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ABSTRACT

Omar Farhan Aljanaideh
Concordia University, 2013

Smart material actuators are increasingly being explored for various micropositioning
applications. Magnetostrictive actuators, in particular, are considered attractive for micro/nano
positioning and high speed precision machining due to their high energy density, resolution
and force capacity. The magnetostrictive actuators, similar to other smart material actuators,
however, exhibit considerable hysteresis and output saturation nonlinearities that tend to
become far more significant under high rates of input. Such nonlinearities cause response
oscillations and errors in the positioning tasks. Reliable compensation of such nonlinearities is
thus highly desirable to enhance micro/nano positioning performance of the actuator over a

wide range of operating conditions.

This dissertation research is concerned with characterization of output-input nonlinearities
of a magnetostrictive actuator and control of hysteresis nonlinearities under a wide range of
inputs. A comprehensive experimental study was performed to characterize output-input
characteristics of a magnetostrictive actuator under a wide range of excitation conditions
include amplitude, frequency, and bias of the input and the mechanical loading of the actuator.
The measured data were analyzed to characterize output-input properties and to formulate a
hysteresis model, to describe the hysteresis properties of these actuators. A Prandtl-Ishlinskii
model was considered due to its continuous nature and thereby the invertability to seek
hysteresis compensation. A rate-dependent threshold function was proposed to describe

hysteresis properties of the actuator over a wide range of input frequencies. The inverse of the
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proposed rate-dependent hysteresis model was subsequently formulated for compensation of
rate-dependent symmetric hysteresis nonlinearities. The effectiveness of the inverse model was
investigated through simulations and hardware-in-the-loop test methods considering a 100 um
magnetostrictive actuator acquired from Etrema Inc. The results clearly illustrated effective
compensation of symmetric hysteresis nonlinearities under low magnitude excitation currents
over the entire frequency range. The method, however, revealed substantial errors under
medium to high amplitude excitation, which was attributed to output saturation and
asymmetry. The concept of a stop-operator based Prandtl-Ishlinskii model was proposed to
achieve compensation of hysteresis nonlinearities described by the play-operator based
hysteresis model on the basis of the initial loading curve, it was shown that the complementary
properties of stop operators can be effectively applied for compensation of actuator hysteresis

described by the Prandtl-Ishlinskii model.

The inverse rate-dependent Prandtl-Ishlinskii model and the stop-operator based Prandtl-
Ishlinskii model, however, are applicable only for compensation rate-dependent symmetric
hysteresis and rate-independent hysteresis nonlinearities, respectively. The proposed rate-
Prandtl-Ishlinskii model was refined to describe the rate-dependent asymmetric hysteresis
nonlinearities together with output saturation by integrating a memoryless function to the rate-
dependent Prandtl-Ishlinskii model. The resulting integrated model could accurately describe
the asymmetric hysteresis nonlinearities and output saturation of the magnetostrictive actuator.
The inverse of the integrated model was obtained by integrating the inverse of the rate-
dependent Prandtl-Ishlinskii model with that of the memoryless function. The effectiveness of
the integrated inverse model in compensating for hysteresis nonlinearities was investigated

through simulations and experimentally using hardware-in-the-loop test method. The results
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suggested that the proposed integrated model and its inverse could effectively characterize and
compensate for rate-dependent asymmetric hysteresis nonlinearities of magnetostrictive
actuator. Both the experimental and simulation results showed that the peak hysteresis
observed under high magnitude excitation could be reduced from 49.1 % to 3.7 % in the 1-250

Hz range when the integrated model inverse is applied.
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CHAPTER 1

LITERATURE REVIEW AND SCOPE OF THE DISSERTATION

2.1 Introduction

Smart materials are new technologies that have emerged during the past two decades to
replace the classic type of actuators such as (electromagnetic, hydraulic and pneumatic) for
applications requiring miniaturization, micropositioning, fast response and high resolution. These
materials are able to change their physical properties in response to external cues like electric or
magnetic fields. Such materials are considered attractive for micro-positioning actuation and
sensing purposes. Magnetostrictive materials are among the most widely used materials in micro-
actuators requiring high force capacity and rapid response [1]. These actuators have been used in
high accuracy milling, hydraulic valves and vibration attenuation devices [1-4]. The positioning
and tracking performance of smart material actuators is strongly limited due to the presence of
hysteresis nonlinearities between the input and the output. These nonlinearities are known to cause
oscillations in the open-loop system’s responses, as well as poor tracking performance and
potential instabilities in the closed-loop system [5,6]. The nonlinearities in the Terfenol-D type
magnetostrictive actuators are particularly significant due to their asymmetric output-input

relationship and output saturation effect.

The tracking performance of such actuators could be significantly enhanced through
compensation of hysteresis effects. Considerable efforts have thus been made towards
compensation of hysteresis effects through various controller designs. Compared to the controller-
based compensation methods, the model-based methods may be considered more effective in

realizing hysteresis compensation over a wider range of operating conditions. However, the
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available inverse-model based compensation methods lack adequate considerations of strong
effects of the input rate on the hysteresis nonlinearities of smart actuators. The hysteresis
nonlinearities of magnetostrictive actuators, similar to the other smart material actuators,
invariably, increase with increasing excitation frequency of the applied input [7-9], which limits
the application of these models to a narrow range of excitation frequency. Furthermore, unlike the
other smart material actuators, the magnetostrictive actuators exhibit substantial asymmetry in the

output and output saturation.

The proposed dissertation research concerns the characterization and compensation of
hysteresis of magnetostrictive actuators that invariably exhibit symmetric as well as asymmetric
input-output properties with output saturation nonlinearity. Since the hysteresis properties of
magnetostrictive actuators are strongly dependent upon the rate of applied input current, a rate-
dependent Prandtl-Ishlinskii model is proposed to characterize the symmetric output-input
hysteresis as a function of the input rate. The suggested model is subsequently enhanced by
integrating a memoryless function of deadband operators to describe asymmetric output-input
hysteresis nonlinearities. The model parameters are identified on the basis of comprehensive
measured data acquired for a Terfenol-D magnetostrictive actuator under a wide range of operating
conditions, involving various current amplitude, rate of input, input bias and mechanical load. An
inverse of the rate-dependent Prandtl-Ishlinskii model is subsequently formulated and
implemented in a feedforward manner to seek compensation for rate-dependent hysteresis and
output saturation nonlinearities. The validity of the rate-dependent hysteresis model is
demonstrated on the basis of the measured data. The inverse model is implemented in the
laboratory with a Terfenol-D magnetostrictive actuator in a hardware-in-the-loop configuration to

illustrate effectiveness of the model based hysteresis compensator.



2.2 Literature review

Compensation of hysteresis in smart material actuators involves hysteresis characterization,
modeling and development of compensation algorithms and controllers. The reported relevant
studies in each of these domains are reviewed to build essential background knowledge and to
select effective methods for characterization and compensation of hysteresis as well as output
saturation nonlinearities. The reviewed studies are systematically grouped under different relevant

topics and summarized in the following subsections.

2.2.1 Characterization of hysteresis in magnetostrictive actuators

Magnetostrictive materials, generally, exhibit rate-dependent, saturated, major and minor
hysteresis loops in the output-input characteristics. The measured hysteresis relations between the
input current (magnetic field) and the output displacement (magnetization) of magnetostrictive
actuators have been reported in different studies [7,10,11,12]. Although the output displacement
of a magnetostrictive actuator depends on several operating conditions like bias level, and
magnitude and frequency of the input current, the reported experimental studies on hysteresis
phenomenon in magnetostrictive actuators have been mostly limited to only some of these

influencing operating conditions.

Calkiens et al. [11] characterized the hysteresis nonlinearities of a magnetostrictive
actuator comprising a 115 mm long and 12.7 mm diameter Terfenol-D rod. Two different coils
encapsulated the rod providing a magnetic field of up to 5.6 kA/m. An LVDT was coupled to the
system to measure the output displacement of the rod. The device was actuated at both high and
low input levels to generate major and minor hysteresis loops. Ignoring the effect of the input rate,

the study concluded that excitations at different input levels yield different hysteresis properties.
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Furthermore, the displacement responses of the magnetostrictive actuators invariably reveal
significant saturation nonlinearity under large amplitude excitations. Stuebner et al. [13]
investigated the hysteresis properties of a magnetostrictive actuator under identical current
amplitudes but different bias levels in the magnetic field. The experiment considered a sinusoidal
magnetic field of amplitude 12.5 kA/m, applied with three different bias fields (25.0, 50.0, 75.0
kA/m). The peak displacement responses under inputs with 50.0 and 75.0 kA/m bias were 50%
and 75% lower, respectively, compared to that measured under lower bias of 25 kA/m. In an
attempt to investigate the effect of input rate, Tan and Baras [7] characterized the hysteresis of a
magnetostrictive actuator under inputs over the 10-300 Hz frequency range. The actuator
employed a Terfenol-D rod of length of 51.3 mm and coil factor of 1.54 x 10*/m. As in the previous
studies, the output displacement of the driving rod was measured using an LVDT, which typically
showed a drift and affected the accuracy of measurements under higher operating frequencies. The
results demonstrated hysteresis nonlinearities that are strongly rate-dependent beyond the

excitation frequency of 10 Hz, and relatively rate-independent at frequencies below 10 Hz.

The studies reporting the measured output-input characteristics of magnetostrictive actuators
have generally shown consistent effects of different operating factors, which are summarized

below [1,7,10,11,13,14,15,17]:

» The instantaneous displacement response of the actuator depends on the value of the
instantaneous input current in addition to the displacement at the previous instant;

» The displacement amplitude response of the actuator increases and tends to saturate as the
input current increases, and decreases as the input current decreases [11,17];

» The major hysteresis loop can be formed by decreasing and increasing the input current
between the extreme minimum and maximum amplitudes of the input current (magnetic
field) [16];



» The minor hysteresis loops in the output-input characteristics of the magnetostrictive
actuators, generated at identical amplitudes of harmonic inputs and different bias levels,
showed notable differences in the displacement response. Moreover, regardless of the
output level, the minor loops generated under same input level were non-congruent [1];

» The hysteresis loops were relatively rate-independent at low frequencies (for example: 1,
5, 10 Hz), but effect of the input rate increased significantly at frequencies above 10 Hz
[18].

Figure 1.1 illustrates the measured output-input characteristics of magnetostrictive
actuators reported in the some of the above-mentioned studies. The majority of the reported studies
have focused on synthesizing a rate-independent model and a compensator on the basis of the
experimental results attained under limited ranges of operating conditions, while the influences of

both the frequency and amplitude of excitation current have been generally ignored.
2.2.2 Rate-independent hysteresis models

A large number of analytical models have been proposed to characterize the hysteresis
properties of smart actuators. The primary goal of these models is to predict the hysteresis
behaviour of materials and smart actuators in order to study the effects of hysteresis on the system
output response and facilitate the design of controllers and hysteresis compensation. These models
may be generally classified into physics-based models [1,14,19,20,21] and phenomenological
models [8,22,23,24,25]. The phenomenological models can be further classified into differential
equation-based models such as Duhem model [24] and Bouc-Wen model [24], and the operator-
based hysteresis models such as Preisach model [1,22,23], Prandtl-Ishlinskii model [26] and
Kransnosel’skii-Pokrovskii model [1,28,29]. The differential equation-based models comprise

nonlinear differential equations for describing the input-output relations. These models, however,



exhibit several limitations for control system design applications, and pose considerable challenges

in parameters identification. Moreover, these models are not invertible and cannot be applied for

model-based hysteresis compensation [1,17,21,27].

15

um

b o

-
S f
-15
-1.0 0 A 1.0
| —=
(a)
0.6 ! !
E Pl ?
=3 ; :
5 : 5
N : !
-‘6 H H
[ = H H
E H H
0.1 _................................E.........................
0 i L
0 0.05 0.1 0,15
Magnetic Field [MA/m]
(c)

10+

Position (m)

Displacement (L m)

.

=]

Displacement (L m)

=1 0 1 2 3 4 5

x10

hale)]

Applied Field (A/m)

(b)

x 10

Displacement (pL m)

-1 -05 0 05 1 -1 -05 0 05 1

Current (A) Current (A)
0 T T —
g
0} - =
o)
g
Qv
of-- P
=
o
0 - - : A 0 - - :
-1 -05 0 05 1 -1 -05 0 05 1
Current (A) Current (A) \

(d)

Figure 1.1: Measured hysteresis properties of magnetostrictive actuators reported in different
studies: (a) Major and minor hysteresis loops [12]; (b) Saturation in output displacement [17]; (¢)
Minor loops at identical amplitude but different bias levels [13]; and (d) Influence of rate of input

[7].

The phenomenological models such as Preisach, Krasnosel’skii-Pokrovskii and Prandtl-

Ishlinskii models have been widely employed to characterize hysteresis behaviour of smart



material actuators. These models are described below in details together with their implementation

for smart material actuators.

2.2.3 Preisach model

The hysteresis in magnetic materials was first studied by James A. Ewing in 1881, where
hysteresis loops between the magnetic field H and the magnetic flux density B in soft-iron ring
were observed. The first attempt to characterize this phenomenon, however, was carried out nearly
60 years later by Ferenc Preisach, where it was suggested to use an aggregate of superposition of
weighted blocks "relays" to represent the H-B hysteresis in an iron compound material
[1,22,30,31]. The Preisach model exhibits flexibility and desirable mathematical properties to
quantify hysteresis nonlinearities in several hysteretic systems. Consequently, this model has been
extensively used for modeling hysteresis of electromagnetic materials and smart actuators.
Mayergoyz in [22] assigned the congruency and the wiping out properties as the necessary
conditions for any hysteretic systems to be described by the Preisach model. These properties have

been validated in for piezoceramic and shape memory alloy (SMA) actuators [32]. The Preisach
model employs an infinite set of relay operators 7,5, , while the output of the model is derived
from a superposition of a set of the weighted relay operators. For a given input v(¢) in each interval

[4.1, /] of a partition C[0, T1, the output 7,4, [VI(?) of the relay operator is given by:

+1 for v(t;) 2 ap
Vappo V1) = -1 Jor v(t;) < Bp (1.1)
Va8, V1) for v(t;) <ap &v(t;)> fp

forte [t t].



where v(7) is the input, and the constants ap and fp define the switching or the threshold values of
the input corresponding to upward and downward shifting of the output, respectively, as shown in

Figure 1.2.

The above operator forms the building block for the Preisach model, where the output of
the relay operator is either +1 or -1 depending on the value of the input. The output switches from
-1 to +1 when the input approaches or exceeds ap, and from +1 to -1 when the input is less than
and Sp. The operator thus exhibits strong discontinuities near v(¢)= a.p and v(¢)= fp, while the output

1s limited to either +1 or -1.

}ﬁqJﬁ
A
+1 <>

y @)

-1

Figure 1.2: The input-output relationship of the relay operator used in the Preisach hysteresis
model [24].

The output of the Preisach model Qp[v](7) is obtained from superposition of weighted outputs of

the relay operators such that [22]:

Q0= [[0p@p. fp)ra,p, N0dapdp, (12

ap=pfp
where wp(ap, Bp) is the density function, which is integrable and positive, and is generally
identified from the measured data of a particular material or actuator.

Properties of the Preisach model and its applications to smart material actuators hysteresis
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In [22], Mayergoyz defined two essential properties of the Preisach model: (i) the wiping
out property; and (ii) the congruent minor loop property. These are the necessary and sufficient
conditions for the existence of a Preisach model. The wiping out property states that the extrema
of the input can remove the effects of a previous extrema, essentially, the memory of the model
will be wiped out. The congruent minor-loop property states that, at any point on the minor loop,
the output variation will be identical under two inputs and the minor loops will thus have the same
shape. Furthermore, the result two minor loops are considered to be equivalent only if they are
generated by identical monotonically varying inputs. These two properties have also been verified
by Hughes and Wen [32] for piezoceramic and SMA actuators. Furthermore, the Preisach model
has been applied in the same study to characterize hysteresis properties of the piezoceramic and
SMA actuators by integrating the classical relay operator and a density function in the form of a
second-order polynomial in thresholds. Several studies have proposed different modified Preisach
models for characterizing hysteresis in various materials and smart actuators such as piezoceramic
[33], magnetostrictive [16,18] and SMA actuators [34,35,36]. Ge and Jouaneh [33] modified the
classical relay operator with the output threshold of either ‘-1’ or ‘+1’ to an alternate Preisach
operator with a threshold or switching values of ‘0’ or ‘“+1°, considering the unidirectional dipole
polarization of the piezoceramic materials. Subsequently, a model was formulated to characterize
hysteresis of a piezoceramic actuator subject to inputs at 0.5 Hz. Modifying the output switching
values to ‘0’ and ‘“+1” instead of *-1” and ‘+1° does not, however, address the asymmetric hysteresis
loops observed in magnetostrictive actuators, which could be achieved by employing a density
function with different weights for the increasing and decreasing inputs. Such an approach has

been applied to characterize hysteresis of magnetostrictive actuators in [7,8,16,38].



Hughes and Wen [32] measured the hysteresis properties of piezoceramic patches and
SMA wires coupled with a cantilever beam. Since the Preisach model is characterized by two
properties, wiping out and minor loops congruency, the study was performed to validate the
applicability of the Preisach model to describe the hysteresis nonlinearities of these actuators.
Consequently, the measurements were performed in order to characterize the congruency of minor
hysteresis loops and the wiping out property of the beam coupled with the selected actuator, while
the deflections of the beam were measured using strain gauges. The piezoceramic patches showed
a high degree of congruency in the comparable minor loops and the wiping out property was
largely satisfied. The effects of different preloads on the actuators’ hysteresis were also

investigated by applying a high magnitude static force to the tip of the beam.

The modeling of magnetic field (H)-magnetic induction (B) hysteresis in magnetic
materials is a classic problem that goes back to 1935 [1], when Ferenc Preisach suggested
analytical mathematical formulas, referred to as the "Preisach model", to characterize H-B
hysteresis loops in a magnetic material. Since magnetic materials exhibit similar hysteresis
behaviour, several studies have employed Preisach model to characterize H-B hysteretic curves in
various magnetic materials such as cobalt and iron compounds [8,29,37]. The application of
Preisach model to characterize magnetic field (H)-magnetization (M) curves observed in
magnetostrictive materials began in the early 1990s [38], where a variation of magnetic field H
due to an input current was applied to attain an elongation (magnetostriction) A of a Terfenol-D

specimen due to change in the magnetization M.

The Preisach model has been used in numerous studies to describe hysteresis nonlinearities
of magnetostrictive actuators employing Terfenol-D rods along with permanent magnetic field that

provides constant bias level in the magnetic field (Hvias) [7,8,16,37]. The classic Preisach model
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was employed by Natale et al. [10] to characterize rate-independent hysteresis of a
magnetostrictive actuator. A Preisach density function identified using a fuzzy-logic algorithm and
the model showed good agreements with the experimental data acquired under an excitation at 5
Hz. Preisach model was also applied in an attempt to characterize the hysteresis nonlinearities of
a magnetostrictive actuator from Etrema Inc. that provided 50 pm output stroke [16]. The study
employed the classic relay operator with a density function identified based on the least square

optimization method to characterize major hysteresis loops measured at a frequency of 1 Hz.

Cavallo et al. [37] tested the performance of a magnetostrictive actuator from Energen
Company that was designed with variable prestress level on the Terfenol-D rod using a
compression bolt. The output displacement of the actuator was measured under different prestress
levels (80, 160 N), using an eddy current proximity sensor. The actuator showed relatively higher
displacement under the higher prestress. The results were employed to formulate a Preisach model
to account for the prestress level effect, which showed good agreement with the experimental data

acquired at an excitation frequency of 2 Hz.

2.2.4 Krasnosel’skii-Pokrovskii model

The Krasnosel’skii-Pokrovskii (KP) model employs hysteresis operator derived from the
Preisach operator [1,28,29]. This operator is constructed from two different functions bounded by
two piecewise Lipschitz continuous functions. A ridge function, dxp(v), is used to formulate the

Krasnosel’skii-Pokrovskii operator, expressed as:

-1 for v(t) <0

+2V—(t) Jor 0<v(t)<agp (1.3)
Agp
1 Jor  v(t)>agp

Sep () =11

11



where akp is a positive constant for a given input v(¢) € C[0, T]. The output of the Krasnosel’skii-
Pokrovskii operator M gp[v](¢) for input v(¢) in each interval [¢.;, t] of a partition C[0, T] is
expressed as (Figure 1.3):

max( M gp[VI(t; 1), 0kp(V(t) —ap))  for v(1)>0

M gp[V](t) = min( M gp[vI(t;),6xp (V1) = Bp))  for v(1) <0 (1.4)
Mgp(t;) Jor v(1)=0

for ¢ € [t.;, ¢;], where ap and fp are constant thresholds of the Preisach relay operator, as shown in

Figure 1.3.

Figure 1.3: The input-output relationship of the KP operator [1].

The KP operator is Lipschitz continuous, the input-output curve exhibits a finite slope. The output
of the Krasnosel’skii-Pokrovskii model is derived upon integration of the weighted KP operators

as [28,29]:

YO = [[pr(@p.ip) MiplvOdapdfy (1.5)

apzfip

where Wkp(?) is the output and pxp(ap, fp) is a density function.

A few studies have also employed the KP operator in the Preisach model to characterize

hysteresis of smart actuators. Banks et al. [39] investigated the properties of the Krasnosel’skii-
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Pokrovskii model for characterizing hysteresis nonlinearities in smart actuators, particularly the
SMA actuators. Galinaitis [28] employed Krasnosel’skii-Pokrovskii operator, instead of the
Preisach relay operator, in the Preisach model to characterize hysteresis nonlinearities of a
piezoceramic actuator at an excitation frequency of 0.01 Hz. In a similar manner, Smith [1]

suggested this model for characterization of hysteresis nonlinearities in magnetostrictive actuators.

2.2.5 Prandtl-Ishlinskii model

The Prandtl-Ishlinskii model is a subclass of the Preisach model that quantifies hysteresis
nonlinearities by summation of weighted play or stop operators [26]. The one dimensional play
and stop operators provide continuity, and are characterized by the input v(¢) and the threshold s.
Figures 1.3 and 1.4 depict the input-output characteristics of the stop and play operators,
respectively. The attributes of the stop operator match the linear stress-strain relationship described
by the Hooke's law, when the stress is below the yield threshold stress s. As the stress approaches
the yield value of s, the stress remains constant under further increase in the strain. The output of
the stop operator Es[v](¢) for an input v(¢) in each interval [#.;, 4] of a partition C[0, T] can be

expressed as [26]:
E [v](t) = min{ max{ —s, v(t)-v(t, )+ E[v](, )}, s} (1.6)

fort €[t.1, t;].
E;
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Figure 1.4: The input-output relationship of the stop operator [26].

)

The output of the stop operator-based Prandtl-Ishlinskii (SPI) model P[v](¢) is obtained

from summation of the weighted operators in a similar manner:
. S
WIvI() = [ W, (5)E, V](0)dr (1.7)
0

where W, (s) is the density function. The output of the SPI model may be numerically expressed

as [26]:

PV = 3w, (5)E, V10 (18)

where 7y is a positive integer that represents the number of stop operators used and the weights

w, (s,) are defined as:
UACHERTACH el (1.9)

Figure 1.5 illustrates the input-output characteristics of the play operator which is characterized by
the threshold » and the input v(¢). Analytically, for an input v(¢) in each interval [#.;, #;] of a partition

AC[0, T], the output of the play operator F,[v](¢) can be expressed as [26]:
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E[vI(@) = max{v(z) — r,min{v(s) + r, F,[v]{t; )} } (1.10)

fort €[t.1, ).
The output of the classical Prandtl-Ishlinskii model ®[v](¢) employing the play operators F,and

the density function p,.(r) can be expressed as [26]:
o R
OI(E) = | P, (), I(0)dr (1.11)
0

where ¢ is a positive constant. The output of the play operator-based Prandtl-Ishlinskii (PPI) model

can also be numerically expressed as [26]:

DVI(E) = gv(t) + Y. p, ()F, Vo) (1.12)

where n, 1s a positive integer representing the number of the play operators considered and p_ (r,)

are the weights, expressed as:

P (1) =p, ()l = 1] (1.13)

F,
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Figure 1.5: Input-output relationship of the play operator [26].

The classical Prandtl-Ishlinskii model cannot accurately characterize the hysteresis
properties of magnetic materials and smart actuators, which invariably exhibit nonlinear output
saturation and asymmetry in the output-input characteristics. However, the model can effectively
describe the hysteresis properties of piezoceramic actuators subjected to excitations at low
frequencies (below 5 Hz), which are known to be symmetric [25,33,42,40]. Consequently, the
model has been employed to characterize hysteresis in actuators that show symmetric, unsaturated
hysteresis nonlinearities such as piezoceramic actuators. Janocha and Kuhnen [41] employed
classic play operators to characterize hysteresis in a piezoceramic actuator subjected to triangular
input at a frequency of 0.5 Hz. Due to the continuous nature, the use of only 10 play operators
resulted in accurate characterization of the hysteresis nonlinearities of the actuator. In a similar
manner, Krejci and Kuhnen [42] proposed the classical play operator to characterize hysteresis
nonlinearities of a piezoceramic actuator subjected to harmonic inputs applied at a low frequency,

while the output displacement was measured using high-precision laser interferometer.
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2.2.6 Modified and generalized Prandtl-Ishlinskii models

The continuity in time and space makes the play operator-based Prandtl-Ishlinskii (PPI)
model an attractive choice for generating input-output hysteresis loops using only a few play
operators, which reduces the computational demand compared to the Preisach and KP models.
However, the classic PPI model shows unsaturated and symmetric hysteresis loops, and is thus
limited to characterization of hysteresis nonlinearities of piezoceramic actuators, which show
unsaturated and symmetric hysteresis loops [9,42]. Consequently, a few modifications have been
proposed to relax the symmetry of the model in order to utilize its attractive continuity property to
characterize hysteresis of range of smart actuators. These modifications may be grouped into two
method-based categories, namely: (i) those based on integration of a deadzone operator together
with the PPI model, and (ii) those employing dissimilar envelope functions under increasing and

decreasing inputs to formulate generalized play operators.

The modified Prandtl-Ishlinskii model employs the classic Prandtl-Ishlinskii model
coupled with a summation of weighted deadband operators, which are nonlinear and memoryless
operators. This approach can relax the symmetry of the classical model and provide saturation of
the output, as observed in magnetostrictive actuators. Figure 1.6 illustrates the output-input
characteristics of the deadzone operator Jy [v](¢), as a function of the threshold d and the input v(z).
The input-output characteristics of the deadzone operator have been related to physical phenomena
in motors, attributed to frictional torques [43]. The Prandtl-Ishlinskii model coupled with the
deadband operators can be employed to characterize both asymmetric as well as saturated
hysteresis nonlinearities [44]. The output of the resulting modified Prandtl-Ishlinskii model Z[v](¢)
is a composition of the deadband operators output, A, and the classical Prandtl-Ishlinskii model

output, @, as [44]:
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Z[v](1) = (Ao @)[v](x) (1.14)

For an input v(¢), the output of the deadband memoryless function, A[v](¢) is obtained from

weighted summation of the deadband operators, Jg, :

A0 =Y. 2,7, K0 (115)

where g, defines the weights and no is a positive integer representing the number of deadzone

operators. The deadband operator, described in Figure 1.6, can be expressed as:

max{®(¢)—-d,,0} for d, >0,
J [@)(@) = (1) for d, =0, (1.16)
min{®(t)—-d,,0} for d, <O0.

Figure 1.6: Input-output relationship of a deadzone operator for input v(¢) [12].
Since the relay operator of the Preisach model yields either +1 or -1, it does not relax the
symmetry of the model without using a density function with different weights for increasing and

decreasing inputs. Alternatively, a generalized play operator has been defined to yield either
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increasing or decreasing output S,[v](#) with increasing or decreasing inputs, in an asymmetric
manner along the continuous envelope curves y; and y,., as shown in Figure 1.7 [26]. The output
of the generalized play operator for any input v(¢) in each interval ¢ € [¢.;, ¢/] of a partition C[0,T]

is analytically defined as:
S.[v1(z,) = max(y,(v(z,)) — r, min(y, (v(z,)) + 7, S, [VI(Z,_,)) (1.17)

In the above formulation, » refers to the threshold value of the classical play operator. Unlike the
classical play operator, the generalized play operator yields zero output, S,{v](¢)=0, at two different
threshold values, {7 and (>, of the increasing and decreasing input v(¢), as shown in Figure 1.7. The
difference in the magnitudes of constants (; and {; allows for describing asymmetric hysteresis
loops. These constants, corresponding to increasing and decreasing inputs, have been related to
the envelope functions and the threshold in the following manner [45]:
< =y (r) for v(t) >0
(1.18)

¢, =7, (=r) for () <0

Sy
Y
W

G /Cl 'v

Figure 1.7: Output-input characteristics of a generalized play operator [26].



The output of generalized Prandtl-Ishlinskii model is subsequently formulated upon integrating

the generalized play operator and the density function as [61]:
. R
D, [v1(1) = [ Po (S, V() (1.19)
0

where 60 [v](?) is the output of generalized Prandtl-Ishlinskii model, and p,(7) is the density

function.

This model integrates the generalized play operator with appropriate envelope and density
functions to describe minor and major hysteresis loops of smart actuators and materials with
asymmetry and saturation properties. The output of the generalized play operator-based Prandtl-

Ishlinskii (GPPI) model can be numerically expressed as [26]:
‘]G
D[V =D pe(r)S - V1) (1.20)
j=0

Kuhnen [12] characterized asymmetric hysteresis nonlinearity of a magnetostrictive
actuator using the rate-independent Prandtl-Ishlinskii model coupled with a superposition of
weighted deadband operators. In another study, Kuhnen and Krejci [44] proposed a play operator
with deadzone operator in order to characterize and compensate for complex hysteresis and creep
effects in a piezoceramic stack-actuated system, with an extended operating range. A recent study
has proposed a generalized Prandtl-Ishlinskii model to characterize asymmetric hysteresis
nonlinearities observed in several smart material actuators [45]. The proposed method showed
effectiveness of the model for describing both asymmetric and saturated hysteresis loops of

magnetostrictive and SMA actuators using a few generalized play operators.
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2.3 Rate-dependent hysteresis models

2.3.1 Operator-based rate-dependent hysteresis models

Although smart material actuators generally exhibit strong rate-dependency of hysteresis
under high rates of inputs, only a few attempts have been made towards models that can account
for the rate effect. A few operator-based hysteresis models have been proposed for characterization
of rate-dependent hysteresis effects in smart material actuators [8,7,22,37,46]. Many of these were
derived from the classical rate-independent models. The most common approach to account for
rate-dependent hysteresis effects in Preisach model is to apply a dynamic density function in to
classical model. Mayergoyz [22,30] proposed a rate-dependent Preisach model by introducing the
time rate of the output in the density function to characterize rate-dependent hysteresis
nonlinearities of magnetic materials. In a similar manner, Ben Mrad and Hu [47] employed a
dynamic density function in the Preisach model, where the input was replaced by the average rate
of the input. The model results obtained under sinusoidal inputs at six distinct frequencies in the
0.1 to 800 Hz range showed agreement with the measured responses of a piezoceramic actuator.
The measured data in this study, however, was limited to only six distinct data points in the major
hysteresis loop. Furthermore, piezoceramic actuators generally exhibit decreasing actuator output with

increasing rate of input [9]

The above-reported studies were mostly based on the Preisach model coupled with a
dynamic density function comprising the rate of either input or the output. Inserting the rate of the
measured output in the density function yields a complex nonlinear differential equation with
memory effects. Alternatively, the output of the model can simply be computed by employing the

rate of the applied input in the density function, instead of the rate of the measured output. The
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effectiveness of the dynamic density function for characterizing hysteresis under higher rate of

inputs, however, has not been demonstrated.

Alternatively, Tan and Baras [7], in an attempt to characterize rate-dependent hysteresis
nonlinearities in a magnetostrictive actuator, assumed a second order linear differential equation
coupled with the classical Preisach model to describe major hysteresis loops under excitations in the
10 and 300 Hz range. The model, however, showed greater characterization error at excitation
frequencies beyond 50 Hz. For example, the maximum characterization error between the output
of the model and the measured displacement at an excitation frequency of 150 Hz was greater than
25%. Moreover, the proposed model could not be employed to characterize hysteresis
nonlinearities acquired at frequencies below 5 Hz, where the hysteresis of the magnetostrictive
actuator is rate-independent. Ang et al. [46] proposed a density function in conjunction with the
Prandtl-Ishlinskii model and deadzone operators to characterize rate-dependent hysteresis in a
piezoceramic actuator. The validity of this model was demonstrated under sinusoidal inputs in the
1 and 19 Hz frequency range. The proposed dynamic model resulted in substantially lower,
hysteresis error, nearly 50 % lower, compared to that attained from the rate-independent hysteresis

model.

Rate-dependent play operators together with a rate-dependent density function have been
proposed and integrated to the Prandtl-Ishlinskii model to describe rate-dependent hysteresis
behaviour of a piezoceramic actuator [9,45]. This model employed a density function formulated
as a nonlinear function of the rate of input. The model was observed to be very effective in
characterizing hysteresis nonlinearities of a piezoceramic actuator under different inputs in the

frequency range of 5 to 500 Hz.
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2.3.2 Differential equation-based hysteresis models

Differential equation-based hysteresis models such as Duhem and the Bouc—Wen models
have been widely used for characterizing hysteresis nonlinearities in different materials and
actuators. The Bouc—Wen model is a differential equation-based model, which originates from the
Bouc model presented in [24,48]. This model has been extensively used to describe hysteretic
behaviour between the applied displacement and the output force in a wide range of mechanical
systems. The relationship between the output of the model z(¢) and the input v(¢) is expressed by

the following differential equation:

(1.21)

Zar ()= V() + B 5y VO] 2(20) |20 + y 4y ¥(0) |2(2)

where npw is a positive integer. The positive constants, a gw, f sw and y_sw, govern the shape of
the hysteresis loops. Different forms of Bouc-Wen model have been proposed to suit hysteresis
properties of different systems, materials, and actuators [48,49]. Hysteretic systems, piezoceramic
actuators [50], polyurethane foams and magneto-rheological fluid dampers [51] are some of the
examples. The major limitations of the Bouc-Wen model are associated with parameter
identification necessary to formulate the model. Moreover, the model, as an equation-based
hysteresis model, is not invertible and thus cannot be applied to inverse model-based hysteresis

compensation methods.

Hodgdon and Coleman [52] proposed the Duhem model for describing relationship
between the input magnetic field H(¢) and the output flux density B(¢) and thereby the hysteresis

in ferromagnetic materials. The model is described by the following differential equation:
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Bty=a p|H@|b H(©) ~B ,(0)+c pH (@) (1.22)

where a p, b p, and ¢ p are positive constants that control the shape of the hysteresis loop. The
output of the Duhem model yields symmetric hysteresis loops. Furthermore, the output of the
model may exhibit unstable minor hysteresis loops [23]. Although a few forms of the Duhem
model have been proposed in the literature to overcome these limitations, these require adding

conditions limit the model’s application in control system design.

2.4 Hysteresis compensation

Owing to undesirable effects of smart material hysteresis, considerable efforts have been
made towards design of controllers for compensation of hysteresis in smart actuators.
Alternatively, a number of model-based hysteresis compensation methods have also been
proposed. The methods-based on controller design are generally not concerned with the hysteresis
model, while the model-based methods rely on inverse hysteresis model to cancel the hysteresis

effect.

A number of control methods have been proposed to compensate for smart actuator
hysteresis such as robust adaptive [7], sliding-mode [53,54] and other nonlinear control algorithms
[1,56]. Su et al. [55] proposed an adaptive controller to control a nonlinear system preceded by
unknown Prandtl-Ishlinskii hysteresis nonlinearities. In this study, the proposed controller leading
to the desired output and global stability was presented. Smith [56] coupled a nonlinear differential
equation with an LQR controller designed to compensate for hysteresis in a magnetostrictive
actuator described by the Jiles-Atherton physics-based hysteresis model. The study employed the
model along with an inverse magnetization model involving solutions of the partial differential
equations using numerical techniques. This approach could yield errors from two sources
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associated with modelling inaccuracies of the numerical inverse. In general, the physics-based
hysteresis models [1,19] are not invertible, and control of hysteresis employing such models
necessitates design of complex nonlinear controllers in a closed-loop manner, inherently

dependent on initial conditions, which requires adaptive or more robust control techniques [1].

The inverse model-based hysteresis compensation methods employ the inverse of the
hysteresis model as a feedforward compensator in a cascade arrangement of the hysteresis model
and its inverse. These methods are considered to be effective and convenient for real-time
compensation and control [16,34,35, 42,57]. The inverse model-based compensation, however,
necessitates the formulation of the hysteresis inverse model, which is often a challenging task. An
open-loop inverse model-based compensation method, shown in Figure 1.8, has been widely
proposed in the literature to reduce the effects of the rate-independent hysteresis nonlinearities. In
this figure, y'! is the inverse hysteresis model, y represents the hysteresis model and v'(#) is the
desired output. This method was suggested by Tao and Kokotovic [27], and involves the
formulation of the inverse model of the hysteretic system. Their study developed a control
algorithm to compensate for the hysteresis nonlinearities of a system comprising a linear plant

proceeded by a hysteresis block representing a hysteretic actuator.

w(?) u(?)

\4

Inverse Hysteresis Model Hysteresis Model
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Figure 1.8: Open-loop hysteresis compensation using inverse hysteresis model.

The implementation of an inverse model-based compensation method, however, involves
complexities associated with formulation of the inverse of the proposed model. The Preisach and
Krasnosel’skii-Pokrovskii models are not analytically invertible. Consequently, different
numerical methods have been developed to obtain inversions of these models. Schafer and Janocha
[58] proposed a numerical method to compensate for rate-independent hysteresis nonlinearities of
magnetostrictive actuators represented by the classic Preisach model. In another study, Ge and
Jouaneh [57] employed inverse Preisach model, derived based on a numerical algorithm, as a
feedforward compensator coupled with a PID feedback control system to reduce the hysteresis
nonlinearities in a piezoceramic actuator. A numerical inverse of the Krasnosel’skii-Pokrovskii
model was also applied by Galinaitis [28] in an open-loop manner to compensate for hysteresis of
a piezoceramic actuator. In this study, the compensation of the hysteresis nonlinearities was
demonstrated for three different sinusoidal inputs at a frequency of 0.01 Hz. With regards to
magnetostrictive actuators, Iyer and Tan [16] proposed two different methods to seek
compensation of major hysteresis loops. Both the methods have been employed to derive an
inverse for the Preisach model for characterizing hysteresis nonlinearities of the actuator. Both the

methods, however, revealed certain errors that could be attributed to two primary factors:

» Modeling inaccuracies and uncertainty of the Preisach density function; the Preisach plane
requires many refinements to formulate hysteresis model to describe the hysteresis
properties more accurately [16].

» The second source of error is attributed to the discontinuity of the relay operator, which
permits for evaluation of only a numerical inversion of the model.
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Tan and Baras [7] applied the inverse Preisach model in an adaptive control system to
compensate for hysteresis nonlinearities of a magnetostrictive actuator. The classic Preisach model
was coupled with a second order system to quantify the rate-dependent hysteresis nonlinearities,
which implied the same two sources of errors described in the rate-independent case [16].
Moreover, the proposed compensator would be effective under low frequency inputs and could
not be applied for inputs at different frequencies. The compensation of rate-dependent hysteresis
effects using the inverse rate-independent hysteresis models could thus yield high compensation
errors at higher excitation frequencies since hysteresis effects increased with the excitation

frequency.

Aljanaideh et al. [59] proposed hysteresis compensation for a piezoceramic actuator using
a stop operator based Prandtl-Ishlinskii (SPI) model. The proposed compensator was derived based
on the principle of employing an inverse of the play operator-based Prandtl-Ishlinskii (PPI) model
in a feedforward manner to compensate for hysteresis nonlinearities of the actuator. The
application of the proposed model as a feedforward compensator resulted in significant reduction

in the positioning error due to hysteresis of the actuator.

Unlike the Preisach and Krasnosel’skii-Pokrovskii models, the Prandtl-Ishlinskii model
offers a unique advantage, as its inverse can be obtained analytically. Krejci and Kuhnen [42]
derived and applied the analytical inverse of the Prandtl-Ishlinskii model for compensation of
hysteresis nonlinearities of a piezoceramic actuator. The analytical inverse, however, is applicable
only for rate-independent symmetric hysteresis nonlinearities that are observed in piezoceramic
actuators. Kuhnen [12] compensated the rate-independent asymmetric hysteresis nonlinearity of a
magnetostrictive actuator using inverses of a free memory function and a rate-independent Prandtl-

Ishlinskii model. In another study, Kuhnen and Krejci [44] employed a play operator of a deadzone
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function in order to characterize and compensate for complex hysteresis and creep effects in a
piezoceramic actuated system designed with extended operating range. A numerical inverse was
derived and applied in order to compensate for hysteresis nonlinearities of the actuator, which

showed an error of only 4.4% in the input-output compensation.

A generalized Prandtl-Ishlinskii model and its analytical inverse has been suggested in [60]
to compensate for asymmetric hysteresis nonlinearities of magnetostrictive and SMA actuators.
The study proposed envelope functions for the classic play operator based Prandtl-Ishlinskii model
for characterization of asymmetric hysteresis nonlinearities. The analytical inverse of the play
operator-based Prandtl-Ishlinskii model together with the inverse of the envelope functions were
formulated for compensation of rate-independent asymmetric hysteresis nonlinearities of the
proposed model. However, the suggested method could not be applied for compensation of rate-
dependent asymmetric hysteresis, which is mainly attributed to the discontinuity in the envelope

functions that might be observed under high rates of input.

The Prandtl-Ishlinskii model based on play operators offers attractive properties attributed
to continuity of the play operators which permits the formulation of an analytical inverse for real-
time implementations [42]. The classic Prandtl-Ishlinskii model, however, is limited to
characterization of smart material actuators that exhibit rate-independent symmetric input-output
characteristics, such as those observed for piezoceramic actuators. A few studies have reported
alternate Prandtl-Ishlinskii models to describe asymmetry and saturation of the output. For
example, a Prandtl-Ishlinskii model cascaded with a memoryless hyperbolic tangent function was
proposed in [31] to formulate a hysteresis model for describing saturated hysteresis nonlinearities
of a superconductor. A generalized Prandtl-Ishlinskii has been recently reported for

characterization of asymmetric hysteresis nonlinearities by employing a generalized play operator
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instead of the classic play operator [45]. The suggested play operator employed different loading
and unloading hyperbolic tangent envelope functions, which relaxes the symmetry in the output of
the Prandtl-Ishlinskii model. In [61], the generalized model reported in [60] was applied for
characterizing the butterfly-shaped hysteresis nonlinearity of a Terfenol-D magnetostrictive
actuator considering identical envelope functions of the play operators. Kuhnen [12], characterized
asymmetric hysteresis nonlinearity of a magnetostrictive actuator using the rate-independent

Prandtl-Ishlinskii model coupled with a superposition of weighted deadband operators.

Although the above studies have proposed a number of alternate Prandtl-Ishlinskii models
to describe asymmetric hysteresis nonlinearities, the strong effects of the input rate on the
hysteresis nonlinearities have been mostly ignored. The hysteresis nonlinearities of
magnetostrictive actuators, similar to the other smart material actuators, invariably, increase with
increasing excitation frequency of the applied input [7,62], which limits the application of these
models to a narrow range of excitation frequency. Moreover, the applications of the inverse of
these models would yield considerable compensation errors under excitations at higher

frequencies.

A recent study [63] developed an analytical inverse of the rate-dependent play operator-
based Prandtl-Ishlinskii model for compensation of rate-dependent hysteresis nonlinearities.
According to this study, an analytical inverse of the rate-dependent Prandtl-Ishlinskii model IT can
be obtained under the threshold dilation condition, which implies that the difference between two

consecutive dynamic thresholds r,,(v(t)) and r,(v(t)) does not decrease in time, such that vi =1,

.., n-1:
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L an @) 0 (1.23)

where Ar,(W(t)) =1, (9(1) —1,(9(1)) .

The study provided analytical formulations for characterizing and compensating the rate-
dependent symmetric hysteresis nonlinearities of smart material actuators. The method, however,
could also be extended for describing and compensation of rate-dependent asymmetric and
saturated hysteresis nonlinearities that is observed in magnetostrictive actuators, under wide ranges

of input amplitudes and rates.

2.5 Scope and objectives

Considerable efforts have been made to characterize hysteresis properties of smart material
actuators in order to study the effects of these nonlinearities and to seek methods for enhancing
micropositioning precision and tracking performance of these actuators. These efforts have
resulted in a number of hysteresis models for describing hysteresis nonlinearities of piezoceramic,
SMA and magnetostrictive actuators. These models have proven effective for characterization and
compensation of hysteresis observed at lower frequency excitation and for actuators with

symmetric output-input properties.

The magnetostrictive actuators, however, exhibit output-input characteristics that are
strongly dependent upon the input. Furthermore, such actuators exhibit output saturation and
asymmetric output-input characteristics. Developments in alternate methods are thus vital not only
for characterizing the asymmetric and rate-dependent hysteresis but also for compensating the

hysteresis effects. These need to address two major challenges associated with characterization of
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hysteresis nonlinearities under a wide range of inputs through effective model development and
formulations of model inverse for compensation of rate-dependent and asymmetric hysteresis

nonlinearities.

Owing to the continuous nature of the play operators, a rate-dependent Prandtl-Ishlinskii
model could be formulated for characterizing the rate-dependent hysteresis nonlinearities of a
magnetostrictive actuator. This model could also be applied in a cascade configuration with a
memoryless function of weighted deadband operators to describe asymmetry in the output together
with output saturation under inputs over a wide frequency range. The resulting may provide
accurate predicts of minor as well as major rate-dependent hysteresis loops under a wide range of
inputs. Furthermore, such a model could also be applied to describe rate-independent as well as
rate-dependent asymmetric hysteresis nonlinearities of magnetostrictive actuators provided that
the threshold dilation condition is satisfied. A stop-operator based Prandtl-Ishlinskii model may
also be considered to seek compensation of hysteresis effects using the cascade arrangement of the

play and stop-operator based models.

2.5.1 Objectives of the dissertation research

The proposed dissertation research aims at characterization and compensation of hysteresis
nonlinearities of smart material actuators for enhancement of their micro-positioning and tracking
performance. The primary objective is to develop methodologies for characterization and
compensation of rate-dependent and asymmetric hysteresis of smart material actuators over a wide
range of input rates and amplitudes in an open-loop feedforward manner. The specific objectives

of the dissertation research are summarized below:
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2.5.2

Develop an analytical method for compensation of rate-independent symmetric hysteresis
nonlinearities described by a play-operator based Prandtl-Ishlinskii model through
formulation and application of a stop-operator based Prandtl-Ishlinskii model. Investigate
the effectiveness of the compensator through simulations as well as hardware-in-the-loop
experiments on a smart material actuator.

Characterize the output-input properties of a Terfenol-D type magnetostrictive actuator in
the laboratory under a wide range of input amplitudes, rates, and magnetic bias levels, as
well as under the effect of a mechanical load.

Develop a methodology, based on the experimental observations, for describing rate-
dependent symmetric hysteresis nonlinearities of a magnetostrictive actuator through
formulation of a rate-dependent Prandtl-Ishlinskii model.

Formulate an inverse rate-dependent Prandtl-Ishlinskii model for open-loop compensation
of rate-dependent symmetric hysteresis nonlinearities of a magnetostrictive actuator over
a wide range of input frequency, and investigate the effectiveness of the compensator
through simulations and as well as experimentally.

Formulate an integrated Prandtl-Ishlinskii model, based on the experimental observations,
that employs a rate-dependent Prandtl-Ishlinskii model along with a superposition of
deadband operators, for describing rate-dependent asymmetric hysteresis nonlinearities of
magnetostrictive actuator at different levels of input amplitudes applied over a wide
frequency range.

Develop an integrated inverse rate-dependent Prandtl-Ishlinskii model for compensation
of rate-dependent asymmetric hysteresis nonlinearities of the magnetostrictive actuator,
and explore its effectiveness through simulations and as well as through hardware-in-the
loops laboratory tests.

Organization of the manuscript-based thesis

This dissertation has been written according to the manuscript-based format, as described in

“Thesis Preparation and Thesis Examination Regulation” booklet of the School of Graduate

Studies of Concordia University. This dissertation research is organized into 7 chapters, including

a literature review chapter (Chapter 1) summarizing the state-of-the-art review of reported studies

32



relevant to modeling and compensation of hysteresis in smart material actuators. Chapter 2
presents a detailed description of experiment design and methods used to characterize output-input
characteristics of a magnetostrictive actuator under wide ranges of inputs. These included different
levels of excitation amplitudes and frequencies, magnetic bias and mechanical loading.

Chapter 3 presents a primary study on modeling and compensation of rate-independent
symmetric hysteresis nonlinearities. This chapter presents the theory of stop operator-based
Prandtl-Ishlinskii model as a compensator for the rate-independent symmetric hysteresis
nonlinearities represented by the play operator-based Prandtl-Ishlinskii model. The results
obtained have been published in the following article:

“Compensation of Play Operator-based Prandtl-Ishlinskii Model Using Stop Operator with
Application to Piezoceramic Actuators”, International Journal of Advanced Mechatronic
Systems, vol. 4, no. 1, 2012.

This article presents a new methodology for compensation of rate-independent symmetric
hysteresis nonlinearities of smart material actuators. The initial loading curves of the play operator-
based Prandtl-Ishlinskii (PPI) and the stop operator-based Prandtl-Ishlinskii (SPI) models were
first used to explore the hysteresis properties of both the PPI and SPI models. The results illustrate
that the PPI model exhibits convex counter-clockwise hysteresis loops while that of the SPI model
were concave clockwise hysteresis loops. An SPI model could thus be utilized for compensation
of rate-independent symmetric hysteresis nonlinearities described by the PPI model. The
thresholds and the weights of the SPI model were analytically derived based on known parameters
of the PPI model. The effectiveness of the compensator was demonstrated through experimental
results attained with a piezoceramic micro-positioning stage. The experimental results showed that
the SPI model can serve as an effective feedforward compensator for the rate-independent

hysteresis nonlinearities of a piezoceramic actuator.
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In Chapter 4, a comprehensive experimental study on the characterization and modeling of
hysteresis nonlinearities of magnetostrictive actuator is presented. The experimental
measurements, model and the simulation results have been published in the Journal of Smart

Materials and Structures.

“Experimental Characterization and Modeling of Asymmetric and Saturated Hysteresis of
Magnetostrictive Actuators”, Smart Materials and Structures, vol. 23, no. 3, 2014.

In this paper, hysteresis nonlinearities of a magnetostrictive actuator were characterized
under different amplitudes of simple and complex harmonic excitations over a wide range of
frequencies (10-200 Hz) and magnetic bias levels (35-75 kA/m), as described in details in Chapter
2. The measured data revealed asymmetric output-input characteristics and strong dependence on
the magnetic bias, amplitude and frequency of the input. Output saturation was also observed under
moderate to high amplitude excitations. The area bounded by the hysteresis loop showed a
nonlinear dependence on the amplitude of the input, while this dependence was linear on the
excitation frequency of the applied input, irrespective to the input amplitude. A rate-dependent
model employing a rate-dependent Prandtl-Ishlinskii model integrating a memoryless function was
proposed for the characterization of rate-dependent asymmetric hysteresis nonlinearities of the
actuator. Following the experimental observations, a linear rate-dependent threshold function was
employed to formulate the rate-dependent Prandtl-Ishlinskii model, while an asymmetric
deadband function was incorporated to add asymmetry to the symmetric output of the rate-
dependent Prandtl-Ishlinskii model. Comparisons of the integrated Prandtl-Ishlinskii model
responses with the measured data suggested that the proposed model could effectively describe the
nonlinear hysteresis properties of the magnetostrictive actuator over a broad range of excitation

amplitudes and frequencies.
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The relative significance of the proposed rate-dependent and asymmetric integrated model
was explored by evaluating its performance in relation to the Prandtl-Ishlinskii models suggested
in the literature for characterization of hysteresis nonlinearities of magnetostrictive actuators. The
results revealed that neglecting either the rate effect in the threshold of the Prandtl-Ishlinskii model
or the asymmetry attributed to the memoryless function yields significant errors in the

displacement responses of the magnetostrictive actuator model.

In an attempt to design a compensator for the rate-dependent symmetric hysteresis
nonlinearities of smart actuators, the data obtained under simple and complex harmonic excitations
over a wide range of frequencies (10-200 Hz) were employed to define a rate-dependent Prandtl-
Ishlinskii model. The inverse rate-dependent model was subsequently formulated and applied for
compensation of rate-dependent symmetric hysteresis of the magnetostrictive actuator. The results
of this segment of the study have been published in the following article, which is presented in

Chapter 5.

“Compensation of Rate-Dependent Hysteresis Nonlinearities in a Magnetostrictive Actuator
Using Inverse Prandtl-Ishlinskii Model”, Smart Materials and Structures, vol. 22, no. 2, 2012.

This chapter suggests a new inverse rate-dependent compensator for compensation of rate-
dependent symmetric hysteresis nonlinearities of magnetostrictive actuator in an open-loop
manner. The hysteresis nonlinearities of the magnetostrictive actuators were first explored under
an input amplitude of 2.3 A applied over a wide frequency range up to 200 Hz. A rate-dependent
threshold, as a linear function of the rate of input, was employed to formulate a symmetric rate-
dependent Prandtl-Ishlinskii model considering the threshold dilation condition that ensures the
analytical invertability of the model. The inverse rate-dependent Prandtl-Ishlinskii model was then
formulated on the basis of the rate-dependent Prandtl-Ishlinskii model. The effectiveness of the

inverse model compensator for mitigating the rate-dependent hysteresis nonlinearities was
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demonstrated through simulation results and hardware-in-the-loop laboratory measurements with
a magnetostrictive actuator. Both the simulation and experimental results revealed reduction in the
peak hysteresis from 4.7 pm to 0.645 um, when the proposed inverse rate-dependent model was
applied as a feedforward hysteresis compensator. The peak error occurred only under excitations
at the lowest frequency of 1 Hz. The results suggested that the inverse Prandtl-Ishlinskii model
could provide hysteresis compensation under different rates of inputs in a simple and effective

manner.

Employing the inverse model suggested in Chapter 5 for compensation of rate-dependent
hysteresis nonlinearities of magnetostrictive actuator at high input current amplitudes (e.g., 5 and
6 A) resulted in substantial errors in the output. This was attributed to significant output asymmetry
observed under medium to high inputs. Consequently, Chapter 6 describes a methodology for
compensation of rate-dependent asymmetric hysteresis nonlinearities of smart material actuators.
An integrated Prandtl-Ishlinskii model and its inverse model are presented. The model and its
inverse together with the simulation and experimental results have been submitted to the Sensors

and Actuators: A Physical.

“Feedforward Compensation of Asymmetric Rate-Dependent Hysteresis Nonlinearities of a
Magnetostrictive Actuator”, under review, Sensors & Actuators A: Physical (Submitted, Nov.
2013).

In this chapter, an inverse model is formulated to seek real-time compensation of rate-
dependent and asymmetric hysteresis nonlinearities of a Terfenol-D magnetostrictive actuator. The
inverse model was formulated by integrating the inverse of the rate-dependent Prandtl-Ishlinskii
model, satisfying the threshold dilation condition, together with the inverse of the deadband

function. The integrated inverse model was subsequently applied to the nonlinear hysteresis model
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as a feedforward compensator. The simulation results were attained under different harmonic and
complex harmonic excitations of varying current amplitudes in the 1-250 Hz range, which
suggested that the integrated inverse model can effectively compensate for the hysteresis, and
output asymmetry and saturation effects over a wide range of excitations. The proposed
compensator was subsequently implemented to the actuator hardware in the laboratory to study its
potential for rate-dependent and asymmetric hysteresis compensation on a real-time basis. The
experimental results obtained under harmonic and complex harmonic excitations further revealed
that the integrated inverse compensator can substantially suppress the hysteresis and output

asymmetry nonlinearities in the entire frequency range considered in the study.

CHAPTER 2

EXPERIMENTAL AND ANALYTICAL STUDY ON HYSTERESIS OF
SMART ACTUATORS

3.1 General

The output-input properties of a magnetostrictive actuator invariably exhibit hysteresis,
output saturation and asymmetry in the output. These nonlinearities are known to strongly depend
on the design and operating conditions of the actuator, particularly, the input amplitude and
frequency, magnetic bias, mechanical loading and type of the input. Although a number of physical
and phenomenological models have been proposed to describe hysteresis nonlinearities of such

actuators [e.g.,11,17], relatively fewer studies have attempted to characterize the hysteresis
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nonlinearities through measurements. A few studies have reported measured output-input
properties of magnetostrictive actuators under limited ranges of inputs [7,11,13,17], which show

hysteresis dependence on the magnitude, bias and rate of the input.

A few studies have also shown asymmetric output-input of the magnetostrictive actuators,
particularly under high amplitude inputs [7,12] and inputs with bias [13]. The output-input
properties, in-general, suggest coupled effects of input amplitude, bias and rate on the hysteresis
and output saturation nonlinearities. The reported studies, however, have been generally limited to
the study of only one of factors such as input amplitude [5,12,64], bias [13] or frequency [7,29].
Only limited data thus exists to describe coupled effects of different inputs. Furthermore, the
majority of the experimental studies have been performed on actuators without a mechanical load,
which could also be expected to contribute to nonlinear output-input characteristics of the
actuators. In this study, a laboratory experiment was designed to characterize the output-input
characteristics of a magnetostrictive actuator under simple and complex harmonic inputs of
different amplitudes over a wide frequency and magnetic bias levels as well as mechanical loads.
The output-input properties of a magnetostrictive actuator were measured under different inputs
up to 10 A over the frequency range up to 250 Hz, in order to fully characterize hysteresis
nonlinearities as a function of the input amplitude and frequency. The measured data are further
analyzed to describe major and minor hysteresis loops under harmonic excitations under different
rate of inputs, magnetic bias and mechanical loads. This chapter also represents a short background
about the magnetostriction phenomenon, followed by a description for the magnetostrictive

actuators and the experimental set-up that was used in the study.

3.2 Magnetostriction and magnetostrictive actuators

38



Magnetostriction was first observed by James Joule in 1842. It concerns coupling between
the magnetic and mechanical properties of some ferromagnetic materials, where strain is generated
in response to an applied magnetic field. The strain in the ferromagnetic materials is a result of the
rotations of small magnetic domains within the material, which cause internal expansion, AL. For

a ferromagnetic material of length Lo, the magnetostriction is defined in terms of strain, as [1]:

P (2.1)

The magnetostriction in ferromagnetic materials arises from the rotation of magnetic
domains under a magnetic field H. Each of these domains represents a region of uniform
magnetization, when the applied magnetic field forces the domains boundaries (also called domain
walls) resulting in shifting and motion of the domain walls. Both the rotation of the magnetic
domains and the shift of domain walls yield changes in the magnetostrictive material shape and
dimension (Figure 2.1), which is referred to as the magnetostriction that can be used for actuation

purposes.
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Figure 2.1: Magnetic domain orientations: (a) in the absence of a magnetic field, H=0 [1]; and (b)
in the presence of a magnetic field [1].

Magnetostrictive actuators are built using a smart magnetostrictive material, such as
“Terfenol-D”, which consists of Terbium (Ter), Iron (Fe) and Dysprosium (D) [40]. This material
is known to exhibit highest magnetostriction among the various known magnetostrictive alloys at
room temperature [1]. Furthermore, the Terfenol-D possesses high energy density. A small size
material could convert magnetic field intensity into mechanical energy at a high speed leading to
a high magnitude force over a broad frequency band up to 15 kHz [1]. Such actuator designs do
not contain moving parts and thus are not expected to encounter mechanical failures related to
mechanical fatigue. Unlike piezoceramic materials, Terfenol-D materials are also known to be
thermally robust. The smart materials in general tend to lose their properties when heated beyond
the Curie temperature, the magnetostrictive materials, however, regain their properties when
cooled [1,40]. These properties make Terfenol-D actuators attractive for numerous applications
including all micropositioning tasks in environments where thermal and mechanical robustness are

necessary. The main components of a typical Terfenol-D actuator include the following:

- Terfenol-D rod is the key component of a magnetostrictive actuator, which provides the
actuation when exposed to a magnetic field. The rod yields predominantly axial deformations
with minimal shear and radial stresses.

40



- Drive coil, encapsulates a Terfenol-D rod of length L, and imposes alternating magnetic field
H on the Terfenol-D rod. The ratio of number of the turns in the coil (7) to the rod length is
referred to as the coil factor.

- A permanent magnet provides the Terfenol-D rod with a direct magnetic bias field Hpias to
provide nearly linear bidirectional motion of the rod under an alternating input current.

- A compression bolt causes a residual stress in the Terfenol-D rod to align magnetic domains
in the radial direction and thereby permits greater displacement attributed to rotation of the
domains.

3.3 Characterization of output-input properties of a magnetostrictive
actuator

Compared to piezoceramic micro actuators, the output-input hysteresis properties of
magnetostrictive actuators have addressed in a relatively fewer studies. Most of the reported
studies have focused on synthesizing a model and a compensator on the basis of either measured
or reported output-input properties under selected operating conditions [7,10,11,12]. The proposed
models and compensators may thus yield errors under different operating conditions. In particular,
the influences of frequency, bias and magnitude of the excitation current, and the mechanical
loading have not been fully characterized. Consequently, the primary goal of this chapter is to
characterize input-output characteristics of a magnetostrictive actuator under a wide range of

operating conditions involving input amplitude, rate and bias, and mechanical loads.

3.3.1 Experimental set-up

A magnetostrictive actuator (Etrema Inc; model MFR OTY77) was acquired for the
experimental study. The magnetostrictive actuator comprised two 60.3 mm long and 12.3 mm
diameter Terfenol-D rods, and three permanent magnets that provided a magnetic bias (= 44.1
kA/m) to permit the actuator to operate in the linear region. This actuator also houses a coil
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surrounding the Terfenol-D rods, which are preloaded by a compression bolt and a spring washer.
The Terfenol rods serve as the active component, which provide the output displacement when
excited by a magnetic field. The coil factor of the coil encapsulating the drive rod of the actuator
was specified the manufacturer as 5.09x10°/m. The actuator, within the recommended operating
range, provided a 100 um stroke under 7.07 A recommended peak excitation current over a
frequency range up to 1250 Hz.

The reported experimental studies on characterization of output-input properties of a
magnetostrictive actuators have generally employed an LVDT for measurement of the actuator
displacement [e.g.,11,65]. In [65], the author observed a lack of repeatability of measurement,
which was believed to be caused by a drift either in the LVDT sensor fixture or in the material. In
this study, a capacitive non-contacting position sensor (Lion Precision-model C23-C 250 um
range) was acquired for accurate measurement of the actuator displacement. The sensitivity of the
sensor was 80 mV/um with bandwidth of 15000 Hz and resolution of 35.53 nm. The sensor was
calibrated considering 250 um static gap with respect to the actuator head, where 125 um was
considered as the near gap and 375 um as the far gap. The default output voltage of the sensor
within the calibrated range was + 10 VDC corresponding to the extreme near and far positions,

while the output corresponding to the static position of 250 um was 0 V.

A fixture was designed to ensure adequately aligned actuator and the sensor. Figure 2.2
illustrates pictorial views of the fixture designed to facilitate measurement of output displacement
of the actuator. The capacitive displacement sensor is installed within a fixed block (3), while the
actuator is supported on two pillow blocks (2). All these components were fixed to a flat aluminum
plate (1), as illustrated in Figure 2.2. A power amplifier (model LVC 2016, AETECHRON) was

employed to generate the desired input currents of various amplitudes and frequencies. The
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excitation signal was synthesized in the ControlDesk platform and applied to the power amplifier
in order to generate the desired excitation current to the drive coil of the actuator (Figure 2.3). The
actuator displacement response and the applied input current were acquired in the ControlDesk
platform at a sampling frequency of 50,000 Hz to evaluate output displacement-input current

characteristics of the actuator.

3.3.2 Experiment design

An experiment was designed to study the effects of main factors on the hysteresis properties
of the actuator, including the mechanical load, input bias, excitation frequency and magnitude, and
type of excitation current. The experiment design involved four series of measurements with an
objective to study: (i) the effects of input amplitude; (ii) the effects of magnetic bias; (iii) the
influence of the input waveform; and (iv) the effect of mechanical load on the output-input
characteristics. The experiment was designed to characterize the effects of these input parameters
over a range of input frequencies up to 250 Hz. Inputs at higher frequencies up to 3,200 Hz were
also applied to study the frequency response characteristics of the actuator and the effects of a
mechanical load. Under a harmonic input current, the magnetic field is directly related to the

applied current I such that:

H@) =k, -(I,sinQ2aft) + I,,,) + Hpy, (2.2)
where I, is amplitude of input current, f'is frequency of the input, &, =nc/L,, is the coil factor and
Ipias 1s the bias in the input current, when considered. Hpa in the above equation is the magnetic
field bias attributed to permanent magnets used in the actuator design. For the selected actuator,

Hpy was estimated experimentally as 44.1 kA/m.

A complex harmonic waveform was also synthesized upon superposition of two harmonic

signals, to study the major and minor hysteresis loops, such that:
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1(1) =1 40y SIN27f ) + 1 102 (67 o) + Ly (2.3)
where /4c; 1s the amplitude of the harmonic input at the chosen fundamental frequency f,, and L2
is the amplitude corresponding to the frequency 3 times the fundamental frequency. Both the
applied input current and output displacement data were acquired for subsequent analysis to fully
characterize the minor and major hysteresis loops under different inputs. As an example, Figure
2.4 shows the measured output-input properties of the magnetostrictive actuator under an input
current of 7 A amplitude at an excitation frequency of 10 Hz and 44.1 kA/m magnetic field bias.
The results clearly show strong presence for asymmetric hysteresis nonlinearity as well as output
displacement saturation. The hysteresis loops will be quantified either by the peak percent
hysteresis, the peak hysteresis magnitude Hp normalized by peak-to-peak displacement Mp (Figure

2.4), or by the area bounded by the hysteresis loop.
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Figure 2.4: Measured output-input characteristics of the magnetostrictive actuator, displaying
hysteresis, and output asymmetry ad saturation (I.=7 A, =10 Hz, Hyias=44.1 kA/m).

3.4 Measured output-input characteristics

The measured output displacement and input current data are analyzed to study the effects of input

current amplitude, frequency, input bias and mechanical loads. These are discussed in the

following subsections.

3.4.1 Input current amplitude and rate effects

Figure 2.5 illustrates the output-input characteristics and the major and minor hysteresis
loops of the actuator. The data were acquired under a harmonic current with amplitude increasing

gradually to 7 A within a duration of 1 s, as shown in Figure 2.6 (a). The input current was applied

46



at a constant frequency of 10 Hz. The figure also shows the time-history of the actuator

displacement.
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Figure 2.5: Measured output-input characteristics of the magnetostrictive actuator under a
harmonic current excitation with linearly increasing current (/=10 Hz).
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Figure 2.6: Time histories of: (a) Excitation current; and (b) Actuator displacement (/=10 Hz).
The output-input characteristics of the actuator were subsequently acquired under different

constant amplitude currents (1, 2, 3,4, 5, 6, 7, and 8 A) at a frequency 10 Hz and a magnetic bias
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of 44.1 kA/m (Hvias=Hpm). The results are presented in Figure 2.7. Asymmetry of the hysteresis
loops and output saturation are evident under excitations exceeding 2 A. The output asymmetry
becomes significant at amplitudes exceeding 5 A. The time histories of the output displacement
are also illustrated in Figure 2.8 over 1 complete cycle under different amplitudes of the input

current.

Subsequent measurements were performed under harmonic inputs at different discrete
frequencies in the 10 to 250 Hz frequency range. The output-input characteristics of the actuator
subject to 5 different input amplitudes (2, 4, 5, 6 and 8 A) in the 10 to 250 Hz frequency range are
illustrated in Figure 2.9. The results are presented for the constant magnetic bias of 44.1 kA/m,
and different discrete excitation frequencies, namely, 10, 25, 50, 100, 200 and 250 Hz. The results
show that the actuator hysteresis increases with increase in the excitation frequency of the applied
input current, which has also been reported in other studies [7,8]. The responses within the
frequency range considered in the measurements illustrate symmetric output-input loops under
current amplitude of 2 A, while the output exhibits significant asymmetry at current of 4 A or

greater.

The measurements acquired under the two extreme amplitudes, 2 A and 8 A, were selected
to study the effects of the input rate on the hysteresis nonlinearities of the actuator. The area
bounded by the hysteresis loops corresponding to these two amplitudes applied in the 10 to 250
Hz frequency range are evaluated and presented in Figures 2.10 (a) and 2.10 (b), as a function of
the input frequency. Although, the output-input characteristics under the higher amplitude of 8 A
are highly asymmetric, the area bounded the hysteresis loops shows nearly linear relation with the
excitation frequency. Davino et al. [66] has also shown nearly linear energy loss of the actuator

with the excitation frequency.
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Figure 2.7: Measured hysteresis loops illustrating output asymmetry and saturation nonlinearities
of the magnetostrictive actuator under different current amplitudes ranging from 1 to 9 A.
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Figure 2.8: Time histories of output displacement measured under different amplitudes of applied
current at frequency of 10 Hz (Hpias=44.1 kA/m).
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Figure 2.9: Measured hysteresis loops relating output displacement response of the
magnetostrictive actuator to the harmonic input current at different frequencies in the 10 to 250
Hz range: (a) [0=2 A; (b) [b=4 A; (¢) [, =5 A; (d) [, = 6; and (e) I, = 8 A (Hgias=44.1 kA/m).
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Figure 2.10: Area bounded by the hysteresis loops of the magnetostrictive actuator under harmonic
excitations at different frequencies in the 10 to 250 Hz range: (a) [, =2 A; and (b) I, = 8 A
(Bias=44.1 kA/m).

3.4.2 Minor and major hysteresis loops

The data acquired under the complex harmonic waveform are analyzed to obtain the major and
minor hysteresis loops. Figure 2.11 illustrates the actuator output displacement versus the applied
input current, I(¢) = Iaci1 sin(2xfof)+1ac2 sin(3%2fof), where the fundamental frequency fo= 20 Hz,
and Iac1=4 and Iac2=3 A. The applied input current was synthesized so as to characterize two
minor hysteresis loops under peak-to-peak input current of 4.25 A. As the results demonstrate, the
hysteresis minor loops show widely different peak-peak output displacement responses in the order
of 18 and 26 um, although both were characterized under identical peak-to-peak current of 4.25
A. This is attributed to the saturation of the output displacement.

The characterization was also performed considering alternate amplitudes of the complex
harmonic waveforms (Iac1=5 A, Iaci=2 A) and (Iac1=3 A, Iaci1=4 A), while the same fundamental

excitation frequency was retained. Figure 2.12 presents the measured output displacement and
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input current under both the complex harmonic waveforms. The results show substantial
differences in the peak-peak displacement amplitudes of the minor loops under the two excitations,

which is attributed to the output saturation.
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Figure 2.11: Measured output-input characteristics under the complex harmonic input current of

the form, I(¢) = 4 sin(2nfot) + 3 sin(6mf,¢), illustrating major and minor hysteresis loops.

The measurements were repeated by letting f,= 100 Hz, while three different sets of current
amplitudes were considered: (Iaci, Iac2) = (3, 4), (4, 3) and (5, 2). Figure 2.13 illustrates the output-
input characteristics of the actuator subject to three different complex harmonic currents with f,=
100 Hz. The results clearly show significantly greater widths of the minor hysteresis loops
compared to those observed under inputs with f,= 20 Hz. The results thus suggest increase in the
minor hysteresis loop with increase in the input rate, as it was observed for the major loops under

simple harmonic inputs (Figure 2.9).
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Figure 2.12: Output-input characteristics of the magnetostrictive actuator illustrating different
minor hysteresis loops under three different complex harmonic inputs of the form: I(z)=
Iacisin(2nfot)+ 1ace sin(6mfot), with (Iaci, Iac2 = 3, 4 A), (Iac1, Iac2 =5, 2 A) and (Iaci, lac2 =4, 3
A).

The displacement response obtained under the complex harmonic input, I(¢)= 3sin(2font)+4
sin(3xf,mt), was selected for characterization of input rate effect on the output-input of the actuator.
For this purpose, complex harmonic input was applied considering three different fundamental
frequencies f,=20, 50 and 100 Hz. The measured output-input characteristics, presented in Figure
2.14 (a), show two sets of minor hysteresis loops, labeled as ‘A’ and ‘B’. The figure also shows
variations in the major hysteresis loops attributable to changes in the input rate. The peak-peak
displacements corresponding to both the minor loops remain constant in the order of 42 and 34

um, respectively, irrespective of variations in f,, which is due to identical input amplitudes. The
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peak hysteresis of the minor loops, however, differs for different fundamental frequencies of the
input. The peak percent hysteresis for each hysteresis loop was evaluated as illustrated in Figure
2.14 (b), as a function the fundamental input frequency f,. The results show that the peak percent
hysteresis corresponding to the minor loops increases nearly linearly with the excitation frequency

for a given input amplitude, as it was observed for the major hysteresis loops (Figure 2.9).
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Figure 2.13: Measured hysteresis loops relating output displacement response of a
magnetostrictive actuator with the complex harmonic input current, I (#)=Iac1 sin(2z f, t)+ Iac2
sin(6mf,t), with three different amplitudes, (Iac1, lac2)=(5, 2), (4, 3), and (3, 4), and fundamental
frequency fo=20 Hz.
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Figure 2.14: (a) Measured output-input characteristics of the actuator under complex harmonic
input at different fundamental frequencies (f,=20, 50 and 100 Hz) illustrating two sets of minor
hysteresis loops ‘A’ and ‘B’; and (b) The peak percent hysteresis of the minor hysteresis loops as
a function of the fundamental frequency, fo ( &set A; et B).

3.4.3 Input magnetic bias and rate effects

The saturation and asymmetry of the actuator output is strongly affected by the magnetic bias. The
experiments were thus performed to study the effects of magnetic bias on the actuator displacement
response. For this purpose, the current excitation with a bias (Ivias) Was applied such that Ip(7)=
losin(2mf?)+ Ibias. This resulted in a bias in the magnetic field strength in addition to that caused by

the permanent magnets, Hpm, such that:

H(t) =k,(I, sinQ2rft) 1)+ Hpy (2.4)

The total bias realized during the experiments can be directly related to the bias current, as [7]:

Hbias (t) = ko]bias + HPM (25)
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The experiments were conducting considering three different levels of total magnetic bias,
Hyias=30, 45 and 60 kA/m and four different excitation frequencies=10, 50, 100 and 150 Hz. The

selected bias levels also include the bias of 44.1 kA/m due to permanent magnets.

The output-input characteristics of the actuator subject to different combinations of bias
and excitation frequencies are illustrates in Figure 2.15(a), (b) and (c). The results show that peak-
peak displacement and the output asymmetry are strongly affected by the magnetic bias. Increasing
the magnetic bias limits the peak actuator displacement and yields greater output saturation, as
seen in Figure 2.15(d). Both the peak displacement and the asymmetry, however, are not affected
by variations in the input rate, which tends to yield greater hysteresis, as seen in Figure 2.16. The
results suggest that increasing the bias can help reduce the hysteresis of the actuator. Selection of
input bias would thus involve a compromise between the peak hysteresis and actuator

displacement.

3.4.4 Mechanical load effect

The output-input properties of a magnetostrictive actuator have been invariably characterized in
the absence of a mechanical load. In this study, an experiment is designed to study the effect of
actuator load on the output-input characteristics. A compact loading fixture (mass=3.7 kg) was
designed with four guiding rods, placed between two aluminum plates. The loading fixture could
be easily fixed to the main fixture to facilitate measurement of output displacement of the actuator
under the influence of different mechanical loads. For this purpose, the actuator fixture was
oriented vertically, as shown in Figure 2.17. The figure shows the load-support fixture attached to
the main fixture. The figure also shows an accelerometer attached to the load for measurement of

acceleration.
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Figure 2.15: Influence of variations in the excitation frequency f on the output-input characteristics
of the magnetostrictive actuator under different levels of magnetic bias (Hpias): (2) 30 kA/m; (b) 45
kA/m; (c) 60 kA/m; and (d) Comparison of the measured responses under three bias levels.
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Figure 2.16: Variations in peak percent hysteresis in the displacement responses as a function of
frequency of the applied input at three different levels of magnetic bias.

Different blocks of lead were added to the fixture to achieve desired loads. Each block was
positioned within the load-support fixture constrained by the four guiding rods so as ensure pure
vertical motion of the loaded actuator. In order to investigate the effective stiffness, the actuator
was loaded with three different lead blocks weighting 5.5, 11 and 16.5 kg, while the static position
of the actuator was measured with load-support fixture fastened to the drive rod of the actuator.
The static stiffness of the actuator was subsequently obtained from the static load-deflection
characteristics, shown in Figure 2.18. The measured data shows linear stiffness of 33.597 MN/m
of the actuator. Considering the Terfenol-D rods mass of 112.2 g (specified by the manufacturer),

the natural frequency of the actuator was obtained as 2756.2 Hz.
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Figure 2.18: Static load-deflection characteristic of the magnetostrictive actuator.

The effective damping ratio of the actuator was also estimated through measurements of
its response to a step change in the current. The measured displacement responses revealed nearly
exponential decay, as seen in Figure 2.19 under a 1 A step input. The effective damping was
subsequently, estimated using the logarithmic decrement method [67]. It should be noted that the
measurement were initially performed with unloaded actuator, although the actuator rod was
coupled to an aluminum head (11 g) with a nut (39 g). The effective damping ratio of the unloaded
actuator was estimated as, (=0.12, while the measured data revealed an oscillation frequency of
14.362 kHz. The actuator natural frequency was subsequently obtained as 2,300 Hz. This
frequency would correspond to Terfenol-D rods mass 112.45, which is quiet close to that specified
by the manufacturer (111.2 g). The measurements were repeated under 0.5, 0.75 and 1.5 A step
inputs. The analysis of the measured data revealed very similar values of damping coefficients and

natural frequency.
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Figure 2.19: Time history of the displacement response of the unloaded actuator to 1 A step current.

The displacement responses of the unloaded as well as loaded actuator were measured under
different amplitudes of harmonic currents. The measurements were performed over a wide
frequency range, up to 3,100 Hz in order to characterize frequency response of the actuator with
and without the mechanical loads. Figure 2.20 illustrates the output-input characteristics of the
unloaded actuator as well as loaded actuator under 1.0 A harmonic current at different frequencies.
The results are presented for the actuator without the load, where the effective mass on the actuator
is due to Terfenol-D rods, the head and the nut (162 g), as shown in Figure 2.20 (a). Figure 2.20
(b), (c) and (d) illustrate the output-input properties under additional mechanical loads of 3.7, 9.2
and 14.7 kg, respectively. The results clearly show higher displacement amplitude at higher
frequencies for all the load conditions. Furthermore, the area bounded by the output-input loops
increases with the frequency and tends to be substantially high at higher frequencies. The peak

displacement response also tends to be higher with increasing mass.
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From the results, it is evident that the output-input characteristics of the actuator are most
substantially affected by the actuator load. This is attributable to dynamic properties of the
actuator. Increasing the mass reduces the actuator natural frequency and alters its dynamic
response, as seen from the measured frequency responses of the unloaded as well as the loaded
actuators in Figure 2.21. The figures show the variation in the peak displacement response,
normalized with respect to that measured at a low frequency of 40 Hz, with the excitation
frequency. The output-input loops in Figure 2.20 show substantial rotations of the loops, at higher
frequencies, which are attributed to the phase between the displacement response and the

excitation current.

The effects observed in Figure 2.20 cannot be attributed to hysteresis of the Terfenol-D rod
actuator but to the inertia. These results suggest that output-input relations of the actuator need to
be characterized considering the inertia effect apart from the material hysteresis. This would also

hold for an unloaded actuator, where the effective mass of the rod also contributes to the perceived

hysteresis.
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Figure 2.20: The output-input characteristics of the unloaded and the loaded actuator under 1.0 A
harmonic current at different frequencies.

—0.162 kg
5 — ' 3862 kg
—9.362 kg
4
/ 14.862 kg
2 g 3

40 400 4000
Frequency (Hz)

Normalized Displacement
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3.5 Summary and conclusions

The output-input characteristics of the magnetostrictive actuator were explored under a wide
range of input current and actuator loads. These included the input current amplitude, excitation
frequency, bias in the input current and different mechanical loads. The output-input
characteristics of the unloaded actuator suggested substantial output asymmetry and saturation
under medium to high amplitude excitations, and increasing hysteresis with increasing excitation
frequency. The area bounded by the hysteresis loop increased nonlinearly with the input amplitude
but nearly linearly with the excitation frequency. The variations in the magnetic field bias mostly

affected the output asymmetry and saturation, and the displacement response.

An increase in the magnetic bias could help limit the peak hysteresis at the expense of reduced
displacement response of the actuator, however, was not affected by the frequency of input, in the
range considered in the study. The displacement response of the actuator, however, increased at
substantially higher frequencies, particularly when the excitation frequency approached the
actuator natural frequency. Increasing the actuator load resulted in substantially lower natural
frequency of the actuator, and thereby considerably higher displacement response at higher
frequencies. From the results, it is deduced that the inertia effect strongly alters the output-input
characteristics of the actuator. The modelling effects thus need to incorporate the inertia effect.
The inertia effect due to mass of the actuator load alone may also contribute to actuator hysteresis

and the rate effect, which has not yet been addressed.
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CHAPTER 3

COMPENSATION OF PLAY OPERATOR-BASED PRANDTL-
ISHLINSKII MODEL USING STOP OPERATOR WITH APPLICATION
TO PIEZOCERAMIC ACTUATOR

4.1 Introduction

Piezoceramic actuators have the advantages of producing large force, fast response and high
precision [1,57,68] and have been widely used in nano-positioning systems [69], such as AFM
[70], SPM [71], dual-stage servo system for HDDs [68] and active aperture [72]. However,
piezoceramic actuators exhibit limited tracking performance in precision control due to their
inherent hysteresis non-linearity, which can severely limit the system positioning performance by
giving rise to undesirable inaccuracy or oscillations, even leading to an instability of the closed-

loop system [57,73]. Therefore, considerable efforts have been made towards design of controllers
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for compensating the hysteresis effect. The majority of the reported approaches are inversion based
compensation approaches [57,42].

There are several models available for describing hysteresis behaviour, such as the Preisach
model, the Prandtl-Ishlinskii (PI) model, the Bouc-Wen model and the Duhem model. Among
them, the PI model is attractive due to its simplicity and suitability to construct feedforward
compensator for the purpose of mitigating the hysteresis effect. A PI model could be constructed
through superposition of two different operators. One is the stop operator-based Prandtl-Ishlinskii
(SPI) model, and another is the play operator-based Prandtl-Ishlinskii (PPI) model. The SPI model,
which was formulated for describing elastoplasticity hysteresis behavior of materials [26], yields
concave clockwise hysteresis loops. However, the PPI model yields convex counterclockwise
hysteresis loops. Thus, it makes the SPI model a potential feedforward compensator if proper
weights and thresholds can be analytically derived. Kuhnen and Janocha [74] attempted a SPI
model to compensate for hysteresis described by a PPI model, where the thresholds and weights
of the SPI model were calculated in an adaptive manner based on an error function. In this paper,
the PPI model is utilized to describe the hysteresis behavior of the piezoceramic actuator. The
thresholds and the weights of the SPI model are subsequently analytically derived for the first time
in the literature, which constitutes the main contribution of the paper. The effectiveness of the SPI
model in compensating the hysteresis non-linearity is investigated in the laboratory by
implementing the SPI model with a piezo micro-positioning stage in a feedforward manner. It
should be noted that because the inverse of the PPI model and the derived SPI model serve the
same role as a compensator of the PPI model, the derived SPI model can be thought as an

alternative to the inverse compensation.
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4.2 The Prandtl-Ishlinskii model

4.2.1 The PPI model

The PPI model integrates the play operator together with a weight function to characterize the
hysteresis non-linearity. The properties of the PPI model have been described in details in [26].

The PPI model is defined as:
o R
© = [ p(r)F, [v)().dr (3.1)
0

where p(r) 1s weighting function, satisfying p(-)>0 with I rp(r) <o, R is a constant so that the
0

weight function p(r) vanishes for large value of R. F[v] is the play operator defined by [26]:

E[vI(0) = £,(:(0),0)
E[vI@0) = £, (), F, [V](7,)

0<i</+1, with

(3.2)

for 1, <1<t

+12

£.(v, E.[V]) = max {v(r) — r,min {(£) + r, E.[V](1)} } (3.3)

where 0=¢, <1, <..<t, =T is a partition of [0, 7] such that the function v(r)e C[0,7], C[0,T] denotes

the space of continuous function on [0, T], is monotone on each of the subintervals [#, #+:]. The
input-output relationship of a play operator is shown in Figure 3.1. The play operator is rate-

independent, Lipchitz-continuous and monotone.

The PPI model can also be formulated in the discrete form as:
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o[l(6) =Y pr)F, (3.4)

i=0

where n, is the number of the play operators of thresholds, 0 =7, <r <...<r, = R, and p(r;) are the

weights of the density function, defined as:

pr) =P, =) (3.5)
For o= 0, the output of the PPI model can be expressed as:
OVI(E) = gv(1) + Y p, (1) F, [V]() (3.6)
i=1
where ¢ = p(0) = p,.
Fy

/7

Figure 3.1: Input-output relationship of the play hysteresis operator.

4.2.2 The SPI model

The Prandtl-Ishlinskii model has also be constructed using the stop operators for describing
hysteresis nonlinearity in materials [26]. Unlike the PPI model, the stop operator-based Prandtl-
Ishlinskii (SPI) model exhibits clockwise hysteresis loops, attribute to the properties of the stop
operator. Similar to the play operator, the output of a stop operator is a function of its threshold s
and the input v. The input-output relationship of a stop operator is illustrated in Figure 3.2. The
output of the stop operator for the input w(¢)eC [0, T] can be expressed as:
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E[v](0) = e,(v(0)) (3.7)

EV](®) = e,(v(t) = v(t;) + E,[v](1,))

for 1, <t<t,; 0<i<i+1, with:

e, = min(s, max(-s,v)) (3.8)

where 0=, <1 <...<t, =T 1s a partition of [0,7] such that the function v(s)e C[0,7], C[0,7] denotes

the space of continuous function on [0, 7], is monotone on each of the subintervals [#;, fi+/].
Some of the essential properties of the stop operator can be described as follows:

e Clockwise operator: The stop operator yields clockwise input-output curves, while the play
operator results in counter-clockwise input-output curves;

e Monotonicity: The stop operator E,is a monotone operator. For a given input v(¢)eC[0, 71, the
following property holds [16] :

(E,[vI(T) = Ev)(0)(A(T) = v(0)) 2 0 (3.9)
e Lipschitz-continuity: For a given input w(¢)eC[0, T, the stop operator is Lipschitz continuous
[26].
E;
A

S
—

/

Figure 3.2: Input-output relationship of the play hysteresis operator.

-S

The output of the SPI model is formulated upon integration of the stop operator corresponding
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to different thresholds s in conjunction with the positive and integrable density functionw,(s),

such that [26]:

Y1) = ! W, ($)E,[v](£)dr (3.10)

The output of the SPI can also be described by » stop operators, 0=s, <s, <..<s, =S, such that:

W) = 3w (), [VI0) (3.11)

where w_ (s) represents the weights of the density function as:

w(s;) =W, (s,)(8:, = ;) (3.12)

Owing to the Lipschitz continuous stop operator Es and integrable density function, it can be
concluded that the stop-operator based Prandtl-Ishlinskii (SPI) model is Lipschitz-continuous for
a given input v(¢7)eC[0, T. It can be further concluded that the SPI model is monotone operator and

the weight function is integrable and positive.

43 Compensation of hysteresis via SPI model
4.3.1 Feedforward compensation

The feedforward compensation, shown in Figure 3.3, was used in this paper to obtain identity

mapping between the desired input v(7) and the output u(z) as:
u(t) =d[Y[v]I() (3.13)
As shown in section 3.2.2, the SPI model yields clockwise hysteresis loops, which is essential

to introduce the SPI model as a compensator to mitigate the hysteresis effects described by the PPI

model.
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V(1) u(?)

Figure 3.3: Open-loop control system.

Lemma 3.1: SPI model 'V is a compensator of the PPl model @ if, for any initial output @(0), there
exists a V(0), such that the series connection of the compensator and the model yields identity
transformation starting from the initial states @(0) and ¥Y(0). And v=¥[Dv)]=Id[v]=v (v>0).

Figure 3.4 shows the inner structure for SPI model and the PPI model. The two parameter,

thresholds s; and the weights w. of the SPI model can be analytically derived based on the initial

loading curve and the given thresholds , and the weights p, of the PPI model.
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Figure 3.4: Inner structure of the stop-operator based Prandtl-Ishlinskii model (SPI) and play-
operator based Prandtl-Ishlinskii model (PPI).

4.3.2  Analytical implementation of the feedforward compensator by using SPI model

In this section, the initial loading curve of the PPI model is presented as a tool to analytically

calculate the thresholds and weights of the SPI model. This curve describes the possible hysteresis
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loops generated by the Prandtl-Ishlinskii model. The initial loading curve of the PPI model can be

expressed as:

¢p(r)=zp:max(0,r—ri)pi (3.14)
i-0

where 7 € [ro, T s and r0=0, n, is the number of the play operator. The function ¢,: R"— R" is

convex and increasing function. In order to obtain the parameters of the compensator, the initial

loading curve ¢, of the stop-operator based Prandtl-Ishlinskii model is defined as:

P.(r)= imin(s,si)wi (3.15)

i=0
where ¢,: R — R is concave and increasing function, and ns is the number of the stop operator.

s €[0, so], so is set to be a large positive real number, satisfying so> max(v(¢)), to ensure strict

monotonicity of the SPI model.

As shown in Figure 3.5 (a) and (b), the initial loading curve of the SPI model ¢, is concave,
while the initial loading curve of the PPI model ¢, is convex. Owing to the convex initial loading

curve the hysteresis loops resulting from the PPI model would be counter clockwise loops. On the
other hand, hysteresis loops resulting from the SPI model is clockwise loops. This denotes that a
composition between the SPI and PPI models could yield identity in input-output curves with
proper thresholds and weights and the initial loading curve of them should be also symmetric about
the line y = x, shown in Figure 3.5 (¢).

Figure 3.6 shows the relationship of the initial loading curves between the SPI model and the PPI

model. In order to obtain the proper weights and thresholds of the SPI model which can effectively
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mitigate the hysteresis non-linearity described by the PPI model, the thresholds and the initial

loading curve of the SPI model must satisfy:

5 =0,() (3.16)
g(s)=r; (3.17)
- -~

JS\ -

(a) (b)

v

(©

Figure 3.5: (a) Initial loading curve of the stop operator based Prandtl-Ishlinskii (SPI) model SPI,
(b) Initial loading curves of the stop operator based Prandtl-Ishlinskii (PPI) model, (c)
Composition of the initial loading curves of the SPI and PPI models to achieve perfect
compensation.
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Figure 3.6: The initial loading curves of the SPI and PPI models.
According to equations (3.16) and (3.17) for any point B(r, ¢,) on the initial loading curve of

the PPL, it can always find a point C(si,¢,) on the initial loading curve of the SPI model.
Furthermore, points C and B are symmetric about the line y=x, and OA=CD and AB=0D. The
thresholds of the SPI model may be related to those of the PPI model in the following manner:
S, =npy
s, =(r,—1)p, +1,p,
sy =(ry =r)p, +(r; =r)py + 73, (3.18)
8, =1, =r)p, + (1, =1)ps + ..+ 1, Py
Then the weights if the SPI model w; can be calculated according to (3.17) as:
S\ Wy + S\ W, S Wy S Wy oS W, S W, =T
SyWo 8, W +8,W, + S, W+ FS,W Lt S,W, =T
S3Wy +S,W, + S, Wy +5,Wy + o SW, o SW, =7

(3.19)

S Wy FS,W, + S, W, + 5w oL+ S W LS W, =
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S, Wy + W + 5, W, S,y oS, W, o E S, W, =T,

Equation set (3.19) includes n +1 unknown variable, while the number of equations is #. In order
to solve Equation (3.19) and to obtain the weights w,, the weight wy should be solved first. For this

purpose, an additional point is taken on the initial loading curve of the SPI model as (sx+1, @, (Sn+1)).

By letting s,+1=p + s, With p being a positive real number, it can be shown that&=¢_ (sn+1).
According to (3.16) and (3.17):

P+ (E—n)p+..+(E—r)p +..+(E-1)p, =5, +p (3.20)

(s, +PIWy +S,W, +occt S, W, +oots,w, =& (3.21)
Equations (3.19) and (3.21):
=, (3.22)

Equation (3.20) can be expressed as:

(E=r)po+1,py+(E—1)p, +(r, —r)p, +...+(E—1,)p, +(r, =1 )P, +(E—r,)p, =5, + P (3.23)

Then it can be concluded from (3.22) and (3.23) yields wo:

1
W, =
Do+ D te.t D +.p,

(3.24)

Then weights w; of the SPI model can be easily obtained by solving Equation (3.19).

Remark: 1t should be noted that an inverse Prandtl-Ishlinskii model formulation was proposed in
[12] on the basis of the initial loading curve. The proposed stop-based model is comparable with
the inverse model. Considering that the inverse and SPI models serve as compensators to cancel

the effect of hysteresis, the initial loading curve of the SPI model must be same as that of the
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inverse of the PPI model. Because of the uniqueness of the inverse initial loading curve, it explains
why Figure 3.6 is similar to Figure 4 in [12]. To make the initial loading curve of the SPI model
as shown in Figure 3.6, two parameters, the thresholds and the weights, have to be formulated.
From the above results, the thresholds of the SPI model (3.18) are the same as those of the inverse
PPI model [see the expression (12) in [12] because of the uniqueness of the initial loading curve.
However, the weights calculated from (3.19) and (3.24) are completely different. As for the
question whether to use the inverse or the SPI as a compensator, there is no clear answer and it

needs to be further investigated.

44 Experimental verification

4.4.1 Experimental setup

In order to validate the effectiveness of the SPI model in compensating the hysteresis behavior of
the piezoceramic actuator, an experimental platform is established as shown in Figure 3.7. It

consists of the following elements:

1. Piezoceramic actuator: P-753.31C Piezoceramic actuator manufactured by Physik
Instrumente Company was considered for measurements of the hysteresis properties. The
actuator provided a maximum displacement of 38 um from its static equilibrium position. The
excitation voltage to the actuator ranged from 0 to 100 V.

2. Capacitive sensor: An integrated capacitive sensor was used for measurements of the actuator
displacement response with a sensitivity of 2.632V/um.

3. Voltage amplifier: The excitation voltage to the actuator was applied through a voltage
amplifier (LVPZT, E-505), with a fixed gain of 10.

4. Data acquisition system: The actuator displacement response signal was acquired in the
dSpace Control Desk, together with the input signal.

76



P-753.31C Piezoceramic

Actuator & the Capacitive Excitation Voltage
Sensor
¥ . . - B
el ®
Pk | -
|
Display
Amplifier LVPZT
: " .8
D/A

Figure 3.7: The experimental platform.

The measurements of the actuator displacement response were performed under two different

excitations. These included:

1. A harmonic excitation at a low frequency of 1 Hz, v(¢) = 30sin(2n¢) + 40
2. A complex harmonic excitation, v(¢) = 4.16sin(nt) + 29.11sin(2xt) + 37.9.

The measured signals were analysed to characterise the hysteresis effects of the actuator, where
the first excitation was selected to identify the major loop input-output property of the actuator,

while the complex harmonic excitation was chosen to measure the major as well as minor

hysteresis loops.

4.4.2 Hysteresis modeling
The hysteresis non-linearity of the piezoceramic actuator can be described by the PPI model. The

model is formulated using the threshold and density function of the following forms:

n=ai (3.25)

ae’’ (3.26)
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where &, f and & are positive constants. Ten play operators (1, = 10) were chosen to formulate
the PPI model. The model parameters, X = {&, S, &, po}, were identified through minimization

of an error sum-squared function by using MATLAB optimization toolbox, subject to the

following constrains:

a, B, a,pe>0 (3.27)
The identified parameters of the PPI model by using the input-output data of the piezoceramic
actuator were found to be: & =3.548, & =0.0383, = 0.1206 and po = 0.2567. The validity of the

PPI model is investigated by comparing the model responses and the laboratory-measured data of
the piezoceramic actuator. These comparisons under the chosen input voltages are shown in Figure
3.8 (a) and (b). The results clearly show that the PPI model can effectively characterize the minor

as well as major hysteresis loops of the piezoceramic actuator.

4.4.3 Compensation of hysteresis nonlinearity using SPI model

In this section, the SPI model is utilised as a feedforward compensator to compensate for the
hysteresis non-linearity. The parameters of the SPI model are derived based on the obtained
thresholds (3.25) and weights (3.26) of the PPI model that were presented in the previous section.
The weights a; and the thresholds s; of the SPI model are obtained using (3.18) and (3.19), , and
(3.24) as: 2.146, 0.4544, 0.3230, 0.2397, 0.1831, 0.1444, 0.1156, 0.0941, 0.0774, 0.0642, 0.0543
and 100, 0.9108, 1.9418, 3.0797, 4.3122, 5.6285, 7.0194, 8.4762, 9.9915, 11.5587, 13.1716.
Figure 3.9 (a) and Figure 3.9 (b) show the outputs of the SPI model applied to the input amplifier
of the piezoceramic actuator through the output board and D/A converter. It should be noted that
this output is further amplified by the voltage amplifier (gain = 10). The measured input-output

characteristics of the piezoceramic actuator with the SPI model are illustrated in Figure 3.10 for
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the two selected inputs. The figures show inputs in terms of the desired input displacement, v, as
seen in Figure 3.3. The experimental results illustrate that the SPI model can serve as an effective

feedforward hysteresis compensator for the piezoceramic actuator.
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Figure 3.8: Comparisons between the measured displacement responses with the results derived
from the PPI model under two selected inputs, (a) sinusoidal excitation (b) complex harmonic
excitation.
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Figure 3.9: The outputs of the SPI model under two selected inputs, (a) sinusoidal excitation (b)
complex harmonic excitation.
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Figure 3.10: Input-output characteristics of the piezoceramic stage with the SPI model
compensator under two selected inputs, (a) sinusoidal excitation (b) complex harmonic excitation.

4.5 Conclusions

This paper formulates an SPI model as a feedforward compensator to compensate for the hysteresis
non-linearity in a piezoceramic actuator. The thresholds and the weights of the SPI model are
analytically derived for the first time in the literature, which constitutes the main contribution of
the paper. The results attained from laboratory experiments performed with a piezoceramic micro-
positioning stage showed that the SPI model can serve as an effective compensator for the
hysteresis nonlinearities. The effectiveness of the SPI model as the feedforward compensator is
demonstrated under harmonic and complex harmonic inputs involving both major as well as minor

loop hysteresis nonlinearities.
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CHAPTER 4

EXPERIMENTAL CHARACTERIZATION AND MODELING OF
ASYMMETRIC AND SATURATED HYSTERESIS OF A
MAGNETOSTRICTIVE ACTUATOR

5.1 Introduction

Magnetostrictive materials are increasingly being explored for micro/nano scale actuations
attributed to material deformations in the presence of an external magnetic field, known as the
magnetostriction. Among the available magnetostrictive materials, Terfenol-D alloy is known to
yield significant magnetostriction, which is well-suited for both actuation and sensing applications.
Terfenol-D alloys, preloaded through mechanical springs together with a compression bolt, have
been used with permanent magnets to design fast response, high resolution and high force capacity
magnetostrictive actuators for varied applications such as high speed precision milling machines,
hydraulic valves and active vibration attenuation [1,2,3,75, 76,77]. The magnetostrictive material
actuators, however, exhibit considerable hysteresis nonlinearities between the input current and
the output displacement, as observed in other smart material actuators such as piezoceramic [2,6].
Furthermore, the output-input properties of magnetostrictive actuators exhibit asymmetry about

the input, and output saturation under moderate to high amplitude excitations [1,2,5,76]. Such
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nonlinearities further depend upon the excitation bias, amplitude and frequency in a highly

complex manner.

The presence of hysteresis nonlinearities poses challenges in realizing precise micro/nano
positioning performance for such actuators. The oscillations in the actuators’ responses and thus
the positioning errors, and potential instabilities of the closed-loop actuation systems have been
widely attributed to the hysteresis nonlinearity [5]. The characterization of output-input properties
of smart actuators is thus considered vital for enhancing the understanding of hysteresis
nonlinearities and for developing effective model-based hysteresis compensation methods [5,78].
The response properties of the magnetostrictive actuators have been characterized in a few studies
under different inputs. These have shown that the hysteresis and output-input properties of such

actuators are strongly dependent upon amplitude, bias and frequency of the input.

The output-input properties of magnetostrictive actuators tend to be asymmetric, and
exhibit greater hysteresis and output saturation under moderate to high amplitude excitations
[11,12,79,80]. For example, Calkins et al. [11] characterized the hysteresis nonlinearities of a
magnetostrictive actuator comprising a 115 mm long and 12.7 mm diameter Terfenol-D rod,
subject to different magnetic fields up to 5.6 kA/m. The results of the study revealed significant
output saturation nonlinearity under large amplitude excitations compared to that observed under
low amplitude excitations. Studies reporting measured output-input characteristics of
magnetostrictive actuators have shown that hysteresis nonlinearities are strongly dependent on the
rate of input beyond 5-10 Hz [7,8]. Tan and Baras [7] characterized the hysteresis of a
magnetostrictive actuator comprising a 51.3 mm long Terfenol-D rod and permanent magnets,

causing a bias of 1.54x10* A/m, under inputs in the 10-300 Hz frequency range. The measured
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data obtained under harmonic excitations (amplitude = 0.8 A; bias = -0.1A) revealed asymmetry in

the output about the input and increase in hysteresis with increasing rate of the applied input.

Stuebner et al. [13] measured the effect of the input bias on the hysteresis properties of a
magnetostrictive actuator by applying inputs of identical amplitude (12.5 kA/m) but three different
bias levels (25, 50 and 75 kA/m). The amplitudes of output displacement were observed to be 50%
and 75% lower, respectively, in the presence of 50 and 75 kA/m bias compared to that measured
under the lower bias of 25 kA/m. The measured data revealed not only substantially lower output
displacement in the presence of input bias but also lower hysteresis and higher asymmetry in the
output-input characteristics with increasing bias. The reported studies suggest coupled effects of
input bias, amplitude and frequency on the hysteresis and output saturation nonlinearities of the
magnetostrictive actuators, although most of the reported studies have mostly investigated the
effects of only one of the factors, namely, the input amplitude [5,12,64], bias [13] or frequency
[7,8]. A study of the output-input properties of the magnetostrictive actuator under varying
amplitude, bias and frequency of the input may provide a better understanding of the hysteresis

and saturation nonlinearities of the actuator.

A thorough characterization of the hysteresis and saturation nonlinearities is vital for
developing hysteresis models that may be applied for compensation of the nonlinear effects so as
to achieve enhanced micro-positioning and tracking performance of the actuation system. A
number of hysteresis models have been proposed to characterize hysteresis of smart material
actuators, which could be classified into physics-based and phenomenological hysteresis models.
The physics-based models employ fundamental stress-strain and energy principles to describe
hysteresis behavior of piezoceramic and magnetostrictive actuators [17,79,81,82,83]. The

phenomenological models such as Preisach and Prandtl-Ishlinskii models employ a summation of
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weighted hysteresis operators to describe hysteresis of smart materials and actuators. The classical
Preisach and Prandtl-Ishlinskii models, however, ignore the effects of input bias and rate on the
hysteresis [89,84,83]. A number of such operator based models, however, have evolved over the
past two decades that can effectively account for both rate-dependency and asymmetry effects in
hysteresis. The dependence of the hysteresis on the rate of input has been widely characterized
through formulations and application of dynamic density functions in the classical Preisach and
Prandtl-Ishlinskii models. For instance, Mayergoyz [30] and Ben Mrad et al. [47] proposed
Preisach models with dynamic density functions to describe rate-dependent hysteresis of
magnetostrictive materials and piezoceramic actuators. Davino et al. [8] and Tan and Baras [7]
proposed different linear time-invariant dynamic systems coupled with the classical Preisach
model to describe the rate-dependent hysteresis properties of magnetostrictive actuators as well as

asymmetric output-input characteristics of the actuator.

Output saturation and asymmetry effects are widely observed in magnetostrictive actuators
under moderate and high amplitude inputs or under inputs with a bias. Smith [64] employed a
Preisach model to describe saturation and hysteresis nonlinearities observed in a magnetostrictive
actuator mounted on a cantilever beam. In [5], Visone characterized the output saturation and
asymmetry effects of a magnetostrictive actuator using the Preisach model under a complex
harmonic input. A modified Prandtl-Ishlinskii model was suggested by Kuhnen [12] to describe
asymmetric major and minor hysteresis loops of a magnetostrictive actuator by applying a complex

harmonic input current.

A few studies have proposed generalized Prandtl-Ishlinskii models to describe symmetric
as well as asymmetric rate-independent and rate-dependent hysteresis of different smart material

actuators. DrinCi¢ et al. [61] employed an alternate envelope function in the play operators to
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formulate a generalized Prandtl-Ishlinskii model to account for saturated symmetric hysteresis
nonlinearity of a magnetostrictive actuator. Al Janaideh et al. [9,85] proposed a rate-dependent
play operator and a dynamic density function for the Prandtl-Ishlinskii model to describe the input
rate effect on the hysteresis nonlinearity of a piezoceramic actuator. Dissimilar envelope functions
of the play operators during increasing and decreasing inputs were further proposed to describe
output asymmetry and saturation nonlinearities of a magnetostrictive actuator [86]. The
implementation of two different envelope functions corresponding to increasing and decreasing
inputs, however, could cause a discontinuity in the output. Unlike the Preisach model, the Prandtl-
Ishlinskii model is analytically invertible due to continuity of the play operators. The Prandtl-
Ishlinskii model is thus considered meritorious for formulating an analytical inverse model that

could be applied to achieve real-time hysteresis compensation in an efficient manner [63].

The primary aim of this study is to develop a Prandtl-Ishlinskii model capable of describing
the hysteresis nonlinearities under a broad range of excitation amplitudes and frequencies. A
laboratory experiment was thus designed to characterize the output-input characteristics of a
magnetostrictive actuator under simple and complex harmonic inputs of different amplitudes over
a wide range of frequencies. A memoryless function is proposed and integrated to a rate-dependent
Prandtl-Ishlinskii model in order to describe the output asymmetry and saturation nonlinearities
together with rate-dependent hysteresis. The effectiveness of the proposed model in predicting the
asymmetric output-input properties of the actuator together with output saturation and hysteresis
is demonstrated through comparisons with the measured data under a wide range of inputs. The
output of the suggested model is continuous in time and permits the formulation of an analytical
inverse model that could be applied for compensation of rate-dependent asymmetric hysteresis

nonlinearities.
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5.2 Output-input characteristics of a magnetostrictive actuator

5.2.1 Experimental setup and methods

An experimental setup was designed in the laboratory to characterize the output-input
characteristics of a magnetostrictive actuator under a wide range of simple and complex harmonic
inputs. The experiments were conducted on a magnetostrictive actuator, manufactured by Etrema
(model MFR OTY77; stroke= 100 ym). The actuator comprised two 60.3 mm long and 12.3 mm
diameter Terfenol-D rods, and three permanent magnets that provided a magnetic bias (= 44.1
kA/m) to permit the actuator to operate in the linear region (Figure 4.1 (a)). The coil factor of the
coil encapsulating the drive rod of the actuator was specified as 5.09x10°/m. This actuator
provided peak-peak output displacement of 100 xm within the recommended operating conditions
(peak input current = 7.07 A, 1250 Hz frequency range). A capacitive sensor (Lion Precision, C23-
C250) with sensitivity of 80 mV/um and 35.53 nm resolution was used to measure the output
displacement of the actuator from its static position. The excitation input signal was synthesized
in the ControlDesk platform and applied to a power amplifier (LVC 2016, AE TECHRON) in
order to generate the desired excitation current to the drive coil of the actuator. The actuator
displacement response together with the applied input were acquired in the ControlDesk platform.

A schematic of the experimental set-up is shown in Figure 4.1(b).

Three series of experiments were conducted, which involved factorial designs of two of
the three primary input factors, namely, the input frequency, amplitude and bias. The first series
involved measurements under different combinations of 9 input current amplitudes (/,=1 to 9 A)

and 6 levels of input frequencies (=10, 25, 50, 100, 150 and 200 Hz). It should be noted that the
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amplitudes exceeding the recommended peak current of 7.07 A were used so as to capture the

actuator properties under extreme inputs.
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Figure 4.1: Schematic of the (a) Terfenol-D magnetostrictive actuator used in the study; and (b)
experimental setup.

The second series considered 6 magnetic bias levels in the 25 to 75 kA/m range together
with 2.965 A harmonic excitation at the above-stated input frequencies. The selected range of the
bias corresponds to -3.96 to 5.89 A bias in the current excitation. In the final series, a complex
harmonic input of the form, 1(¢)=A; sin(2znfot)+A> sin(2nnzfot), was applied for characterizing the
major- and minor-loop hysteresis, where f, is the fundamental frequency, A1 =2 A and 42=3 A
are the magnitudes of the two harmonic components, and 7n;=2.5 and n>=1 are the respective
frequency factors. The measured data were analyzed to study the effects of each input factor on

the peak-peak output displacement, output saturation and the hysteresis.

5.2.2  Influence of input amplitude

The output-input characteristics of the actuator corresponding to different amplitudes of input
current are illustrated in Figure 4.2. The results are presented for excitations at a constant frequency
of 10 Hz, and a constant magnetic bias of 44.1 kA/m. Asymmetry of the hysteresis loops and
output saturation are evident under excitations exceeding 2 A. The actuator responses to
excitations exceeding 3 A show substantial degree of asymmetry and output saturation. While the
displacement response is nearly symmetric under increasing and decreasing inputs up to 2 A, the
peak displacement under increasing input tends to be lower than that under decreasing input at
current inputs exceeding 2 A. The results suggest that the asymmetry in the output increases with
the excitation magnitude. The difference between the peak displacement under increasing and
decreasing inputs with respect to peak-peak output displacement is near 6.4 % at 3 A and it

increases to 17.31 % at 9 A. The results also show greater degree of output saturation under higher
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excitation current. A few reported experimental studies on magnetostrictive actuators and

transducers, have also shown output asymmetry and saturation under moderate to high inputs

[5,12,79,78].
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Figure 4.2: Variations in the actuator displacement response under different amplitudes of
harmonic current excitation: (a) 1, 2 and 3 A; (b) 4, 5 and 6 A; and (¢) 7, 8 and 9 A (= 10 Hz;
magnetic bias= 44.1 kA/m).

The measured data were further analyzed to study the influence of the input amplitude on

the output-input characteristics in terms of peak-to-peak output displacement and the area bounded

by the hysteresis loop, as shown in Figure 4.3 (a) and (b). Figure 4.3 (a) also illustrates the rate of

change of peak-peak displacement with respect to the peak-peak input current, which defines the

mean displacement sensitivity of the actuator. The results suggest nearly linear increase in the
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displacement with current in the 3 to 6 A range. The displacement sensitivity, however, is lower
at currents exceeding 5 A, which can be mostly attributed to the output saturation of the actuator.
Low current excitations also yield lower sensitivity that is attributed to lower permeability of the
Terfenol-D material at these levels [1,66,76]. Similar trend is also evident in variations the area of
the hysteresis loop with increasing current, as shown in Figure 4.3 (b), which relates to the energy
loss attributed to hysteresis of the magnetostrictive material [76]. The results suggest increasing

hysteresis with increasing current amplitudes, as it is also seen in Figure 4.2.
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Figure 4.3: Influence of variations in the applied current amplitude on: (a) peak-peak output
displacement and rate of change of the peak-peak displacement with respect to peak-peak current;
and (b) the area bounded by the hysteresis loop (/=10 Hz).

5.2.3 Influence of rate of input

The output-input characteristics of the actuator corresponding to two different input amplitudes
(3 A and 7 A) in the 10 to 200 Hz frequency range are illustrated in Figure 4.4 (a) and (b),
respectively. The results are presented for the constant magnetic bias of 44.1 kA/m and different

discrete excitation frequencies, namely, 10, 25, 50, 100, 150 and 200 Hz. The results show
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increasing hysteresis with increasing excitation frequency for both the input amplitudes, which has
also been reported in other studies [7,12]. The responses to 3 A excitation show relatively lower
output asymmetry and saturation, while those under 7 A excitation show significantly greater

asymmetry and saturation. The peak displacement amplitude in each excitation case, however,

Displacement (um)

remains nearly constant, irrespective of the excitation frequency, as seen in Figure 4.5(a).

Figure 4.4: Measured hysteresis loops relating output displacement response of the
magnetostrictive actuator under harmonic excitations at different frequencies in the 10-200 Hz
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Figure 4.5: Effects of excitation frequency on: (a) the peak-peak displacement response; and (b)
the area bounded by the hysteresis loop.

The results in Figure 4.3 and Figure 4.4 suggest that for the given bias level, the output asymmetry
and saturation are mostly affected by the input amplitude, while the effect of input frequency is
nearly negligible. The hysteresis of the material, however, is strongly dependent upon the
excitation frequency, as seen from the variations in the area of the hysteresis loop in Figure 4.5
(b), apart from the input amplitude. Unlike the input amplitude effect, the hysteresis loop area
increases nearly linearly with the excitation frequency (+?=0.99) for a given input amplitude, while
it tends to be higher under the higher input current. These suggest strong dependence of the

hysteresis on both the excitation magnitude and the frequency.

5.2.4  Influence of input bias

The effect of input bias on the actuator response is investigated by applying biased input currents,
such that Ix(f)=1, sin(2zxft)+lpias, Where Ipias is the input bias. The bias levels are selected by
considering the bias in the magnetic field strength H applied to the actuator coils, which is related

to the applied current in the following manner [7]:
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H(t)=k,I,(t)+ H,, (4.1
where k,=5.09x10°m! is the coil factor and Hpi =44.1 kA/m is the magnetic field bias attributed
to permanent magnets used in the actuator design. Application of the biased current permits

variations in the magnetic field bias, such that:

H(t)=k,I sin(2aft)+ H (4.2)

bias

In the above H,,, =k I, + H ,,, , where kolpius relates to the additional magnetic bias applied to the

ias o™ bias
actuator. The range of total bias used in the experiment (25 to 75 kA/m) range, which correspond
to Ipias in the -3.75 to 6.07 A range. The input current amplitude 7, of 2.95 A at a frequency of 25

Hz was considered in this series of experiments, which corresponds to field strength k./, of 15

kA/m.

Figure 4.6 (a) illustrates the output-input characteristics of the actuator subject to different
input bias. Variations in the peak-peak displacement response and the area of the hysteresis loops
with varying Hpias are presented in Figure 4.6 (b) and (c), respectively. It is evident that a magnetic
bias tends to shift the equilibrium position of the actuator in the direction of bias, while the
magnitude of the shift is nonlinearly dependent upon the Hpiqs. Increasing the Hpias yields relatively
lower shift compared to that observed under the lower bias, which is again attributable to saturation
under higher current. Decreasing the Hpius also yields greater displacement amplitude and
hysteresis, as shown in Figure 4.6 (b) and (c), receptively. The permanent magnets bias (Hpuy) in
the actuator designs is generally chosen to achieve a compromise between greater displacement
and lower hysteresis [1,2]. The results also suggest that the hysteresis characteristics of a
magnetostrictive actuator are dependent on the Hpiss apart from the input current amplitude and the

frequency.
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Figure 4.6: Influence of variations in the magnetic bias (Hpius) on: (a) the output-input
characteristics of the magnetostrictive actuator, (b) peak-peak output displacement; and (c) area of
the hysteresis loop (harmonic magnetic field amplitude = 15 kA/m and /=25 Hz).

5.3 Minor hysteresis loops
Figure 4.7 (a) illustrates the output-input characteristics of the actuator subject to the complex
harmonic input (f,=20 Hz) and magnetic bias of 44.1 kA/m. The results show the minor hysteresis
loops at moderate and low amplitude excitations. The minor hysteresis loop labeled as 1
cofrosponds to the input oscillation during loading, as seen in Figure 4.7(b). In a similar manner,
minor loops 2 and ¥ corresffond to input oscillations during unloading. The minor hysteresis
loops were also obtained under the fundamental frequency f,=40 Hz, and compared with those
obtained for /=20 Hz in Figure 4.8. The figure shows the output-input characteristics zoomed
around the oscillations in the loading and unloading inputs, labeled as 2 and 3 . The compaxisons
suggest that change in fundamental frequency of the input, from 20 to 40 Hz, yields only slight

variations in the amplitudes of secondary oscillations during loading and unloading inputs. The
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change in the rate of applied input, however, produces a notable effect on the minor loops

hysteresis.
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Figure 4.7: (a) The output-input characteristics of the actuator illustrating minor as well as major
hysteresis loops (f,=20 Hz; magnetic bias = 44.1 kA/m); and (b) time history of the complex
harmonic input, 1(£)=2 sin(2.5x2nfot)+ 3 sin(2nfof) applied to characterize minor hysteresis loops.
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Figure 4.8: Output-input characteristics of the actuator zoomed around the minor hysteresis loops
under a complex harmonic input current /(z)=2 sin(2.5x2nfot)+3 sin(2nfot) (  ---fo=20 Hz; and

—#=40 Hz.

5.4 Formulation of an integrated hysteresis model

The rate-dependent hysteresis nonlinearities of smart material actuators have been widely
described by different phenomenological models incorporating dynamic threshold, weighting or
density functions. Among these, the Prandtl-Ishlinskii model offers a unique property of being
analytically invertible, which is attributed to continuous nature of the play operator functions. An
analytical inverse of the Prandtl-Ishlinskii model could thus be formulated to facilitate real-time
compensation of the hysteresis nonlinearities [6,42,49, 63]. Owing to the symmetry of the rate-
dependent play operators, a rate-dependent Prandtl-Ishlinskii model, however, could yield only
symmetric hysteresis properties, as observed in a class of smart material actuators such as

piezoceramic actuators [9]. A generalized rate-dependent play operator with dissimilar hyperbolic
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tangent envelop functions has been proposed, in conjunction with a rate-dependent Prandtl-
Ishlinskii model, to describe asymmetric hysteresis nonlinearities of a magnetostrictive actuator
under increasing and decreasing inputs [87]. The proposed hyperbolic tangent functions could
effectively describe asymmetric hysteresis and saturation effects in smart material actuators, a
discontinuity in the output, however, may occur near input peaks due to lack of convergence of
the envelope functions. This was observed particularly under high frequency inputs and would
impede the formulation of an analytical inverse of the model. Alternatively, Kuhnen [12] proposed
a memoryless function, a superposition of an array of deadband operators, to describe rate-

independent asymmetric hysteresis nonlinearity of a magnetostrictive actuator.

The memoryless function proposed in [5,12,88] could be applied in conjunction with a
rate-dependent Prandtl-Ishlinskii model to describe rate-dependent saturated and asymmetric
hysteresis nonlinearities, which were evident from the measured data. Figure 4.9 (a) illustrates a
cascade arrangement of the rate-dependent Prandtl-Ishlinskii model IT and the memoryless
function A . Analytically, the integrated Prandtl-Ishlinskii hysteresis model Q is expressed as a

composition of IT and A, such that:

p(1)=Q](1) = (A-ID[]E) = (A ID)[V]([) (4.3)

where p(¢) is the output of the integrated hysteresis model Q2.

In the above formulation, the Prandtl-Ishlinskii model IT is formulated considering superposition

of rate-dependent play operatorsT, ;) , which are real and continuous over the interval (0,7). For

an input v(t) € AC(0,T), where AC represents real absolute continuous functions, the output J(¢) of

the model I1(7), which is symmetric about the input, is expressed as [63]:
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8(5) =TIV(E) = agv(®) + D a;T, 5 [V1(0) (4.4)

i=1
where a; are weighting constants. The input function v(¢) is considered monotone over each sub-

1> 1;], and 0=t,<t, <..<t,=T define the intervals. The model employs rate-

interval [¢
dependent play operators to characterize the rate-dependent hysteresis. The output of the rate-

dependent play operator over the interval ¢ e [t 10 tj] may be expressed as:

TVt ,) = max{v(,) = (3G ) hmin () + 1, (5 DD TIVIG )3 4.5)
wherei=0, 1, 2, ..., n,and n N is an integer, and r,(v(t)) € AC(0,T) is the rate-dependent

threshold function defined such that: 0 <7, (v(¢)) <1, (v(t)) <, (V(1)) £...< 7, (V(2)) .

The memoryless function A in (4.3) is formulated as a summation of weighted deadzone

operators J, of different threshold d; and weighting constants g;, as shown in Figure 4.9 (b) [12].

The weightings provide a varying slope character of the resulting function so as to characterize the
asymmetric outputs during loading and unloading inputs together with output saturation. The

composition of symmetric output d(¢) of the rate-dependent Prandtl-Ishlinskii model, which is

monotone over each of the interval [, , ¢;], with the memoryless function A yields the output

1

p(1), as:

m

pt)=A [81(6)= D ey [810) (4.6)

i=—m

where J, (i=-k,...0,...k) are the deadzone operators, described as [12]:

99



max{5(1)—d, .0} for d,>0,
J4,[61(0) = 5(1) Jor d; =0, (4.7)
min{é(t)—d;,0} for d;<O.
Formulating a memoryless function from a large number of deadzone operators with
different thresholds d; and weightings g; provides greater flexibility in describing asymmetry in
the outputs between the ascending and descending inputs, as well as output saturation. The

integrated hysteresis model Q would reduce to rate-dependent Prandtl-Ishlinskii model IT with

symmetric rate-dependent hysteresis loops, when d; =0 and g; =1.

v(t) o(?) (1)
A

(2)

P Deadzone operator, d;<0 —Pp|  Weights, g; \

(1)

b
~.
~—

v

——1—Pp| Deadzone operator, d<0 — | Weights, g;

P Deadzone operator, di<0 —P Weights, g; /

(b)

Figure 4.9: (a) A memoryless function Ay introduced to the output of the rate-dependent Prandtl-
Ishlinskii IT model to observe saturation and asymmetry effects; and (b) structure of the
memoryless function Ay, as a superposition of weighted deadband operators.
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5.4.1 Parameters identification

The effectiveness of the integrated hysteresis model Q in describing major and minor rate-
dependent hysteresis loops with asymmetry and saturation of the output is investigated considering
simple and complex harmonic current inputs in the (10-200) Hz range. For this purpose, the
parameters of the rate-dependent Prandtl-Ishlinskii model IT and the memoryless function A are
identified on the basis of the laboratory-measured data. The measured data revealed that the area
bounded by the output displacement-input current hysteresis loop of the magnetostrictive actuator
is nearly linearly dependent on the excitation frequency of the applied input current [66], as
illustrated in Figure 4.5 (b). Consequently, the play operator with a threshold function that is
linearly related to the rate of input current would be appropriate for describing rate-dependent

hysteresis nonlinearity, such that:

n(®)=y b\ +ai; i=1,2.,n (4.8)
where y and a are positive constants. The constant a relates to the rate-independent hysteresis effect
that is observed at low excitations frequencies. The above threshold function has been
implemented with a Prandtl-Ishlinskii model (4.4) to describe rate-dependent symmetric hysteresis

nonlinearities of a magnetostrictive actuator.

The parameter vector, X = {d; g ai a, y}, of the integrated Prandtl-Ishlinskii model Q is

identified from the measured data through minimization of the sum-squared error functiono:

M=

o=, 2,

1

(Q(t,m,fg,lof)—Y (t,m,f,;,loz))2 (4.9)

S|
i
S
B~
N

1

where Q(z,m, f,.1,.) 1is the displacement response of the model under a given excitation

frequency f; and input current /,; and Y (¢,m, f;,1 ;) is the measured output displacement of
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the magnetostrictive actuator under identical input current. The index m (m =1, ...,M) in the error

function refers to the number of discrete data points considered in computing the error over one

complete hysteresis loop, while indices B and L denote the number of discrete frequencies and

current amplitudes considered. The error minimization problem was solved considering 200 data

points for each hysteresis loop (#=200), and two input amplitudes (/.= 3 and 7 A) applied at

three different excitations of frequencies ( fg = 10, 100 and 200 Hz). The solution of the

optimization problem was solved considering n=10 rate-dependent play operators and 17

deadband operators.

At first, the error minimization problem was solved considering different numbers of rate-
dependent play operators (n ranging from 2 to 15) and different starting values of the parameter
vector. For each chosen n, different starting values of the parameters converged to similar model
parameters. The sum-squared error, however, decreased with increasing value of » but saturated
for n >8, as shown in Figure 4.10. Consequently, the model parameters were obtained using n =10.
The validity of the resulting model was subsequently examined by comparing the model results
with the measured data obtained under different inputs. Figure 4.11 compares the model results
with the measured data obtained under /,= 3 A and 7 A at different frequencies (10, 100 and 200
Hz). The model results under current of 3, 5 and 7 A, at 10 Hz are compared with the measured
data in Figure 4.12 (a). The model response to the complex harmonic input current (f,=20 Hz) is
also compared with the corresponding measured data in Figure 4.12 (b) to examine the model

ability to describe minor loop hysteresis.
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model can effectively characterize the hysteresis of the magnetostrictive actuator over a wide range
of input amplitudes and frequencies. The model effectively describes the asymmetry and saturation

tendencies of the actuator output under input current exceeding 2 A (Figure 4.12(a)), as it was
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Figure 4.11: Comparisons of measured responses of the magnetostrictive actuator with those of
the integrated Prandtl-Ishlinskii model Q under: (a) 1,=3 A at 10 Hz; (b) 1,=3 A at 100; (c) 1,=3
A at 200 Hz; (d) 1,=7 A at 10 Hz; (e) 1,=7 A at 100 Hz; and (f) 1,=7 A at 200 Hz
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Figure 4.12: Comparisons of measured responses of the magnetostrictive actuator with those of
the integrated Prandtl-Ishlinskii model under: (a) current of 3, 5 and 7 A at 10 Hz excitation
frequency; and (b) complex harmonic input /(¢)=2 sin(2.5x2nfot)+3 sin(2nfot) (f,=20 Hz; magnetic
bias = 44.1 kA/m).

The model also illustrates the effect of rate of input current on major hysteresis loops, irrespective

of the current amplitude (Figure 4.11), although some errors between the model responses and

measured data are evident under higher current excitations. The area bounded by the major

hysteresis loop is further derived from the model response and compared with the measured data

under I, =7 A at different excitation frequencies. The percent error between the area obtained from

the model and the measured data ranged from a low of 0.12% at 10 Hz to maximum of 0.96% at
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200 Hz. The peak percent error between the displacement response of the model and the measured

displacement over the entire frequency range was 3.72%, which occurred at 200 Hz.

5.4.2 Relative significance of the proposed integrated hysteresis model

The relative significance of the proposed rate-dependent and asymmetric integrated model is
explored by evaluating its performance in relation to: (i) the rate-independent and asymmetric
hysteresis model proposed in [12]; and (ii) the rate-dependent Prandtl-Ishlinskii model alone.
Consequently, the error minimization problem Figure 4.9 was solved for each model in order to
identify the corresponding parameters. The output-input characteristics of the resulting models are
compared in Figure 4.13 with those of the measured data obtained for the magnetostrictive actuator
under 5 and 7 A excitations at 10, 50 and 200 Hz. The percent peak displacement error of each
model is also obtained under 5 and 7 A inputs, as shown in Figure 4.14 (a) and (b), respectively.
The results clearly show that the rate-independent asymmetric hysteresis model with the
memoryless function, proposed in [12], yields substantial errors at high excitation frequencies. The
peak error exceeds 13.5 % at 200 Hz excitation frequency. The rate-dependent Prandtl-Ishlinskii
model, on the other hand, yields only symmetric hysteresis loops, while the peak displacement

errors approach 9.6 % under inputs at 200 Hz.

Neglecting either the rate effect in the threshold of the Prandtl-Ishlinskii model or the asymmetry
attributed to the memoryless function yields significant errors in the displacement responses of the
magnetostrictive actuator model. It is clearly evident that implementation of the memoryless
function to the rate-dependent Prandtl-Ishlinskii model enhances its ability to describe rate

dependence of the asymmetric hysteresis effects in addition to the output saturation.
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Figure 4.13: Measured responses at amplitudes of 5 and 7 A under 10, 50 and 200 Hz compared
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asymmetric rate-independent Prandtl-Ishlinskii model [12]; and (g)-(i) the integrated Prandtl-
Ishlinskii model Q.
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asymmetric model [12], and the integrated Prandtl-Ishlinskii model Q at 10, 50 and 200 Hz applied
under: (a) 5 A; and (b) 7 A.

5.5 Conclusions

The measured output-input characteristics of a magnetostrictive actuator suggested output
asymmetry and saturation under medium to high amplitude excitations, and increasing hysteresis
with increasing excitation frequency. The area bounded by the hysteresis loop increased
nonlinearly with the input amplitude but nearly linearly with the excitation frequency. The
variations in the magnetic field bias also showed substantial effects on output asymmetry and
saturation, peak-to-peak displacement and the area bounded by the major hysteresis loop. The
proposed rate-dependent Prandtl-Ishlinskii model integrating a memoryless function of dead-band
operators could effectively describe the rate-dependent and asymmetric hysteresis properties of
the actuator together with output saturation over wide ranges of input amplitudes and frequencies
considered in the study. The peak error between the model displacement response and the
measured data was 3.72 %, which occurred under the extreme excitation frequency of 200 Hz. It
is further shown that the applications of reported rate-dependent Prandtl-Ishlinskii model, and the
rate-independent Prandtl-Ishlinskii model with the memoryless function, would yield substantial
response errors. It is thus concluded that neglecting either the rate effect in the threshold of the
Prandtl-Ishlinskii model or the asymmetry attributed to the memoryless function would yield

significant errors in the displacement response of the magnetostrictive actuator model.
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CHAPTER 5

COMPENSATION OF RATE-DEPENDENT HYSTERESIS
NONLINEARITIES IN A MAGNETOSTRICTIVE ACTUATOR USING
INVERSE PRANDTL-ISHLINSKII MODEL

6.1 Introduction

Magnetostrictive actuators are increasingly being explored for various micro- and nano-
positioning, and vibration control applications due to their fast response, and relatively large stroke
and force capacity [1-4]. Such actuators, however, may yield limited positioning and tracking

performance due to presence of hysteresis nonlinearities between the input current and the output
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displacement [e.g.,1,7,8]. The hysteresis nonlinearities tend to be far more significant under high
rates of inputs, which are known to cause inaccuracies and oscillations in the actuator’s response,
poor tracking performance and potential instabilities of the closed-loop system [5,7,8]. It is
generally agreed that the tracking performance of such actuators could be significantly enhanced
through compensation of hysteresis effects. Consequently, considerable efforts have been made
towards accurate characterizations of hysteresis nonlinearities of different smart material-based
actuators such as piezoceramic, magnetostrictive and shape memory alloys [8,45,85,89] and design

of controllers for compensation of the hysteresis effects [5,7,35,42,49,90-93].

Different controller designs have been proposed to achieve effective compensation of
hysteresis in smart material actuators including the magnetostrictive actuators. The size together
with limited accuracy of the feedback devices, however, may pose challenges in realizing desirable
micro-and nano-positioning precision, particularly under higher rates of inputs [85]. From a
practical point of view, it has been suggested that hysteresis compensation of smart material-based
actuators without a feedback device would be highly desirable [5,6]. A number of studies have
proposed open-loop compensation of hysteresis nonlinearities of different smart material-based
actuators [42,89]. Compensations of hysteresis effects of smart material actuators, particularly the
piezoceramic and magnetostrictive have been attempted through applications of inverse hysteresis
models or stop-operator based models as feedforward compensators [e.g.,12,44,94]. Such methods
generally do not account for the strong dependence of the hysteresis nonlinearities on the rate of
the applied input. The magnetostrictive actuators, similar to other smart material-based actuators,
invariably, show increasing hysteresis with increasing excitation frequency [7,31,95]. The

applications of inverse rate-independent hysteresis models would thus yield considerable
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compensation errors under excitations at higher frequencies. It is thus desirable to formulate an

accurate hysteresis model and its inverse considering a broad range of rates of the input.

The hysteresis nonlinearities of smart material-based actuators have been widely characterized
using different phenomenological models [5,6,7,8,45,85,89]. Among these, the Prandtl-Ishlinskii
model offers an attractive and unique property of being analytically invertible, attributed to
continuity of the play operators. The Prandtl-Ishlinskii model would thus facilitate the formulation
of the inverse rate-dependent hysteresis model and its real-time implementations for effective
compensation of hysteresis [42,63,85]. In this study, a Prandtl-Ishlinskii model is formulated to
characterize hysteresis nonlinearities of a magnetostrictive actuator under inputs at different
frequencies. The model validity is demonstrated using the laboratory-measured output-input
characteristics of the magnetostrictive actuator over a wide range of excitation frequencies. An
inverse model is formulated on the basis of the hysteresis model incorporating the influence of the
rate of input. Subsequently, the inverse rate-dependent model is applied in a cascade configuration
with the rate-dependent hysteresis model to study its effectiveness as an open-loop feedforward
hysteresis nonlinearity compensator under inputs in the 1 to 200 Hz range. The effectiveness of
the proposed rate-dependent feedforward compensator is demonstrated through simulation results

and laboratory tests.

6.2 Rate-dependent Prandtl-Ishlinskii model and its inverse

A Prandtl-Ishlinskii model is formulated to describe the hysteresis nonlinearity of a
magnetostrictive actuator over a wide range of input frequencies. The Prandtl-Ishlinskii model is
selected considering its many desirable properties including the abilities to obtain an analytical
inverse and to incorporate the rate effect for predicting rate-dependent hysteresis nonlinearity

[42,63,85]. The model employs a superposition of rate-dependent play operators with a rate-
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dependent threshold function and positive weighting coefficients for characterizing hysteresis
nonlinearities in smart actuators [9]. The model formulations have been described in [42,63]
together with the condition that ensures analytic invertability of the rate-dependent Prandtl-
Ishlinskii model. The rate-dependent Prandtl-Ishlinskii model is subsequently applied to formulate
its inverse, which is applied to seek compensation of the rate-dependent hysteresis nonlinearity of

a magnetostrictive actuator.

The rate-dependent Prandtl-Ishlinskii model is formulated considering rate-dependent play
operators, which are real and continuous functions over the interval (0,7). The space of such
functions is denoted by AC(0,T). For an input v(¢) € AC(0,T), the thresholds of the play operators

are defined such that:

0<r,(@) <) <r@)<...<1,((@1)) (5.1
where r,(v(¢)) € AC(0,7T) is the rate-dependent threshold function; i =0, 1, 2, ..., n,and n € N is

an integer.

The output # (r) of the rate-dependent play operator, I'[v](¢), is given by:

10 =T, ) [V1(0) (5.2)
For any input v(¢) € AC(0,7), the function v is considered monotone over each sub-interval [#.1,],
and 0 = #o < f1 < ... < t;= T define the intervals. The output of the rate-dependent play operator

may thus be expressed over a discrete interval, 7 (¢-1,4], as:

Iy (2, = max{u(t,) - . (5,) hmindo(z) + 1 (50 ) V(23 (5.3)

with initial condition:
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h,(0) = max {v(0) — 7, (v(0) ) min {(0) + r,(¥(0)), 0}} (5.4)

The rate-dependent Prandtl-Ishlinskii model is constructed as a superposition of weighted rate-

dependent play operators. The output I1[v](¢) of this model can be expressed as:

M0 = agv () + DT, 5 V1) (5.5)
i=1
where ao and a; are the positive weights.

The open-loop compensation employs the model inverse and the model in a cascade
manner, as shown in Figure 5.1, so as to obtain an identity mapping between the input v(¢) and the
output u(¢). The output of the inverse rate-dependent Prandtl-Ishlinskii model IT"'[v](¥) is applied
as a feedforward compensator of the rate-dependent Prandtl-Ishlinskii model I1[v](¢), such that the
compensator and model yield identity transformation starting from the initial states, IT1"'(0) and

I1(0). The output of the compensation can thus be expressed as:

oI ' [v](6) = u(t) (5.6)
The formulation of the inverse model IT'[v](£), however, holds under the condition that the

differences between consecutive dynamic thresholds, 7,,(v(¢)) and r(i(1)), do not decrease in time

[63]. Analytically forvi=1, ..., n-1:

%(Ari(v(r)))zo (5.7)

where Ar.(v(#))is the difference between two consecutive thresholds.

() I H_l ] m(t) 1 u(?)

112




Figure 5.1: A cascade arrangement of the rate—dependent inverse Prandtl-Ishlinskii model IT"! and
the hysteresis model I1.

The output m(¢) of the inverse rate-dependent Prandtl-Ishlinskii model can be expressed as [63]:

() = T [)(0) = dgv() + ) 6T 5 V1) (5.8)

i=l
The rate-dependent thresholds of the inverse model 7 (v(r)) are related to those of the model itself,

r (\'}(t)), in the following manner [63]:

7 (0()) = a 1,(5())

i (5.9)
i (W0)=7,(00)+ X ;1 (50) =1, (1))
j=0
The weights of the inverse model q,, 4, ,..., a, are also related to those of the Prandtl-Ishlinskii
model I1[v](?), as:
N 1 1 n 1
a;=———-—7—: and 4, = (5.10)
Zaj Z"j '
J=0 J=0

6.3 Characterization of hysteresis of a magnetostrictive actuator

The developments of the rate-dependent Prandtl-Ishlinskii model and the inverse necessitate
accurate descriptions of the output-input characteristics of the smart-material actuator over a wide
range of inputs. In this study, experiments were performed on a magnetostrictive actuator (Etrema
Inc; model MFR OTY77) to measure its rate-dependent hysteresis nonlinearities under harmonic
excitations in the 1-200 Hz frequency range. The actuator consisted of a wound wire solenoid

surrounding two Terfenol-D rods, which are preloaded by a compression bolt and a spring washer.
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Three permanent magnets are installed along the Terfenol-D rods to provide a magnetic field with
a bias. Figure 5.2 illustrates the primary components of the actuator. The actuator provides a peak-
to-peak output displacement of 100 um under excitations at frequencies up to 1250 Hz. A
capacitive sensor (Lion Precision; model C23—C250) with sensitivity of 80 mV/um, bandwidth of
15 KHz, and a resolution of 35.53 nm was used to capture the output displacement of the actuator
with respect to the static position. The excitation signals, vo(f), of different magnitudes and
frequencies were synthesized in the ControlDesk platform and applied to a power amplifier (AE
TECHRON; model LVC 2016). The current output of the power amplifier was subsequently
applied to the actuator, as shown in Figure 5.3. The actuator displacement response, measured by
the capacitive sensor, was also acquired in the dSpace ControlDesk together with the applied input

signal v(¢) in order to generate the output-input hysteresis loops.

Output shaft
Spring

Terfenol-D rods

Drive coil

Permanent magnets

Aluminum housing
cover

Figure 5.2: Construction of a Terfenol-D magnetostrictive actuator.
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Magnetostrictive Actuator

Figure 5.3: Experimental setup for characterization of hysteresis nonlinearities of a
magnetostrictive actuator.

The response characteristics of the actuator were measured to characterize hysteresis loops
at different discrete frequencies in the 1-200 Hz frequency range. The measurements were carried
out under a harmonic input current of 2.3 A amplitude at different frequencies (1, 50, 100, 150,
and 200 Hz). The major and minor hysteresis loops were also characterized under a complex
harmonic input of the form: v(¢) = 1.0 sin(100zf#)+1.3 sin(90zf?). Figure 5.4(a) displays the output-
input properties of the actuator under excitations at 1, 50 and 200 Hz. The figure illustrates
considerably higher hysteresis at a higher frequency. The output-input characteristics under the
complex harmonic input are illustrated in Figure 5.4 (b), which show the major as well as minor
hysteresis loops. The data were further analyzed to derive peak normalized hysteresis, ratio of
maximum difference in the outputs under decreasing and increasing input and the peak-to-peak
output, as a function of the input frequency. Figure 5.5 depicts variations in percent peak
normalized hysteresis as a function of the frequency of the applied input current. The results
suggest nearly linear increase in the normalized hysteresis with the frequency (+’= 0.9993) over

the frequency range considered in the study.
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Figure 5.4: Measured hysteresis nonlinearities of the magnetostrictive actuator under different inputs: (a)
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Figure 5.5: Percent peak normalized hysteresis of current-to-displacement loops of the
magnetostrictive actuator at different excitation frequencies.

6.3.1 Model parameters identification

The laboratory-measured data suggests that a threshold function that is linearly related to the rate

of input would be most appropriate to describe the rate-dependent Prandtl-Ishlinskii model of the
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magnetostrictive actuator considered in the study. The measured responses suggest that a rate-

dependent threshold as a linear function of the rate of input may thus be considered:

R00)=a ity o) (5.11)
where o and y are positive constants. The difference between the two consecutive thresholds,

Ar;(v(t)), is thus a positive constant:

Ar,(v(t)) = (5.12)

and

< (a0 =0 (5.13)
The above satisfies the condition for inverse rate-dependent Prandtl-Ishlinskii model. Furthermore,
the threshold function can be approximated as l;.(\'/(t)) =i at low excitation frequencies,
suggesting that the Prandtl-Ishlinskii model can also characterize the rate-independent hysteresis
nonlinearities. The parameter vector, X = {a, y, ao, ai, az, ..., an} of the rate-dependent Prandtl-

Ishlinskii model I, was identified through minimization of the error function ® over the range

excitation frequencies, given by:

N A (T, m, £) =Y (Esm, £:)) (5.14)

D=

O(X) =

M
m=

S
]

1

—_

where II(v(#,m, f)) is the displacement response of the rate-dependent Prandtl-Ishlinskii model

under a given excitation frequency f; and ¥(¢,m, f) is the measured displacement under the same

excitation frequency. The index m (m =1, ..., M) refers to the number of data points considered in

computing the error function for one complete hysteresis loop. The error minimization problem in
this study was formulated considering M = 400 for each measured hysteresis loop. The index b (
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b =12 3,and B ) denotes the number of discrete frequencies considered in the error function

over the 1 to 200 Hz frequency range. Owing to the higher hysteresis at higher excitation

frequencies, a weighting constant Ag was introduced to emphasize the error minimization at
higher excitation frequencies. The weighting at a frequency f; ; was taken as the ratio of peak

normalized hysteresis at f,; to that under excitation at a low frequency, e.g., 1 Hz. The error

minimization problem (5.14) was solved using the MATLAB constrained optimization toolbox,

subject to following constraints:
{a, y, a0, a1, . ...an } >0

The solutions were obtained considering different number of operators, ranging from 4 to 35. In
each case, the repeated solutions of the minimization problem were obtained using different values

of the starting vector, which converged to very similar model parameter vector.

The validity of the resulting models was examined by comparing the model responses with
the measured data in terms of output-input loops and peak normalized hysteresis over the entire
frequency range. The results revealed that model with as few as 4 play operators (n=4) could yield
reasonably accurate characterization of the hysteresis nonlinearities. The error minimization
considering only 4 operators resulted in parameter vector: o = 0.309, y=2.73x10™, ap = 0.4870, a;
=0.4261, a» = 0.0134, a3 =0.0638 and as = 0.1996. As an example, Figure 5.6 (a) to (c) compare
the output-input hysteresis predicted from the model comprising only 4 operators with the
measured data under harmonic excitations at 1, 50 and 200 Hz, respectively. The minor and major
hysteresis loops obtained from the model under the complex harmonic excitation, considered in

experimental characterization, are also compared with the measured data in Figure 5.6 (d). The
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Output Displacement(im)

percent peak normalized hysteresis, derived from the predicted responses, is also compared with

the measured data in Figure 5.7 which suggests very close agreement in the entire frequency range.

The responses of model comprising 25 play operators are also compared with the measured
data in Figure 5.8 under same excitations. The results in Figure 5.6 and Figure 5.8, suggest that
the model with only 4 operators would provide sufficiently accurate characterization of hysteresis
of the actuator considered in the study under inputs up to 200 Hz in a highly efficient manner.
Moreover, the model with fewer operators would be beneficial in formulating the model inverse

with only fewer model parameters and facilitate its hardware implementation.
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Figure 5.6: Comparisons of measured responses of the magnetostrictive actuator with those of the
Prandtl-Ishlinskii model I1, formulated using 4 rate-dependent play operators, under 2.3 A harmonic
input at different frequencies: (a) 1 Hz, (b) 50 Hz, (c) 200 Hz; and (d) the complex harmonic input, v(¢)
= 1.0 sin(10077) +1.3 sin(90xz) A.
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Figure 5.7: Comparisons of the percent peak normalized hysteresis obtained from the Prandtl-
Ishlinskii model, formulated using 4 rate-dependent play operators, with the measured data under
harmonic excitations at different frequencies.

120



Output Displacement (um)

6.4 Feedforward compensation of rate-dependent hysteresis nonlinearities

The inverse rate-dependent Prandtl-Ishlinskii model was formulated using the identified model
parameters and relations (5.9) and (5.10). The output of the inverse rate-dependent Prandtl-

Ishlinskii model can be expressed as:

') = aov(z)+za, o) V1) (5.15)

The output-input characteristics of the inverse rate-dependent Prandtl-Ishlinskii model (»=4) under
harmonic inputs (amplitude = 2.3 A) at 1, 50 and 200 Hz are shown in Figure 5.9, along with those
attained under the complex harmonic input, v(#)= sin(100mnf?)+1.3sin(90nf?). The results show
hysteresis loops in the clockwise direction opposed to the counter-clockwise loops obtained from
the hysteresis model (Figure 5.6 Figure 5.8). The results further show that the loops are not smooth,

which is partly attributed to consideration of only 4 operators.
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Figure 5.8: Comparisons of measured responses of the magnetostrictive actuator with those of the
Prandtl-Ishlinskii model I1, formulated using 25 rate-dependent play operators, under 2.3 A harmonic
input at different frequencies: (a) 1 Hz, (b) 50 Hz, (c) 200 Hz; and (d) the complex harmonic input, v(¢)
=1.0 sin(1007z¢)+1.3 sin(907xt) A.

6.4.1 Simulation results

The simulations were performed to obtain the outputs of the cascade arrangement of the
inverse rate-dependent Prandtl-Ishlinskii model and the Prandtl-Ishlinskii model. The
magnetostrictive actuator gain of 0.1803 A/um is applied to the inverse model output, which serves
as input ¥(¢) to the Prandtl-Ishlinskii model. The outputs of the two models, IT"! and II, together
with the compensated output #=ITo IT"'[v] under harmonic inputs at different frequencies (1, 50
and 200 Hz) are illustrated in Figure 5.10 (a) to 10(c). The results clearly show effective mitigation
of the hysteresis effects by the inverse model-based feedforward compensator, irrespective of the
excitation frequency within the range considered. The effectiveness of the rate-dependent
feedforward compensator in compensating for the minor hysteresis loops is also evident from the
results attained under the complex harmonic input, shown in Figure 5.10(d). Since the rate-

dependent Prandtl-Ishlinskii model IT satisfies the necessary condition (5.7) in rate-dependent
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thresholds for the inverse rate-dependent Prandtl-Ishlinskii model to be exact [63] the error in the
compensated output #=IToIIT"! is zero. This is particularly true in the simulation results where the

characterization errors of the model are absent.
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Figure 5.9: The output-input characteristics of the inverse Prandtl-Ishlinskii model, formulated using 4 rate-
dependent play operators, under harmonic and complex harmonic inputs: (a) v(¢) = 2.3 sin(2 zf?), f= 1, 50 and
200 Hz ; and (b) v(¢) = 1.0sin(100x¢) +1.3 sin(907x ¢).
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Figure 5.10: Output-input characteristics of the inverse rate-dependent Prandtl-Ishlinskii model IT°
!, rate-dependent Prandtl-Ishlinskii model IT, and the compensated output u=IToIT"!, where w(?)

=2.3sin(2nft), (a) f =1 Hz, (b) f =50 Hz, and (c) f =200 Hz, and (d) v(#)=1.0 sin(100mxt)+1.3
sin(90mxt).
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6.4.2  Experimental results

The effectiveness of the inverse rate-dependent Prandtl-Ishlinskii model as a feedforward
hysteresis compensator is further investigated in the laboratory. A hardware-in-the-loop
experiment was designed, where the inverse model was used as the feedforward hysteresis
compensator in the ControlDesk platform. The inverse rate-dependent model based on only 4 rate-
dependent play operators was applied in the experiment so as to assess its effectiveness in a simple
and efficient manner. Harmonic inputs at different frequencies were applied to the compensator,
and the output together with the actuator gain (0.1803 A/um) was applied to the magnetostrictive
actuator through the power amplifier. The measured actuator displacement response was
subsequently acquired in the ControlDesk. The variations in measured actuator displacement with
the input current applied to the feedforward compensator are illustrated in Figure 5.11(a) for
different excitation frequencies. Figure 5.11(b) shows the response under the complex harmonic
input. The results show that the inverse rate-dependent model can effectively compensate for the
hysteresis effects, major as well as minor loops, of the actuator at different excitation frequencies
in the 1-200 Hz range. Some deviations, however, are evident in the compensated output, which
are mostly attributed to the characterization errors and prediction errors of the rate-dependent

Prandtl-Ishlinskii model.

The peak hysteresis error was further computed from the measured data corresponding to
each excitation frequency. As an example, Figure 5.12 (a) illustrates the time-history of the error
under the harmonic excitation at 100 Hz, which suggests peak error of nearly 0.621 ym (4.77% of
the peak displacement). The peak error is significantly lower than that obtained without the
compensator (nearly 25.7%). The peak errors, expressed in percent of the peak displacement, under

inputs at different frequencies are further summarized in Figure 5.12 (b). The results suggest
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comparable error at frequencies above 75 Hz but slightly large error, in the order of 4.96%, at very
low frequencies. The results suggest that the inverse rate-dependent Prandtl-Ishlinskii model can
effectively compensate for positioning error due to hysteresis in the entire frequency range
considered in the study. The slightly higher error at low frequencies is attributable to rate

dependency of the threshold function employed in the Prandtl-Ishlinskii model.
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Figure 5.11: The output-input characteristics of the magnetostrictive actuator employing the inverse rate-
dependent Prandtl-Ishlinskii model as a feedforward compensator under different inputs: (a)
v(t)=2.3sin(2nft) A, f =1, 25, 50, 75, 100, 125, 150, 175 and 200 Hz; and (b) v(¢)=1.0 sin(100x £)+1.3
sin(90m?) A.
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Figure 5.12: (a) The time-history of the error with the inverse rate-dependent Prandtl-Ishlinskii
model under the harmonic excitation at 100 Hz, (b) Percent peak normalized hysteresis of current-
to-displacement loops of the magnetostrictive actuator with the inverse rate-dependent Prandtl-
Ishlinskii model at different excitation frequencies.
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6.5 Conclusions

The results suggest that the inverse rate-dependent Prandtl-Ishlinskii model can provide effective
compensation for hysteresis nonlinearities under inputs applied over a wide frequency range. The
simulation and experimental results further showed that an inverse model based on only a few
operators (n=4) could suppress the hysteresis errors effectively in a highly efficient manner.
Consideration of larger number of play operators would yield even lower positioning error
although at the expense of relatively higher implementation complexity. The simulations and
laboratory implementations in the study, however, are limited only to symmetric hysteresis loops.
The proposed compensator can thus be considered valid under inputs within the linear operating
range of the magnetostrictive actuator. Smart-material actuators generally exhibit asymmetric
loops and output saturation nonlinearities under moderate to high drive levels [1]. A
magnetostrictive actuator will also yield asymmetric hysteresis loops in the presence of bias in the
applied current or the pre- compression of the Terfenol-D rods. The hysteresis compensation under
a wide range of drive amplitudes would necessitate formulations of inverse rate-dependent of a
more generalized Prandtl-Ishlinskii model capable of characterizing rate-dependent asymmetric
hysteresis nonlinearities. The formulation of this inverse could be attempted considering the
Prandtl-Ishlinskii model with generalized play operators with asymmetric loading-unloading

properties.
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CHAPTER 6

FEEDFORWARD COMPENSATION OF ASYMMETRIC RATE-
DEPENDENT HYSTERESIS NONLINEARITIES OF A
MAGNETOSTRICTIVE MICRO-ACTUATOR

7.1 Introduction

Smart material actuators are increasingly being explored for micro-positioning applications
requiring fast response, relatively higher forces, miniaturization in size and high resolution.
Magnetostrictive actuators based on Terfenol-D materials are considered particularly attractive for
applications involving relatively large stroke and high force capacity [1,2,3]. Such actuators have
been explored for various micro-positioning and vibration control applications [4,96,97].
However, like other smart material actuators, magnetostrictive actuators show strong input rate-
dependent hysteresis nonlinearities that tend to limit their positioning and tracking performance.
Furthermore, the hysteresis nonlinearities tend to be significant under high rates of inputs, and

asymmetric under moderate and high input magnitudes [5,7,8,98]. Such actuators may thus cause
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greater tracking inaccuracies and oscillatory responses under inputs of high magnitudes and higher

frequencies [1,2,5,6].

The realization of accurate positioning performance of magnetostrictive actuators under
different rates and magnitudes of inputs thus requires designs of additional controllers to
compensate for the effects of hysteresis nonlinearity as well as the output-input asymmetry.
Several studies have reported different controller synthesis for systems with hysteresis [e.g., 90,
98,99,100]. Alternatively, hysteresis compensation methods, employing inverse hysteresis models
in a cascade arrangement with the hysteresis model of the actuator, have also been proposed for
effective real-time compensation. A number of inverse model based compensators have been
reported for compensation of rate-independent hysteresis effects of different smart material
actuators [5,7,12,44,57,101]. These have employed different phenomenological hysteresis models
such as Preisach and Prandtl-Ishlinskii models. The majority of the reported methods, however,
are limited to compensation of symmetric hysteresis effects, such as those observed for
piezoceramic actuators [e.g.,42,49,57,78,102,103]. Furthermore, the vast majority of these do not
consider the strong dependence of hysteresis nonlinearity on the rate of the applied input. Only a
few studies have proposed input rate-dependent inverse models for compensation of hysteresis
effects under inputs at different frequencies [102]. The Terfenol-D material of magnetostrictive
actuators, invariably, exhibits output-input hysteresis together with output saturation and
asymmetry with respect to the input that strongly depend upon the rate and magnitude of the input
[5,7,62,90,98,101,104]. The applications of reported inverse compensation models to

magnetostrictive actuators would thus yield substantial tracking errors.

A few studies have reported alternate Prandtl-Ishlinskii models to describe output asymmetry

and output saturation. Visone and Sjostrom [89] proposed a Prandtl-Ishlinskii model coupled with
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a memoryless hyperbolic tangent function to formulate a Preisach-like hysteresis model for
describing saturated hysteresis nonlinearities of a superconductor, while the input rate effect on
the hysteresis was not considered. Al Janaideh et al. [60] constructed a Prandtl-Ishlinskii model
using generalized play operators with dissimilar envelope functions to characterize asymmetric
hysteresis nonlinearities of magnetostrictive actuators and shape memory alloys. Drin¢i¢ et al. [61]
applied the generalized model reported in [60] for characterizing the butterfly-shaped hysteresis
nonlinearity of a Terfenol-D magnetostrictive actuator considering identical envelop functions of
the operators. Kuhnen [12] characterized asymmetric hysteresis nonlinearity of a magnetostrictive
actuator using the rate-independent Prandtl-Ishlinskii model coupled with a superposition of

weighted dead-band operators.

The above-stated hysteresis models do not consider the effect of rate of input on the hysteresis.
Formulation of an accurate hysteresis model and its inverse considering a broad range of input
magnitudes and rates is vital for achieving effective compensation of hysteresis nonlinearities of a
magnetostrictive actuator. Among the reported phenomenological hysteresis models, the Prandtl-
Ishlinskii model may be preferred since it is analytically invertible owing to continuous nature of
the play operators [42,63]. The effectiveness of the inverse Prandtl-Ishlinskii model for
compensating symmetric as well as asymmetric rate-independent hysteresis effects has been

illustrated in a few studies [5,6,12].

In this study, the asymmetric hysteresis characterization and compensation potentials of a
symmetric rate-dependent Prandtl-Ishlinskii model coupled with a deadband function and their
inverse are explored. The inverse model feed-forward compensator is applied for compensation of

asymmetric and rate-dependent hysteresis nonlinearity of a magnetostrictive actuator. The
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effectiveness of the proposed compensator is demonstrated through simulations and hardware-in-

loop real-time implementation in the laboratory.

7.2 An integrated Prandtl-Ishlinskii model and its inverse

Compared to the available phenomenological hysteresis models, the Prandtl-Ishlinskii model is
considered an attractive choice for modeling and compensation of hysteresis nonlinearities
considering its simplicity and flexibility to include the rate-dependent hysteresis effects.

Furthermore, the Prandtl-Ishlinskii model is analytically invertible.

The rate-dependent Prandtl-Ishlinskii model describing the rate-dependent but symmetric
hysteresis nonlinearity could be combined with deadband function to characterize output
asymmetry and saturation of a Terfenol-D magnetostrictive actuator. The validity of the resulting
model, referred to as the integrated Prandtl-Ishlinskii model, was demonstrated in a recent study
using the laboratory-measured output-input characteristics under different magnitudes of inputs in
the 1-250 Hz frequency range. In this study, integrated model is briefly described, and its inverse
is formulated to seek compensation of the rate-dependent and asymmetric hysteresis nonlinearity
of a magnetostrictive actuator in an open-loop manner. Figure 6.1 illustrates a cascade arrangement
of the integrated rate-dependent Prandtl-Ishlinskii model Q and its inverse Q!, as the feed-forward

hysteresis compensator.

For an input v(7), the integrated rate-dependent model Q employs a composition of both the

rate-dependent Prandtl-Ishlinskii model IT and the deadband function A, such that:

Qv](r) = AI]()). (6.1)
The rate-dependent Prandtl-Ishlinskii model IT employs a superposition of weighted rate-

dependent play operators, which are real and absolute continuous functions over the interval [0,
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T1], as described in [63,85]. The output J(¢) of the rate-dependent Prandtl-Ishlinskii model IT[v](¢)

can also be expressed in the discrete form, as:

(1) =TIV](1) = agv(t) + Y a;T, ) V), (6.2)
i=l
where ao and a; are the weights.

Each rate-dependent play operator I is defined using the input w(f) € AC(0,7), and a rate-

dependent threshold function 7,(v(¢))€ AC(0,7),i=0, 1, 2, ..., n, where n € N is an integer. The

threshold function is defined, such that:

0=r,(v(@) <r(@) <r,(W1) <...<7,(W(1) (6.3)
The input v(¢) is considered monotone over each sub-interval [#.1, /], and 0=t < t, < ... < ;=T
define the intervals. The output of the rate-dependent play operator I'[v](¢) over an interval, fe [#-

1,4)), can be expressed as

T, s V1) = max{ v(e)=n (52 ) kmin{ ve,)+ 7, (5 )T (8, )3 (6.4)
The integrated rate-dependent Prandtl-Ishlinskii model is subsequently formulated using
the deadband function A so as to describe asymmetric output-input characteristics and output

saturation. The output of the integrated model Q can be expressed as [104]:

k
Q[vI(1) = AITI[V]I() = D g,/ [T[VII), (6.5)
i=—k
where function A is a summation of weighted deadband operators J, , di (i=-k, -k+1,...,k-1, k) are

the thresholds of the deadband operators, £ is a positive integer, and g; are the weighting constants

[12]. The output of the deadband operator J, is given by:
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max{o(¢t)—d,;,0} for d, >0,
T, 1810 = 5(t) for d, =0, (6.6)
min{d(¢)-d,,0} for d,<O.

Figure 6.1: Feedforward Compensation using the cascade arrangement of inverse model Q' and
the hysteresis model Q.

7.2.1 Inverse of the integrated Prandtl-Ishlinskii model

The inverse of the integrated Prandtl-Ishlinskii model Q! is obtained from the inverses of both the
rate-dependent Prandtl-Ishlinskii model IT"! and the deadband function A!. An identity mapping
between the applied input v(f) and the compensated output u(s) can be achieved by applying the
resulting inverse model as a feed-forward compensator together with the integrated Prandtl-
Ishlinskii model Q. The output Qo Q'[v](r) yields identity mapping between the input v(f) and the

output u(¢).
The inverse model of the integrated Prandtl-Ishlinskii model Q! can be expressed as:

QIO =1 T D). (6.7)
The inverse of rate-dependent Prandtl-Ishlinskii model IT"! can be formulated on the basis of the
model IT itself. The formulation of II"', however, holds under the threshold dilation condition,

which implies that the differences between two consecutive dynamic thresholds 7., (v(t)) and

r.(v(?)) of IT do not decrease in time vi=1, ..., n-1, [63], such that:
d .
B 0) 20 (6.8)
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where
Ar, (1) = 11, (1) =1, (9(1)) -
The rate-dependent thresholds 7 (v(¢)) of the inverse rate-dependent Prandtl-Ishlinskii model

IT™" are related to those of the model itself, ri({)(t)), in the following manner [63]:

(60)=aq 1 (60)),
,- (6.9)
Foa(90) =7, 060) + 2, (90) = 1, (60}

The output of the inverse rate-dependent Prandtl-Ishlinskii model IT"! can be derived from the rate-

dependent thresholds 7 (v(¢)) and weights 4, , as:

M0 = (0) + 2T i [V10) (6.10)

The inverse model of the deadband function A™!' is also formulated using a superposition of

weighted deadband operators J; [12]:

k
NI =D& ; V), 6.11)
i=—k

where g, are constant weights and d, are the thresholds of the inverse deadband function, which

are related to those of A.

The weights of the inverse model 4,, @, ..., a, are also related to those of the Prandtl-

Ishlinskii model I1, as [42,63]
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(6.12)

a

_ i
J J-l1 )
(ay+ Zai)(ao + zai)
i=1 i=1

a;, =

The constants g, and thresholds d, of the inverse deadband function corresponding to positive

and negatives solutions of the deadband operators are related to thresholds 4, and constants g, ,

respectively. The thresholds and weights of the inverse corresponding to positive solutions are

obtained from [12]:

. J
dj =Zgi(dj—di);j=0, ek (6.13)
i=0
and
. 1
go=—>
8o
' (6.14)
é]‘ =_ &i s j=1,...k

(g +Zj‘,g,-)(go +ig,-)

Similarly, the thresholds and weights of the inverse leading to negative solutions are obtained from

[12] for j=-£, ..., -1 as:

0
g, =ng(dj—df>» (6.15)
i=j
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5 &
g, =~ = —.
(go + Zg,-)(go +>g) (6.16)

J=i+l

Then, the output of inverse model Q'[v](#) can be expressed as:

Q') =TT 'A[v]](). (6.17)

7.3 Characterization of hysteresis of a magnetostrictive actuator

Formulation of an inverse model for compensation of rate-dependent asymmetric hysteresis
of smart actuators necessitates an effective model that can accurately describe the rate-dependent
asymmetric hysteresis properties of these actuators over a broad range of inputs. For this purpose,
the output-input properties of a magnetostrictive actuator (model MFR OTY77; Etrema Inc.) were
characterized in the laboratory. The experiment design has been described in details in Chapter 2.
Figure 6.2 illustrates a schematic of the experimental setup, where the actuator displacement was
measured using a capacitive sensor (model C23—C250; Lion Precision). Briefly, the measurements
were undertaken under: (i) harmonic inputs of different magnitudes, ranging from 3 to 6 A, and
frequencies, f= 10, 50, 150 and 250 Hz; and (i1) complex harmonic excitations of the form, v(¢)=
sin(2nx50fof)+5 sin(2nx100/of); fo=1 and 2 Hz.

Excitation Signal N

Vv

Power Amplifier

ControlDesk <—— AD <€

Signal Acquisition <— AD

Magnetostrictive
Actuator

Signal Conditioner
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Positioner Sensor

Figure 6.2: Experimental setup for characterization of hysteresis nonlinearities of a
magnetostrictive actuator.

Figure 6.3, as an example, illustrates the measured output displacement-input current
characteristics of the actuator under 6 A harmonic excitations at different frequencies, and both
the complex harmonic excitations. The results clearly show an increase in hysteresis loop width
with the excitation frequency for both the harmonic and complex harmonic excitations. The results
revealed nearly linear increase in peak hysteresis with increasing excitation frequency, suggesting
strong input rate dependence of the hysteresis. The area bounded by the hysteresis loop also
increased nearly linearly with the excitation frequency, as seen in Figure 6.4 (+’=0.99), which
further suggests linear dependence of hysteresis on the excitation frequency. A similar linear
relationship between the excitation frequency and the hysteresis loss of a magnetostrictive actuator
has been illustrated by Davino et al. [66]. Furthermore, at low excitation amplitudes, the
magnetostrictive actuators revealed nearly symmetric hysteresis loops with only minimal output
saturation. However, at moderate and high excitation amplitudes, the outputs were observed to be

highly asymmetric and saturated, irrespective of the excitation frequency.
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Figure 6.4: Area bounded by hysteresis of displacement-to-current loops of the magnetostrictive
actuator under 6 A harmonic excitation at different frequencies.

The laboratory-measured data were employed to identify parameters of the integrated rate-
dependent Prandtl-Ishlinskii model Q (6.5), which was subsequently applied to formulate its
inverse Q. Owing to the linear dependence of the hysteresis on the rate of input, the threshold

function was defined as a linear function of the input frequency, such that:
r(50) =y (1) + o, (6.18)

where a and y are positive constants. The above formulation yields, A7 (v(¢)) = « , which satisfies

the threshold dilation condition for inversion of the rate-dependent Prandtl-Ishlinskii model, as

described in (6.8). The above threshold function can also describe rate-independent hysteresis

nonlinearity at low excitation frequencies [7], where it can be approximated as 7; (V(t)) =ai.The

output asymmetry and saturation effects, on the other hand, are described by the deadband function

A
The weighting constants of the Prandtl-Ishlinskii model were chosen using the following function:

a =a.e

=ae’ (6.19)
The thresholds and the weighting functions corresponding to positive solutions of the deadband

function are selected fori =0, 1, ..., k as:

d,=d, i, (6.20)

and

g =—ae 6.21)
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In a similar manner, the thresholds and weighting functions corresponding to negative solutions
are selected for i = -k, -k+1, ..., -1 as:

d =d,i, (6.22)
and

— Boi

g =ae. (6.23)

where d,, dp, a1, a2, f1, p2 and ap (i=0) are constants.
The parameters vector, X = {a, y, o, 0o, Bo, L0, a1, P1, @2, B2, dp, and d,}, of the integrated

rate-dependent Prandtl-Ishlinskii model €, was identified through minimization of the error

function ® under different excitation amplitudes and frequencies, given by:

2
s

(Qut,m, £,,1,)-Y(t,m, f,,1,,))

M=

c J3
0()=2. 2,

=l fz=l m

(6.24)

[
I

where Q(v(t,m, f; 1)) is the response of the integrated rate-dependent Prandtl-Ishlinskii model
under a given excitation frequency f; (l; =1, 2, ..., B) and amplitude I, (c=1, ..., C ), and

Y(t,m, 5, 1,;) is the measured output displacement under the same input. The index m (m =

1,...,M) refers to the number of data points considered in computing the error function for one

complete hysteresis loop. The error minimization problem in this study was formulated

considering M=300 data points for each measured hysteresis loop, five frequencies (E =5; f;;

=10, 50, 100, 150 and 250 Hz) and two excitation amplitudes (C =2; I,; I,-=3 A and 6 A), subject

to following constrains

a, Y, Ao, bo, g0, a1, 02, dp, dy, f1 and 2> 0.
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The error minimization problem was solved considering different combinations of rate-dependent
play operators (n = 4, 8, 12 and 16) and deadband operators (k=4 and k=§). Moreover, the error
minimization problem was solved using different initial values of the parameters. The solutions
converged to nearly similar parameter values for the different starting values considered. From the
results, it was concluded that the integrated model with 12 play operators and 17 deadband

operators would yield good agreements between the model results and the measured data.

The wvalidity of the integrated rate-dependent Prandtl-Ishlinskii model was thus
subsequently examined under different input amplitudes and frequencies considering 12 rate-
dependent play operators and 17 deadband operators. Figure 6.5 and Figure 6.6, as examples,
illustrate comparisons of the output-input responses of the model with the measured data
corresponding to selected inputs, including: (i) simple harmonic current excitations of 3, 5 and 6
A amplitude at different frequencies (10, 150 and 250 Hz); and (ii) two complex harmonic inputs,
v(t)= sin(100m¢)+5 sin(1007f) A and v(¢)= sin(200m7)+5 sin(400xf) A. The results clearly suggest
that the model can effectively predict the major as well as minor hysteresis loops and asymmetric
output properties of the magnetostrictive actuator under a wide range of harmonic inputs. The
effectiveness of the integrated rate-dependent Prandtl-Ishlinskii model is further illustrated
through comparisons of the area bounded by the hysteresis loops predicted by the model with those
of the measured data obtained under 3 and 6 A excitations at different frequencies in the 1-250 Hz
range, as shown in Figure 6.7. The comparisons in Figure 6.5 and Figure 6.6, and Figure 6.7
suggest that the proposed rate-dependent Prandtl-Ishlinskii model integrating the deadband
operators can effectively describe the rate-dependent asymmetric hysteresis nonlinearities of the

magnetostrictive actuator under the range of inputs considered in the study.
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Figure 6.6: Comparisons of measured responses of the magnetostrictive actuator with those of the
integrated rate-dependent Prandtl-Ishlinskii model Q formulated using 12 rate-dependent play
operators and 17 deadband operators, under the complex harmonic inputs: (a) 1.0 sin(100z¢) +5.0
sin(2007¢) A, and (b) 1.0 sin(200z¢) +5.0 sin(4007x¢).
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Figure 6.7: Comparisons of the area bounded by the hysteresis loops obtained from the integrated rate-
dependent Prandtl-Ishlinskii model, with the measured data under 3 and 6 A harmonic excitations at
different frequencies.

The accuracy of the model could be further enhanced by considering greater number of
operators. Figure 6.8 illustrates comparisons of output-input responses of the proposed model
using 36 rate-dependent play operator (n=36) with those of the measured data under 3 and 6 4
harmonic excitations, and two complex harmonic excitations. The results revealed slightly smaller
deviations between the model results and the measured data compared to those obtained with the
model with n=12. The peak deviations for the models with »=36 and n=12 with respect to the
measured data were obtained as 3.27% and 3.68%, respectively, under the 6 A excitation at 250
Hz. The results thus suggest that consideration of greater number of play operators yields only

minimal beneficial effect. The integrated model with fewer play operators, however, would be
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desirable for hardware implementations. Consequently, the model with 12 rate-dependent play
operators and 17 deadband operators was considered adequate for deriving model inverse and for

hardware implementations, as described in the subsequent sections.
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Figure 6.8: Comparisons of measured responses of the magnetostrictive actuator with those of the
integrated rate-dependent Prandtl-Ishlinskii model Q formulated using 36 rate-dependent play
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7.4 Compensation of rate-dependent asymmetric hysteresis

The inverse of the integrated rate-dependent Prandtl-Ishlinskii model Q!, formulated using (6.10)
and (6.11) , was applied as a feedforward rate-dependent hysteresis compensator in an open-loop
manner, as seen in Figure 6.1. The parameters of the inverse rate-dependent Prandtl-Ishlinskii I1"!
were obtained using equations (6.9) and (6.12), while relations (6.13) to (6.16) were used to attain
the parametres of the inverse of the deadband function A™!. The effectiveness of the inverse for
compensating the asymmetric and rate-dependent hysteresis nonlinearities of the integrated rate-
dependent Prandtl-Ishlinskii model Q is investigated through both simulations and hardware-in-

the-loop tests in the laboratory.

7.4.1 Simulation results

Figure 6.9 and Figure 6.10 illustrate the output-input characteristics of the integrated rate-
dependent Prandtl-Ishlinskii model Q and its inverse Q' together with their composition
u(f)=(QoQH[v](r) under 3 and 6 A harmonic excitations respectively, at different frequencies (f
=10, 150 and 250 Hz). Figure 6.11 shows the simulation results attained under the two complex
harmonic excitations: v(¢)= sin(100xt)+5 sin(200xt); and v(r)= sin(200x 7)+5 sin(400mz). The
simulation results suggest that the inverse of the integrated Prandtl-Ishlinskii model Q! can
effectively compensate for both the rate-dependent hysteresis and output asymmetry nonlinearities
described by the integrated rate-dependent Prandtl-Ishlinskii model Q, irrespective of the

excitation amplitude and frequency.
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the integrated rate-dependent Prandtl-Ishlinskii model Q, and the composition u=QoQ", under
complex harmonic excitations: (a) v(¢) = sin(1007z¢)+5 sin(200z¢) A; and (b) v(¢) = sin(2007z)+5
sin(4007t).

7.4.2  Hardware-in-the-loop implementation of the inverse compensator

The effectiveness of the inverse of the integrated rate-dependent Prandtl-Ishlinskii model Q! in
compensating output asymmetry and rate-dependent hysteresis effects of was further investigated
through laboratory implementations on a magnetostrictive actuator. For this purpose, a hardware-
in-the-loop experiment was designed, where the inverse model Q', formulated using
MATLAB/SIMULINK, was employed as a feedforward compensator together with the
magnetostrictive actuator in the ControlDesk platform. The experiments were conducted under
different amplitudes of harmonic currents at different frequencies in the 1-250 Hz range and the
complex harmonic inputs used in the simulation results. The selected inputs were applied directly
to the inverse compensator, while the output of the compensator was applied to the
magnetostrictive actuator through D/A output board and the power amplifier. The magnetostrictive
actuator displacement, measured using the capacitive position sensor, together with the applied
input current were analyzed to assess the effectiveness of the inverse compensator under different

inputs.

As examples, Figure 6.12 illustrates variations in the measured displacement responses of the
actuator under different current inputs: (a) 6 A harmonic current at different excitations
frequencies (1, 10, 50, 150 and 250 Hz); (b) complex harmonic input, v(¢)= sin(100x¢)+5 sin(1007z)
A; and (c) complex harmonic input, v(¢)= sin(200x £)+5 sin(400nz) A. Nearly identity mapping
between the applied input u(¢) and the compensated output v(¢) of the actuator is evident under the

excitations considered in the example results. Similar mappings were also obtained under different
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inputs considered in the laboratory experiments. From the results it can be concluded that the
inverse of the rate-dependent Prandtl-Ishlinskii model integrating the deadband function can not
only mitigate the rate-dependent hysteresis effects but also the output asymmetry and saturation
effects. Some deviations, however, are evident in the compensated output, which can be partly
attributed to error associated with experimental characterization of the magnetostrictive actuator
and in-part to prediction errors of the integrated model with limited number of rate-dependent play

operators and deadband operators.

The peak deviation between the applied input and the actuator response was evaluated from
the respective time-histories. As an example, Figure 6.13(a) compares the time histories of the
desired output under the reference complex harmonic input v(¢)= sin(1007nf)+5 sin(100x7) A and
the measured displacement response of the magnetostrictive actuator. The time-history of the error
between the two is further shown in Figure 6.13 (b), which suggests peak positioning error of the
83.1 um stroke actuator in the order of 3.1 um, when the proposed inverse compensator is
implemented. The peak percent hysteresis error was further computed from the output-input
characteristics of the actuator under different inputs. Figure 6.13 (c) compares the variations in the
peak percent hysteresis response of the magnetostrictive actuator with and without the inverse
compensator with the excitation frequency under the 6 A harmonic current input. The peak percent
hysteresis of the actuator was 18.2% at the low frequency input of 1 Hz, which increased with
input frequency and approached 49.1% corresponding to the 250 Hz input. Application of the
inverse compensator, however, resulted in nearly steady peak hysteresis error in the entire
frequency range, as seen in Figure 6.13 (c¢). The peak hysteresis error of the compensated actuator
is 3.7%, which is attained under the input at 250 Hz. The experimental results thus further confirm

that the inverse of the rate-dependent Prandtl-Ishlinskii model together with that of the deadband
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function, IT", can effectively mitigate the rate-dependent and asymmetric hysteresis nonlinearities

of the magnetostrictive actuator, as observed from the simulation results.

20 40
20 o
g g
3 =
5 0 5 00
=) £
Q [}
S S
2. 20 <,-20
=2 2
A A
-40 40 |
-60 I I I -60 I I I
-7 -3.5 0 35 7 -7 -3.5 0 3.5 7
Input Current (A) Input Current (A)
(a) (b)
40
20 +
e
S
= 0
o
S
3
S -20
z
A
-40
-60 I I I
-7 -3.5 0 35 7
Input Current (A)
(c)

Figure 6.12: The output-input characteristics of the magnetostrictive actuator with the inverse of the
integrated rate-dependent Prandtl-Ishlinskii model Q! under different inputs: (a) v(£)=6.0 sin(2nf?) A,
f=1, 10, 50, 150, and 250 Hz; (b) v(¢)=1.0 sin(100xm #)+5.0 sin(100xz) A; and (c) v(¢)=1.0 sin(200n

£y+5.0 sin(400nf) A.

151



Output (um)
A ) ) N
(e (e (=) S S

=N
S

60

50

40

30

20

Peak Hysteresis (%)

10

Figure 6.13: (a) The time-history of desired output and the achieved output displacement of the
magnetostrictive actuator with the inverse model Q' under the harmonic input v(f)=1.0
sin(1007)+5.0 sin(100m¢) A; (b) The time-history of error between the desired and the achieved
output displacement under the harmonic input v(£)=1.0 sin(1007nf)+5.0 sin(100nf) A; and (c)

Reference // \
-------- Achieved . . . .
0 0.01 0.02 0.03 0.04 0.05 0.06
Time (s)
(a)
0 0.01 0.02 0.03 0.04 0.05 0.06
Time (s)
(b)
- ® Without inverse model e
B With inverse model PPt ]
L e -
-7 . - -
o
- - 1 - 1 1 1 ! 1 1 1 !
0 25 50 75 100 125 150 175 200 225 250 275
Frequency (Hz)
(c)

152



percent peak normalized hysteresis of displacement-to-current loops of the magnetostrictive
actuator with the inverse model Q! at different excitations of frequency under amplitude of 6 A.

7.5 Conclusions

A rate-dependent Prandtl-Ishlinskii model coupled with a function of deadband operators can
accurately describe the rate-dependent and asymmetric hysteresis nonlinearities of a
magnetostrictive actuator over a wide range of excitations. The measured output displacement-
input current characteristics revealed asymmetric hysteresis nonlinearities under medium and high
amplitude excitations, which are further dependent on excitation frequency. An inverse of the
integrated Prandtl-Ishlinskii model could be formulated to serve as a feedforward compensator of

rate-dependent and asymmetric hysteresis nonlinearities.

The simulation results revealed that the proposed inverse model can effectively compensate
for the rate-dependent and asymmetric hysteresis nonlinearities over a wide range of excitation
amplitudes and frequencies. The effectiveness of the inverse model was further verified through
hardware-in-the loops laboratory tests on the magnetostrictive actuator. The experimental results
also suggested that the inverse model can provide an effective compensation for the rate-dependent
and asymmetric hysteresis nonlinearities under inputs in the 1-250 Hz frequency range. The peak
percent positioning error was reduced to nearly 3.7 % under the 6 excitation over the 1-250 Hz
frequency range, which was observed in the 18.2 to 49.1 % range in the absence of the
compensator. The error in the compensated output could be partly attributed to error associated
with experimental characterization of the magnetostrictive actuator and in-part to prediction errors
of the integrated model with limited number of rate-dependent play operators and deadband

operators.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

8.1 Major contributions of the dissertation research

The hysteresis nonlinearities have been invariably observed in smart materials actuators such
as piezoceramic and magnetostrictive actuators. These nonlinearities become particularly
significant under high rates of inputs, and exhibit output asymmetry and saturation under moderate
to high inputs. Such nonlinearities are known to cause oscillations in the responses of the open-
loop systems, and poor tracking performance and potential instabilities in the closed-loop systems.
This dissertation research has proposed a feedforward rate-dependent compensator on the basis of
the inverse rate-dependent Prandtl-Ishlinskii model coupled with memoryless deadband operators
to seek compensation of rate-dependent and asymmetric hysteresis nonlinearities of

magnetostrictive actuators.

The major contributions of this dissertation are summarized below:

e A Stop operator based Prandtl-Ishlinskii (SPI) model has been proposed to compensate for
hysteresis nonlinearities of piezoceramic actuators. A methodology is presented for
identification of parameters of the SPI model on the basis of the initial loading curves of both
the Play operator based Prandtl-Ishlinskii (PPI) model and the SPI model.

e An experimental was designed and executed to fully characterize the hysteresis nonlinearities
of a Terfenol-D based magnetostrictive actuator, under a wide range of inputs, namely,
amplitude, rate and bias of input, as well as mechanical loads. The measured data were
analyzed to demonstrate the dependence of the actuator displacement on each operating factor.
The measured data were further analyzed to study the effects of different factors on the area
bounded by the hysteresis loop, displacement range as well as the peak hysteresis percentage.
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The output-input characteristics of the magnetostrictive actuator were expressed in terms of
rate-dependent hysteresis effect, output saturation and asymmetry, as function of input
amplitude, input rate, input bias and the actuator load.

A rate-dependent Prandtl-Ishlinskii model was formulated together with its analytical inverse
to describe and compensate for the rate-dependent symmetric hysteresis nonlinearities of the
magnetostrictive actuator under relatively low levels of input currents. A rate-dependent
threshold function was proposed on the basis of the experimental observations, which revealed
that the peak hysteresis varies linearly with the excitation frequency.

A rate-dependent Prandtl-Ishlinskii model integrating a deadband function was formulated to
describe the rate-dependent asymmetric hysteresis nonlinearities of the magnetostrictive
actuator obtained under medium to high current inputs in the 10-250 Hz frequency range. The
rate-dependent Prandtl-Ishlinskii model was employed to account for input rate effects, while
the deadband function was incorporated to describe output asymmetry and saturation.

An analytical inverse of the model integrating the inverses of the rate-dependent Prandtl-
Ishlinskii model and the memoryless function was proposed for compensation of rate-
dependent and asymmetric hysteresis nonlinearities of the magnetostrictive actuator. The
inverse model was employed as a feedforward rate-dependent compensator for compensation
of hysteresis nonlinearities of magnetostrictive actuator in an open-loop manner under different
levels of input amplitudes over a wide frequency range. The validity of the model was
demonstrated through laboratory experiments using the hardware-in-the-loop methodology.

8.2 Major conclusions

The dissertation research has proposed an integrated Prandtl-Ishlinskii model and its inverse

for describing and compensating the rate-dependent and asymmetric hysteresis nonlinearities of a

smart actuator in an open-loop manner. The major conclusions drawn from the dissertation

research are summarized below:

Piezoceramic actuators exhibit notable hysteresis nonlinearity between the input voltage and
the output displacement, which is generally symmetric about the input. The measured output-
input characteristics revealed major as well as minor hysteresis loops, while the peak
percentage error due to hysteresis was in the order 16% in the output. At low excitation
frequencies the classic play operator based Prandtl-Ishlinskii (PPI) model could effectively
characterize the major and the minor loop hysteresis nonlinearities of the piezoceramic
actuator.
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The initial loading curves could be employed to build an analytical stop operator-based
Prandtl-Ishlinskii (SPT) model to obtain compensation of hysteresis nonlinearities described by
the PPI model. The effectiveness of the SPI model in real-time was demonstrated through
laboratory measurements on a piezoceramic micropositioning stage.

Magnetostrictive actuators show strong input rate-dependent hysteresis nonlinearities under
high rates of inputs, which are nearly symmetric at low magnitudes but asymmetric under
moderate and high inputs. The hysteresis of these actuators is also strongly dependent upon
the rate of input, as well, on the input magnetic bias and the mechanical loads.

The area bounded by the hysteresis loop and the peak hysteresis percentage increased
nonlinearly with the input amplitude but nearly linearly with the excitation frequency up to
250 H range. The variations in the magnetic field bias as well as input amplitude showed
substantial effects on output asymmetry and saturation, peak-to-peak displacement response
and the area bounded by the hysteresis loop.

An inverse rate-dependent Prandtl-Ishlinskii model could be obtained under any rate-
dependent threshold functions satisfying the dilation condition.

The inverse rate-dependent Prandtl-Ishlinskii model could provide effective compensation of
rate-dependent symmetric hysteresis under inputs over a wide frequency range. The simulation
results revealed near perfect compensation of the hysteresis nonlinearities under different
simple and complex harmonic inputs. The experiments conducted on the magnetostrictive
actuator further showed that the inverse model could suppress the hysteresis errors effectively
in a highly efficient manner.

The proposed rate-dependent Prandtl-Ishlinskii model integrating a function of deadband
operators could effectively describe the rate-dependent and asymmetric hysteresis properties
of the magnetostrictive actuator together with output saturation over wide ranges of inputs.
The peak error between the model displacement response and the measured data was observed
in the order of 3.72 %, which occurred under the extreme excitation frequency of 200 Hz.

The inverse of the integrated Prandtl-Ishlinskii model could be formulated using the inverses
of the rate-dependent Prandtl-Ishlinskii model and the deadband function, which would serve
as an effective feedforward compensator of rate-dependent and asymmetric hysteresis
nonlinearities. The simulation results revealed that the proposed inverse model could mostly
eliminate the hysteresis nonlinearities characterized by the integrated model over a wide range
of excitation amplitudes and frequencies.

The laboratory experiments with the magnetostrictive actuator confirmed that the integrated
inverse model can effectively compensate for the rate-dependent and asymmetric hysteresis
nonlinearities under inputs in the 1-250 Hz frequency range. The peak percent positioning error
was reduced to nearly 3.7 % under the 6 A excitation over the 1-250 Hz frequency range, which
was observed in the 18.2 to 49.1 % range in the absence of the compensator. The error in the
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compensated output are likely attributed to errors associated with experimental
characterization of the magnetostrictive actuator, and the prediction errors of the integrated
model with limited number of rate-dependent play operators and deadband operators.

8.3 Recommendations for future work

The dissertation research represents the use of the rate-dependent Prandtl-Ishlinskii model
and its analytical rate-dependent inverse model to describe and compensate for rate-dependent
hysteresis nonlinearities of magnetostrictive actuators for micro-positioning applications. The
proposed models provided very good predictions of the symmetric and asymmetric rate-dependent
hysteresis effects, while the inverse models serve the essential basis for realizing compensation of
hysteresis nonlinearities in real-time applications. Following are some suggested further studies
that should be undertaken to enhance the hysteresis compensation in varying smart material
actuators applications:

e From the laboratory measurements, it became evident that the actuator loading strongly affects

the output-input characteristics of the actuator. It is thus essential to build alternate hysteresis
and output-input models incorporating the actuator load effects.

e The inertia effect of the actuator rod may also contribute to the observed hysteresis effect. A
hysteresis model should therefore incorporate the actuator dynamics so as to accurately
describe the material hysteresis.

e The applicability of the proposed models and their inversions should be explored for
compensation of butterfly shape hysteresis nonlinearities observed in magnetostrictive
actuators in the absence of the permanent magnets bias.

e The magnetic bias effect may be incorporated within the density function to accurately describe
output saturation.

e Further efforts are desirable in extending the proposed methodologies for modeling and
compensating bias- and amplitude- dependent hysteresis nonlinearities of magnetostrictive
actuators.
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e Further efforts are also desirable for compensation of hysteresis nonlinearities of
magnetostrictive actuators using the inverse generalized Prandtl-Ishlinskii model as a
feedforward compensator.

e Further efforts are desirable for modeling hysteresis nonlinearities of magnetostrictive
actuators subjected to mechanical loads with adaptive robust control methods.

REFERENCES

1 R. Smith, Smart material system: Model development, Society for Industrial and
Applied Mathematics, 2005.

158



10

11

12

13

14

José L. Pons, Emerging Actuator Technologies: A Micromechatronic Approach, Wiley,
New York, 2005.

A.G. Olabi, A. Grunwald, Design and application of magnetostrictive materials,
Materials & Design, 29, pp. 469-483, 2008.

C. Body, G. Reyne, G. Meunier, E. Quandt, K. Seemann, Application of
magnetostrictive thin films for microdevices, IEEE Transactions on Magnetics, vol. 33
,no. 2, Part 2, pp. 2163-2166, 1997.

C. Visone, Hysteresis modelling and compensation for smart sensors and actuators,
Journal of Physics Conference Series, vol. 138, 012028, 2008.

M. Rakotondrabe, C. Clévy, and P. Lutz, Complete open loop control of hysteretic,
creeped, and oscillating piezoelectric cantilevers, IEEE Transactions On Automation
Science and Engineering, vol. 7, no. 3, pp. 440-451, 2010.

X. Tan and J. S. Baras, Modeling and control of hysteresis in magnetostrictive actuators,
Automatica, vol. 40, pp. 1469-1480, 2004.

D. Davino, C. Natale, S. Pirozzi, and C. Visone, Phenomenological dynamic model of
a magnetostrictive actuator, Physica B, vol. 343, pp. 112-116, 2004.

M. Al Janaideh, S. Rakheja, and C-Y. Su, Experimental characterization and modeling
of rate-dependent hysteresis of a piezoceramic actuator, Mechatronics, vol. 19, pp. 656—
70. 2009.

C. Natale, F. Velardi, and C. Visone, Identification and compensation of hysteresis for
magnetostrictive actuators, Physica B, vol. 306, pp. 161-165, 2001.

F. Calkins, R. Smith, and A. Flatau, An energy-based hysteresis model for
magnetostrictive transducers, IEEE Transactions on Magnetics, vol. 36, pp. 429-439,
2000.

K. Kuhnen, Modeling, identification and compensation of complex hysteretic
nonlinearities - a modified Prandtl-Ishlinskii approach, European Journal of Control,
vol. 9, pp. 407-418, 2003.

M. Stuebner, J. Atulasimha, and R. Smith, Quantification of hysteresis and nonlinear
effects on the frequency response of ferroelectric and ferromagnetic materials, vol. 18,
2009.

M. Dapino and R. Smith, A coupled structural-magnetics strain and stress model for
magnetostrictive transducers, IEEE Transactions of Magnetics, vol. 11, pp. 135-152,

2000.

159


http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVH-49W1YM8-4&_user=1069146&_coverDate=01%2F01%2F2004&_alid=1614508464&_rdoc=3&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5535&_sort=r&_st=13&_docanchor=&view=c&_ct=11&_acct=C000051262&_version=1&_urlVersion=0&_userid=1069146&md5=0ec26ba24cda4233470c36bdf3c8635a&searchtype=a
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVH-49W1YM8-4&_user=1069146&_coverDate=01%2F01%2F2004&_alid=1614508464&_rdoc=3&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5535&_sort=r&_st=13&_docanchor=&view=c&_ct=11&_acct=C000051262&_version=1&_urlVersion=0&_userid=1069146&md5=0ec26ba24cda4233470c36bdf3c8635a&searchtype=a

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

S. Valadkhan, Nano-positioning control using magnetostrictive actuators, Waterloo
University, Ph.D. dissertation, 2007.

R. V. Iyer and X. Tan, Control of hysteretic systems through inverse compensation,
IEEE Control System Magazine, vol. 29, pp. 83-99, 2009.

J. Nealis and R. Smith, Model-based robust control design for magnetostrictive

transducers operating in hysteretic and nonlinear regimes, IEEE Transactions on Control
Systems Technology, vol. 15, pp. 22-39, 2007.

X. Tan, Control of smart actuators, Ph.D. dissertation, University of Maryland, 2004.

R. Smith and Z. Ounaies, A domain wall model for hysteresis in piezoelectric materials,
Journal of Intelligent Material Systems and Structures, vol. 11, pp. 62—79, 2000.

L. Greev, Z. Tasev, and L. Kocarev, Frequency dependent model of ferromagnetic
hysteresis for time domain analysis of cable shields, IEEE International Symposium on

Electromagnetic, pp. 586-591, 1997.

R. Smith, S. Seelecke, Z. Ounais, and J. Simth, A free energy model for hysteresis in
ferroelectric materials, Journal of Intelligent Materials Systems and Structures, vol. 14,
pp- 719-739, 2003.

I.D. Mayergoyz, Mathematical models of hysteresis, Elservier, 2003.

J. Macki, P. Nistri, and P. Zecca, Mathematical models for hysteresis, SIAM Review,
vol. 35, pp. 94-123, 1993.

A. Visintin, Differential models of hysteresis, Spring-Verlag, Berlin, Hiedelberg, 1994.

P. Ge, Modeling and control of hysteresis in piezoceramic actuator, Ph.D. dissertation,
University of Rhode Island, 1996.

M. Brokate and J. Sprekels, Hysteresis and phase transitions, Springer, New York,
1996.

G. Tao and P. Kokotovic, Adaptive control of plants with unknown hysteresis, IEEE
Transactions on Automatic Control, vol. 40, 1995.

W. Galinaities, Two methods for modeling scalar hysteresis and their use in controlling
actuators with hysteresis, Ph.D. dissertation, Blacksburg, Virginia, USA, 1999.

M. Krasnoselskii and A. Pokrovskii, Systems with hysteresis, 1983, Springer, Moscow,

1989.

160



30

31

32

33

34

35

36

37

38

39

40

41

42

43

I. Mayergoyz, Dynamic Preisach models of hysteresis, IEEE Transactions on
Magnetics, vol. 24, pp. 2925-2927, 1988.

D. Jiles, Introduction to magnetism and magnetic materials, second edition, CRC Press,
1998.

D. Hughes and J. Wen, Preisach modelling of piezoceramic and shape memory alloy
hysteresis, Smart Materials and Structures, vol. 6, pp. 287-300, 1997.

P. Ge and M. Jouaneh, Modeling hysteresis in piezoceramic actuators, Precision
Engineering, vol. 17, pp. 211-221, 1997.

R. Gorbet, D. Wang, and K. Morris, Preisach model identification of a two wire SMA
actuator, Proc. IEEE Int. Conf. on Robotics and Automation 3, pp. 2161-2168, Leuven,
May, 1998.

R. Gorbet, Control of hysteresis systems with Preisach representations, Ph.D.
dissertation, University of Waterloo, Canada, 1997.

K. Ahn and N. Khan, Modeling and control of shape memory alloy actuators using
Preisach model, genetic algorithm and fuzzy logic, Mechatronics, vol. 18, pp. 141-152,
2008.

A. Cavallo, D. Davino, G. Maria, and C. Visone., Hysteresis compensation of smart
actuators under variable stress conditions, Physica B, vol. 403, pp. 261-265, 2008.

A. Adly, 1. Mayergoyz, and A. Bergqvist, Preisach modelling of magnetostrictive
hysteresis, Journal of Applied Physics, vol. 69, pp. 5777-5779, 1991.

H. Banks, A. Kurdilaand, and G. Webb, Identification of hysteretic control influence
operators representing smart actuators, Mathematical Problems in Engineering, vol. 3,
pp. 287-328, 1997.

H. Janocha, Adaptronics and smart structures, Springer-Verlag Berlin, 1999.

H. Janocha and K. Kuhnen, Real-time compensation of hysteresis and creep in
piezoelectric actuators, Sensors and Actuators A: Physical, vol. 79, pp. 83-89, 2000.

P. Krejci and K. Kuhnen, Inverse control of systems with hysteresis and creep, IEE
Proceedings Control Theory Application, vol. 148, pp. 185-192, 2001.

N. Nise, Control systems engineering, fifth edition, Wiley, 2007.

161



44

45

46

47

48

49

50

51

52

53

54

55

K. Kuhnen and P. Krejci, Compensation of complex hysteresis and creep effects in
piezoelectrically actuated systems-A new Preisach modeling approach, IEEE
Transactions on Automatic Control, vol. 54, pp. 537-550, 20009.

M. Al Janaideh, S. Rakheja, and C.-Y. Su, A generalized Prandtl-Ishlinskii model for
characterizing the hysteresis and saturation nonlinearities of smart actuators, Smart
Materials and Structures, vol. 18, no. 4, 045001, 2009.

W. Ang, F. Garmon, P. Khosla, and C. Riviere, Modeling rate-dependent hysteresis in
piezoelectric actuators, Proc. Int. Conf. of Intelligent Robots and Systems, pp.1975-
1980, Las Vegas, 2003.

R. Ben Mrad and H. Hu, A model for voltage-to-displacement dynamics in
piezoceramic actuators subject to dynamic-voltage excitations, IEEE Transactions on
Mechatronics, vol. 7, pp. 479-489, 2002.

F. Ikhouane and J. Rodellar, Systems with hysteresis: Analysis, identification and
control using the Bouc-Wen model, Wiley-Interscience, 2007.

M. Rakotondrabe, Bouc-Wen modeling and inverse multiplicative structure to
compensate hysteresis nonlinearity in piezoelectric actuators, IEEE Transactions on
Automation Science and Engineering, vol. 8, no. 2, 428-431, 2011.

C. Lin and S. Yang, Precise positioning of piezo-actuated stages using hysteresis-observer

based control, Mechatronics, vol. 16, pp. 417-426, 2006.

B. Spencer, S. Dyke, M. Sain, and J. Carlson, Phenomenological model of a
magnetorheological damper, ASCE Journal of Engineering Mechanics, vol. 123, no. 3, pp.

230-283, 1997.

B. Coleman and M. Hodgdon, A constitutive relation for rate-independent hysteresis in
ferromagnetically soft materials, International Journal of Engineering Science, vol. 24,
pp- 897-919, 1986.

X. Chen and T. Hisayama, Adaptive sliding-mode position control for piezo-actuated
stage, IEEE Transactions on Industrial Electronics, vol. 55, pp. 3927-3934, 2008.

H. Liaw, B. Shirinzadeh and J. Smith, Sliding-mode enhanced adaptive motion tracking
control of piezoelectric actuation systems for micro/nano manipulation, IEEE
Transactions on Control Systems Technology, vol. 16, pp. 826-833, 2008.

C. Y. Su, Q. Wang, X. Chen, and S. Rakheja, Adaptive variable structure control of a

class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis, IEEE
Transactions on Automatic Control, vol. 50, pp. 2069- 2074, 2005.

162


http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Kuhnen,%20K..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Krejci,%20P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8832
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3516
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Fay%26%23231%3Bal%20Ikhouane
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Jos%26%23233%3B%20Rodellar
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=41
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=87
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=87
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9

56

57

58

59

60

61

62

63

64

65

66

67

68

69

R. C. Smith, Inverse compensation for hysteresis in magnetostrictive transducers,
CRSC, North Carolina State Univ., Raleigh, NC, Tech. Rep. CRSC-TR98-36, 1998.

P. Ge and M. Jouaneh, Tracking control of a piezoceramic actuator, IEEE Transaction

on Control Systems Technology, vol. 4, pp. 209-216, 1996.

J. Schifer and H. Janocha, Compensation of hysteresis in solid-state actuators, Sensors
Actuators Physical: A, vol. 49, pp. 97-102, 1995.

O. Aljanaideh, S. Rakheja, and Chun-Yi Su, Compensation of a piezoceramic actuator
hysteresis nonlinearities using the stop operator-based Prandtl-Ishlinskii model, Int.
Conf. of Modelling Identification and Control (ICMIC), pp. 364-369, Okayama, 2010.

M. Al Janaideh, C-Yi. Su, and S. Rakheja, An analytical generalized Prandtl-Ishlinskii
model inversion for hysteresis compensation in micro-positioning control, [IEEE/ASME
Transactions on Mechatronics, 2010.

B. Drinc¢i¢, X. Tan, D.S. Bernstein, Why are some hysteresis loops shaped like a
butterfly?, Automatica, vol. 47 pp. 2658-2664, 2011.

D. Davino, C. Natale, S. Pirozzi, C. Visone, Phenomenological dynamic model of a
magnetostrictive actuator, Physica B, vol. 343, pp. 112-116, 2004.

M. Al Janaideh and P. Krejci, An inversion formula for a Prandtl-Ishlinskii operator
with time-dependent thresholds, Physica B, vol. 406, no. 8, pp. 1528-1532, 2011

R. Smith, Modeling techniques for magnetostrictive actuators, Proceedings of the SPIE,
Smart Structures and Materials: Smart Structures and Integrated Systems, 1997.

R. Venkataraman, Modeling and Adaptive Control of Magnetostrictive Actuators,
PhD dissertation, University of Maryland, 1999.

D. Davino, C. Natale, S. Pirozzi, C. Visone, Rate-dependent losses modeling for
magnetostrictive actuators, Journal of Magnetism and Magnetic Materials, vols. 272—
276, pp. 1781-1782, 2004.

S. S. Rao, Mechanical Vibrations, Prentice Hall, 2010

Shen, J-C., Jywe, W-Y., Chiang, H-K. and Shu, Y-L. ‘Mechatronics of electrostatic
microactuators for computer disk drive dual-stage servo systems’Precision Engineering,
vol. 32, no. 2, pp. 71-87, 2008.

Devasia, S., Eleftheriou, E. and Moheimani, A survey of control Issues in
nanopositioning IEEE Transactions on Magnetics, vol. 15, no. 5, pp. 802-823 (2007).

163


http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=87
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=87

70

71

72

73

74

75

76

77

78

79

80

81

Leang, K., Zou, Q. and Devasia, S., Feedforward controlof piezoactuators in atomic
force microscope systems: inversion-based compensation for dynamics and hysteresis,
IEEE control magazine, vol. 19, no. 1, pp. 70-82, 2009.

A. Esbrook, M. Guibord, X. Tan, H. K. Khalil, Control of systems with hysteresis via
servocompensation and its application to nanopositioning, American Control
Conference, June 30 2010-July, 2010.

R.Granger, G. Washington, S-K Kwak, Modeling and control of a singly curved active
aperture antenna using curved piezoceramic actuators, vol. 11, no. 17, pp. 225-233,
2000.

H. Hu and R. B. Ben Mrad, On the classic Preisach model Mechatronics, vol. 13, pp 85-
94,2003

K. Kuhnen, H. Janocha Adaptive inverse control of piezoelectric actuators with
hysteresis operators, European control conference, pp. 6531-6536, 1999.

R. Greenough, M. Schulze, A. Jenner, and A. Wilkinson, Actuation with Terfenol-D,
IEEE Transactions on Magnetics, vol. 27, pp. 5346 - 5348, 1991.

Richard M. Bozorth, Ferromagnetism, Wiley-IEEE Press, 1993.

Karunanidhi, M. Singaperumal, Design, analysis and simulation of magnetostrictive
actuator and its application to high dynamic servo valve, Sensors and Actuators A:
Physical, vol. 157, pp. 185-197, 2010.

M. Al Janaideh, S. Rakheja, S. Chun-Yi, An analytical generalized Prandtl-Ishlinskii
model inversion for hysteresis compensation in micropositioning control,
Mechatronics, IEEE/ASME Transactions on, vol. 16 pp. 734-744, 2011.

M.J. Dapino, R.C. Smith, A.B. Flatau, Structural magnetic strain model for
magnetostrictive transducers, Magnetics, IEEE Transactions on, vol. 36, pp. 545-556,
2000.

D. Davino, A. Giustiniani, C. Visone, The piezo-magnetic parameters of Terfenol-D:
An experimental viewpoint, Physica B: Condensed Matter, vol. 407, pp. 1427-1432,
2012.

W. Oates, P. Evans, R. Smith, M. Dapino, Experimental implementation of a hybrid
nonlinear control design for magnetostrictive actuators, Journal of Dynamic Systems,
Measurement, and Control, vol. 131, no. 4 041004, 2009.

164


http://jim.sagepub.com/search?author1=Richard+Granger&sortspec=date&submit=Submit
http://jim.sagepub.com/search?author1=Gregory+Washington&sortspec=date&submit=Submit
http://jim.sagepub.com/search?author1=Seung-Keon+Kwak&sortspec=date&submit=Submit
http://jim.sagepub.com/content/current
http://jim.sagepub.com/content/current

82

83

84

85

86

87

88

89

90

91

92

93

D.C. lJiles, Modelling the effects of eddy current losses on frequency dependent
hysteresis in electrically conducting media, Magnetics, IEEE Transactions on, vol. 30,
pp. 4326-4328, 1994.

D. Jiles and D. Atherton, Theory of ferromagnetic hysteresis, Journal of Magnetism and
Magnetic Materials, vol. 61, pp. 48—60, 1986.

C. Natale, F. Velardi, C. Visone, Identification and compensation of Preisach hysteresis
models for magnetostrictive actuators, Physica B: Condensed Matter, vol. 306, pp. 161-
165, 2001.

M. Al Janaideh, C-Y. Su, and S. Rakheja, Development of the rate-dependent Prandtl-
Ishlinskii model for smart actuators, Smart Materials and Structures, vol. 17, no. 3,
035026, 2008.

M.A. Janaideh, S. Rakheja, S. Chun-Yi, A generalized rate dependent play operator for
characterizing asymmetric and symmetric hysteresis nonlinearities, in: American
Control Conference, pp. 1911-1916, 2008.

M.A. Janaideh, S. Rakheja, Chun-Y1 Su, Modelling rate-dependent symmetric and
asymmetric hysteresis loops of smart actuators, International Journal of advanced
Mechatronic Systems, vol. 1, pp. 32-34, 2008.

L. Riccardi, D. Naso, B. Turchiano, H. Janocha, Adaptive Control of Positioning
Systems With Hysteresis Based on Magnetic Shape Memory Alloys, Control Systems
Technology, IEEE Transactions on, vol. 21, no. 6, pp. 2011-2023, 2013.

C. Visone, M. Sjostrom, Exact invertible hysteresis models based on play operators,
Physica B: Condensed Matter, vol. 343, pp. 148—152, 2004

William S. Oates, R. Zrostlik, S. Eichhorn, R. Smith, A Non-linear optimal control
design using narrowband perturbation feedback for magnetostrictive actuators, Journal
of Intelligent Material Systems and Structures, vol. 21, pp. 1681-1693, 2010.

Chun-Yi Su, Q. Wang, X. Chen, and S. Rakheja, Adaptive variable structure control for
a class of nonlinear systems with unknown Prandtl-Ishlinskii Hysteresis, IEEE
Transactions on Automatic Control, vol. 50, no. 12, pp. 2069-2074, 2005.

P. Nguyen and S. Choi, Compensator design for hysteresis of a stacked PZT actuator
using a congruency-based hysteresis model, Smart Materials and Structures, vol. 21,
2012.

B. Kim, G. Washington, and H. Yoon, Hysteresis-reduced dynamic displacement

control of piezoceramic stack actuators using model predictive sliding mode control,
Smart Materials and Structures, vol. 21, 2012.

165


http://www.sciencedirect.com/science/article/pii/0304885386900661
http://www.sciencedirect.com/science/article/pii/0304885386900661
http://www.sciencedirect.com/science/journal/03048853
http://www.sciencedirect.com/science/journal/03048853
http://inderscience.metapress.com/content/r2ht9u6470ju0724/
http://inderscience.metapress.com/content/r2ht9u6470ju0724/

94

95

96

97

98

99

100

101

102

103

104

O. Aljanaideh, A Stop Operator-Based Prandtl-Ishlinskii Model For Compensation Of
Smart Actuator Hysteresis Effects, Master’s Dissertation, Concordia University, 2009

O. Bottauscio, P.E Roccato, M. Zucca, Modeling the dynamic behavior of
magnetostrictive actuators,” IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 3022-
3028, 2010

F. Braghin, S. Cinquemani, and F. Resta, A model of magnetostrictive actuators for
active vibration control, Sensors and Actuators A: Physical, vol. 165, pp. 342-350, 2011.

S. Moona, C. Limb, B. Kima, and Y. Parkc, Structural vibration control using linear
magnetostrictive actuators, Journal of Sound and Vibration, vol. 302, pp. 875-891,
2007.

K. Kuhnen and H. Janocha, Complex hysteresis modeling of a broad class of hysteretic
nonlinearities, Proc. of the 8th Int. Conf. on New Actuators, Bremen, pp. 688-691, June
2002.

D. Davino, A. Giustiniani, V. Vacca, and C.Visone, Embedded Hysteresis
Compensation and Control on a Magnetostrictive Actuator, IEEE Transactions on
Magnetics, vol. 42, pp. 3443- 3445, 2006.

B. Kim, G. Washington, and H. Yoon, Hysteresis-reduced dynamic displacement
control of piezoceramic stack actuators using model predictive sliding mode control,
Smart Materials and Structures, vol. 21, 2012.

D. Davino, C. Natale, S. Pirozzi and C. Visone, A fast compensation algorithm for real-
time control of magnetostrictive actuators, Journal of Magnetism and Magnetic
Materials, vol. 290-291, pp. 1351-1354, part 2, 2005.

W. Ang, P. Khosla, and C. Riviere, Feedforward controller with inverse rate-dependent
model for piezoelectric actuators in trajectory-tracking applications, IEEE/ASME
Trans. Mechatronics, vol. 12, no. 2, pp. 134-142, 2007.

Y. Li and Q. Xu, A novel piezo-actuated XY stage with parallel, decoupled and stacked
flexure structure for micro/nano Positioning, IEEE Trans. Ind. Electron., vol. 58, no. 8,
pp- 3601-3615, 2011

O. Aljanaideh, S. Rakheja, and C-Y. Su, Experimental verification and modeling rate-

dependent hysteresis nonlinearities of a magnetostrictive Actuator, Proc. of the 9th Int.
Symp. on Hysteresis Modeling and Micro-magnetism, Taormina, May 2013.

166



	This is to certify that the thesis prepared
	1  Dr. D. Qiu
	2 CHAPTER 1
	2.1  Introduction
	2.2 Literature review
	2.2.1 Characterization of hysteresis in magnetostrictive actuators
	2.2.2 Rate-independent hysteresis models
	2.2.3 Preisach model
	2.2.4 Krasnosel’skii-Pokrovskii model
	2.2.5 Prandtl-Ishlinskii model
	2.2.6 Modified and generalized Prandtl-Ishlinskii models

	2.3 Rate-dependent hysteresis models
	2.3.1 Operator-based rate-dependent hysteresis models
	2.3.2 Differential equation-based hysteresis models

	2.4 Hysteresis compensation
	2.5 Scope and objectives
	2.5.1 Objectives of the dissertation research
	2.5.2 Organization of the manuscript-based thesis


	3 CHAPTER 2
	3.1 General
	3.2 Magnetostriction and magnetostrictive actuators
	3.3 Characterization of output-input properties of a magnetostrictive actuator
	3.3.1 Experimental set-up
	3.3.2 Experiment design

	3.4 Measured output-input characteristics
	3.4.1 Input current amplitude and rate effects
	3.4.2 Minor and major hysteresis loops
	3.4.3 Input magnetic bias and rate effects
	3.4.4 Mechanical load effect

	3.5 Summary and conclusions

	4 CHAPTER 3
	4.1 Introduction
	4.2 The Prandtl-Ishlinskii model
	4.2.1 The PPI model
	4.2.2 The SPI model

	4.3 Compensation of hysteresis via SPI model
	4.3.1 Feedforward compensation
	4.3.2 Analytical implementation of the feedforward compensator by using SPI model
	(a)                            (b)


	4.4 Experimental verification
	4.4.1 Experimental setup
	4.4.2 Hysteresis modeling
	4.4.3 Compensation of hysteresis nonlinearity using SPI model

	4.5 Conclusions

	5 CHAPTER 4
	5.1 Introduction
	5.2 Output-input characteristics of a magnetostrictive actuator
	5.2.1  Experimental setup and methods
	5.2.2  Influence of input amplitude
	5.2.3 Influence of rate of input
	5.2.4 Influence of input bias

	5.3 Minor hysteresis loops
	5.4 Formulation of an integrated hysteresis model
	5.4.1  Parameters identification
	5.4.2 Relative significance of the proposed integrated hysteresis model

	5.5 Conclusions

	6 CHAPTER 5
	6.1 Introduction
	6.2 Rate-dependent Prandtl-Ishlinskii model and its inverse
	6.3 Characterization of hysteresis of a magnetostrictive actuator
	6.3.1 Model parameters identification

	6.4 Feedforward compensation of rate-dependent hysteresis nonlinearities
	6.4.1 Simulation results
	6.4.2 Experimental results

	6.5 Conclusions

	7 CHAPTER 6
	7.1 Introduction
	7.2 An integrated Prandtl-Ishlinskii model and its inverse
	7.2.1 Inverse of the integrated Prandtl-Ishlinskii model

	7.3 Characterization of hysteresis of a magnetostrictive actuator
	7.4 Compensation of rate-dependent asymmetric hysteresis
	7.4.1 Simulation results
	7.4.2 Hardware-in-the-loop implementation of the inverse compensator

	7.5 Conclusions

	8 CHAPTER 7
	8.1 Major contributions of the dissertation research
	8.2 Major conclusions
	8.3 Recommendations for future work

	9 REFERENCES

