hysteresis nonlinearities under low magnitude excitation currents over the entire frequency range. The method, however, revealed substantial errors under medium to high amplitude excitation, which was attributed to output saturation and asymmetry. The concept of a stop-operator based Prandtl-Ishlinskii model was proposed to achieve compensation of hysteresis nonlinearities described by the play-operator based hysteresis model on the basis of the initial loading curve, it was shown that the complementary properties of stop operators can be effectively applied for compensation of actuator hysteresis described by the Prandtl-Ishlinskii model. The inverse rate-dependent Prandtl-Ishlinskii model and the stop-operator based Prandtl-Ishlinskii model, however, are applicable only for compensation rate-dependent symmetric hysteresis and rate-independent hysteresis nonlinearities, respectively. The proposed rate-Prandtl-Ishlinskii model was refined to describe the rate-dependent asymmetric hysteresis nonlinearities together with output saturation by integrating a memoryless function to the rate-dependent Prandtl-Ishlinskii model. The resulting integrated model could accurately describe the asymmetric hysteresis nonlinearities and output saturation of the magnetostrictive actuator. The inverse of the integrated model was obtained by integrating the inverse of the rate-dependent Prandtl-Ishlinskii model with that of the memoryless function. The effectiveness of the integrated inverse model in compensating for hysteresis nonlinearities was investigated through simulations and experimentally using hardware-in-the-loop test method. The results suggested that the proposed integrated model and its inverse could effectively characterize and compensate for rate-dependent asymmetric hysteresis nonlinearities of magnetostrictive actuator. Both the experimental and simulation results showed that the peak hysteresis observed under high magnitude excitation could be reduced from 49.1 % to 3.7 % in the 1-250 Hz range when the integrated model inverse is applied

    Modeling and Compensation of Rate-Dependent Asymmetric Hysteresis Nonlinearities of Magnetostrictive Actuators

    Get PDF
    Smart material actuators are increasingly being explored for various micropositioning applications. Magnetostrictive actuators, in particular, are considered attractive for micro/nano positioning and high speed precision machining due to their high energy density, resolution and force capacity. The magnetostrictive actuators, similar to other smart material actuators, however, exhibit considerable hysteresis and output saturation nonlinearities that tend to become far more significant under high rates of input. Such nonlinearities cause response oscillations and errors in the positioning tasks. Reliable compensation of such nonlinearities is thus highly desirable to enhance micro/nano positioning performance of the actuator over a wide range of operating conditions. This dissertation research is concerned with characterization of output-input nonlinearities of a magnetostrictive actuator and control of hysteresis nonlinearities under a wide range of inputs. A comprehensive experimental study was performed to characterize output-input characteristics of a magnetostrictive actuator under a wide range of excitation conditions include amplitude, frequency, and bias of the input and the mechanical loading of the actuator. The measured data were analyzed to characterize output-input properties and to formulate a hysteresis model, to describe the hysteresis properties of these actuators. A Prandtl-Ishlinskii model was considered due to its continuous nature and thereby the invertability to seek hysteresis compensation. A rate-dependent threshold function was proposed to describe hysteresis properties of the actuator over a wide range of input frequencies. The inverse of the proposed rate-dependent hysteresis model was subsequently formulated for compensation of rate-dependent symmetric hysteresis nonlinearities. The effectiveness of the inverse model was investigated through simulations and hardware-in-the-loop test methods considering a 100 μm magnetostrictive actuator acquired from Etrema Inc. The results clearly illustrated effective compensation of symmetric hysteresis nonlinearities under low magnitude excitation currents over the entire frequency range. The method, however, revealed substantial errors under medium to high amplitude excitation, which was attributed to output saturation and asymmetry. The concept of a stop-operator based Prandtl-Ishlinskii model was proposed to achieve compensation of hysteresis nonlinearities described by the play-operator based hysteresis model on the basis of the initial loading curve, it was shown that the complementary properties of stop operators can be effectively applied for compensation of actuator hysteresis described by the Prandtl-Ishlinskii model. The inverse rate-dependent Prandtl-Ishlinskii model and the stop-operator based Prandtl-Ishlinskii model, however, are applicable only for compensation rate-dependent symmetric hysteresis and rate-independent hysteresis nonlinearities, respectively. The proposed rate-Prandtl-Ishlinskii model was refined to describe the rate-dependent asymmetric hysteresis nonlinearities together with output saturation by integrating a memoryless function to the rate-dependent Prandtl-Ishlinskii model. The resulting integrated model could accurately describe the asymmetric hysteresis nonlinearities and output saturation of the magnetostrictive actuator. The inverse of the integrated model was obtained by integrating the inverse of the rate-dependent Prandtl-Ishlinskii model with that of the memoryless function. The effectiveness of the integrated inverse model in compensating for hysteresis nonlinearities was investigated through simulations and experimentally using hardware-in-the-loop test method. The results suggested that the proposed integrated model and its inverse could effectively characterize and compensate for rate-dependent asymmetric hysteresis nonlinearities of magnetostrictive actuator. Both the experimental and simulation results showed that the peak hysteresis observed under high magnitude excitation could be reduced from 49.1 % to 3.7 % in the 1-250 Hz range when the integrated model inverse is applied

    Un estudio comparativo de actuadores Piezoeléctricos y Magnetoestrictivos para estructuras inteligentes

    Get PDF
    [EN] This paper introduces a comparative analysis of Piezoelectric (PZ) and Magnetostrictive (MS) actuators as components in smart structures. There is an increasing interest in functional structures which are able to adapt to external or internal perturbations, i.e. changes in loading conditions or ageing. Actuator technologies must perform concomitantly as sensors and actuators to be applicable in smart structures. In this paper we will comparatively analyze the possibility of using PZ and MS actuators in smart structures and in so doing their capability to act concomitantly as sensors and of modifying their material characteristics. We will also focus on the analysis of how them can be integrated in structures and on the analysis of the most appropriate structures for each actuator. The operational performance of PZ (Stacks) and MS actuators will be compared and eventually some conclusions will be drawn.[ES] Este artículo presenta un estudio comparativo de actuadores Piezoeléctricos (PZ) y Magnetoestrictivos (MS) como elementos integrantes de estructuras inteligentes. Existe un interés creciente en estructuras activas que puedan adaptarse a perturbaciones tanto internas como externas, por ejemplo, ante cambios en carga estructural o ante su envejecimiento. Para que un actuador forme parte de una estructura inteligente, debe poder actuar también como sensor. Este artículo presenta un estudio comparativo del uso de actuadores PZ y MS en estructuras inteligentes y, como consecuencia, de su habilidad para actuar y medir simultáneamente así cómo para modificar sus características mecánicas. Nos centraremos también en el análisis de como pueden integrase en estructuras y cuales son las más indicadas para cada actuador. Se compararán las características operacionales de los actuadors PZ multicapa y los MS.Peer reviewe

    Self-Contained Hybrid Electro-Hydraulic Actuators using Magnetostrictive and Electrostrictive Materials

    Get PDF
    Hybrid electro-hydraulic actuators using smart materials along with flow rectification have been widely reported in recent years. The basic operation of these actuators involves high frequency bidirectional operation of an active material that is converted into unidirectional fluid motion by a set of valves. While theoretically attractive, practical constraints limit the efficacy of the solid-fluid hybrid actuation approach. In particular, inertial loads, fluid viscosity and compressibility combine with loss mechanisms inherent in the active material to limit the effective bandwidth of the driving actuator and the total output power. A hybrid actuator was developed by using magnetostrictive TerFeNOL-D as the active driving element and hydraulic oil as the working fluid. Tests, both with and without an external load, were carried out to measure the unidirectional performance of the actuator at different pumping frequencies and operating conditions. The maximum no-load output velocity was 84 mm/s with a 51 mm long rod and 88 mm/s with a 102 mm long rod, both noted around 325 Hz pumping frequency, while the blocked force was close to 89 N. Dynamic tests were performed to analyze the axial vibration characteristics of the Terfenol-D rods and frequency responses of the magnetic circuits. A second prototype actuator employing the same actuation principle was then designed by using the electrostrictive material PMN-32%PT as the driving element. Tests were conducted to measure the actuator performance for varying electrical input conditions and fluid bias pressures. The peak output velocity obtained was 330 mm/s while the blocked force was 63 N. The maximum volume flow rate obtained with the PMN-based actuator was more than double that obtained from the Terfenol-D-based actuator. Theoretical modeling of the dynamics of the coupled structural-hydraulic system is extremely complex and several models have been proposed earlier. At high pumping frequencies, the fluid inertia dominates the viscous effects and the problem becomes unsteady in nature. Due to high pressures inside the actuator and the presence of entrained air, compressibility of the hydraulic fluid is important. A new mathematical model of the hydraulic hybrid actuator was formulated in time-domain to show the basic operational principle under varying operating conditions and to capture the phenomena affecting system performance. Linear induced strain behavior was assumed to model the active material. Governing equations for the moving parts were obtained from force equilibrium considerations, while the coupled inertia-compliance of the fluid passages was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. Compressibility of the working fluid was incorporated by using the bulk modulus. The model was then validated using the measured performance of both the magnetostrictive and electrostrictive-based hybrid actuators

    Vibration Energy Harvesting for Wireless Sensors

    Get PDF
    Kinetic energy harvesters are a viable means of supplying low-power autonomous electronic systems for the remote sensing of operations. In this Special Issue, through twelve diverse contributions, some of the contemporary challenges, solutions and insights around the outlined issues are captured describing a variety of energy harvesting sources, as well as the need to create numerical and experimental evidence based around them. The breadth and interdisciplinarity of the sector are clearly observed, providing the basis for the development of new sensors, methods of measurement, and importantly, for their potential applications in a wide range of technical sectors

    Smart Materials and Devices for Energy Harvesting

    Get PDF
    This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery “charge or change” issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds

    A finite element approach for the implementation of magnetostrictive material terfenol-D in automotive CNG fuel injection actuation

    Get PDF
    Magnetostriction is the deformation that spontaneously occurs in ferromagnetic materials when an external magnetic field is applied. In applications broadly defined for actuation, magnetostrictive material Terfenol-D possesses intrinsic rapid response times while providing small and accurate displacements and high-energy efficiency, which are some of the essential parameters required for fast control of fuel injector valves for decreased engine emissions and lower fuel consumption compared with the traditional solenoid fuel injection system. A prototype CNG fuel injector assembly was designed, which primarily included magnetostrictive material Terfenol-D as the actuator material, 1020 Steel having soft magnetic properties as the injector housing material, AWG copper wire as the coil material and 316 Stainless Steel having non-magnetic properties as the plunger material. A 2D cross-sectional geometry including the injector housing, coil, Terfenol-D shaft, and plunger, was modeled in both Finite Element Method Magnetics (FEMM) and ANSYS for 2D axisymmetric magnetic simulation. The magnetic simulations were performed in order to determine the coil-circuit parameters and the magnetic field strength to achieve the required magnetostrictive strain, and consequently, the injector needle lift. The FEMM magnetic simulations were carried out with four different types of AWG coil wires and four different injector coil thicknesses in order to evaluate the relationship between the different coil types and thicknesses against the achieved strain or injector lift. Eventually, the optimized parameter obtained from FEMM results analysis was verified against ANSYS electromagnetic simulation. Subsequently, a three dimensional replica of the CNG flow conduit was modelled in GAMBIT with the resultant injector lift. The meshed conduit was then simulated in FLUENT using the 3D time independent segregated solver with standard k-ε, realizable k-ε and RSM turbulent models to predict the mass flow rate of CNG to be injected. Eventually, the simulated flow rates were verified against mathematically derived static flow rate required for a standard automotive fuel injector considering standard horsepower, BSFC and injector duty cycle

    A state-of-the-art assessment of active structures

    Get PDF
    A state-of-the-art assessment of active structures with emphasis towards the applications in aeronautics and space is presented. It is felt that since this technology area is growing at such a rapid pace in many different disciplines, it is not feasible to cover all of the current research but only the relevant work as relates to aeronautics and space. Research in smart actuation materials, smart sensors, and control of smart/intelligent structures is covered. In smart actuation materials, piezoelectric, magnetostrictive, shape memory, electrorheological, and electrostrictive materials are covered. For sensory materials, fiber optics, dielectric loss, and piezoelectric sensors are examined. Applications of embedded sensors and smart sensors are discussed
    corecore