106 research outputs found

    Making Code Voting Secure against Insider Threats using Unconditionally Secure MIX Schemes and Human PSMT Protocols

    Full text link
    Code voting was introduced by Chaum as a solution for using a possibly infected-by-malware device to cast a vote in an electronic voting application. Chaum's work on code voting assumed voting codes are physically delivered to voters using the mail system, implicitly requiring to trust the mail system. This is not necessarily a valid assumption to make - especially if the mail system cannot be trusted. When conspiring with the recipient of the cast ballots, privacy is broken. It is clear to the public that when it comes to privacy, computers and "secure" communication over the Internet cannot fully be trusted. This emphasizes the importance of using: (1) Unconditional security for secure network communication. (2) Reduce reliance on untrusted computers. In this paper we explore how to remove the mail system trust assumption in code voting. We use PSMT protocols (SCN 2012) where with the help of visual aids, humans can carry out mod  10\mod 10 addition correctly with a 99\% degree of accuracy. We introduce an unconditionally secure MIX based on the combinatorics of set systems. Given that end users of our proposed voting scheme construction are humans we \emph{cannot use} classical Secure Multi Party Computation protocols. Our solutions are for both single and multi-seat elections achieving: \begin{enumerate}[i)] \item An anonymous and perfectly secure communication network secure against a tt-bounded passive adversary used to deliver voting, \item The end step of the protocol can be handled by a human to evade the threat of malware. \end{enumerate} We do not focus on active adversaries

    General Perfectly Secure Message Transmission Using Linear Codes

    Full text link
    We study perfectly secure message transmission (PSMT) from a sender S to a receiver R in the general adversary model. In this model, instead of being bounded by a threshold, the Byzantine adversary in a network is characterized by an adversary structure. By regarding monotone general access structures as linear codes, we introduce some new properties that allow us to design efficient PSMT protocols. We give a number of efficient PSMT protocols in both undirected and directed network graphs. These protocols comprehensively improve the transmission complexity of some previous results in this area. More significantly, as all of our protocols are executed in either 3 or 2 rounds, our result is the first, in the context of PSMT in the general adversary model, to have constant round complexity when using interaction

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    Secure message transmission in the general adversary model

    Get PDF
    The problem of secure message transmission (SMT), due to its importance in both practice and theory, has been studied extensively. Given a communication network in which a sender S and a receiver R are indirectly connected by unreliable and distrusted channels, the aim of SMT is to enable messages to be transmitted from S to R with a reasonably high level of privacy and reliability. SMT must be achieved in the presence of a Byzantine adversary who has unlimited computational power and can corrupt the transmission. In the general adversary model, the adversary is characterized by an adversary structure. We study two diff�erent measures of security: perfect (PSMT) and almost perfect (APSMT). Moreover, reliable (but not private) message transmission (RMT) are considered as a specifi�c part of SMT. In this thesis, we study RMT, APSMT and PSMT in two di�fferent network settings: point-to-point and multicast. To prepare the study of SMT in these two network settings, we present some ideas and observations on secret sharing schemes (SSSs), generalized linear codes and critical paths. First, we prove that the error-correcting capability of an almost perfect SSS is the same as a perfect SSS. Next, we regard general access structures as linear codes, and introduce some new properties that allow us to construct pseudo-basis for efficient PSMT protocol design. In addition, we de�fine adversary structures over "critical paths", and observe their properties. Having these new developments, the contributions on SMT in the aforementioned two network settings can be presented as follows. The results on SMT in point-to-point networks are obtained in three aspects. First, we show a Guessing Attack on some existing PSMT protocols. This attack is critically important to the design of PSMT protocols in asymmetric networks. Second, we determine necessary and sufficient conditions for di�fferent levels of RMT and APSMT. In particular, by applying the result on almost perfect SSS, we show that relaxing the requirement of privacy does not weaken the minimal network connectivity. Our �final contribution in the point-to-point model is to give the �first ever efficient, constant round PSMT protocols in the general adversary model. These protocols are designed using linear codes and critical paths, and they signifi�cantly improve some previous results in terms of communication complexity and round complexity. Regarding SMT in multicast networks, we solve a problem that has been open for over a decade. That is, we show the necessary and sufficient conditions for all levels of SMT in di�fferent adversary models. First, we give an Extended Characterization of the network graphs based on our observation on the eavesdropping and separating activities of the adversary. Next, we determine the necessary and sufficient conditions for SMT in the general adversary model with the new Extended Characterization. Finally, we apply the results to the threshold adversary model to completely solve the problem of SMT in general multicast network graphs

    Error Decodable Secret Sharing and One-Round Perfectly Secure Message Transmission for General Adversary Structures

    Get PDF
    An error decodable secret-sharing scheme is a secret-sharing scheme with the additional property that the secret can be recovered from the set of all shares, even after a coalition of participants corrupts the shares they possess. In this paper we consider schemes that can tolerate corruption by sets of participants belonging to a monotone coalition structure, thus generalising both a related notion studied by Kurosawa, and the well-known error-correction properties of threshold schemes based on Reed-Solomon codes. We deduce a necessary and sufficient condition for the existence of such schemes, and we show how to reduce the storage requirements of a technique of Kurosawa for constructing error-decodable secret-sharing schemes with efficient decoding algorithms. In addition, we explore the connection between one-round perfectly secure message transmission (PSMT) schemes with general adversary structures and secret-sharing schemes, and we exploit this connection to investigate factors affecting the performance of one-round PSMT schemes such as the number of channels required, the communication overhead, and the efficiency of message recovery

    Security protocols suite for machine-to-machine systems

    Get PDF
    Nowadays, the great diffusion of advanced devices, such as smart-phones, has shown that there is a growing trend to rely on new technologies to generate and/or support progress; the society is clearly ready to trust on next-generation communication systems to face today’s concerns on economic and social fields. The reason for this sociological change is represented by the fact that the technologies have been open to all users, even if the latter do not necessarily have a specific knowledge in this field, and therefore the introduction of new user-friendly applications has now appeared as a business opportunity and a key factor to increase the general cohesion among all citizens. Within the actors of this technological evolution, wireless machine-to-machine (M2M) networks are becoming of great importance. These wireless networks are made up of interconnected low-power devices that are able to provide a great variety of services with little or even no user intervention. Examples of these services can be fleet management, fire detection, utilities consumption (water and energy distribution, etc.) or patients monitoring. However, since any arising technology goes together with its security threats, which have to be faced, further studies are necessary to secure wireless M2M technology. In this context, main threats are those related to attacks to the services availability and to the privacy of both the subscribers’ and the services providers’ data. Taking into account the often limited resources of the M2M devices at the hardware level, ensuring the availability and privacy requirements in the range of M2M applications while minimizing the waste of valuable resources is even more challenging. Based on the above facts, this Ph. D. thesis is aimed at providing efficient security solutions for wireless M2M networks that effectively reduce energy consumption of the network while not affecting the overall security services of the system. With this goal, we first propose a coherent taxonomy of M2M network that allows us to identify which security topics deserve special attention and which entities or specific services are particularly threatened. Second, we define an efficient, secure-data aggregation scheme that is able to increase the network lifetime by optimizing the energy consumption of the devices. Third, we propose a novel physical authenticator or frame checker that minimizes the communication costs in wireless channels and that successfully faces exhaustion attacks. Fourth, we study specific aspects of typical key management schemes to provide a novel protocol which ensures the distribution of secret keys for all the cryptographic methods used in this system. Fifth, we describe the collaboration with the WAVE2M community in order to define a proper frame format actually able to support the necessary security services, including the ones that we have already proposed; WAVE2M was funded to promote the global use of an emerging wireless communication technology for ultra-low and long-range services. And finally sixth, we provide with an accurate analysis of privacy solutions that actually fit M2M-networks services’ requirements. All the analyses along this thesis are corroborated by simulations that confirm significant improvements in terms of efficiency while supporting the necessary security requirements for M2M networks

    Reliable and secure low energy sensed spectrum communication for time critical cloud computing applications

    Get PDF
    Reliability and security of data transmission and access are of paramount importance to enhance the dependability of time critical remote monitoring systems (e.g. tele-monitoring patients, surveillance of smart grid components). Potential failures for data transmissions include wireless channel unavailability and delays due to the interruptions. Reliable data transmission demands seamless channel availability with minimum delays in spite of interruptions (e.g. fading, denial-of-service attacks). Secure data transmissions require sensed data to be transmitted over unreliable wireless channels with sucient security using suitable encryption techniques. The transmitted data are stored in secure cloud repositories. Potential failures for data access include unsuccessful user authentications due to mis-management of digital identities and insucient permissions to authorize situation specic data access requests. Reliable and secure data access requires robust user authentication and context-dependent authorization to fulll situation specic data utility needs in cloud repositories. The work herein seeks to enhance the dependability of time critical remote monitoring applications, by reducing these failure conditions which may degrade the reliability and security of data transmission or access. As a result of an extensive literature survey, in order to achieve the above said security and reliability, the following areas have been selected for further investigations. The enhancement of opportunistic transmissions in cognitive radio networks to provide greater channel availability as opposed to xed spectrum allocations in conventional wireless networks. Delay sensitive channel access methods to ensure seamless connectivity in spite of multiple interruptions in cognitive radio networks. Energy ecient encryption and route selection mechanisms to enhance both secure and reliable data transmissions. Trustworthy digital identity management in cloud platforms which can facilitate ecient user authentication to ensure reliable access to the sensed remote monitoring data. Context-aware authorizations to reliably handle the exible situation specic data access requests. Main contributions of this thesis include a novel trust metric to select non-malicious cooperative spectrum sensing users to reliably detect vacant channels, a reliable delaysensitive cognitive radio spectrum hand-o management method for seamless connectivity and an energy-aware physical unclonable function based encryption key size selection method for secure data transmission. Furthermore, a trust based identity provider selection method for user authentications and a reliable context-aware situation specic authorization method are developed for more reliable and secure date access in cloud repositories. In conclusion, these contributions can holistically contribute to mitigate the above mentioned failure conditions to achieve the intended dependability of the timecritical remote monitoring applications

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    • …
    corecore