1,224 research outputs found

    Dovetail: Stronger Anonymity in Next-Generation Internet Routing

    Full text link
    Current low-latency anonymity systems use complex overlay networks to conceal a user's IP address, introducing significant latency and network efficiency penalties compared to normal Internet usage. Rather than obfuscating network identity through higher level protocols, we propose a more direct solution: a routing protocol that allows communication without exposing network identity, providing a strong foundation for Internet privacy, while allowing identity to be defined in those higher level protocols where it adds value. Given current research initiatives advocating "clean slate" Internet designs, an opportunity exists to design an internetwork layer routing protocol that decouples identity from network location and thereby simplifies the anonymity problem. Recently, Hsiao et al. proposed such a protocol (LAP), but it does not protect the user against a local eavesdropper or an untrusted ISP, which will not be acceptable for many users. Thus, we propose Dovetail, a next-generation Internet routing protocol that provides anonymity against an active attacker located at any single point within the network, including the user's ISP. A major design challenge is to provide this protection without including an application-layer proxy in data transmission. We address this challenge in path construction by using a matchmaker node (an end host) to overlap two path segments at a dovetail node (a router). The dovetail then trims away part of the path so that data transmission bypasses the matchmaker. Additional design features include the choice of many different paths through the network and the joining of path segments without requiring a trusted third party. We develop a systematic mechanism to measure the topological anonymity of our designs, and we demonstrate the privacy and efficiency of our proposal by simulation, using a model of the complete Internet at the AS-level

    Improving security and efficiency of mix-based anonymous communication systems

    Get PDF
    The communication layer leaks important private information even in the presence of encryption, which makes anonymous communication a fundamental element of systems that protect the privacy of users. Traffic mixers have long been used to achieve communication anonymity, but the security challenges and the resulted inefficiencies hinder the path to a wide adoption of these systems. In this thesis, we take a step towards improving the security of traffic mixers and building a platform for efficient anonymous communication. We begin by revisiting Binomial Mix, which is one of the most effective designs for traffic mixing proposed to date, and the one that introduced randomness to the behaviour of traffic mixers. When thoroughly examined in different traffic conditions, Binomial Mix proved to be significantly more resilient against attacks than previously believed. We then build on the design of Binomial Mix and propose two new designs for traffic mixers. The first design, Multi-Binomial Shared-Pool Mix (MBSP Mix), employs multiple sources of randomness which results in a behaviour less predictable by the attacker and thus provides a higher degree of anonymity. The second design, Multi-Binomial Independent-Pool Mix (MBIP Mix), enables a single traffic mixer to anonymise multiple communication channels with potentially differing latencies. This additional property significantly improves the security and efficiency of the mix. Moving beyond the design of traffic mixers in isolation, we propose the architecture and details of a generic framework for anonymous communication. The proposed framework consists of various parts designed to enable the integration of various Anonymous Communication Systems as plug-in components into a shared and unified system. In addition to achieving a larger user-base and enjoying its associated security benefits, this approach enables the reusability of components across multiple communication systems. Finally, we also present techniques to make the circuit establishment facility of the framework resistant towards Denial-of-Service attacks. We believe that our work is one step towards building a fully developed generic framework for anonymous communication and our results can inspire and be used for the design of a robust generic framework

    Optimal Energy-Delay Routing Protocol with Trust Levels for Wireless Ad Hoc Networks

    Get PDF
    This paper presents the Trust Level Routing (TLR) pro- tocol, an extension of the optimized energy-delay rout- ing (OEDR) protocol, focusing on the integrity, reliability and survivability of the wireless network. TLR is similar to OEDR in that they both are link state routing proto- cols that run in a proactive mode and adopt the concept of multi-point relay (MPR) nodes. However, TLR aims at incorporating trust levels into routing by frequently changing the MPR nodes as well as authenticating the source node and contents of control packets. TLR calcu- lates the link costs based on a composite metric (delay incurred, energy available at the neighbor node, energy spent during transmission and the number of packets sent on each link) for the selection ofMPR nodes. We highlight the vulnerabilities in OEDR and show ways to counter the possible attacks by using authentication and traffic par- tition as a basis for mitigating the effects of malicious activity. Network simulator NS2 results show that TLR delivers the packets with a noticeable decrease in the av- erage end-to-end delay with a small increase in the power consumed due to the additional computational overhead attributed to the security extension

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    Foundations, Properties, and Security Applications of Puzzles: A Survey

    Full text link
    Cryptographic algorithms have been used not only to create robust ciphertexts but also to generate cryptograms that, contrary to the classic goal of cryptography, are meant to be broken. These cryptograms, generally called puzzles, require the use of a certain amount of resources to be solved, hence introducing a cost that is often regarded as a time delay---though it could involve other metrics as well, such as bandwidth. These powerful features have made puzzles the core of many security protocols, acquiring increasing importance in the IT security landscape. The concept of a puzzle has subsequently been extended to other types of schemes that do not use cryptographic functions, such as CAPTCHAs, which are used to discriminate humans from machines. Overall, puzzles have experienced a renewed interest with the advent of Bitcoin, which uses a CPU-intensive puzzle as proof of work. In this paper, we provide a comprehensive study of the most important puzzle construction schemes available in the literature, categorizing them according to several attributes, such as resource type, verification type, and applications. We have redefined the term puzzle by collecting and integrating the scattered notions used in different works, to cover all the existing applications. Moreover, we provide an overview of the possible applications, identifying key requirements and different design approaches. Finally, we highlight the features and limitations of each approach, providing a useful guide for the future development of new puzzle schemes.Comment: This article has been accepted for publication in ACM Computing Survey

    Social-context based routing and security in delay tolerant networks

    Get PDF
    Delay Tolerant Networks (DTNs) were originally intended for interplanetary communications and have been applied to a series of difficult environments: wireless sensor networks, unmanned aerial vehicles, and short-range personal communications. There is a class of such environments in which nodes follow semi-predictable social patterns, such as wildlife tracking or personal devices. This work introduces a series of algorithms designed to identify the social patterns present in these environments and apply this data to difficult problems, such as efficient message routing and content distribution. Security is also difficult in a mobile environment. This is especially the case in the event that a large portion of the network is unreliable, or simply unknown. As the network size increases nodes have difficulty in securely distributing keys, especially using low powered nodes with limited keyspace. A series of multi-party security algorithms were designed to securely transmit a message in the event that the sender does not have access to the destinations public key. Messages are routed through a series of nodes, each of which partially decrypts the message. By encrypting for several proxies, the message can only be intercepted if all those nodes have been compromised. Even a highly compromised network has increased security using this algorithm, with a trade-off of reduced delivery ratio and increased delivery time -- Abstract, page iv

    Making tourist guidance systems more intelligent, adaptive and personalised using crowd sourced movement data

    Get PDF
    Ambient intelligence (AmI) provides adaptive, personalized, intelligent, ubiquitous and interactive services to wide range of users. AmI can have a variety of applications, including smart shops, health care, smart home, assisted living, and location-based services. Tourist guidance is one of the applications where AmI can have a great contribution to the quality of the service, as the tourists, who may not be very familiar with the visiting site, need a location-aware, ubiquitous, personalised and informative service. Such services should be able to understand the preferences of the users without requiring the users to specify them, predict their interests, and provide relevant and tailored services in the most appropriate way, including audio, visual, and haptic. This paper shows the use of crowd sourced trajectory data in the detection of points of interests and providing ambient tourist guidance based on the patterns recognised over such data

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed

    Contributions to security and privacy protection in recommendation systems

    Get PDF
    A recommender system is an automatic system that, given a customer model and a set of available documents, is able to select and offer those documents that are more interesting to the customer. From the point of view of security, there are two main issues that recommender systems must face: protection of the users' privacy and protection of other participants of the recommendation process. Recommenders issue personalized recommendations taking into account not only the profile of the documents, but also the private information that customers send to the recommender. Hence, the users' profiles include personal and highly sensitive information, such as their likes and dislikes. In order to have a really useful recommender system and improve its efficiency, we believe that users shouldn't be afraid of stating their preferences. The second challenge from the point of view of security involves the protection against a new kind of attack. Copyright holders have shifted their targets to attack the document providers and any other participant that aids in the process of distributing documents, even unknowingly. In addition, new legislation trends such as ACTA or the ¿Sinde-Wert law¿ in Spain show the interest of states all over the world to control and prosecute these intermediate nodes. we proposed the next contributions: 1.A social model that captures user's interests into the users' profiles, and a metric function that calculates the similarity between users, queries and documents. This model represents profiles as vectors of a social space. Document profiles are created by means of the inspection of the contents of the document. Then, user profiles are calculated as an aggregation of the profiles of the documents that the user owns. Finally, queries are a constrained view of a user profile. This way, all profiles are contained in the same social space, and the similarity metric can be used on any pair of them. 2.Two mechanisms to protect the personal information that the user profiles contain. The first mechanism takes advantage of the Johnson-Lindestrauss and Undecomposability of random matrices theorems to project profiles into social spaces of less dimensions. Even if the information about the user is reduced in the projected social space, under certain circumstances the distances between the original profiles are maintained. The second approach uses a zero-knowledge protocol to answer the question of whether or not two profiles are affine without leaking any information in case of that they are not. 3.A distributed system on a cloud that protects merchants, customers and indexers against legal attacks, by means of providing plausible deniability and oblivious routing to all the participants of the system. We use the term DocCloud to refer to this system. DocCloud organizes databases in a tree-shape structure over a cloud system and provide a Private Information Retrieval protocol to avoid that any participant or observer of the process can identify the recommender. This way, customers, intermediate nodes and even databases are not aware of the specific database that answered the query. 4.A social, P2P network where users link together according to their similarity, and provide recommendations to other users in their neighborhood. We defined an epidemic protocol were links are established based on the neighbors similarity, clustering and randomness. Additionally, we proposed some mechanisms such as the use SoftDHT to aid in the identification of affine users, and speed up the process of creation of clusters of similar users. 5.A document distribution system that provides the recommended documents at the end of the process. In our view of a recommender system, the recommendation is a complete process that ends when the customer receives the recommended document. We proposed SCFS, a distributed and secure filesystem where merchants, documents and users are protectedEste documento explora c omo localizar documentos interesantes para el usuario en grandes redes distribuidas mediante el uso de sistemas de recomendaci on. Se de fine un sistema de recomendaci on como un sistema autom atico que, dado un modelo de cliente y un conjunto de documentos disponibles, es capaz de seleccionar y ofrecer los documentos que son m as interesantes para el cliente. Las caracter sticas deseables de un sistema de recomendaci on son: (i) ser r apido, (ii) distribuido y (iii) seguro. Un sistema de recomendaci on r apido mejora la experiencia de compra del cliente, ya que una recomendaci on no es util si es que llega demasiado tarde. Un sistema de recomendaci on distribuido evita la creaci on de bases de datos centralizadas con informaci on sensible y mejora la disponibilidad de los documentos. Por ultimo, un sistema de recomendaci on seguro protege a todos los participantes del sistema: usuarios, proveedores de contenido, recomendadores y nodos intermedios. Desde el punto de vista de la seguridad, existen dos problemas principales a los que se deben enfrentar los sistemas de recomendaci on: (i) la protecci on de la intimidad de los usuarios y (ii) la protecci on de los dem as participantes del proceso de recomendaci on. Los recomendadores son capaces de emitir recomendaciones personalizadas teniendo en cuenta no s olo el per l de los documentos, sino tambi en a la informaci on privada que los clientes env an al recomendador. Por tanto, los per les de usuario incluyen informaci on personal y altamente sensible, como sus gustos y fobias. Con el n de desarrollar un sistema de recomendaci on util y mejorar su e cacia, creemos que los usuarios no deben tener miedo a la hora de expresar sus preferencias. Para ello, la informaci on personal que est a incluida en los per les de usuario debe ser protegida y la privacidad del usuario garantizada. El segundo desafi o desde el punto de vista de la seguridad implica un nuevo tipo de ataque. Dado que la prevenci on de la distribuci on ilegal de documentos con derechos de autor por medio de soluciones t ecnicas no ha sido efi caz, los titulares de derechos de autor cambiaron sus objetivos para atacar a los proveedores de documentos y cualquier otro participante que ayude en el proceso de distribuci on de documentos. Adem as, tratados y leyes como ACTA, la ley SOPA de EEUU o la ley "Sinde-Wert" en España ponen de manfi esto el inter es de los estados de todo el mundo para controlar y procesar a estos nodos intermedios. Los juicios recientes como MegaUpload, PirateBay o el caso contra el Sr. Pablo Soto en España muestran que estas amenazas son una realidad
    • …
    corecore