516 research outputs found

    A formal context for closures of acyclic hypergraphs

    Get PDF
    Database constraints in the relational database model (RDBM) can be viewed as a set of rules that apply to a dataset, or as a set of axioms that can generate a (closed) set of those constraints. In this paper, we use Formal Concept Analysis to characterize the axioms of Acyclic Hypergraphs (in the RDBM they are called Acyclic Join Dependencies). This present paper complements and generalizes previous work on FCA and databases constraints.Peer ReviewedPostprint (author's final draft

    On the Interaction of Inclusion Dependencies with Independence Atoms

    Get PDF
    Proceeding volume: 46Inclusion dependencies are one of the most important database constraints. In isolation their finite and unrestricted implication problems coincide, are finitely axiomatizable, PSPACE-complete, and fixed-parameter tractable in their arity. In contrast, finite and unrestricted implication problems for the combined class of functional and inclusion de- pendencies deviate from one another and are each undecidable. The same holds true for the class of embedded multivalued dependencies. An important embedded tractable fragment of embedded multivalued dependencies are independence atoms. These stipulate independence between two attribute sets in the sense that for every two tuples there is a third tuple that agrees with the first tuple on the first attribute set and with the second tuple on the second attribute set. For independence atoms, their finite and unrestricted implication problems coincide, are finitely axiomatizable, and decidable in cubic time. In this article, we study the implication problems of the combined class of independence atoms and inclusion dependencies. We show that their finite and unrestricted implication problems coincide, are finitely axiomatizable, PSPACE-complete, and fixed-parameter tractable in their arity. Hence, significant expressivity is gained without sacrificing any of the desirable properties that inclusion dependencies have in isolation. Finally, we establish an efficient condition that is sufficient for independence atoms and inclusion dependencies not to inter- act. The condition ensures that we can apply known algorithms for deciding implication of the individual classes of independence atoms and inclusion dependencies, respectively, to decide implication for an input that combines both individual classes.Peer reviewe

    Fundamentals and applications of order dependencies

    Get PDF
    Business-intelligence queries often involve SQL functions and algebraic expressions. There can be clear semantic relationships between a column's values and the values of a function over that column. A common property is monotonicity: as the column's values ascend, so do the function's values (or the other column's values). This we call an order dependency (OD). Queries can be evaluated more efficiently when the query optimizer uses order dependencies. They can be run even faster when the optimizer can also reason over known ODs to infer new ones. Order dependencies can be declared as integrity constraints, and they can be detected automatically for many types of SQL functions and algebraic expressions. We present optimization techniques using ODs for queries that involve join, order by, group by, partition by, and distinct. Essentially, ODs can further exploit interesting orders to eliminate or simplify potentially expensive sorts in the query plan. We evaluate these techniques over our prototype implementation in IBM® DB2® using the TPC-DS® benchmark schema and some customer inspired queries. Our experimental results demonstrate a significant performance gain. Dependencies have played an important role in database theory. We study the theoretical aspects of order dependencies-and unidirectional order dependencies (UODs), a proper sub-class of ODs-which describe the relationships among lexicographical orderings of sets of tuples. We investigate the inference problem for order dependencies. We establish the following: (i) a sound and complete axiomatization for UODs which is sound for ODs; (ii) a hierarchy of order dependency classes; (iii) a proof of co-NP-completeness of the inference problem for ODs and for the subclass of UODs; (iv) a proof of co-NP-completeness of the inference problem of functional dependencies (FDs) from ODs in general, but demonstrate linear time complexity for the inference of FDs from UODs; (v) a sound and complete elimination procedure for testing logical implication over ODs; and (vi) a sound and complete polynomial inference algorithm for sets of UODs over natural domains

    Realms: A Structure for Consolidating Knowledge about Mathematical Theories

    Full text link
    Since there are different ways of axiomatizing and developing a mathematical theory, knowledge about a such a theory may reside in many places and in many forms within a library of formalized mathematics. We introduce the notion of a realm as a structure for consolidating knowledge about a mathematical theory. A realm contains several axiomatizations of a theory that are separately developed. Views interconnect these developments and establish that the axiomatizations are equivalent in the sense of being mutually interpretable. A realm also contains an external interface that is convenient for users of the library who want to apply the concepts and facts of the theory without delving into the details of how the concepts and facts were developed. We illustrate the utility of realms through a series of examples. We also give an outline of the mechanisms that are needed to create and maintain realms.Comment: As accepted for CICM 201

    A formal context for acyclic join dependencies

    Get PDF
    Acyclic Join Dependencies (AJD) play a crucial role in database design and normalization. In this paper, we use Formal Concept Analysis (FCA) to characterize a set of AJDs that hold in a given dataset. This present work simplifies and generalizes the characterization of Multivalued Dependencies with FCA.Postprint (author's final draft
    • …
    corecore